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Entropy Coding in HEVC

Vivienne Sze and Detlev Marpe

Abstract Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method
of entropy coding first introduced in H.264/AVC and now used in the latest High Ef-
ficiency Video Coding (HEVC) standard. While it provides high coding efficiency,
the data dependencies in H.264/AVC CABAC make it challenging to parallelize and
thus limit its throughput. Accordingly, during the standardization of entropy coding
for HEVC, both aspects of coding efficiency and throughput were considered. This
chapter describes the functionality and design methodology behind CABAC entropy
coding in HEVC.

1 Introduction

Context-Based Adaptive Binary Arithmetic Coding (CABAC) [51] is a form of en-
tropy coding used in H.264/AVC [3] and also in HEVC [5]. Entropy coding is a loss-
less compression scheme that uses the statistical properties to compress data such
that the number of bits used to represent the data is logarithmically proportional to
the probability of the data. For instance, when compressing a string of characters,
frequently used characters are each represented by a few bits, while infrequently
used characters are each represented by many bits. From Shannon’s information
theory [72], when the compressed data is represented in bits {0,1}, the optimal av-
erage code length for a character with probability p is − log2 p.

Entropy coding is performed at the last stage of video encoding (and first stage
of video decoding), after the video signal has been reduced to a series of syntax
elements. Syntax elements describe how the video signal can be reconstructed at
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the decoder. This includes the method of prediction (e.g. spatial or temporal predic-
tion) along with its associated prediction parameters as well as the prediction error
signal, also referred to as the residual signal. Note that in HEVC only the syntax
elements belonging to the slice segment data are CABAC encoded. All other high
level syntax elements are coded either with zero-order Exp-Golomb codes or fixed-
pattern bit strings. Tab. 1 shows the syntax elements that are encoded with CABAC
in HEVC and H.264/AVC. For HEVC, these syntax elements describe properties of
the coding tree unit (CTU), prediction unit (PU), and transform unit (TU), while for
H.264/AVC, the equivalent syntax elements have been grouped together along the
same categories in Tab. 1. For a CTU, the related syntax elements describe the block
partitioning of the CTU into coding units (CU), whether the CU is intra-picture (i.e.
spatially) predicted or inter-picture (i.e., temporally) predicted, the quantization pa-
rameters of the CU, and the type (edge or band) and offsets for sample adaptive
offset (SAO) in-loop filtering performed on the CTU. For a PU, the syntax elements
describe the intra prediction mode or the motion data. For a TU, the syntax elements
describe the residual signal in terms of frequency position, sign and magnitude of
the quantized transform coefficients.

This chapter describes how CABAC entropy coding has evolved from H.264/AVC
to HEVC. While high coding efficiency is important for reducing the transmission
and storage cost of video, processing speed and area cost also need to be considered
in the development of HEVC in order to handle the demand for higher resolutions
and frame rates in future video coding systems. Accordingly, both coding efficiency
and throughput improvement tools are discussed. Sect. 2 provides an overview of
CABAC entropy coding. Sect. 3 explains the design considerations and techniques
used to address both coding efficiency and throughput requirements. Sect. 4, Sect. 5,
Sect. 6 and Sect. 7 describe how these techniques were applied to coding tree unit
coding, prediction unit coding, transform unit coding and context initialization, re-
spectively. Sect. 8 compares the coding efficiency, throughput and memory require-
ments of HEVC and H.264/AVC for both common conditions and worst case con-
ditions.

2 CABAC Overview

The CABAC algorithm was originally developed within the joint H.264/AVC stan-
dardization process of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Moving Picture Experts Group (MPEG). In a first preliminary version, the new
entropy-coding method of CABAC was introduced as a standard contribution [45]
to the ITU-T VCEG meeting in January 2001. CABAC was adopted as one of two
alternative methods of entropy coding within the H.264/AVC standard. The other
method specified in H.264/AVC was a low-complexity entropy-coding technique
based on the usage of context-adaptively switched sets of variable-length codes, so-
called Context-Adaptive Variable-Length Coding (CAVLC). Compared to CABAC,
CAVLC offers reduced implementation cost at the price of lower compression ef-
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ficiency. Typically, the bit-rate overhead for CAVLC relative to CABAC is in the
range of 10–16% for standard definition (SD) interlaced material, encoded at Main
Profile, and 15–22% for high definition (HD) 1080p material, encoded at High Pro-
file, both measured at the same objective video quality and for the case that all other
used coding tools within the corresponding H.264/AVC Profile remain the same
[51, 50].

CABAC became also part of the first HEVC test model HM1.0 [55] together with
the so-called low-complexity entropy coding (LCEC) as a follow-up of CAVLC.
Later, during the HEVC standardization process, it turned out that the discrimina-
tion between high efficiency and low complexity was no longer necessary. Thus,
CABAC in its improved form, both with respect to throughput speed and compres-
sion efficiency, became the single entropy coding method of the HEVC standard.

The basic design of CABAC involves the key elements of binarization, context
modeling, and binary arithmetic coding. These elements are illustrated as the main
algorithmic building blocks of the CABAC encoding block diagram in Fig. 1. Bi-
narization maps the syntax elements to binary symbols (bins). Context modeling
estimates the probability of each non-bypassed (i.e., regular coded) bin based on
some specific context. Finally, binary arithmetic coding compresses the bins to bits
according to the estimated probability.

Fig. 1: CABAC block diagram (from the encoder perspective): Binarization, context
modeling (including probability estimation and assignment), and binary arithmetic
coding. In red: Potential throughput bottlenecks, as further discussed from the de-
coder perspective in Sect. 3.2.
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2.1 Binarization

The coding strategy of CABAC is based on the finding that a very efficient cod-
ing of non-binary syntax-element values in a hybrid block-based video coder, like
components of motion vector differences or transform-coefficient level values, can
be achieved by employing a binarization scheme as a kind of preprocessing unit for
the subsequent stages of context modeling and arithmetic coding. In general, a bi-
narization scheme defines a unique mapping of syntax element values to sequences
of binary symbols, so-called bins, which can also be interpreted in terms of a bi-
nary code tree. The design of binarization schemes in CABAC both for H.264/AVC
and HEVC is based on a few elementary prototypes whose structure enables fast
implementations and which are representatives of some suitable model-probability
distributions.

Several different binarization processes are used in HEVC including k-th order
truncated Rice (TRk), k-th order Exp-Golomb (EGk), and fixed-length (FL) bina-
rization. Parts of these forms of binarization, including the truncated unary (TrU)
scheme as the zero-order TRk binarization, were also used in H.264/AVC. These
various methods of binarization can be explained in terms of how they would signal
an unsigned value N. Examples are also provided in Tab. 2.

• Unary coding involves signaling a bin string of length N + 1, where the first N
bins are 1 and the last bin is 0. The decoder searches for a 0 to determine when
the syntax element is complete. For the TrU scheme, truncation is invoked for
the largest possible value cMax1 of the syntax element being decoded.

• k-th order truncated Rice is a parameterized Rice code that is composed of a pre-
fix and a suffix. The prefix is a truncated unary string of value N >> k, where the
largest possible value is cMax. The suffix is a fixed length binary representation
of the least significant bins of N; k indicates the number of least significant bins.
Note that for k= 0, the truncated Rice is equal to the truncated unary binarization.

• k-th order Exp-Golomb code is proved to be a robust, near-optimal prefix-free
code for geometrically distributed sources with unknown or varying distribution
parameter. Each codeword consists of a unary prefix of length lN +1 and a suffix
of length lN + k, where lN = blog2((N >> k)+1)c [51].

• Fixed-length code uses a fixed-length bin string with length dlog2(cMax+ 1)e
and with most significant bins signaled before least significant bins.

The binarization process is selected based on the type of syntax element. In some
cases, binarization also depends on the value of a previously processed syntax ele-
ment (e.g. binarization of coeff abs level remaining depends on the pre-
viously decoded coefficient levels) or slice parameters that indicate if certain modes
are enabled (e.g. binarization of partition mode, so-called part mode, depends on
whether asymmetric motion partition is enabled). The majority of the syntax ele-
ments use the binarization processes as listed above, or some combination of them
(e.g. cu qp delta abs uses TrU (prefix) + EG0 (suffix) [94]). However, certain

1 cMax is defined by the standard for each relevant type of syntax element.
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Table 2: Examples of different binarizations.

Unary (U) Truncated Truncated Exp-Golomb Fixed-Length
N Unary (TrU) Rice (TRk) (EGk) (FL)

cMax=7 k = 1; cMax=7 k = 0 cMax=7
0 0 0 00 1 000
1 10 10 01 010 001
2 110 110 100 011 010
3 1110 1110 101 00100 011
4 11110 11110 1100 00101 100
5 111110 111110 1101 00110 101
6 1111110 1111110 1110 00111 110
7 11111110 1111111 1111 0001000 111

syntax elements (e.g. part mode and intra chroma pred mode) use custom
binarization processes.

During the HEVC standardization process, special attention has been put on the
development of an adequately designed binarization scheme for absolute values of
transform coefficient levels. In order to guarantee a sufficiently high throughput, the
goal here was the maximization of bypass-coded bins under the constraint of not
sacrificing coding efficiency too much. This was accomplished by making the bi-
narization scheme adaptive based on previously coded transform coefficient levels.
More details on that are given in Sect. 6.5.

2.2 Context Modeling, Probability Estimation and Assignment

By decomposing each non-binary syntax element value into a sequence of bins, fur-
ther processing of each bin value in CABAC depends on the associated coding-mode
decision, which can be either chosen as the regular or the bypass mode (as described
in Sect. 2.3). The latter is chosen for bins, which are assumed to be uniformly dis-
tributed and for which, consequently, the whole regular binary arithmetic encoding
(and decoding) process is simply bypassed. In the regular coding mode, each bin
value is encoded by using the regular binary arithmetic coding engine, where the
associated probability model is either determined by a fixed choice, based on the
type of syntax element and the bin position or bin index (binIdx) in the binarized
representation of the syntax element, or adaptively chosen from two or more prob-
ability models depending on the related side information (e.g. spatial neighbors as
illustrated in Fig. 1, component, depth or size of CU/PU/TU, or position within
TU). Selection of the probability model is referred to as context modeling. As an
important design decision, the latter case is generally applied to the most frequently
observed bins only, whereas the other, usually less frequently observed bins, will be
treated using a joint, typically zero-order probability model. In this way, CABAC
enables selective adaptive probability modeling on a sub-symbol level, and hence,
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provides an efficient instrument for exploiting inter-symbol redundancies at signif-
icantly reduced overall modeling or learning costs. Note that for both the fixed and
the adaptive case, in principle, a switch from one probability model to another can
occur between any two consecutive regular coded bins. In general, the design of
context models in CABAC reflects the aim to find a good compromise between the
conflicting objectives of avoiding unnecessary modeling-cost overhead and exploit-
ing the statistical dependencies to a large extent.

The parameters of probability models in CABAC are adaptive, which means that
an adaptation of the model probabilities to the statistical variations of the source
of bins is performed on a bin-by-bin basis in a backward-adaptive and synchro-
nized fashion both in the encoder and decoder; this process is called probability
estimation. For that purpose, each probability model in CABAC can take one out of
126 different states with associated model probability values p ranging in the inter-
val [0.01875,0.98125]. The two parameters of each probability model are stored as
7-bit entries in a context memory: 6 bits for each of the 63 probability states rep-
resenting the model probability pLPS of the least probable symbol (LPS) and 1 bit
for νMPS, the value of the most probable symbol (MPS). The probability estimator
in CABAC is based on a model of “exponential aging” with the following recursive
probability update after coding a bin b at time instance t:

p(t+1)
LPS =

{
α · p(t)LPS, if b = νMPS, i.e., an MPS occurs
1−α · (1− p(t)LPS), otherwise.

(1)

Here, the choice of the scaling factor α determines the speed of adaptation: A value
of α close to 1 results in a slow adaptation (“steady-state behavior”), while faster
adaptation can be achieved for the non-stationary case with decreasing α . Note that
this estimation is equivalent to using a sliding window technique [65, 9] with win-
dow size Wα = (1−α)−1. In the design of CABAC, Eq. (1) has been used together
with the choice of

α =

(
0.01875

0.5

) 1
63

with min
t

p(t)LPS = 0.01875, (2)

and a suitable quantization of the underlying LPS-related model probabilities into
63 different states, to derive a finite-state machine (FSM) with tabulated transition
rules [51]. This table-based probability estimation method was unchanged in HEVC,
although some proposals for alternative probability estimators [6, 78] have shown
average bitrate savings of 0.8–0.9%, albeit at higher computational costs.

