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Abstract

Purpose—To compare optic disc perfusion between normal and glaucoma subjects using optical

coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma.

Design—Observational, cross-sectional study.

Participants—Twenty-four normal subjects and 11 glaucoma patients were included.

Methods—One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-

source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm

(SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was

computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used

to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field

OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness.

Main Outcome Measurements—Variability was assessed by coefficient of variation (CV).

Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma
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and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow

index, structural assessments, and visual field (VF) parameters were assessed by linear regression.

Results—In normal discs, a dense microvascular network was visible on OCT angiography. This

network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit

reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%,

and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p =

0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was

highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations

were significant even after accounting for age, cup/disc area ratio, NFL, and rim area.

Conclusions—OCT angiography, generated by the new SSADA algorithm, repeatably measures

optic disc perfusion. OCT angiography could be useful in the evaluation of glaucoma and

glaucoma progression.

Glaucoma is the second leading cause of blindness in the United States.1, 2 Although

elevated intraocular pressure (IOP) is a risk factor, over half of glaucoma patients actually

have IOPs within the normal range at their first visit.3 There is a growing body of evidence

suggesting that glaucoma pathogenesis is related to vascular dysfunction.2, 4–6 More

recently, prospective trials have demonstrated that optic disc hemorrhage 6–11 and

peripapillary atrophy12–14 are both associated with accelerated glaucoma progression. These

findings may support a role for focal ischemia of the optic disc as a causative factor for

glaucoma at least in some patients, either by itself or in conjunction with elevated IOP.

However, the lack of measurement tools has hampered the development of a clinical test for

optic disc perfusion. Optical coherence tomography (OCT) is commonly used in clinical

settings for the diagnosis and management of glaucoma.15 Doppler OCT has been used to

obtain precise measurements of total retinal blood flow calculated from the Doppler

frequency shift of backscattered light.15 While appropriate for large vessels around the disc,

Doppler OCT is not sensitive enough to measure accurately the low velocities of small

vessels that make up the disc microcirculation.

Recently, we developed a method of measuring local circulation using high-speed OCT to

perform quantitative angiography. Using the split-spectrum amplitude-decorrelation

angiography (SSADA) algorithm, flow in the optic disc can be quantified.16 The purpose of

this study was to investigate optic disc perfusion in glaucoma with OCT angiography,

determine the relationship of flow index measurements with traditional measures of function

and structure, and assess whether or not the SSADA-based optic disc flow index can

measure vascular changes associated with glaucoma.

Methods

Study Population

This study was performed at the Casey Eye Institute at Oregon Health & Science University

(OHSU). The research protocols were approved by the institutional review board at OHSU

and carried out in accordance with the tenets of the Declaration of Helsinki. Written

Jia et al. Page 2

Ophthalmology. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



informed consent was obtained from each subject following an explanation of the nature of

the study.

The normal and early glaucoma subjects were part of the Advanced Imaging for Glaucoma

(AIG) study. One eye from each subject was scanned and analyzed. Perimetric glaucoma

(PG) eyes exhibited glaucomatous visual field (VF) loss and optic disc changes such as disc

rim defects or nerve fiber layer defects on ophthalmoscopy. Preperimetric glaucoma (PPG)

eyes showed similar changes to the optic disc as glaucomatous eyes while maintaining

normal or borderline VF tests. Standard eye examinations and VF tests were performed on

both eyes of the normal subjects. Normal VFs have a normal mean deviation (MD; P>0.05),

pattern standard deviation (PSD; P>0.05), and glaucoma hemifield test (GHT; P>0.03).

Glaucomatous VF loss was defined as either abnormal PSD (P<0.05) or GHT (P<1%) in a

consistent pattern on both qualifying VF exams. Borderline VFs met neither normal nor PG

criteria.

Optical Coherence Tomography

A swept-source based Fourier-domain OCT system described in previous publications17, 18

was used to obtain images for the quantification of optic disc perfusion. The system utilized

a commercially available swept laser centered at 1050 nm (Axsun Technologies, Inc.,

Billerica, MA, USA) with a 100 nm tuning range and operated at a 100 kHz repetition rate.

