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ABSTRACT   

The effectiveness of speckle reduction using traditional frame averaging technique was limited in ultrahigh speed optical 
coherence tomography (OCT). As the motion between repeated frames was very small, the speckle pattern of the frames 
might be identical. This problem could be solved by averaging frames acquired at slightly different locations. The 
optimized scan range depended on the spot size of the laser beam, the smoothness of the boundary, and the homogeneity 
of the tissue. In this study we presented a method to average frames obtained within a narrow range along the slow-axis. 
A swept-source OCT with 100,000 Hz axial scan rate was used to scan the retina in vivo. A series of narrow raster scans 
(0-50 micron along the slow axis) were evaluated. Each scan contained 20 image frames evenly distributed in the scan 
range. The imaging frame rate was 417 HZ. Only frames with high correlation after rigid registration were used in 
averaging. The result showed that the contrast-to-noise ratio (CNR) increased with the scan range. But the best edge 
reservation was obtained with 15 micron scan range. Thus, for ultrahigh speed OCT systems, averaging frames from a 
narrow band along the slow-axis could achieve better speckle reduction than traditional frame averaging techniques. 

  

Keywords: Swept Source Optical Coherence Tomography, Speckle Reduction, Frame Averaging, Contrast-to-noise 
Ratio, Slow-axis Averaging 
 

1. INTRODUCTION  
Due to its coherent imaging nature, optical coherence tomography (OCT) is prone to speckle. The speckle noise limits 
the signal noise ratio and degrades the image. In medical OCT images, it is difficult to distinguish small anatomical 
structures from the speckle noise. The speckle noise also  makes the segmentation of boundaries more challenging. 
Therefore speckle suppression is necessary in OCT. 

A number of methods have been used to reduce speckle noise in OCT, such as frame averaging[1-7] (or space 
compounding[8]), angular compounding,[9, 10] frequency compounding,[11] strain compounding,[12] and single B-
scan filtering.[13, 14] Among them, frame averaging technique is widely used in clinical OCT systems, such as RTVue 
(Optovue, CA), Spectralis (Heidelberg Engineering, Heidelberg, Germany), Spectral OCT/SLO (OPKO/OTI, Miami, 
FL), Cirrus (Zeiss Meditec, CA) and 3D OCT-2000 (Topcon, Japan). It averages multiple frames acquired at the same 
location. The advantage of frame averaging is that it does not require any special designed hardware.  
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Frame averaging 
After the OCT scan was obtained, one frame was selected as the baseline frame. The other frames were aligned to the 
baseline frame by an automatic rigid registration along the depth and transverse (fast axis) directions.  Only frames 
highly correlated with the baseline frame were used in averaging. The averaging is done in logarithm.  
 
Speckle reduction evaluation 
Two parameters were chosen to evaluate the speckle reduction. First, contrast-to-noise ratio (CNR) was calculated from 
a homogeneous and rectangle region in the NFL as signal region and the region anterior to the inner limited membrane 
as background[22].   
 

                                                                                            (1) 

Here, f is the mean intensity in signal region, b is the mean intensity in background, δf is the standard deviation in signal 
region and δf is the standard deviation in background. 
 
The CNR of baseline images could be different because the scan location of the baseline frame of each scan may not be 
same due to eye movement and scan positioning. Thus normalized CNR was used to evaluate the image smoothing and 
speckle reduction. The normalized CNR was defined by the CNR of the averaged image divided by the CNR of the 
baseline image.  
 
Another parameter, edge preservation index (EPI) was calculated from a rectangle region in lamina cribosa.  The EPI 
compared the correlation between high frequency part of averaged image and baseline image[23].   
 ,                                                                      (2) 

 
Here, COEF is the function calculating correlation coefficient of two variables, a is the intensity in lamina cribosa region 
of averaged image, b is the intensity in lamina cribosa region of baseline image,  is the mean of a and  is the mean of 
b. The larger EPI values indicated better preservation of image features. 
 

3. RESULT  
Visual checking of the effect of speckle reduction 
The image quality of the averaged image was visually inspected for smoothness in NFL, texture pattern in lamina 
cribosa and contrast of vessel. Compared with single frame image (figure 1), averaged images had better image qualities 
for all slow-axis scan range settings. However, apparent fuzziness was observed in the averaged image with scan 
range=50 micron (figure 2). The smoothness of NFL increased as the scan range increased (figure 3). The texture of 
lamina cribosa was clear with scan range=0-15 micron (figure 4). It became slightly over-smoothed with a scan range of 
20 micron. And the texture was diminished with a scan range of 50 micron (figure 4). The vessel was clear for scan 
range=0-15 micron. The contrast of vessels was degraded with a scan range of 20 micron. And the vessel contrast 
became poor with a scan range of 50 micron (figure 2).  
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frames was lower than the traditional frame averaging method when the space interval is larger than 15 micron (Figure 
5, left). Averaging frames with low similarity will result in the loss of high frequency information. Therefore, the 
FWHM of the laser beam spot size gave a good estimation of the optimized scan range for retinal image.  
 
If an image frame was acquired with more than 10 ms time interval to the baseline frame, the speckle correlation 
between them was low and changed slowly against the time interval (Figure 5, right).  This phenomenon confirms that 
traditional frame averaging may work well for ophthalmologic OCT images with an imaging frame rate up to 100 Hz 
(i.e. 10 ms for acquiring an image frame). When the imaging frame rate exceeded the 100 Hz limitation, the traditional 
frame averaging might be less efficient. And one should consider averaging image frames obtained within a narrow 
range along the slow-axis.  
 
This study had several limitations. The optimized value was obtained from one normal eye. A study with more subjects 
is needed to confirm the conclusion in this study. Moreover, the registration was only performed along depth and 
transverse directions with pixel-level resolution. A sub-pixel-level resolution registration may increase the correlation of 
registered frames, yield higher CNR, and introduce less image blurring. The scan tested in this study take 0.05 second. A 
shorter scan time might be needed to minimize the effect of eye movement without registration.  
 
In summary, we provided an efficient speckle reduction method for ultrahigh speed OCT by averaging frames acquired 
along the slow-axis. We also designed a scheme to optimize the scan range along the slow-axis. 
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