Each probability model in CABAC is addressed using a unique context index
(ctxIdx), either determined by a fixed assignment or computed by the context deriva-
tion logic by which, in turn, the given context model is specified. A lot of effort has
been spent during the HEVC standardization process to improve the model assign-
ment and context derivation logic both in terms of throughput and coding efficiency.
More details on the specific choice of context models for selected syntax elements
in HEVC are given in Sect. 4–6.
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2.3 Multiplication-Free Binary Arithmetic Coding: The M Coder

Binary arithmetic coding, or arithmetic coding in general, is based on the principle
of recursive interval subdivision. An initially given interval represented by its lower
bound (base) L and its width (range) R is subdivided into two disjoint subintervals:
one interval of width

RLPS = pLPS ·R, (3)

which is associated with the LPS, and the dual interval of width RMPS = R−RLPS,
which is assigned to the MPS. Depending on the binary value to encode, either
identified as LPS or MPS, the corresponding subinterval is then chosen as the new
coding interval. By recursively applying this interval-subdivision scheme to each bin
b j of a given sequence b = (b1,b2, . . . ,bN) of bins, the encoder finally determines a
value cb in the subinterval [L(N),L(N)+R(N)) that results after the Nth interval sub-
division process. The (minimal) binary representation of cb is the arithmetic code
of the input bin sequence b. To ensure that finite-precision registers are sufficient
to represent R( j) and L( j) for all j ∈ {1,2, . . . ,N}, a renormalization operation is
required, whenever R( j) falls below a certain limit after one or more interval subdi-
vision process(es). By renormalizing R( j), and accordingly L( j), the leading bits of
the arithmetic code can be output as soon as they are unambiguously identified.

On the decoder side, the sequence of encoded binary values can be easily recov-
ered by tracking the interval subdivision, including renormalization, according to
Eq. (3) step-by-step and by comparing the bounds of both subintervals to the trans-
mitted value representing the final subinterval. Note that the width R(N) of the final
subinterval is proportional to the product ∏

N
j=1 p(b j) of the individual model prob-

ability p(b j) assigned to the bins b j of the bin sequence, such that for signaling the
final subinterval, the lower bound of the empirical entropy of the bin sequence given
by − log2 ∏

N
j=1 p(b j) =−∑

N
j=1 log2 p(b j) is approximately achieved.

From a practical implementation point of view, the most costly operation in-
volved in binary arithmetic coding is given by the multiplication in Eq. (3). Even
worse, if probability estimation is based on a simple scaled-count estimator using
scaled cumulative frequency counts of bins, this operation may even involve an inte-
ger division. A solution to this problem was already proposed during the H.264/AVC
standardization process by using a design of a family of multiplication-free bi-
nary arithmetic coders, which later became known as the modulo coder (M coder)
[47, 54]. The main innovative features of this design are given by a table-based
interval subdivision coupled with the above-mentioned FSM-based probability es-
timation as well as a fast bypass coding mode. The former, which is also the basis
of what is called the regular coding mode of the M coder, will be briefly reviewed
next, followed by a short discussion of the latter aspect.
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2.3.1 Regular Coding Mode

The basic idea of the M-coder approach of interval subdivision is to quantize the
range of possible interval widths induced by renormalization into a small number of
K cells. To further simplify matters, a uniform quantization with K = 2κ is assumed
to be performed, resulting in a set Q= {Q0,Q1, · · · ,QK−1} of representative interval
widths. Together with the representative set of LPS-related probability values of the
FSM given by P = {p0, p1, · · · , pN−1}, this quantization enables the approximation
of the multiplication on the right-hand side of Eq. (3) by means of a table of K×N
pre-calculated product values {Qk · pn |0≤ k < K; 0≤ n < N} in a suitable chosen
integer precision. The entries of the corresponding 2-D lookup table TabRangeLPS
are addressed by the (probability) state index n and the quantization cell index k(R)
related to the given value of the interval range R. Computation of k(R) is easily
carried out by a concatenation of a bit shift and a bit-masking operation, where the
latter can be interpreted as a modulo operation using the operand K = 2κ , hence the
naming of the family of coders.

In the context of H.264/AVC, the optimal empirical choice of the free parame-
ters κ = 2 and N = 64 was determined under the constraint of a maximum table
size of 2κ ·N ≤ 256 bytes for the lookup table TabRangeLPS with each of its entries
being represented with 8 bits. This specific M-coder design of using a lookup table
TabRangeLPS with 4×64 entries was also adopted for HEVC. Please note that by
choosing a value of κ = 0, the 2-D table TabRangeLPS degenerates to a 1-D table,
where for all possible values of R only one single representative value is used for
the approximation of pn ·R. This choice is equivalent to the subinterval division op-
eration performed in the Q coder and its derivatives of QM and MQ coder, as being
standardized in JBIG, JPEG, and JPEG2000. Thus, the M-coder design can be inter-
preted as a generalization of the Q-coder family2. Compared to the QM/MQ coder,
the M coder, being configured as in H.264/AVC and HEVC, achieves an increase
in throughput of 18%, while at the same time it provides bit-rate savings of 2–4%,
when evaluated in the CABAC environment of H.264/AVC [54]. Interestingly, the
throughput improvements of the M coder can be largely attributed to its unique by-
pass functionality, as being reviewed in the next subsection, while its use of a larger
lookup table for interval subdivision generates the main effects in coding-efficiency
gain; however, this increased table size can also adversely affect the overall through-
put gain of the M coder.

2.3.2 Bypass Coding Mode

As already mentioned, most of the throughput improvements of the M coder rel-
ative to the Q-coder technology can be attributed to its second innovative feature,
which is given by a bypass of the probability estimation for approximately uniform

2 Please note that apart from the interval subdivision aspect there are some subtle technical differ-
ences between (and also within) the coder families, such as concerning, e.g., probability estimation,
conditional exchange, carry-over handling, and termination.
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distributed bins. In addition, the interval subdivision is substituted by a hard-wired
equipartition in this so-called bypass coding mode. In this way, the whole encod-
ing/decoding process (including renormalization) can be realized by nothing more
than a bit shift, a comparison, and for half of the symbols an additional subtraction.

Bypass coding has become an even more important feature during the HEVC
standardization process. While in H.264/AVC bypass coding was mainly used for
signs and least significant bins of absolute values of quantized transform coeffi-
cients, in HEVC the majority of possible bin values is handled through the bypass
coding mode. As noted above, this is also a consequence of carefully designed bi-
narization schemes, which already serve as a kind of near-optimal prefix-free codes
of the corresponding syntax elements.

2.3.3 Fast Renormalization

One of the major throughput bottlenecks in any arithmetic encoding and decoding
process is given by the renormalization procedure. Renormalization in the M coder
is required whenever the new interval range R after interval subdivision no longer
stays within its admissible domain. Each time a renormalization operation must be
carried out, one or more bits can be outputted at the encoder or, equivalently, have to
be read by the decoder. This process, as it is specified in H.264/AVC and HEVC, is
performed bit-by-bit and is controlled by some conditional branches to check each
time if further renormalization loops are required. Both conditional branching and
bitwise processing, however, constitute considerable obstacles to a sufficiently high
throughput.

As a mitigation of this problem, a fast renormalization policy for the M coder was
proposed in [50]. By replacing the conventionally bitwise performed operations in
the regular coding mode with byte-wise or word-wise processing, a considerably
increased decoder throughput of around 25% can be achieved. The corresponding
non-normative, fully standard-compliant changes were integrated into the reference
software implementations of both H.264/AVC and HEVC. For more details, please
refer to [50, 49].

2.3.4 Termination

For termination of the arithmetic codeword in the M coder a special, non-adapting
probability state is reserved. The corresponding probability state index is given by
n = 63 and the corresponding entries of TabRangeLPS deliver a constant value of
RLPS = 2. As a consequence, for each terminating syntax element, such as end of
slice segment flag, end of sub stream one bit, or pcm flag, 7 bits
of output are generated in the renormalization process. Two more bits are needed to
be flushed in order to properly terminate the arithmetic codeword. Note that the least
significant bit in this flushing procedure, i.e., the last written bit at the encoder is
always equal to 1 and thus, represents the so-called rbsp stop one bit. Before
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packaging of the bitstream, the arithmetic codeword is filled up for byte alignment
with zero-valued alignment bits.

3 Design Considerations

Most of the proposals submitted to the joint Call for Proposals on HEVC in April
2010 already included some form of advanced entropy coding. Some of those tech-
niques were based on improved versions of CAVLC or CABAC, others were using
alternative methods of statistical coding, such as V2V (variable-to-variable) codes
[34] or PIPE (probability interval partitioning entropy) codes [53, 52, 102], and
a third category introduced increased capabilities for parallel processing on a bin
level [85], syntax element level [91, 92], or slice level [105, 33, 29]. In addition,
improved techniques for coding of transform coefficients, such as zero-tree repre-
sentations [7], alternate scanning schemes [41], or template-based context models
[61, 102], were proposed.

After an initial testing phase of video coding technology from the best perform-
ing HEVC proposals, it was decided to start the first HEVC test model (HM1.0) [55]
with two alternate configurations similar to what was given for entropy coding in
H.264/AVC: a high efficiency configuration based on CABAC and a low-complexity
configuration based on LCEC as a CAVLC surrogate. Interestingly enough, the
CABAC-based entropy coding of HM1.0 already included techniques for improving
both coding efficiency and throughput relative to its H.264/AVC-related predeces-
sor. To be more specific, a template-based context modeling scheme for larger trans-
form block sizes [61, 46] and a parallel context processing technique for selected
syntax elements of transform coefficient coding [15] became already part of HM1.0.
During the subsequent collaborative HEVC standardization phase, more techniques
covering both aspects of coding efficiency and throughput were integrated, as will
be discussed in more details in the following.

While CABAC inherently is targeting at high coding efficiency, its data depen-
dencies can cause it to be a throughput bottleneck, especially at high bit rates as
was already analyzed in the context of H.264/AVC [93]. This means that, without
any further provision, it might have been difficult to support the growing throughput
requirements for future video codecs. Furthermore, since high throughput can be
traded-off for power savings using voltage scaling [19], the serial nature of CABAC
may limit the battery life for video codecs that reside on mobile devices. This limita-
tion is a critical concern, as a significant portion of video codecs today are running
on battery-operated devices. Accordingly, both coding efficiency and throughput
improvement tools as well as the trade-off between these two requirements were
investigated in the standardization of entropy coding for HEVC. The trade-off be-
tween coding efficiency and throughput comes from the fact that, in general, depen-
dencies are a result of removing redundancy which, in turn, improves coding effi-
ciency; however, increasing dependencies usually makes parallel processing more
difficult which, as a consequence, may degrade throughput. This section describes
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the various techniques used to improve both coding efficiency and throughput of
CABAC entropy coding for HEVC.

3.1 Brief Summary of HEVC Block Structures and CABAC
Coding Efficiency Improvements

In the evolutionary process from H.264/AVC to HEVC, improved coding effi-
ciency for CABAC entropy coding was addressed in a number of proposals, such as
[102, 106, 28]. The majority of coding-efficiency related CABAC proposals in the
HEVC standardization process was oriented towards transform coefficient coding,
since at medium to high bit rates the dominant part of bits is consumed by syntax
elements related to residual coding. As a consequence, this subsection will focus on
considerations that were made with regards to the specific CABAC design for those
syntax elements. Note, however, that due to the more consistent design of HEVC
in terms of tree structures for both partitioning of prediction blocks and transform
blocks, special care has also been taken to ensure an efficient modeling and coding
of the corresponding tree structuring elements. In addition, for new coding tools in
HEVC, such as block merging and sample-adaptive offset (SAO) in-loop filtering,
additional assignments of binarization and context modeling schemes were needed.

Transform coding in HEVC is based on a tree-structured variable block-size ap-
proach with the corresponding quadtree structure referred to as residual quadtree
(RQT) [102, 46]. RQTs are nested into the leaves of another quadtree, the so-called
coding quadtree (CQT), which determines the subdivision of each block of 2N×2N

luma samples, referred to as a coding tree block (CTB) [102, 46]. The block parti-
tioning for both prediction and transform coding is the same for luma and chroma
picture component samples3, and hence, a common coding and residual quadtree
syntax is used to signal the partitioning. As a result, the blocks of luma and chroma
samples and associated syntax elements are grouped together in a so-called unit.