This provided an axial resolution of 5.3 μm and an imaging range of 2.9 mm in tissue.

Imaging of the optic disc was performed with an average laser output power of 1.9 mW,

consistent with safety limits set by the American National Standards Institute (ANSI).19

Image Acquisition and Processing

Each subject underwent pupil dilation with 1% tropicamide and 2.5% phenylephrine eye

drops prior to examination. Once dilated, subjects were seated in front of the OCT scanner,

and their heads were stabilized with the aid of both a supporting chinrest and a forehead rest.

Subjects were directed to focus their gaze on the internal fixation target, and a real-time en

face view was used by the operator to visualize the imaging area on the fundus.

The scan pattern used was optimized for the SSADA algorithm.18 Each set of scans was

comprised of four 3 mm × 3 mm images of the optic disc obtained from 32,000 axial line

scans. Two images in each set were captured in the x-fast configuration, with B-scans

acquired rapidly along the x-axis. Each pass of the scan beam captured 200 axial lines

forming a single B-scan. Eight B-scans were obtained at each fixed y-axis location before

the process was repeated at the next sequential y-location. Two hundred sampling locations

were covered along a 3-mm region of the y-axis. At a capture speed of 455 B-scans per

second, the 1,600 B-scans were acquired within 3.5 seconds. The remaining two images in

each set were captured in the y-fast configuration. While the data points remained the same

between the y-fast and x-fast configuration, the order in which the data was collected

differed. In the y-fast configuration, B-scans were acquired rapidly along the y-axis rather

than the x-axis, as was performed in the x-fast configuration.
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In each scan, the SSADA algorithm was used to distinguish vessels from static tissue. As

seen in real-time OCT reflectance images, the amplitude of signal returning from nonstatic

tissue varies rapidly over time.18 By calculating the decorrelation of signal amplitude from

consecutive B-scans, a contrast between static and nonstatic tissue is created that allows for

the visualization of blood flow. The faster blood particles move across the laser beam, the

higher is the decorrelation of the detected signals within a velocity range set by the scan

parameters. Thus, decorrelation is approximately linear to flow velocity, i.e., the distance

traveled by red blood cells flowing across the light beam per unit time.20, 21 However,

beyond a saturation velocity that is defined by the time interval between consecutive OCT

B-scans, the decorrelation increases more slowly with velocity and eventually reaches an

upper boundary.21

Eye motion causes two types of artifacts in SSADA. First, motion between consecutive B-

scans at the same nominal position causes decorrelation that can appear as flow. Second,

motion between B-scan positions distorts the transverse position of scans along the slow

scan axis. To correct the first type of motion error, B-scans with very large (saccadic) bulk

motion artifacts were removed. Furthermore, decorrelation due to bulk tissue motion was

calculated by histogram analysis and subtracted from each cross-sectional SSADA frame.18

To correct the second type of motion artifact, we used an image registration algorithm that

registered 4 orthogonal raster scanned volumes.22 Motion correction was first performed on

the structural OCT data. The motion correction algorithm generated three-dimentional (3D)

displacement fields that map A-scans from the input volumes into a common motion-

corrected space. The same displacement fields were applied to the decorrelation (flow) data

to produce motion-corrected flow data volumes. Flow data from four input volumes were

weighted and merged,22 improving the signal-to-noise ratio in the flow signal, and reducing

the flow measurement variation due to local flow changes caused by the cardiac cycle.

Cross-sectional registered reflectance intensity images and flow images were summarized

and viewed as an en face maximum projection. The disc boundary for each subject was

manually delineated along the neural canal opening using the OCT reflectance images of

normal (Fig. 1- A1, B1) and PG (Fig. 1 - A2, B2) eyes. The boundaries were then

transferred to the OCT angiogram map (Fig. 1 - C1, C2) for disc region segmentation. The

disc flow index was defined as the average decorrelation value within the disc, given by

where D was the decorrelation value acquired by SSADA. V was 1 when the decorrelation

value was above background; otherwise, V was 0. Thus, the flow index is a dimensionless

parameter between 0 and 1. Due to the nonlinear relationship between decorrelation and

flow velocity, the flow index mainly measured the area (or caliber) of large vessels and both

the area (or vessel density) and velocity of capillaries.