A transform unit (TU) aggregates the transform blocks (TBs) of luma and chroma
samples as well as the syntax elements used to represent the associated transform
coefficient levels. Each TU and the related luma and two chroma TBs are deter-
mined as a leaf of the corresponding RQT. Supported TB sizes for both luma and
chroma are in the range from 4×4 to 32×32 samples, where the corresponding core
transforms are separable applications of a fixed-point approximation of the 1-D Dis-
crete Cosine Transform (DCT) for dyadically increasing lengths from 4 to 32 points
[30]. An exception is given for 4×4 luma TBs of residual signals resulting from
intra-picture predicted blocks, where instead of the DCT-like core transform a sep-
arable fixed-point approximation of the 1-D Discrete Sine Transform (DST) is used
[101].

3 There is one exception to this general rule in HEVC, which is discussed in more detail in Chap.
“Block Structures and Parallelism Features in HEVC”.
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Note that a prediction unit (PU) aggregates the prediction blocks (PBs) of luma
and chroma samples and the associated syntax elements like motion data. A coding
unit (CU) encapsulates the luma and chroma coding block (CB) samples and the
so-called prediction mode, i.e., the decision whether the corresponding samples are
coded using intra-picture or inter-picture prediction, as well as some additional syn-
tax elements. On the top level of the hierarchy, a coding tree unit (CTU) comprises
the CTBs of luma and chroma samples, the associated CQT syntax structure and all
CUs at the CQT leaves.

3.1.1 Coefficient grouping into subblocks

Given the larger variety of TB sizes, one of the primary goals of CABAC entropy
coding for transform coefficient data in HEVC was to achieve a design that uses
for all block sizes as much of the same logic and the same procedures as possible.
Although at first glance this objective seems to be somehow unrelated to coding
efficiency, it turns out that at least one particular element leading to such a unified
design is also crucial for achieving high coding efficiency. This coding element
is given by the grouping of coefficients into so-called subblocks of size 4×4 for
transform blocks with size greater than 4×4. Subblocks were first proposed in [102,
46, 61] and became part of HM1.0. In the subsequent HEVC development process,
their use was iteratively refined and extended in a way as will be explained in more
detail in Sect. 6.

3.1.2 Hierarchy of significance flags

Since for most common coding conditions, a large portion of transform coefficients
is quantized to zero, or equivalently, the representation of the residual signal in the
DCT-/DST-like basis functions is supposed to be sparse, a hierarchical structured
set of four different significance flags4 is introduced in HEVC to reduce the number
of individual significance flags to be transmitted. This hierarchy of syntax elements
also reflects the hierarchical processing of TBs within the RQT as well as the pro-
cessing of subblocks within a given TB.

The use of so-called coded block flags (CBF), indicating the occurrence of sig-
nificant, i.e., nonzero transform coefficients in a TB, was already part of H.264/AVC
CABAC-based residual coding. In HEVC, this concept was extended to also cover
the RQT root on the top level of the hierarchy as well as the subblock on a lower
level of the hierarchy. Consequently, there are a rqt root cbf, at least for RQT
roots in inter-predicted CUs, cbf luma, cbf cb, and cbf cr for the visited TBs
of the 3 color components, and a coded sub block flag (CSBF) for each vis-
ited subblock in a TB. On the lowest level of the hierarchy, for each visited subblock

4 Note that the term “significance flag” is interpreted here and in the following in a much broader
sense than originally used in the context of H.264/AVC.
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a so-called significance map indicates the location of nonzero coefficients for each
scan position in a subblock.

This hierarchy of significance flags is complemented by the syntax elements in-
dicating the last significant scan position in a TB, which somehow serve as an entry
point into each significant TB and which is equivalent to signaling the insignificance
of a partial area of a TB. The latter concept differs from H.264/AVC, where for each
significant coeff flag (SIG) with a value of one, a last significant
coefficient flag (LAST) is signaled indicating if the current scan position

is the last nonzero coefficient inside the TB. Note that this latter signaling scheme
is equivalent to using a TrU binarization (with inverted bin values) for the number
of nonzero coefficients in a TB, such that each bin of the resulting bin sequence is
intertwined with the corresponding nonzero significance flag. This design aspect of
mixing two flags on a bin level in H.264/AVC was later found to be critical in terms
of throughput, as will be discussed in Sect. 6.

3.1.3 Context modeling for coding of significance flags

Particular care has been taken to properly specify the context models for coding of
significance flags. For instance, modeling of the CBF is based on the RQT depth,
while that for the CSBF is using neighboring CSBF information. For coding of
the significance map, which typically consumes most of the bits in HEVC trans-
form coding, additional dependencies between neighboring elements have been ex-
ploited, at least for TBs larger than 4×4. Initially, for that purpose a local tem-
plate was proposed [102, 46, 61] and adopted for HM1.0. Although this design
provides high coding efficiency, it introduces some critical data dependencies. As
a solution to this problem, a combination of position-based information (as used in
H.264/AVC) and template-based neighborhood information was finally adopted for
context modeling of significance map entries [43, 77]. This particular example also
illustrates how both aspects of coding efficiency and throughput were considered
during the HEVC standardization process in a balanced way. More on the through-
put aspects is given in the next subsection, while the details of context modeling for
all syntax elements related to residual coding are provided in Sect. 6.

3.2 CABAC Throughput Bottlenecks

CABAC, as originally designed for H.264/AVC and also, as initially selected for
the HEVC standardization starting point in HM1.0, has some serious throughput
issues (particularly for decoder implementations at higher bit rates) [93, 80]. The
throughput of CABAC is determined based on the number of binary symbols (bins)
that it can process per second. The throughput can be improved by increasing the
number of bins that can be processed in a cycle. However, the data dependencies
in CABAC make processing multiple bins in parallel difficult and costly to achieve.
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These dependencies result in feedback loops in the CABAC decoder as shown in
Fig. 2, and can be described as follows:

1. The updated range is fed back for recursive interval subdivision.
2. The updated context is fed back for probability estimation.
3. The context modeler selects the probability model based on the type of syntax

element and, as already noted above, for selected syntax elements, based on some
derivation process that involves other previously decoded bin values or other
relevant side information. At the decoder, for non-binary syntax elements, the
decoded bin value is fed back to determine whether to continue processing the
same syntax element or to switch to another syntax element. If a switch occurs,
the value of the decoded bin may also be used to determine which syntax element
to decode next.

4. The context modeler may also select the probability model based on the bin po-
sition in the syntax element (binIdx). At the decoder, the decoded bin value is
fed back to determine whether to increment binIdx and continue to decode the
current syntax element, or set binIdx equal to 0 and switch to another syntax
element.

Fig. 2: Three key operations in CABAC (from a decoder perspective): Binarization,
Context Modeling/Selection and (Binary) Arithmetic Coding. Feedback loops in the
decoder are highlighted with dashed lines.

Note that the feedback loops have different degrees of impact on throughput.
The range update (1) and context update (2) feedback loops are simpler than the
context modeling loops (3, 4) and thus do not affect throughput as severely. If the
context of a bin depends on the value of another bin being decoded in parallel, then
speculative computations are required, which increases area cost and critical path
delay [92]. The amount of speculation can grow exponentially with the number of
parallel bins, which limits the throughput that can be achieved [80]. Fig. 3 shows
an example of the speculation tree for significance map in H.264/AVC. Thus the
throughput bottleneck is primarily due to the context modeling dependencies.
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Fig. 3: Context speculation required to achieve 5× parallelism when pro-
cessing the significance map in H.264/AVC. Notation: i = coefficient po-
sition; i1 = MaxNumCoeff(BlockType)−1; EOB = end of block; SIG =
significant coeff flag; LAST = last significant coeff flag.

3.3 Summary of Techniques for CABAC Throughput
Improvements

Several techniques were used to improve the throughput of CABAC in HEVC [89].
There was a lot of effort spent in determining how to use these techniques with
minimal coding loss. They were applied to various parts of entropy coding in HEVC
and will be referred to throughout the rest of this chapter.

3.3.1 Reduce regular coded bins

The throughput is limited for regular coded bins due to the data dependencies de-
scribed in Sect. 3.2. However, it is easier to process bypass coded bins in parallel
since they do not have the data dependencies related to context modeling (i.e. feed-
back loops 2, 3 and 4 in Fig. 2). In addition, arithmetic coding for bypass bins is
simpler as it only requires a right shift versus a table look up for regular coded bins.
Thus, the throughput can be improved by reducing the number of regular coded bins
and using bypass coded bins instead [62, 58, 60, 21].

3.3.2 Group bypass coded bins

Multiple bypass bins can be processed in the same cycle only if they occur consec-
utively within the bitstream. Thus, bins should be reordered such that bypass coded
bins are grouped together in order to increase the likelihood that multiple bins are
processed per cycle [88, 67, 23].

3.3.3 Group bins with same context

Processing multiple regular coded bins in the same cycle often requires specula-
tive calculations for context modeling. The amount of speculative computations in-
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creases if bins using different contexts and context modeling logic are interleaved,
since numerous combinations and permutations must be accounted for. Thus, to re-
duce speculative computations, bins should be reordered such that bins with the
same contexts and context modeling logic are grouped together so that they are
likely to be processed in the same cycle [15, 14, 73]. This also reduces context
switching resulting in fewer memory accesses, which also increases throughput and
reduces power consumption. This technique was first introduced in [15] and was
referred to as parallel context processing (PCP) throughout the standardization pro-
cess.

3.3.4 Reduce context modeling dependencies

Speculative computations are required for multiple bins per cycle decoding due to
the dependencies in the context modeling. For instance, this is an issue when the
context modeling for the next bin depends on the decoded value of the current bin.
Reducing these dependencies simplifies the context modeling logic and reduces the
amount of speculative calculations required to process multiple bins in parallel [80,
86, 22].

3.3.5 Reduce total number of bins

In addition to increasing the throughput, it is desirable to reduce the workload itself
by reducing the total number of bins that need to be processed. This can be achieved
by changing the binarization, inferring the value of some bins5, and sending higher
level flags to avoid signaling redundant bins [62, 18, 57].

3.3.6 Reduce parsing dependencies

As parsing with CABAC may constitute a throughput bottleneck, it is important to
minimize any dependency on other video decoding processes, which could cause
CABAC to stall or may even prevent a successful parsing process in case of picture
loss due to transmission errors [108, 79, 12] (see Sect. 5.1.1). Ideally the parsing
process should be decoupled from all other decoding processes, which actually is the
case for CABAC in H.264/AVC. Decoupling parsing from the sample reconstruction
process is also important when entropy decoupling is used, i.e., when a large frame
level buffer is inserted between the entropy decoder and the rest of the decoder to
absorb the variance in the bit-rate and pixel-rate workloads, respectively.

5 The benefit of inferring bins must be traded-off with a potential increase in context selection
complexity.
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3.3.7 Reduce memory requirements

Memory accesses often contribute to the critical path delay. Thus, reducing memory
storage requirements is desirable as fewer memory accesses increases throughput as
well as reduces implementation cost and power consumption [81, 95].

4 Coding Tree Unit and Coding Unit Syntax Elements

In HEVC, a picture is partitioned into a regular grid of disjoint square blocks of
2N×2N luma samples and, in case of 4:2:0 color sampling, corresponding square
blocks of 2N−1×2N−1 chroma samples. The parameter N = 4,5, or 6 can be chosen
by the encoder and transmitted in the sequence parameter set (SPS), such that the
corresponding coding tree units represent luma CTBs of size 16× 16, 32× 32, or
64× 64 samples, respectively. The CTU syntax elements describe how the corre-
sponding CTBs can be further partitioned into smaller coding blocks by use of the
coding quadtree and how the method of sample adaptive offset (SAO) in-loop fil-
tering is performed on the reconstructed luma and chroma samples belonging to the
CTU.

Within a picture, an integer number of CTUs can be grouped into a slice. Each
slice itself consists of one (leading) independent slice segment and zero or more
subsequently ordered dependent slice segments. A flag called end of slice
segment flag is sent to indicate the last CTU in a slice segment. In addition,
tiles and wavefront parallel processing, which are introduced in Chap. “Block Struc-
tures and Parallelism Features in HEVC”, can be used to fragment the slice segment
into multiple substreams6, each being represented by its own CABAC codeword.
Therefore, if end of slice segment flag indicates that it is not the last CTU
in a slice segment, a flag called end of sub stream one bit is used to indi-
cate whether it is the last CTU of the corresponding substream.7 An example of
this is illustrated in Fig. 4. Both end of slice segment flag and end of
sub stream one bit are coded using the terminating mode of the arithmetic

coding engine. This is required since at the end of a slice segment or a substream,
the arithmetic coding engine must be flushed and the resulting CABAC codeword
must be byte aligned before, at least in the former case, inserting the startcode for
the next slice or entry point for the next slice segment. Fig. 5 shows an example of
the locations of CABAC termination within a bitstream.