To clearly present the 3D nature of OCT angiography, the 3D angiogram was separately

projected onto en face views (Fig. 1, panels E–G) in 3 layers. The segmentation was based
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on the detection of the highest gradient magnitude in OCT reflectance for specific tissue

interfaces (edges). The retinal layer was defined from the internal limiting membrane to the

interpolated Bruch’s membrane. The choroidal layer was defined as the layer 180 μm below

the Bruch’s membrane. The scleral layer was the region below the choroidal layer (Fig. 1

H1, H2).

Repeatability and Reproducibility

Intra-visit repeatability of the disc flow index was calculated from a subset of normal

subjects with three sets of scans performed within a single visit. Each scan set, consisting of

two x-fast and two y-fast scans, was obtained within 15 seconds of each other. The

coefficient of variation (CV) was calculated by comparing three measurements obtained at

the same location by a single operator.

The same subset of normal subjects used to calculate intra-visit repeatability were used to

calculate inter-visit reproducibility obtained from three sets of scans performed on three

separate visits. All scans were obtained within the timeframe of a year. The CV was

determined from measurements made by a single operator and obtained on separate visits of

the subjects.

Visual Field Testing

VF tests to determine pattern standard deviation (PSD) and mean deviation (MD) were

performed with the Humphrey Field Analyzer II (Carl Zeiss Meditec, Inc., Dublin, CA,

USA) set for the 24-2 threshold test, size III white stimulus and standard SITA algorithm.

Structural Analysis

The disc rim area for each subject was measured by confocal scanning laser ophthalmoscopy

(cSLO) (HRT II, Heidelberg Engineering, GmbH, Dossenheim, Germany). An experienced

glaucoma specialist graded vertical and horizontal cup-to-disc (C/D) ratio on stereo

photography. The C/D area ratio was calculated by multiplying vertical and horizontal

ratios. Additionally, peripapillary retinal nerve fiber layer (NFL) thickness was measured

from a 3D volumetric scan of 8×8 mm on the same swept source OCT system used for OCT

angiography. The NFL thickness was then averaged from a circular profile of 3.4 mm

diameter centered on the disc.

Statistical Analysis

Linear regression analysis was employed in the normal group to investigate whether or not

the measurement of disc flow index was affected by age, body mass index (BMI), mean

ocular perfusion pressure (MOPP), or IOP. Wilcoxon rank-sum tests were used to compare

average values of measurements between normal and glaucoma eyes. Univariate regression

analysis was then used to determine the relationships between disc flow index and

traditional measures of function and structure such as the VF MD, VF PSD, C/D area ratio,

rim area, NFL thickness and IOP in the glaucoma group. Because VF values for MD and

PSD were reported in logarithmic dB scale, values for disc flow index, C/D area ratio, rim

area and NFL thickness were converted to logarithmic dB scale by 10×log10[value/(average

value of the normal group)] to improve the correlation linearity and strengthen the
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correlation coefficient values. Multivariate linear regression was performed after log

transformation of the variable into dB units relative to the normal reference average. This

model was used to analyze the effect of optic disc perfusion on the VF PSD test and vice

versa while controlling for several other independent variables including age, C/D area ratio,

rim area and NFL thickness. All statistical analyses were performed with Matlab version

R2010b (MathWorks, Natick, MA, USA).

Results

Disc perfusion was studied in 24 normal and 11 glaucoma subjects (Table 1). The mean age

in the normal group, 52 ± 10 years, was 16 years younger than the glaucoma group. The

glaucoma group consisted of 8 PG and 3 PPG eyes. Most of the glaucoma group had mild

disease in which 6 of the 11 subjects were stage 0 to 1 according to a Glaucoma Staging

System 2.23 There were no significant differences in BMI, diabetes mellitus, systemic

hypertension, or the use of systemic antihypertensive medications between the two groups.

There were also no significant differences between the control and glaucoma groups for

IOP, diastolic blood pressure, systolic blood pressure, or MOPP. Data collection was

complete except for cSLO and disc photography from one PPG subject.