6 Slice segments can also be used to fragment tiles and wavefronts into substreams.
7 Note that the value of end of sub stream one bit is always 1 and it is only sent for the
last CTU of a substream.
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(a) Tiles: CTU 12, 24, and 36 have (0, 1); CTU
48 (1, not signaled); and the rest of the CTUs
have (0,0).

(b) Wavefront parallel processing: CTU 8, 16,
24, 32 and 40 have (0, 1); CTU 48 (1, not sig-
naled); and the rest of the CTUs have (0,0).

Fig. 4: These two examples illustrate which CTUs are terminated when slice seg-
ments are divided into substreams using tiles and wavefront parallel processing.
Values of (end of slice segment flag, end of sub stream one bit)
are given for each configuration.

Fig. 5: Ordering of the bitstream for the tiles example in Fig. 4a. CABAC needs to
be terminated before byte alignment (BA) as shown by the black boxes. Entry points
for substreams are sent in slice segment header().

4.1 Coding Block Structure

The coding block structure is determined by the coding quadtree which is signaled
by a flag called split cu flag at each of its nodes to indicate whether a given
coding block should be further subdivided into four smaller CBs. There is a strong
spatial correlation between the chosen CQT depth of neighboring CBs, i.e., the
block sizes of neighboring CBs, thus the context selection for split cu flag
depends on the relative depth of the top and left neighboring CBs compared to that
of the current CB. Note that in H.264/AVC the partitioning information is sent to-
gether with other data as aggregated syntax elements mb type and sub mb type
with different ranges of allowed values and hence different binarization schemes for
different slices.8 This kind of aggregating different information in one single syntax
element is mostly due to historical reasons, reflecting the circumstances that ear-
lier video coding standards (including H.264/AVC) were designed under the regime
of VLC-based entropy coding, where alphabet extensions are used to circumvent

8 In H.264/AVC, mb type and sub mb type are used to represent the following equiva-
lent information in HEVC: split cu flag, pred mode flag, part mode, pcm flag,
inter pred idc, coded block pattern (cbf luma, cbf cr, cbf cb) and intra prediction
mode for 16×16 intra-coded PU.
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the lower bound of 1 bit per symbol. Thus, by allowing the signaling of a coding
quadtree structure with a one-bin syntax element, i.e., the split cu flag at each
node, HEVC is much more flexible and allows many more coding and prediction
block structures than H.264/AVC, even when choosing a CTB size of 16×16 luma
samples and ignoring the fact that HEVC doesn’t allow for inter-predicted 4× 4
luma blocks, as discussed in Chap. “Block Structures and Parallelism Features in
HEVC”.

Fig. 6: A coding tree unit is subdivided into CUs along the associated coding
quadtree. Each resulting CU may be further subdivided into PUs. The intra-coded
CUs are in blue while inter-coded CUs are in orange. Note that the figure only shows
the corresponding CTB, CBs, and PBs of the luma component.

4.2 Prediction Mode and Prediction Block Structure

In P and B slices, a cu skip flag is sent for each CU to indicate whether all
associated CBs are coded using skip mode, i.e., by using the so-called merge mode
for inter-picture prediction (as explicitly described in Sect. 5) and not sending any
residual data. To leverage spatial correlation of neighboring CUs, the context of
the cu skip flag depends on whether the top and left neighboring CUs are also
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skipped. For every non-skipped CU, a regular coded flag called pred mode flag
is sent to indicate the prediction mode, i.e., the decision whether the CU is either
intra coded or inter coded.9

Every non-skipped CU may be further subdivided into PUs, as shown for the
example in Fig. 6. The syntax element part mode indicates if and how each CU is
partitioned for the purpose of prediction. The choice of prediction block structures
for each CU depends on whether the CU is intra-coded or inter-coded; accordingly,
part mode is binarized and coded differently for intra-coded CUs and inter-coded
CUs, as shown in Fig. 7.

Intra-coded CUs can have a single PU (referred to as PART 2Nx2N) equal to the
size of the CU, or be subdivided into four smaller PUs (referred to as PART NxN).
PART NxN, however, is only allowed when the CU size is equal to the mini-
mum allowed CU size. If the CU size is greater than the minimum allowed CU
size, split cu flag is used instead of part mode to avoid redundant sig-
naling. For instance, if the minimum CU size is 8× 8 in terms of luma samples,
a CU of size 16× 16 with four 8× 8 PUs is signaled with split cu flag
= 1, and part mode=PART 2Nx2N rather than split cu flag= 0 and part
mode=PART NxN. Accordingly, part mode is not signaled but inferred to be

PART 2Nx2N when the CU size is greater than the minimum allowed CU size. If
the CU size is equal to the minimum allowed CU size, part mode is coded using
a flag with a fixed context for a given slice type.

Inter-coded CUs have more prediction partitioning options than intra-coded CUs.
In addition to PART 2Nx2N and PART NxN, inter-coded CU can also be subdi-
vided into two rectangular PUs in either horizontal (PART Nx2N) or veritical di-
rections (PART 2NxN). In case of enabling the so-called asymmetric motion par-
titioning (AMP), the additional prediction partitioning possibilities PART 2NxnU,
PART 2NxnD, PART nLx2N, and PART nRx2N are supported. Custom binariza-
tion is used for part mode as shown in Fig. 7b. The first bin indicates whether
or not the CU is partitioned into smaller PUs. If the CU size is greater than the
minimum allowed CU size, the second bin indicates the direction of the partition
(vertical or horizontal), the third bin indicates whether AMP is used and if so, then
a fourth bin is sent to indicate which asymmetric partition is used in the given direc-
tion. If the CU size is equal to the minimum allowed CU size, AMP is not allowed
and truncated unary coding is used to indicate if the partitions are PART Nx2N,
PART 2NxN, and PART NxN, respectively.10 A different context is used for the
first and second bin to estimate the probabilities of whether the PU is partitioned
into smaller PUs, and the direction of the PU. Two different contexts are used for
the third bin depending on when the CU size is greater or equal to the minimum
allowed CU size. In the former, the context is based on the probability of whether
asymmetric partitions are used, while in the latter, the context is based on the prob-

9 pred mode flag is not sent for CUs in I slices since they are all intra-coded.
10 Note that the minimum allowed inter-coded PART NxN size is 8×8, so for CU size equal to
8×8, the only allowed partitions are PART 2NxN and PART Nx2N, and cMax of 2 is used for
truncated unary.
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(a) Intra-coded CU

(b) Inter-coded CU

Fig. 7: Context selection and binarization of part mode. Underlined symbols are
bypass coded.

ability of whether PART NxN is used. To reduce the number of regular coded bins,
the fourth bin (for AMP) is bypass coded.

4.3 Signaling of Special Coding Modes

HEVC supports two special coding modes, which are invoked on a CU level: the
so-called I PCM mode and the lossless coding mode. Both modes, albeit similar in
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appearance to some degree, serve different purposes and hence, use different syntax
elements for providing different functionalities.

A pcm flag is sent to indicate whether all samples of the whole CU are coded
with pulse code modulation (PCM), such that prediction, transform, quantization,
and entropy coding as well as their counterparts on the decoder side are simply
bypassed. This I PCM mode, however, is only allowed for intra-coded CUs with
prediction partitioning mode PART 2Nx2N.11 The pcm flag is coded with the
termination mode of the arithmetic coding engine, since in most cases I PCM mode
is not used, and if it is used, the arithmetic coding engine must be flushed and the re-
sulting CABAC codeword must be byte aligned before the PCM sample values can
be written directly into the bitstream with fixed length codewords.12 This procedure
also indicates that the I PCM mode is in particular useful in cases, where the statis-
tics of the residual signal would be such that otherwise, an excessive amount of bits
would be generated when applying the regular CABAC residual coding process.

The option of lossless coding, where for coding of the prediction residual both
the transform and quantization (but not the entropy coding) are bypassed, is also en-
abled on a CU level and indicated by a regular coded flag called cu transquant
bypass flag. The resulting samples of the losslessly represented residual signal

in the spatial domain are entropy-coded by the CABAC residual coding process (see
Sect. 6), as if they were conventional transform coefficient levels. Note that in loss-
less coding mode, both in-loop filters are also bypassed in the reconstruction process
(which is not necessarily the case for I PCM), such that a mathematically lossless
(local) reconstruction of the input signal is achieved.

4.4 Signaling of Block-based Quantization Parameter Change

In the regular, i.e., lossy residual coding process, a different quantizer step size
can be used for each CU to improve bit allocation, rate control, or both. Rather
than sending the absolute quantization parameter (QP), the difference in QP steps
relative to the slice QP is sent in the form of a so-called delta QP. This functionality
can be enabled in the picture parameter set (PPS) by using the syntax element cu
qp delta enabled flag.

In H.264/AVC, mb qp delta is used to provide the same instrument of delta
QP at the macroblock level. The value of mb qp delta can range from −(26+
QpBdOffsetY/2) to 25+QpBdOffsetY/2. For 8-bit video, this is -26 to 25, while
for 10-bit video this is -32 to 31. mb qp delta is unary coded and thus requires
up to 53 bins for 8-bit video and 65 bins for 10-bit video. All bins are regular coded.

In HEVC, delta QP is represented by the two syntax elements cu qp delta
abs and cu qp delta sign flag, if cu qp delta enabled flag in the

PPS indicates so. The sign is sent separately from the absolute value, which reduces

11 I PCM is not allowed for intra-coded 4×4 blocks.
12 Note that the PCM sample bit depth (i.e. wordlength) for luma and chroma samples can be
specified independently in the SPS.
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the average number of bins by half [27]. cu qp delta sign flag is only sent if
the absolute value is non-zero. The absolute value is binarized with TrU (cMax=5)
as the prefix and EG0 as the suffix [94]. The prefix is regular coded and the suffix is
bypass coded. The first bin of the prefix uses a different context than the other four
bins in the prefix (which share the same context) to capture the probability of having
a zero-valued delta QP. Note that syntax elements for delta QP are only signaled for
CUs that have non-vanishing prediction errors (i.e., at least one non-zero transform
coefficient). Conceptually, the delta QP is an element of the transform coding part of
HEVC and hence, can also be interpreted as a syntax element that is always signaled
at the root of the RQT, regardless which transform block partitioning is given by the
RQT structure. Tab. 3 shows examples of how delta QP is signaled for H.264/AVC
and HEVC.

Table 3: Coding of delta QP in HEVC and H.264/AVC. Underlined symbols are
bypass coded.

Value HEVC H.264/AVC
cu qp delta abs cu qp delta sign flag mb qp delta

0 0 n/a 0
1 10 0 10
-1 10 1 110
2 110 0 1110
-2 110 1 1111 0
3 1110 0 1111 10
-3 1110 1 1111 110
4 11110 0 1111 1110
-4 11110 1 1111 1111 0
5 11111 0 0 1111 1111 10
-5 11111 0 1 1111 1111 110
6 11111 100 0 1111 1111 1110
-6 11111 100 1 1111 1111 11110
25 11111 111100101 0 1111 1111 1111 1111 1111

1111 1111 1111 1111 1111
1111 1111 10

-26 11111 111100110 1 1111 1111 1111 1111 1111
1111 1111 1111 1111 1111
1111 1111 1111 0

4.5 Signaling of SAO Parameters

SAO is a form of in-loop filtering that was introduced in HEVC. It is used to process
the output of samples from the deblocking filter process and is the last step of the
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decoding process. SAO involves sample based processing rather than block based
processing. There are two types of filtering: edge offset and band offset.

Edge offset (EO) involves comparing the sample and its neighboring sample val-
ues in one of four angular directions (horizontal, vertical, 45◦, 135◦).13 The sample
is compared to its neighbors in the selected direction (e.g., the sample has a lower
value than both its neighbors); based on the comparison, the sample is assigned to a
category, which determines the offset that is added to the sample. The value of the
offset for a given category is set by the encoder. Band offset (BO) involves dividing
the intensity range into four bands and then adding a different offset to the sample
depending which band its sample intensity belongs to. For more details on SAO,
please refer to Chap. “In-Loop Filters in HEVC”.

The type, direction and offsets used to define the SAO filter can change for each
CTB; however, all samples belonging to a CTB are processed with the same SAO
filter (but luma and chroma CTBs may use different SAO filters). The SAO type
is signaled using sao type idx luma and sao type idx chroma with TrU
binarization. The first bin indicates whether the SAO filter is enabled and is regular
coded, while the second bin indicates if edge or band offset is used and is bypass
coded.

If edge offset is used, the direction of the edge is signaled using sao eo class
luma and sao eo class chromawith FL binarization of 2 bins, all of which are
bypass coded. If band offset is used, four sao band position syntax elements
are signaled to indicate the start position of each band with a FL binarization of 5
bins, all of which are bypass coded.