The CV for intra-visit repeatability and inter-visit reproducibility of the disc flow index was

1.2% and 4.2%, respectively, based on measurements from 4 normal subjects. The inter-

subject variability among the 24 normal subjects was 5.0% CV. There were no correlations

of age, BMI, MOPP, or IOP with the disc flow index in the normal group. Three normal

subjects (12%) were on systemic antihypertensive medications: 1 (4%) on a diuretic, and 2

(8%) on an angiotensin converting enzyme inhibitor. The use of any systemic

antihypertensive medication or any subclass did not have a significant effect on disc flow

index as determined by the Mann-Whitney U test.

There were no correlations of age, BMI, MOPP, or IOP with disc flow index in the

glaucoma group. Four glaucoma subjects (36%) were on at least one systemic

antihypertensive medication: 3 (27%) on a calcium channel blocker, 2 (18%) on a diuretic, 1

(9%) on an angiotensin receptor antagonist, and 1 (9%) on an angiotensin converting

enzyme inhibitor. The use of any systemic antihypertensive medication or any subclass did

not have a significant effect on the disc flow index as determined by the Mann-Whitney U

test. Ten glaucoma subjects (91%) were on at least one ocular antihypertensive eye drop: 10

(91%) on a prostaglandin, 8 (73%) on a beta blocker, 4 (36%) on a carbonic anhydrase

inhibitor, and 1 (9%) on an alpha-2 agonist. One (9%) used no drops, 2 (18%) used one

drop, and 8 (73%) used more than one drop. Use of an ocular antihypertensive eye drop or

any subclass was not correlated with the disc flow index as determined by the Mann-

Whitney U test.

The OCT angiography scan provided detailed 3D image sets for both disc structure

(reflectance) and perfusion (flow). Example images of normal and perimetric glaucoma eyes

are shown in Figure 1. The color fundus photographs and OCT en face reflectance

summation images both showed discs with moderate degrees of peripapillary atrophy. The

maximum projection en face angiograms showed that normal discs had a denser
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microvascular network (Fig. 1, C1, note dense microvascular network temporally) compared

to the glaucomatous disc (Fig. 1, C2). The disc flow indices were computed by averaging

decorrelation values within the disc margin in the en face whole depth OCT angiograms.

The disc margin (ellipses in Fig. 1) could be determined from the en face structural OCT

images, with the aid of color disc photographs. Cross-sectional OCT angiograms were

constructed by overlaying blood flow (color scale) on reflectance (gray scale). These cross-

sections showed that OCT angiography detected flow from all depths of the disc, from the

inner surface to the lamina cribrosa. There appeared to be reduced flow in the lamina region

of the glaucomatous disc compared to the normal disc (Fig. 1 - D1, D2).

The 3D OCT angiograms could also be projected within separate layers (Fig. 1, panels E–

G). In examining these layered projections, one needs to keep in mind that large retinal

vessels cast shadows on the tissue below. At the same time, flow from large superficial

vessels can also be projected onto highly reflective tissue below, creating a flow projection

artifact. This can occur because of variation in the shadowing effect due to the transit of

blood particles. Thus large vessels in the retinal layer can be seen again in deeper layers as

either shadows or flow. Despite these artifacts, distinct patterns were present in the layered

en face projection angiograms. In the retinal layer, the superficial disc vasculature blended

seamlessly into the retinal vascular network. The retinal and superficial disc vascular

networks were dense in the normal eye (Fig. 1, E1), but attenuated in the glaucomatous eye

(Fig. 1, E2). The peripapillary choroicapillaries were nearly confluent and dominated the

choroidal layer angiograms (Fig. 1 F1, F2), but the disc circulation was relatively low in this

layer. The sclera had relatively low flow and much of that was probably projected from the

choroid above (Fig. 1 - G1, G2). The lamina cribrosa had a dense vascular network in the

normal eye (Fig. 1, G1) and a mildly attenuated network in the glaucomatous eye (Fig. 1,

G2). Based on all of the 3D information, the impression was that glaucoma attenuated flow

in both the microvascular network of the superficial disc and in the deeper lamina cribrosa.

The large retinal vessels appeared to be relatively unchanged in caliber.