For both types of SAO filtering, four sao offset abs are signaled (one for
each category or band) using TrU with cMax computed by Eq. 4 and all bins are
bypass coded.

cMax = (1 << (min(bitDepth,10)−5))−1 (4)

For the band offset, the sao offset sign is signaled only when the offset is
non-zero to reduce the total number of bins [38], while for edge offset the sign is
inferred from the category [42].

To leverage the spatial correlation across CTBs, sao merge left flag and
sao merge up flag are used to indicate if SAO parameters can be inherited
from neighboring CTBs, which reduces signaling overhead. Both of these flags are
regular coded using separate context models.

Significant effort was made to reduce the number of regular coded bins required
to represent SAO filter syntax elements. As a result, the only regular coded bins are
the merge flags and the first bin of the sao type idx luma and sao type idx
chroma with the latter indicating whether SAO is enabled for luma and chroma

CTBs, respectively.

13 Direction is also referred to as class in the HEVC specification.
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4.6 Comparison of HEVC and H.264/AVC

Tab. 4 highlights the differences in signaling between the CTU/CU layer in HEVC
and the macroblock (MB) layer in H.264/AVC, when processing 8-bit video. For a
comparable block partitioning, HEVC typically produces fewer regular coded bins
than H.264/AVC. At the same time, some of those regular coded bins in addition
to those of the skip flag are adaptively selected based on CU depth, size and neigh-
bors in HEVC, which improves coding efficiency relative to H.264/AVC. In general,
however, the total amount of bits spent for signaling at the CTU/CU or MB layer
is lower by more than an order of magnitude compared to the total amount of bits
spent for transform coefficient level coding. As already discussed above and sum-
marized in Tab. 4, the majority of bypass bins for the SAO parameters are due to the
signaling of the offsets, while for H.264/AVC an excessive number of bins is only
generated in the rare cases where large delta QP values have to be transmitted.

Table 4: Differences in signaling between CTU/CU layer in HEVC and MB layer in
H.264/AVC.

HEVC H.264/AVC
Prediction and Coding
Block Structure and Pre-
diction Mode

cu skip flag,
split cu flag,
pred mode flag,
part mode

mb skip flag, mb type,
sub mb type

Maximum number of
bins for delta QP

5 (regular), 10 (bypass) 53 (regular)

Maximum number of
bins for SAO parameters

4 (regular), 113 (bypass) n/a

5 Prediction Unit Syntax Elements

The prediction unit (PU) syntax elements describe how the prediction is performed
in order to reconstruct the samples belonging to each PU. Coding efficiency im-
provements have been made in HEVC for both modeling and coding of motion
parameters and intra prediction modes. While H.264/AVC uses a single motion vec-
tor predictor (unless direct mode is used) and a single most probable mode (MPM),
HEVC uses multiple candidate predictors or MPMs together with an index or flag
for signaling the selected predictor or MPM, respectively. In addition, HEVC pro-
vides a mechanism for exploiting spatial and temporal dependencies with regard to
motion modeling by merging neighboring blocks with identical motion parameters.
This has been found to be particularly useful in combination with quadtree-based
block partitioning, since a pure hierarchical subdivision approach may lead to parti-
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tionings with suboptimal rate-distortion behavior [102, 46, 35]. Also, due to the sig-
nificant increased number of angular intra prediction modes relative to H.264/AVC,
three MPMs for each PU are considered in HEVC.

This section will discuss how the various PU syntax elements are processed in
terms of binarization, context modeling, and context assignment. Also, aspects re-
lated to parsing dependencies and throughput for the various prediction parameters
are considered.

5.1 Motion Data Coding

In HEVC, motion data can be either signaled using merge mode or directly using
motion vectors differences, reference indices, and inter-prediction direction.

5.1.1 Signaling of merge mode

In HEVC, merge mode enables motion data (i.e., prediction direction, reference
index and motion vectors) to be inherited from a spatial or temporal (co-located)
neighbor. A list of merge candidates are generated from these neighbors. merge
flag is signaled to indicate whether merge is used in a given PU. If merge is

used, then merge idx is signaled to indicate from which candidate the motion
data should be inherited. merge idx is coded with truncated unary, which means
that the bins are parsed until a zero bin value is reached or when the number of bins
is equal to the cMax, the max allowed number of bins.

Determining how to set cMax involved evaluating the throughput and cod-
ing efficiency trade-offs in a core experiment [12]. For optimal coding efficiency,
cMax should be set to equal the merge candidate list size of the PU. Furthermore,
merge flag should not be signaled if the list is empty. However, this makes pars-
ing depend on list construction, which is needed to determine the list size. Con-
structing the list requires a large amount of computation since it involves reading
from multiple locations (i.e., fetching the co-located neighbor and spatial neigh-
bors) and performing several comparisons to prune the list; thus, dependency on list
construction would significantly degrade parsing throughput [108, 36].

To decouple the list generation process from the parsing process such that
they can operate in parallel in HEVC, cMax is signaled in the slice header using
five minus max num merge cand and does not depend on list size. To com-
pensate for the coding loss due to the fixed cMax, combined bi-predictive and zero
motion vector candidates are added when the list size is less than the maximum
number of allowed candidates as defined by cMax [79]. This also ensures that the
list is never empty and that merge flag is always signaled [107]. For more de-
tails on candidate list construction please refer to Chap. “Inter-Picture Prediction in
HEVC”.
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5.1.2 Signaling of motion vector differences, reference indices, and
inter-prediction direction

If merge mode is not used, then the motion vector is predicted from its neighboring
blocks and the difference between motion vector (mv) and motion vector prediction
(mvp), referred to as motion vector difference (mvd), is signaled:

mvd(x,y) = mv(x,y)−mvp(x,y)

In H.264/AVC, a single predictor is calculated for mvp from the median of the left,
top and top-right spatial 4×4 neighbors.

In HEVC, advanced motion vector prediction (AMVP) is used, where several
candidates for mvp are determined from spatial and temporal neighbors [40]. A list
of mvp candidates is generated from these neighbors, and the list is pruned to re-
move redundant candidates such that there is a maximum of 2 candidates. A syntax
element called mvp l0 flag (or mvp l1 flag depending on the reference list)
is used to indicate which candidate is used from the list as the mvp. To ensure that
parsing is independent of list construction, mvp l0 flag is signaled even if there
is only one candidate in the list. The list is never empty as the zero motion vector is
used as the default candidate.

In HEVC, improvements were also made on the coding process of mvd itself. In
H.264/AVC, the first 9 bins of mvd are regular coded truncated unary bins, followed
by bypass coded 3rd order Exp-Golomb bins. In HEVC, the number of regular coded
bins for mvd is significantly reduced [60]. Only the first two bins are regular coded
(abs mvd greater0 flag, abs mvd greater1 flag), followed by bypass
coded first-order Exp-Golomb (EG1) bins (abs mvd minus2).

In H.264/AVC, context selection for the first bin in mvd depends on whether the
sum of the motion vectors of the top and left 4×4 neighbors are greater than 32
(or less than 3). This requires 5-bit storage per neighboring motion vector, which
accounts 24,576 of the 30,720-bit CABAC line buffer needed to support a 4k×2k
sequence. [95] highlighted the need to reduce the line buffer size in HEVC by mod-
ifying the context selection logic. Accordingly, all dependencies on the neighbors
were removed and the context is selected based on the binIdx (i.e., whether it is the
first or second bin) [96, 83].

To maximize the impact of fast bypass coding, the bypass coded bins for both the
horizontal (x) and vertical (y) components of mvd are grouped together in HEVC
[67]. For instance, for a motion vector difference of mvd(x,y) = (2,2), the cod-
ing order is 11110000, where underlined values are bypass coded. Without bypass
grouping, the coding order is 11001100. If 4 bypass bins can be processed in a single
cycle, enabling bypass grouping reduces the number of cycles required to process
the motion vector by one.

In HEVC, reference indices ref idx l0 and ref idx l1 are coded with trun-
cated unary regular coded bins, which is the same as for H.264/AVC; the maximum
length of the truncated unary binarization, cMax, is dictated by the reference picture
list size. However, in HEVC only the first two bins are regular coded [71], whereas
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all bins are regular coded in H.264/AVC. In both HEVC and H.264/AVC, the regu-
lar coded bins of the reference indices for different reference picture lists share the
same set of contexts. The inter-prediction direction (list 0, list 1 or bi-directional) is
signaled using (inter pred idc) with custom binarization.

5.2 Intra Prediction Mode Coding

Similar to motion data coding, a most probable mode (MPM) is calculated for in-
tra mode coding. In H.264/AVC, the minimum mode of the top and left neighbors
is used as MPM. prev intra4x4 pred mode flag (or prev intra8x8
pred mode flag) is signaled to indicate whether the most probable mode is used.
If the MPM is not used, the remainder mode rem intra4x4 pred mode flag
(or rem intra8x8 pred mode flag) is signaled.

In HEVC, additional MPMs are used to improve coding efficiency. A candidate
list of most probable modes with a fixed length of three is constructed based on the
left and top neighbors. The additional candidate modes (DC, planar, vertical) can
be added if the left and top neighbors are the same or unavailable. Note that the
top neighbors outside current CTU are considered unavailable in order to avoid the
need for a line buffer.14 The prediction flag (prev intra pred mode flag) is
signaled to indicate whether one of the most probable modes is used. If an MPM
is used, a most probable mode index (mpm idx) is signaled to indicate which can-
didate to use. It should be noted that in HEVC, the order in which the coefficients
of the residual are parsed (e.g., diagonal, vertical or horizontal) depends on the re-
constructed intra mode (i.e., the parsing of the TU data that follows depends on
list construction and intra mode reconstruction). Thus, the candidate list size was
limited to three for reduced computation to ensure that it would not affect entropy
decoding throughput [84, 26].

The number of regular coded bins was reduced for intra mode coding in HEVC
relative to the corresponding part in H.264/AVC, where both the flag and the 3 fixed-
length bins of the remainder mode are regular coded using two separate context
models. In HEVC, the flag is regular coded as well, but the remainder mode is
a fixed-length 5-bin value that is entirely bypass coded. The most probable mode
index (mpm idx) is also entirely bypass coded. The number of contexts used to
code intra chroma pred mode is reduced from 4 to 1 for HEVC relative to
H.264/AVC. To maximize the impact of fast bypass coding, the bypass coded bins
for luma intra prediction mode coding within a CU are grouped together in HEVC
[23]. This is beneficial when the partition mode is PART NxN, and there are four
sets of prediction modes.

14 For more details on MPM list construction please refer to Chap. “Intra-Picture Prediction in
HEVC”.
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Table 5: Differences between prediction unit coding in HEVC and H.264/AVC.

Properties HEVC H.264/AVC
Intra
Mode

AMVP Merge Intra
Mode

MVP

Max number of candidates in list 3 2 5 1 1
Spatial neighbor used used used used used
Temporal co-located neighbor not used used used not used not used
Number of contexts 2 10 2 6 20
Max regular coded bins per PU 2 16 2 7 98

5.3 Comparison of HEVC and H.264/AVC

The differences between H.264/AVC and HEVC in signaling of syntax elements
at the PU layer are summarized in Tab. 5. HEVC uses both spatial and temporal
neighbors as predictors, while H.264/AVC only uses spatial neighbors (unless direct
mode is enabled). In terms of the impact of the throughput improvement techniques,
HEVC has around 6× fewer maximum regular coded bins per inter-predicted PU
than H.264/AVC. HEVC also requires around 2× fewer contexts for PU syntax
elements than H.264/AVC.

6 Transform Unit Syntax Elements

In video coding, both intra and inter prediction are used to reduce the amount of data
that needs to be transmitted. In addition, rather than sending the original samples of
the prediction signal, an appropriately quantized approximation of the prediction
error is transmitted. To this end, the prediction error is blockwise transformed from
spatial to frequency domain, thereby decorrelating the residual samples and per-
forming an energy compaction in the sense that, after quantization, the signal can be
represented in terms of a few non-vanishing coefficients. The method of signaling
the quantized values and frequency positions of these coefficients is referred to as
transform coefficient coding.

Syntax elements related to transform coefficient coding account for a significant
portion of the bin workload as shown in Tab. 6. At the same time, those syntax
elements also account for a significant portion of the total number of bits for a com-
pressed video, and as a result the compression of quantized transform coefficients
significantly impacts the overall coding efficiency. Thus, transform coefficient cod-
ing with CABAC must be carefully designed in order to balance coding efficiency
and throughput demands. Accordingly, as part of the HEVC standardization process,
a core experiment on coefficient scanning and coding was established to investigate
tools related to transform coefficient coding [98].
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HEVC H.264/AVC
Common
conditions

AI LP LB RA worst HierB HierP worst
MAIN MAIN MAIN MAIN case case

CTU/CU bins 5.4% 15.8% 16.7% 11.7% 1.4% 27.0% 34.0% 0.5%
PU bins 9.2% 20.6% 19.5% 18.8% 5.0% 23.4% 26.3% 15.8%
TU bins 85.4% 63.7% 63.8% 69.4% 94.0% 49.7% 39.7% 83.7%

Table 6: Distribution of bins in CABAC for HEVC and H.264/AVC under com-
mon test conditions [4, 11] and for the worst case. Generated bins are discriminated
along the HEVC categories CTU/CU, PU, and TU as well as their corresponding
counterparts in H.264/AVC.

This section describes how transform coefficient coding evolved from H.264/AVC
to the first test model of HEVC (HM1.0) to the Final Draft International Standard
(FDIS) of HEVC (HM10.0), and discusses the reasons behind design choices that
were made. Many of the throughput improvement techniques were applied, and new
tools for improved coding efficiency were simplified. As a reference for the begin-
ning and end points of the development, Fig. 8 and Fig. 9 show examples of trans-
form coefficient coding for 4×4 blocks in H.264/AVC and HEVC, respectively.

Fig. 8: Example of CABAC-based transform coefficient coding for a 4×4 transform
block in H.264/AVC. Note, however, that the corresponding bins for signaling of
the absolute level (in yellow) are not explicitly shown.
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Fig. 9: Example of transform coefficient coding for a 4×4 transform block in HEVC.
Note, however, that the corresponding bins for signaling of the “last” information
(in red) and absolute level remaining (in yellow) are not explicitly shown.

6.1 Transform Block Structure

As already discussed in Sect. 3.1, transform coding in HEVC involves a tree-
structured variable block-size approach with supported transform block sizes of
4×4, 8×8, 16×16, and 32×32. This means that the actual transform block sizes,
used to code the prediction error of a given CU, can be selected based on the charac-
teristics of the residual signal by using a quadtree-based partitioning, also known as
residual quadtree (RQT), as illustrated in Fig. 10. While this larger variety of trans-
form block partitioning relative to H.264/AVC provides significant coding gains, it
also has implications in terms of implementation costs, both in terms of memory
bandwidth and computational complexity. To address this issue, HEVC allows to
restrict the RQT-based transform block partitioning by four parameters, signaled by
corresponding syntax elements in the SPS: the maximum and minimum allowed
transform block size (in terms of block width) nmax and nmin, respectively, and the
maximum depth of the RQT dmax, with the latter given both individually for intra-
picture and inter-picture prediction. Note, however, that there is a rather involved
interdependency between these parameters (and other syntax elements), such that,
e.g., implicit subdivisions or implicit leaf nodes of the RQT may occur. For more
details, please refer to Chap. “Block Structures and Parallelism Features in HEVC”.
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The signaling of the transform block structure for each CU is similar to that of
the coding block structure at the CTU level. For each node of the RQT, a flag called
split transform flag is signaled to indicate whether a given transform block
should be further subdivided into four smaller TBs. Context modeling for the cod-
ing of this flag involves three different contexts with its related context increment
equal to 5− log2(TrafoSize), where TrafoSize denotes the block width of the cor-
responding luma transform block at the given RQT depth. Note that for the choice
of a luma CTB size of 64, nmax = 32, nmin = 4, and dmax = 4, an implicit leaf node
is implied for the case of TrafoSize = 4, whereas an implicit subdivision is given
for a luma CB size of 64 at RQT depth equal to 0. Tab. 7 and Fig. 11 illustrate
an example of this configuration. Therefore, even if up to five different RQT lev-
els are permitted, only up to three different context models are required for coding
of split transform flag. Note that the signaling of split transform
flag at the RQT root is omitted if the quantized residual of the corresponding CU
contains no non-zero transform coefficient at all, i.e., if the corresponding coded
block flag at the RQT root (see Sect. 6.3) is equal to 0.

Fig. 10: Illustration of residual quadtrees (one for each CU) used to signal transform
units for residual coding of CUs. Note that the same relationships and comments as
given in Fig. 6 apply here as well.
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Fig. 11: Illustration of signaling of split transform flag, cbf luma,
cbf cb, and cbf cr for an RQT with depth 4. Note that at RQT depth = 0, no
split transform flag is signaled since an implicit transform split occurs for
CU of 64 as nmax = 32. cbf luma is only signaled for leaf transform blocks (high-
lighted in red). cbf cb and cbf cr are signaled for the root node and all nodes
where the corresponding CBF at the parent node is non-zero, except for the nodes
related to TrafoSize = 4 .

RQT Transform split transform flag cbf luma cbf cb, cbf cr
depth Size (ctxInc) (ctxInc) (ctxInc)

0 n/a n/a 1 0
1 32×32 0 0 1
2 16×16 1 0 2
3 8×8 2 0 3
4 4×4 n/a 0 n/a

Table 7: Derivation of context increment (ctxInc) for split transform flag,
cbf luma, cbf cb, and cbf cr for the example in Fig. 11.
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6.2 Transform Skip

For regions or blocks with many sharp edges (e.g., as typically given in screen con-
tent coding), coding gains can be achieved by skipping the transform [44, 63]. When
the transform is skipped for a given block, the prediction error in the spatial domain
is quantized and coded in the same manner as for transform coefficient coding (i.e.,
the quantized block samples of the spatial error are coded as if they were quantized
transform coefficients). The so-called transform skip mode is only allowed for 4×4
TUs and only if the corresponding functionality is enabled by the transform
skip enabled flag in the PPS. Signaling of this mode is performed by using
the transform skip flag, which is coded using a single fixed context model.

6.3 Coded Block Flags

At the top level of the hierarchy of significance flags, as already explained in
Sect. 3.1, coded block flags (CBFs) are signaled for the RQT root, i.e., at the CU
level in form of the rqt root cbf and for subsequent luma and chroma TBs in
the form of cbf luma and cbf cb, cbf cr, respectively. rqt root cbf is only
coded and transmitted for inter-predicted CUs that are not coded in merge mode us-
ing a single PU (PART 2Nx2N)15; for that a single context model is used. While
signaling of cbf luma is only performed at the leaf nodes of the RQT, provided
that a non-zero rqt root cbf was signaled before, the chroma CBFs cbf cb
and cbf cr are also transmitted at each internal node as long as a corresponding
non-zero chroma CBF at its parent node occurred. For coding of both cbf cb and
cbf cr, four contexts are used such that the corresponding context increment de-
pends on the RQT depth (with admissible values between 0 and 3, since for the case
of TrafoSize = 4 no chroma CBFs are transmitted), whereas for cbf luma only
two contexts are provided with its discriminating context increment depending on
the condition RQT depth = 0. For more background on the use of RQT and related
syntax elements, please refer to Chap. “Block Structures and Parallelism Features
in HEVC”.

6.4 Significance Map

In H.264/AVC, the significance map for each transform block is signaled by trans-
mitting a significant coeff flag (SIG) for each position to indicate whether
the coefficient is non-zero. The positions are processed in an order based on a zig-
zag scan. After each non-zero SIG, an additional flag called last significant
coeff flag (LAST) is immediately sent to indicate whether it is the last non-

15 Intra-predicted CUs typically have nonzero residual, so rqt root cbf is not used.
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zero SIG; this prevents unnecessary SIG from being signaled. Different contexts
are used depending on the position within the 4×4 and 8×8 transform blocks, and
whether the bin represents an SIG or LAST. Since SIG and LAST are interleaved,
the context selection of the current bin depends on the immediate preceding bin. The
dependency of LAST on SIG results in a strong bin to bin dependency for context
selection of significance map entries in H.264/AVC as illustrated in Fig. 3.

6.4.1 sig coeff flag (SIG)

While in HEVC position based context assignment for coding of sig coeff
flag (SIG) is used for 4×4 TBs as shown in Fig. 12, new forms of context as-
signment for larger transforms were needed. In HM1.0, additional dependencies
were introduced in the context selection of SIG for 16×16 and 32×32 TBs to im-
prove coding efficiency. Specifically, the context selection of SIG was calculated
based on a local template using 10 (already decoded) SIG neighbors as shown in
Fig. 13a [102, 59]. By using this template-based context selection bitrate savings of
1.4 –2.8% were reported [59].

Fig. 12: Context index assignment for sig coeff flag in 4×4 TBs.

To reduce context selection dependencies and storage costs, [86] proposed using
fewer neighbors and showed that this could be done without severely sacrificing
coding efficiency. For instance, using only a maximum of 8 neighbors (removing
neighbors A and D as shown in Fig. 13b) had negligible impact on coding efficiency,
while using only 6 neighbors (removing neighbors A, B, D, E and H as shown in
Fig. 13c) results in a coding efficiency loss of only 0.2%. This was further extended
in [22] for HM2.0, where only a maximum of 5 neighbors was used by removing
dependencies on positions G and K, as shown in Fig. 13d. In HM2.0, the significance
map was scanned in zig-zag order, so removing the diagonal neighbors G and K is
important since those neighbors pertain to the most recently decoded SIG.

Despite reducing the number of SIG neighbors in HM2.0, dependency on the
most recently processed SIG neighbors still existed for the positions at the edge
of the transform block as shown in Fig. 14a. The horizontal or vertical shift that is
required to go from one diagonal to the next in the zig-zag scan causes the previously
decoded bin to be one of the neighbors (F or I) that is needed for context selection.
In order to address this issue, in HM4.0, a diagonal scan was introduced to replace
the zig-zag scan [87] as shown in Fig. 14b. Changing from zig-zag to diagonal
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(a) 10 neighbors (HM1.0) (b) 8 neighbors

(c) 6 neighbors (d) 5 neighbors (HM3.0)

(e) Inverted for re-
verse scan (HM4.0)

Fig. 13: Local templates for SIG context selection. X (in blue) represents the current
position of the bin being processed.

scan had negligible impact on coding efficiency, but removed the dependency on
recently processed SIG for all positions in the TB. In HM4.0, the scan was also
reversed (from high frequency to low frequency) [74]. Accordingly, the neighbor
dependencies were inverted from top-left to bottom-right, as shown in Fig. 13e.

Dependencies in context selection of SIG for 16×16 and 32×32 TBs were further
reduced in HM7.0, where 16×16 and 32×32 TBs are divided into 4×4 subblocks.
This will be described in more detail in Sect. 6.4.3 on coded sub block flag
(CSBF). In HM8.0, 8×8 TBs were also divided into 4×4 subblocks such that all TB
sizes above 4×4 are based on a 4×4 subblock processing for a harmonized design
[77].

The 8×8, 16×16 and 32×32 TBs are divided into three regions based on fre-
quency, as shown in Fig. 15. The DC, low-frequency and mid/high-frequency re-
gions all use different sets of contexts. To reduce memory size, the contexts for
coding the SIG of 16×16 and 32×32 TBs are shared [100, 81].
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(a) Zig-zag scan (b) Diagonal scan

Fig. 14: Scans used to process SIG. Diagonal scan avoids dependency on the most
recently processed bin. Context selection for blue positions is affected by values of
the neighboring grey positions.

Fig. 15: Regions in 8×8, 16×16 and 32×32 TBs map to different context sets for
SIG.

For improved coding efficiency for intra predicted CUs, so-called mode depen-
dent coefficient scanning (MDCS) is used to select between vertical, horizontal, and
diagonal scans based on the chosen intra prediction mode [106], as illustrated in
Fig. 16. Tab. 8 shows how the scans are assigned based on intra prediction mode,
TB size, and component. As mentioned in Sect. 5.2, this requires the intra mode
to be decoded before decoding the corresponding transform coefficients. MDCS is
only used for 4×4 and 8×8 TBs and provides coding gains of up to 1.2%. Note that
for TBs larger than 8×8 and for TBs of inter predicted CUs only the diagonal scan
is used.

6.4.2 Last position coding

As mentioned earlier, there are strong data dependencies between significant
coeff flag (SIG) and last significant coeff flag (LAST) in H.264/AVC
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Fig. 16: Diagonal, vertical, and horizontal scans for 4×4 TBs.

Table 8: Mode dependent coefficient scanning: Mapping of intra prediction mode
to scans (0 = Diagonal, 1 = Horizontal, 2 = Vertical) for different TB sizes and
components.