The disc flow index in the glaucoma group was 25% lower (p = 0.003) compared to normal

group (Fig. 2, Table 2). Sensitivity and specificity were both 100% using a flow index cutoff

value of 0.1515 (Fig. 2). As expected, the glaucoma group also had significantly worse VF,

rim area, C/D area ratio and NFL thickness (Table 2).

In the glaucoma group, univariate regression analysis showed that the disc flow index was

significantly correlated with VF PSD and rim area, but not with VF MD, C/D area ratio, or

NFL thickness (Table 3). The rim area was also significantly correlated with VF PSD, VF

MD, C/D area ratio and NFL thickness. IOP was not significantly correlated with any other

factors (data not shown).

In the normal group, there was no correlation between the disc flow index and age, VF PSD,

rim area, C/D area ratio, or NFL thickness (Fig. 3). The glaucoma group tended to be older,

had larger PSD and C/D ratio, smaller rim area and thinner NFL. In the glaucoma group the

disc flow index was significantly correlated with VF PSD, and rim area (Fig. 3 and Table 3).

It is notable that there was no overlap in flow index between the glaucoma and normal
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groups, but there was much overlapping between the two groups for cSLO rim area, C/D

area ratio and NFL thickness.

In the multivariate analysis where the flow index was considered as the dependent variable

(Table 4), VF PSD was the dominant explanatory variable, accounting for ~75% of the

variance (R2). Age, C/D area ratio, rim area and NFL thickness were not significant

explanatory variables when grouped with VF PSD in the multivariate models. This showed

that disc perfusion was more strongly linked to VF PSD than any disc structural parameters.

The PSD parameter was chosen to summarize VF function because it is a more specific

diagnostic parameter than MD in early glaucoma.24, 25

In the multivariate analysis where the dependent variable was VF PSD (Table 5), the flow

index was the dominant explanatory variable, accounting for ~75% of the variance (R2).

Age, C/D area ratio, and rim area were not significant explanatory variables when grouped

with the disc flow index in the multivariate models. Although NFL thickness was a

significant explanatory variable, the flow index was the dominant one, accounting for more

than five times the variance (R2) in VF PSD as NFL thickness. This suggests that the flow

index is a relatively strong indicator of glaucoma severity.

Discussion

In this study, we reported the first use of OCT angiography to quantify human disc perfusion

in glaucoma. OCT angiography with SSADA has many properties that make it useful for

clinical evaluation. First, it is a noninvasive technique that does not require the injection of

any exogenous dye or contrast agent. Second, it provides 3D visualization of the optic nerve

head vasculature from the disc surface to the lamina cribrosa. Third, it provides near-

automated quantification of disc perfusion for diagnostic evaluation.

Preliminary validation of the diagnostic utility of the disc flow index was shown by the

significant differences between normal and glaucoma eyes. Further, there was a high

correlation of the flow indices to visual functions, and low intra-visit, inter-visit, and inter-

subject variability.

OCT angiography is not the first technique to be used to evaluate disc perfusion in

glaucoma. Disc blood flow of glaucoma patients was previously investigated by fluorescein

angiography (FA). Prolonged arteriovenous passage times have been demonstrated in

patients with primary open-angle glaucoma26 and normal pressure glaucoma.27 Fluorescein

filling defects in the disc have been found in glaucomatous28 and ocular hypertensive

eyes.29 FA studies have also shown focal sector hypoperfusion of the optic disc in patients

with low tension glaucoma and diffuse disc hypoperfusion in chronic simple glaucoma

patients.30 However, FA is not commonly used to monitor glaucoma due to its invasive

nature and difficulty in quantification. Unlike FA, SSADA is a noninvasive technique that

relies on the decorrelation of OCT signal amplitude reflected from nonstatic tissue. This

allows for the quantification of flow that can be used to monitor disc perfusion while

avoiding potential side effects of nausea and anaphylaxis associated with dye injection.31, 32
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Laser Doppler flowmetry (LDF) and laser speckle flowgraphy (LSFG) are two other

noninvasive techniques that were reported to measure disc perfusion. Using single-point

LDF, Piltz-seymour et al. and Hamard et al. similarly reported decreased blood flow in the

disc of glaucoma and glaucoma suspects when compared with normal subjects.33, 34 Using

scanning LDF, Michelson et al. reported that both neuroretinal rim blood flow and

peripapillary retinal blood flow were significantly decreased in glaucoma patients compared

with controls.35 Hafez et al. also found significantly lower blood flow in the disc for open-

angle glaucoma patients compared to normal patients and suggested perfusion might be

reduced before the manifestation of visual field defects.36 By use of LSFG, Yokoyama et al.

found that the mean blur rate for the entire optic disc was significantly lower in the

glaucoma group than that in the control group.37 Sugiyama’s group reported that less blood

flow was observed with LSFG at the superior and inferior sectors of the disc rim in patients

with PPG compared to normal control subjects.38 Overall, our findings agree with previous

results that disc perfusion is reduced in glaucomatous eyes. More importantly, OCT

angiography with SSADA offers greater intra-visit repeatability (1.2% CV) and inter-visit

reproducibility (4.2% CV) than either LSFG or LDF. With LSFG, CVs for intra-visit

repeatability ranged from 1.9% – 11.9%, and inter-visit reproducibility was 12.8%.39–43

LDF was even less reliable, with CVs for intra-visit repeatability of 6.6% – 21.2% and inter-

visit reproducibility of 25.2% – 30.1%.39, 44–47 Inter-subject variability in the normal

population was also reduced when flow was assessed with SSADA-based OCT angiography

(5.0%) compared with either LSFG (23.2% – 33%) or LDF (43.5% – 47.1%).39, 41, 42, 45, 48

A technical reason that SSADA has advantages over LDF is its relative insensitivity to

variations in the average intensity of signal reflected from the tissue of interest, which could

be affected by intrinsic tissue reflectance, or by beam attenuation due to defocus, media

opacity, pigment absorption, and scattering in overlying tissue. In LDF, the variance of the

speckle pattern is inherently proportional to average intensity of the reflected signal. In the

SSADA algorithm, the effect of signal intensity is effectively cancelled because

decorrelation is proportional to the variance divided by the average signal intensity.18 This

has been demonstrated clinically – the SSADA-based average decorrelation in three normal

subjects varied within +/− 0.8% CV, even though the average signal intensity in the same

images varied by +/− 36.7% CV.16 Thus based on both theoretical considerations and

clinical data, SSADA-based optic disc flow index is little affected by absorbance and

reflectance of disc tissue, unlike LDF perfusion measurements. The reduced signal strength

dependence by OCT angiography allows for cleaner inter-individual comparison of flow

index.

With OCT angiography, the principal finding of the present study is the correlation between

disc flow index and VF PSD (R2 = 0.752, p = 0.001), which is suggestive of a link between

reduced perfusion of the disc and severity of glaucoma. Multiple regression models (Tables

4 and 5) suggest that there is a strong link between VF PSD and disc flow index that is not

mediated by disc structural variables such as C/D area ratio, rim area and NFL thickness.

This suggests that the flow index provides independent information on glaucoma severity

that is not available from structural variables alone. However, we also found in this study

that the correlation between the disc flow index and VF MD was relatively low and not

statistically significant. One explanation for the discrepancy between VF MD and PSD may
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be that the MD is easily affected by nonglaucomatous factors, such as cataract, refractive

error, and dry eye, and therefore less reliable in early glaucoma.24, 25 Most of the glaucoma

population in our study had early disease, therefore PSD may be a more reliable measure of

their disease severity than MD. Another possibility for the better correlation of the flow

index with PSD is that they both measure segmental or focal glaucomatous changes. In

contrast, overall NFL thickness average and rim area are global measures that may correlate

better with MD. Another explanation is that the discrepant correlations with MD and PSD

are due to random variation because of the small sample size in our study. Thus our findings

need confirmation from a larger independent study.