Intra Prediction Mode 0 (Planar) 1 (DC) 2 3 4 5 6 to 14 15 to 21 22 to 30 31 to 34
8×8 (luma) 0 0 2 0 1 0
4×4 (luma or chroma) TB 0 0 2 0 1 0
Otherwise 0

due to the fact that they are interleaved. [15] proposed grouping several SIG to-
gether by transmitting a LAST only once per N number of SIG. If all of the
N SIG are zero, LAST is not transmitted. [73] avoids interleaving of SIG and
LAST altogether. Specifically, the horizontal (x) and vertical (y) position of the
last non-zero SIG in a TB is sent in advance rather than LAST by using the syn-
tax elements last sig coeff x and last sig coeff y, respectively. For
instance, in the example shown in Fig. 9, last sig coeff x equal to 3 and
last sig coeff y equal to 0 are sent before processing the TB rather than sig-
naling LAST for each SIG with value of 1. Signaling the (x, y) position of the last
non-zero SIG for each TB was adopted into HM3.0. Note that the SIG in the last
scan position is inferred to be 1.

The last position, given by its coordinates in both x and y direction, is com-
posed of a prefix and suffix as shown in Tab. 9. The prefixes last sig coeff x
prefix and last sig coeff y prefix are both regular coded using TrU bi-
narization with cMax = 2 · log2 TrafoSize−1 [70]. A suffix is present when the cor-
responding prefix is composed of more than 4 bins. In that case, the suffixes last
sig coeff x suffix and last sig coeff y suffix are bypass coded us-
ing FL binarization. Some of the contexts are shared across the chroma TB sizes to
reduce context memory, as shown in Tab. 10. To maximize the impact of fast bypass
coding, the bypass coded bins (i.e., the suffix bins) for both the x and y coordinate
of the last position are grouped together for each TB in HEVC.
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Table 9: Binarization of coordinate values of the last position. Bins belonging to the
bypass coded suffixes are underlined.

Coordinate Value TB = 4×4 TB = 8×8 TB = 16×16 TB = 32×32
0 0 0 0 0
1 10 10 10 10
2 110 110 110 110
3 111 1110 1110 1110
4 n/a 11110 0 11110 0 11110 0
5 n/a 11110 1 11110 1 11110 1
6 n/a 11111 0 111110 0 111110 0
7 n/a 11111 1 111110 1 111110 1
8 n/a n/a 1111110 00 1111110 00
9 n/a n/a 1111110 01 1111110 01
10 n/a n/a 1111110 10 1111110 10
11 n/a n/a 1111110 11 1111110 11
12-15 n/a n/a 1111111 xx 11111110 xx
16-23 n/a n/a n/a 111111110 xxx
24-31 n/a n/a n/a 111111111 xxx

Table 10: Context selection for regular coded prefix bins of the coordinates of the
last position last sig coeff x prefix and last sig coeff y prefix.

Bin Index 0 1 2 3 4 5 6 7 8
4x4 luma TB 0 1 2
8x8 luma TB 3 3 4 4 5
16x16 luma TB 6 6 7 7 8 8 9
32x32 luma TB 10 10 11 11 12 12 13 13 14
4x4 chroma TB 15 16 17
8x8 chroma TB 15 15 16 16 17
16x16 chroma TB 15 15 15 15 16 16 16

6.4.3 coded sub block flag (CSBF)

As already explained in Sect. 3.1, the number of bins to be transmitted for sig-
naling the significance map is considerably reduced by using a hierarchical signal-
ing scheme of significance flags. Part of this hierarchy is the coded sub block
flag (CSBF) that indicates for each 4×4 subblock of a TB whether there are

non-zero coefficients in the subblock [57][56]. If CSBF is equal to 1, the subblock
contains at least one non-zero transform coefficient level and, consequently, SIGs
within the subblock are signaled. No SIGs are signaled for a 4×4 subblock that
contains all vanishing transform coefficients, since this information is signaled by
a CSBF equal to 0. For large TB sizes, a reduction in SIG bins of up to a 30% can
be achieved by the use of CSBFs, which corresponds to an overall bin reduction of
3–4% under common test conditions. To avoid signaling of redundant information,
the CSBF for the subblocks containing the DC and the last position are inferred to
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be equal to 1. Fig. 17 shows an example of the hierarchical signaling of an 8×8
significance map.

Fig. 17: Example of the hierarchical signaling of an 8×8 significance map.

In HM7.0, the CSBF was additionally used to further reduce dependencies in the
context selection of SIG for 16×16 and 32×32 TBs. Specifically, the neighboring
subblocks and their corresponding CSBFs (Fig. 18) are used for context selection
rather than the individual SIG neighbors, as shown in Fig. 13e [43]. This context se-
lection scheme was extended to 8×8 TBs in HM8.0 [77]. According to this scheme,
the CSBF of the neighboring right and bottom subblocks (CSBFright , CSBFbottom)
are used to select one of four patterns shown in Fig. 19: (0,0) maps to pattern 1, (1,0)
to pattern 2, (0,1) to pattern 3 and (1,1) to pattern 4. The pattern maps each position
within the 4×4 subblock to one of three contexts. As a result, there are no intrinsic
dependencies for context selection of SIG within each 4×4 subblock.

Fig. 18: Neighboring CSBFs (right, bottom) used for SIG context selection.

Reverse diagonal scanning order is used within the subblocks and for the process-
ing order of the subblocks themselves, as shown in Fig. 20 [76]. Both significance
map and coefficient levels are processed in this order. As an exception to this rule,
for 4×4 and 8×8 TBs to which MDCS is applied, reverse vertical and horizontal
scanning orders are used within the subblocks as well as for the processing order
of the subblocks themselves. Furthermore, as shown in Tab. 11, different sets of
contexts for coding of SIG are used for diagonal and non-diagonal (vertical and
horizontal) scans in both 4×4 luma and chroma TBs, and 8×8 luma TBs [77].
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3 (d) Pattern 4

Fig. 19: 4×4 position based mapping for SIG context selection based on CSBF of
neighboring subblocks.

(a) Subblock scan for 8×8 TB.

(b) Subblock scan for 16×16 TB. Scan
for 32x32 TB is also all diagonal.

Fig. 20: Subblock scans. Scan for 4×4 TB shown in Fig. 16.

6.4.4 Summary of significance map coding in HEVC

Fig. 21 summarize the steps required to code the significance map. This process is
repeated for every non-zero TB in HEVC. Tab. 11 summarizes the multiple steps of
classification used to assign the 42 contexts of sig coeff flag. Contexts 0 to
26 are used for luma coded TBs, while 27 to 41 used for chroma TBs. The contexts
are further mapped based on the TB size, the scan direction, whether the subblock is
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DC or non-DC, CSBF of neighboring subblocks, and position within the subblock.
Note that context 0 is used to code the sig coeff flag of the DC position of all
luma TBs, and context 27 is used for the DC position of all chroma TBs.

Fig. 21: Flow chart for coding the syntax elements of a TB in HEVC.

6.5 Absolute Coefficient Level and Coefficient Sign

In HEVC, parsing of transform coefficient level information is performed subblock-
by-subblock using up to five scan passes for each subblock. The first scan pass
is devoted to the SIG flags, as already explained in Sect. 6.4.1 and 6.4.3. In the
second and third pass, the two additional flags coeff abs level greater1
flag (ALG1) and coeff abs level greater2 flag (ALG2) are condition-
ally parsed, indicating for each relevant scan position if the corresponding absolute
value of the coefficient level, i.e., the absolute level (AL) is greater than 1 and 2,
respectively. However, only up to 8 ALG1 flags and one ALG2 flag are transmitted
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Table 11: Context selection of sig coeff flag based on component, TB size,
scan order (Tab. 8), position of subblock within the TB (Fig. 15), and position based
context index within 4×4 TB or subblock (SubIdx) (Fig. 12 or Fig. 19, resp.).

ctxIdx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Component luma
TB size All 4×4 8×8 16×16 & 32×32
Scan All All Diagonal Vertical/Horizontal Diagonal
Subblock DC Only one DC Non-DC DC Non-DC DC Non-DC
position subblock subblock subblock subblock subblock subblock subblock
SubIdx DC 1 2 3 4 5 6 7 8 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

ctxIdx 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Component chroma
TB size All 4×4 8×8 16×16
Scan All All scans Diagonal
Subblock DC Only one All All
position subblock subblocks subblocks
SubIdx DC 1 2 3 4 5 6 7 8 0 1 2 0 1 2

for each subblock, as will be explained in more detail below. In the third scan pass,
the sign of each significant level is signaled with the possible exception of the last
non-zero coefficient in the subblock in reverse scanning order, as will be discussed
in more detail in Sect. 6.5.2. Finally, in the last and fifth scan pass, the remaining
information of absolute levels in the subblock (if present) is transmitted by using
the syntax element coeff abs level remaining (ALRem), as will be further
detailed in Sect. 6.5.1 below.

6.5.1 Coding of absolute level

Coding of absolute levels requires the choice of suitable binarization schemes and,
for selected bin indices, the choice of suitable context models. According to the
design considerations, as discussed in Sect. 3, both aspects of coding efficiency and
throughput have been properly addressed by the revised CABAC design of HEVC.
This is especially true for the coding of absolute levels which typically contribute
the dominant portion to the total number of generated bins. In the following, we will
first elaborate on how the specific binarization scheme for absolute levels in HEVC
has been designed. Then, in the second part of this subsection, we will present the
context selection rules applied to the (few remaining) regular coded bins of absolute
levels, unless not already done so in Sect. 6.4.1 and 6.4.3.

Conceptually, the binarization of an absolute level, denoted as z in the following,
relies on a concatenated application of three binarization processes [62, 58, 24]:
truncated unary (TrU), k-th order truncated Rice (TRk), and (k+ 1)-th order Exp-
Golomb (EGk). Fig. 22 illustrates this binarization scheme for arbitrary z along the
(discrete) number line. There are two thresholding parameters B0,B1 with B0 < B1
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Fig. 22: Illustration of the adaptive binarization scheme for absolute levels in HEVC
consisting of a concatenation of the three elementary binarizations TrU, TRk, and
EGk, the latter two with varying order k and k+1, respectively (0≤ k≤ 4). The two
variable thresholds B0 and B1 specify the (variable) transition points between them.

which separate the 3 regions from one another for application of each of the three bi-
narization processes and which also determine the truncation parameters cMax(TrU)
= B0 + 1 and cMax(TRk) = B1−B0. The selection of the two parameters B0,B1
together with the choice of the parameter k is performed in a backward-adaptive
manner for each subblock in such a way that the resulting bin strings are already
close to a minimum-redundancy prefix code for the collection of all absolute levels
z in each subblock. As a consequence, the majority of resulting bins can be simply
bypass coded without compromising coding efficiency.

For each subblock, the initialization and adaptation processes for the parameters
B0,B1, and k is performed, as follows. Before starting the processing of an subblock,
the parameter k is set equal to 0, whereas B0 is set equal to 2. The second threshold-
ing parameter B1 depends on k and B0 by the fixed relation B1 = 4 ·2k +B0, which
means that B1 is adapted whenever B0 or k are changed. For each scan position in
the subblock processing, the absolute level z is evaluated after encoding/decoding
and B0 is decremented by 1 after the first occurrence of z > 1, which corresponds
to the first scan position in the subblock for which an ALG2 flag is signaled. A
further adaptation of B0 to its minimum value of 0 is performed after z > 0, i.e.,
after an ALG1 flag occurs eight times in the subblock. The parameter k is set to
min(k + 1,4) after each scan position for which the corresponding absolute level
z fulfills the condition z > 3 · 2k. Note that according to this adaptation rule, k can
take integer values from 0 to 4 inclusive. Tab. 12 and 13 show example binarizations
for two different configurations of the parameters B0,B1, and k. Please note that the
result of the binarization for z can also be interpreted as a concatenation of a unary
prefix and, if present, a fixed-length suffix for different ranges of z [24]. Tab. 14
shows the corresponding binarization of ALRem, which has a maximum bin length
of 32 [18].

As already indicated above, the signaling of the absolute level z involves four dif-
ferent syntax elements, given as sig coeff flag (SIG), coeff abs level
greater1 flag (ALG1), coeff abs level greater2 flag (ALG2), and
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Table 12: Binarization of the absolute level z for the choice of parameters B0 = 2,
B1 = 6, and k = 0, corresponding to a concatenation of TrU with cMax=3, zero-
order Truncated Rice (TRk) with cMax=4, and first-order Exp-Golomb (EGk).