There are several limitations associated with OCT angiography. First, unlike Doppler OCT

which provides absolute volumetric flow in μl/min, OCT angiography only yields a flow

index in arbitrary units. However, the precision of the disc flow index measurement with

OCT angiography is much better compared to dual-circular Doppler OCT scanning to

measure the total retinal blood flow, which has an intra-visit repeatability of 10.5%.49

Second, flow projection artifact from superficial blood vessels to deeper tissue levels

prevents us from separately measuring superficial and deep ONH flow. The artifact is

caused by the moving shadow cast by flowing blood cells. Decorrelation is caused by both

moving reflectors, e.g., blood cells, and moving shadows, e.g., projections on distal high

reflectance tissue. These two types of decorrelation are not distinguished by SSADA, and

both appear as flow in the 3D angiogram. The artifact is not problematic if our analysis is

confined to the 2D maximum projection angiogram. Therefore, the study was limited to the

use of 2D angiograms that measured superficial and deep vascular beds together. Third, the

disc flow index includes measurements on both the local disc circulation and the large

retinal blood vessels. Thus it is a mixture of both disc and retinal circulations and not a pure

measurement of a single vascular bed. However, due to the velocity saturation effect,20, 21

OCT angiography, at current scan speeds, cannot measure flow, but it can measure the

caliber of large vessels (see Fig. 1- E1, E2), suggesting angiography-based flow index

mainly detects changes in disc microvasculature. The velocity or the blood flow in large

retinal vessels should be measured using Doppler techniques.50, 51 Fourth, OCT

angiography requires the use of a high speed OCT system. In our study, we used a custom

swept-source OCT device that operated at an axial scan rate of 100 kHz. Commercial

spectral domain OCT devices typically operate at an axial scan rate of 20–40 kHz. However,

recent advancements have led to the production of commercial spectral OCT devices

operating at speeds of up to 70 kHz (RTVue XR, Optovue, Inc., Fremont, CA, USA; Cirrus

HD-OCT 5000, Carl Zeiss Meditec, Dublin CA, USA), as well as a commercial 100 kHz

swept-source OCT device (DRI OCT-1 Atlantis, Topcon Corp, Tokyo, Japan). Additionally,

laboratory OCT prototypes of multi-MHz speed have already been reported.52–54 Using

these faster next-generation commercial OCT units, OCT angiography may become a

feasible technique for clinical evaluation of glaucoma.

A notable limitation of our study is that we cannot rule out the effect of glaucoma and blood

pressure medications on the disc flow index. Most patients in our glaucoma group were on

multiple ocular antihypertensive eye drops. Therefore it is not possible to determine their

individual effects on disc perfusion with our small sample size, and we cannot entirely rule

out the possibility that the glaucoma drops could somehow be responsible for the reduced
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disc perfusion. We consider this unlikely for two reasons. The first is the strong correlation

between flow index and VF PSD that indicates perfusion is tightly linked to disease severity.

The second is that previous studies have shown that select glaucoma eye drops, including

prostaglandin,55, 56 beta blockers,57 and carbonic anhydrase inhibitors,58, 59 either improved

disc and retinal perfusion or had no significant effect.60, 61 We plan to perform regional (i.e.,

superior and inferior hemisphere) correlation between VF and disc blood flow in a future

study to remove entirely the confounding effect of global parameters such as medications

from consideration.

In summary, we used OCT angiography based on the SSADA algorithm to measure human

disc perfusion in vivo. We demonstrated that OCT angiography can detect reduced disc

perfusion in a group of early glaucoma patients with 100% sensitivity and specificity. This

reduction in flow index is not a byproduct of rim loss or cupping in glaucomatous eyes, and

we were able to establish a strong link between the disc flow index and VF PSD.

We believe our data warrant further studies to determine if a lower flow index is correlated

with the rate of progression and if disc perfusion can be used as a prognostic indicator for

disease course. Potentially, flow index values may be used to help determine which ocular

hypertensives and other glaucoma suspects require treatment. We anticipate that future

investigations will lead to an enhanced understanding of this disease and improved treatment

strategies.
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Figure 1.
Disc photographs (A1, A2), optical coherence tomography (OCT) reflectance (B1, B2),

whole depth OCT angiograms (C1, C2, en face maximum projection), cross-sectional

angiograms (D1, D2, overlaying on OCT reflectance in gray scale) in the right eye of a

normal subject (A1-H1) and, the left eye of a perimetric glaucoma subject (A2-H2). Disc

margins are marked by the black elliptical outlines (B1, B2, C1, C2). The position of the

cross-section is shown by dotted blue lines (C1, C2). A dense microvascular network was

visible on the OCT angiography of the normal disc (C1). This network was greatly

attenuated in the glaucomatous disc (C2). In order to appreciate the ability of OCT

angiography to detect blood flow within the various vascular beds, the 3D angiograms were

separately projected into en face maximum projection in 3 layers, i.e. retinal angiograms

(E1, E2), choroidal angiograms (F1, F2) and scleral/lamina cribrosa angiograms (G1, G2).

The boundaries used for segmentation are indicated by dotted green lines on cross-sectional

OCT reflectance (H1, H2).

Jia et al. Page 15

Ophthalmology. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Box plot showing the disc flow index in normal and glaucoma groups. The median (line

inside the box), interquartile range (box) and the whole range of values (whiskers) are

shown. This plot shows that the two groups are completely separated. The minimum of

normal group is 0.1516, and the maximum of glaucoma group is 0.1513, indicating

sensitivity and specificity are both 100% using a cutoff value of 0.1515.
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Figure 3.
Plots of disc flow index versus age (A), pattern standard deviation (PSD) (B), rim area (C),

cup/disc (C/D) area ratio (D) and nerve fiber layer (NFL) thickness (E) in both normal group

and glaucoma group. The linear regression trend lines are gray in the normal group and

black in the glaucoma group.
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Table 1

Characteristics of Normal and Glaucoma Subjects

Characteristic Normal Glaucoma P-value†

Patients, n 24 11

Eyes, n 24 11

Age (Years) 52 ± 10 68 ± 10 0.000

Body Mass Index(BMI) 29.2 ± 6.0 28.6 ± 6.7 0.800

Diabetes Mellitus, n (%) 1 (4%) 0 (0%) 1.00*

Systemic Hypertension, n (%) 3 (13%) 4 (36%) 0.171*

Taking Systemic Antihypertensive Medication, n (%) 3 (13%) 4 (36%) 0.171*

Taking Ocular Antihypertensive Eye drops, n (%) 0 (0%) 10 (91%) 0.001*

Intraocular Pressure (mm Hg) 15.27 ± 2.3 13.59 ± 3.9 0.118

Diastolic Blood Pressure (mm Hg) 80.6 ± 6.9 78.1 ± 11.5 0.510

Systolic Blood Pressure (mm Hg) 124.4 ± 12.8 125.7 ± 9.5 0.764

Mean Ocular Perfusion Pressure (mm Hg) 48.21 ± 5.1 49.05 ± 5.7 0.662

Glaucoma Staging Subgroups#

Stage 0 24 2

Stage b 0 3

Stage 1 0 1

Stage 2 0 1

Stage 3 0 3

Stage 4 0 1

†
All calculated by t-test, except the values marked by * which were calculated by chi-square test.

#
Glaucoma cases were classified by the enhanced Glaucoma Staging System (GSS 2).23
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Table 2

Results of Diagnostic Testing

Variables Normal Glaucoma P-Value†

Visual Field
MD (dB) 0.20 ± 0.87 (−1.59~1.87) −3.28 ± 4.12 (−13.35~0.08) 0.003

PSD (dB) 1.43 ± 0.20 (1.10~1.86) 4.44 ± 3.12 (1.59~9.07) 0.003

Structural Assessments

cSLO Rim Area (mm2) 1.55 ± 0.34 (0.35~2.26) 1.13 ± 0.25 (0.71~1.56) 0.007

Cup/Disc Area Ratio 0.11 ± 0.10 (0.01~0.44) 0.37 ± 0.17 (0.08~0.59) 0.012

NFL Thickness (μm) 107.9±9.9 (90.8~122.6) 82.0±17.0 (58.9~107.6) 0.000

Disc Perfusion Flow Index 0.161 ± 0.008 (0.15~0.18) 0.121 ± 0.0263(0.07~0.15) 0.003

Numbers displayed are mean ± population standard deviation (range); MD = mean deviation, PSD = pattern standard deviation; cSLO = confocal
scanning laser ophthalmoscopy; NFL= nerve fiber layer.

†
Wilcoxon rank sum
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