TrU TRk EGk

z
cMax=3 k = 0; cMax=4 k+1 = 1

SIG ALG1 ALG2 0 1 2 3 0 1 2 3 . . .
0 0
1 1 0

B0 = 2 1 1 0
3 1 1 1 0
4 1 1 1 1 0
5 1 1 1 1 1 0

B1 = 6 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 0 0
8 1 1 1 1 1 1 1 0 1
9 1 1 1 1 1 1 1 1 0 0 0

10 1 1 1 1 1 1 1 1 0 0 1
11 1 1 1 1 1 1 1 1 0 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 13: Binarization of the absolute level z for the choice of parameters B0 = 1,
B1 = 9, and k = 1, corresponding to a concatenation of TrU with cMax=2, first-
order Truncated Rice (TRk) with cMax=8, and second-order Exp-Golomb (EGk).

TrU TRk EGk

z
cMax=2 k = 1; cMax=8 k+1 = 2

SIG ALG1 0 1 2 3 4 0 1 2 . . .
0 0

B0 = 1 1 0
2 1 1 0 0
3 1 1 0 1
4 1 1 1 0 0
5 1 1 1 0 1
6 1 1 1 1 0 0
7 1 1 1 1 0 1
8 1 1 1 1 1 0 0

B1 = 9 1 1 1 1 1 0 1
10 1 1 1 1 1 1 0 0 0
11 1 1 1 1 1 1 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 14: An alternative representation of coeff abs level remaining (AL-
Rem) binarization as a concatenation of a unary prefix and fixed length suffix. The
suffix has a length of k bins when the value N of ALRem is less than (3 << k);
otherwise, it has a length of blog2(((N − (3 << k)) >> k)+ 1)c+ k bins. In the
table below, the suffix bins are shown in terms of x and C , where each x represents
a bin, and C represents a fixed length bin string of length k.

N Prefix bins Suffix bins Prefix Suffix Total Max
length length length k

0∼ 2 ·2k−1 0 C 1 k 1+k 4
1·2k ∼ 2 ·2k−1 10 C 2 k 2+k 4
2·2k ∼ 3 ·2k−1 110 C 3 k 3+k 4

2k · (20 +2)∼ 2k · (21 +2)−1 1110 C 4 k 4+k 4
2k · (21 +2)∼ 2k · (22 +2)−1 11110 xC 5 1+k 6+k 4
2k · (22 +2)∼ 2k · (23 +2)−1 111110 xxC 6 2+k 8+k 4
2k · (23 +2)∼ 2k · (24 +2)−1 1111110 xxxC 7 3+k 10+k 4
2k · (24 +2)∼ 2k · (25 +2)−1 11111110 xxxxC 8 4+k 12+k 4
2k · (25 +2)∼ 2k · (26 +2)−1 111111110 xxxxxC 9 5+k 14+k 4
2k · (26 +2)∼ 2k · (27 +2)−1 1111111110 xxxxxxC 10 6+k 16+k 4
2k · (27 +2)∼ 2k · (28 +2)−1 11111111110 xxxxxxxC 11 7+k 18+k 4
2k · (28 +2)∼ 2k · (29 +2)−1 111111111110 xxxxxxxxC 12 8+k 20+k 4
2k · (29 +2)∼ 2k · (210 +2)−1 1111111111110 xxxxxxxxxC 13 9+k 22+k 4
2k · (210 +2)∼ 2k · (211 +2)−1 11111111111110 xxxxxxxxxxC 14 10+k 24+k 4
2k · (211 +2)∼ 2k · (212 +2)−1 111111111111110 xxxxxxxxxxxC 15 11+k 26+k 3
2k · (212 +2)∼ 2k · (213 +2)−1 1111111111111110 xxxxxxxxxxxxC 16 12+k 28+k 2
2k · (213 +2)∼ 2k · (214 +2)−1 11111111111111110 xxxxxxxxxxxxxC 17 13+k 30+k 1
2k · (214 +2)∼ 2k · (215 +2)−1 111111111111111110 xxxxxxxxxxxxxxC 18 14+k 32+k 0

coeff abs level remaining (ALRem), such that

z = SIG+ALG1+ALG2+ALRem,

provided that the values of the corresponding syntax elements are inferred to be
equal to 0, when not explicitly signaled. Note that the flags SIG, ALG1, and ALG2
represent the first and the optional second and third bin indices of the TrU part of
z, respectively. ALRem corresponds to the concatenation of the TRk and EGk part
of z with all of its bin values being bypass coded and with a maximum bin string
length of 32 [18]. Only the values of the three flags are regular coded. However,
due to the adaptation rules for B0, ALG2 can occur only once in each subblock,
while the occurrence of ALG1 is restricted to 8 scan positions per subblock at the
maximum [21]. Together with the maximum of 16 SIG flags per subblock, only up
to 25 regular coded bins can occur in each subblock (without accounting for CSBF).
Thus, the maximum number of regular coded bins per 4×4 transform (sub-) block is
reduced by a factor of about 9.6 relative to the corresponding maximum number of
16 ·14+15 = 239 regular coded bins for H.264/AVC CABAC (including SIG bins
but without accounting for LAST) [51]. This change provides obviously the most
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substantial reduction to the (worst case) number of regular coded bins in the entire
revision of CABAC.

The rationale behind processing SIG, ALG1, ALG2, and ALRem with individual
syntax elements rather than as conventional bin indices of the adaptive binarization
of z is given by the fact that all values of one syntax element in each subblock are
grouped together and signaled in separate scan passes. This grouping provides es-
sentially three advantages. First, bins in the coefficient level binarization that use
the same context selection logic are grouped together to reduce the amount of spec-
ulative context selection computations, as shown in Fig. 23. Second, by grouping
bypass coded bins together, the throughput advantages of bypass bins are maxi-
mized [88]. Third, the storage for (partially reconstruted) coefficient data during the
parsing process at the decoder can be reduced, as further explained in Sect. 6.5.2
below. Note that the reordering of bins has no impact on coding efficiency.

Fig. 23: Grouping same regular coded bins and bypass bins to increase throughput.
s=coeff sign flag

Context modeling for coding of the regular coded bins of the absolute level is
restricted to the three flags SIG, ALG1, and ALG2. Since context model selection
for the SIG flag has already been introduced in Sect. 6.4.1 and 6.4.3, we will focus
in the following on the two flags ALG1 and ALG2. For each of both flags, 6 sets
of context models are provided: 4 sets for subblocks of the luma component and 2
sets for subblocks of the chroma component. Since only up to one ALG2 flag per
subblock is encoded/decoded, each of the six ALG2 related sets contains only one
context model. For the ALG1 flag, each set consists of four context models and the
context increment ctxInc(ALG1) for selecting one of this four models within each
set is quite similar to what is specified for the coding of the first bin of the syntax
element coeff abs level minus1 in H.264/AVC (see [51] for a motivation of
this design choice):

ctxInc(ALG1) =
{

0, if NumG1 > 0
1+min(2,NumT1), otherwise ,

where NumT1 denotes the accumulated number of encoded/decoded trailing 1’s,
i.e., absolute levels equal to 1, and NumG1 denotes the accumulated number of en-
coded/decoded levels with absolute value greater than 1, both computed along the
reverse scanning pattern of the subblock up to (but not including) the current scan
position. Note that both NumT1 and NumG1 are initialized with the value of 0 at the
beginning of the subblock scan of ALG1 flags. After each encoded/decoded ALG1
flag with the value of 0, NumT1 is incremented by 1, while after each encoded/de-
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coded ALG1 flag with the value of 1, NumG1 is incremented by 1. Fig. 24 shows
the flow chart for context increment computation of ALG1.

Fig. 24: Flow chart for derivation of context increment (ctxInc) for up to 8 different
events bi (0≤ i≤ 7) of ALG1 in a 4×4 subblock.

Since the statistics of trailing 1’s may differ from subblock to subblock as well
as for subblocks belonging to different components or different locations within
the TB, different sets of context models are provided, both for ALG1 and ALG2,
as already mentioned above. For subblocks belonging to the luma component, 2
separate sets are used for subblocks containing the DC of the TB, i.e., for the top
left subblocks in a TB. Another two sets are given for luma subblocks containing
no DC as well as two additional sets for chroma subblocks. Depending on the value
of ctxInc(ALG1) for the last decoded ALG1 flag in the preceding subblock, the two
members of each of the relevant sets related to luma DC, luma non-DC, and chroma
are selected: One for the case of ctxInc(ALG1) = 0 and the other for the case of
ctxInc(ALG1) > 0. Thus, a total number of 30 context models are used for coding
of ALG1 and ALG2: 6 · 4 = 24 for ALG1 and 6 for ALG2. Interestingly enough,
there was a 4× reduction (from 120 to 30) in the total number of contexts used for
coding of the ALG1 and ALG2 flags during the development from HM3.0 to HM6.0
at virtually no loss in coding efficiency.

6.5.2 Coding of sign

To reduce storage cost of the coefficients, as already noted above, the transform co-
efficient data is grouped for every 4×4 subblock and the sign bins are bypass coded
and signaled before coeff abs level remaining bins. Before coeff abs
level remaining is added, the partial value of the coefficient level can be rep-
resented with 4 bits. Thus, CABAC in HEVC only requires storage of 4×4×4 bits
for each subblock (as compared to 8×8×9 bits for a 4×4 transform block in
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H.264/AVC), and the reconstructed transform coefficient level can be immediately
written out once coeff abs level remaining is parsed.

To improve coding efficiency, the optional sign bit hiding (SBH) technique can
be used [28]. SBH is a technique to hide one bit such as, e.g., a sign of a non-zero
coefficient in a group of non-zero coefficients. For this, the encoder quantizes the
coefficients in the group such that the sum of their absolute level values is even or
odd for the sign bit to be hidden having value 0 or 1, respectively. This inherently
lossy coding technique is based on the idea that in a group of quantized coefficients,
it is likely that there is at least one coefficient level for which the value can be in-
creased or decreased by 1 with only marginally increased rate-distortion cost. This
is, e.g., the case, when the unquantized coefficient was close to a quantization deci-
sion threshold, such that quantizing the coefficient to the next lower or next higher
possible quantized value are both similarly good decisions.

SBH is enabled by sign data hiding enabled flag in the PPS and if
it is enabled, it applies to each 4×4 subblock for which the number of non-zero
coefficients exceeds a certain threshold. This threshold was chosen in HEVC to
be a value of 3 and the sign bit to be hidden is that of the last significant scan
position in the reverse scanning pattern of each subblock. The condition for SBH
can be checked while parsing the significance map and thus, SBH does not have
a significant impact on the entropy decoding throughput. Average bitrate savings
between 0.6 to 0.9% were reported for SBH at common test conditions [104].

6.5.3 Summary of absolute level and sign coding in HEVC

Fig. 25 summarizes the last four out of up to five scan passes required for parsing
the absolute levels and signs for every non-zero 4×4 subblock in HEVC.

6.6 Comparison of HEVC and H.264/AVC

Tab. 15 summarizes the differences in transform coefficient coding between HEVC
and H.264/AVC as well as across different transform block sizes. In terms of
throughput and memory related aspects, HEVC requires 3× fewer contexts (121
vs. 359) than H.264/AVC for transform coefficient coding. Note, however, that in
H.264/AVC CABAC two separate sets of context models are used for frame-based
and field-based coding of SIG and LAST. Furthermore, HEVC has a 9× lower max-
imum number of regular coded bins per coefficient (1.9 vs. 17.1) than H.264/AVC.
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7 Context Initialization

In HEVC, slices consist of an integer number of CTUs, which collectively form
an independently decodable unit. This implies in particular that at the beginning of
each slice, the parameters of all probability models must be reset to some predefined
values. Typically, without any prior knowledge of the statistical nature of the source,
each probability model would be initialized with the state corresponding to the uni-
form distribution (p = 0.5). However, in order to bridge the learning phase of the
adaptive probability models and to enable a kind of preadaptation at different coding
conditions, it was found to be beneficial to provide some more appropriate initial-
ization value than equi-probable state for each probability model at the beginning
of each slice.

Similar to H.264/AVC, CABAC in HEVC involves a quantization-parameter de-
pendent initialization process that is invoked at the beginning of each slice. It gen-
erates an initial probability state value representing the LPS probability pLPS as
well as the value of the MPS νMPS depending on the given initial value of the luma
quantization parameter SliceQPY for the slice. For that purpose, a pair of so-called
initialization parameters is stored for each model, from which a linear relationship
between SliceQPY and the model probability p is derived. In contrast to H.264/AVC,
the initialization parameters in HEVC do not directly represent the slope m and the
offset n of the corresponding linear model. Instead, these two parameters are packed
into a single 8 bit table entry in a memory-efficient way, as will be explained in more
detail in the subsequent section.

For each of the three slice types I, P, and B, separate table entries are provided.
However, for P and B slices the encoder can choose between the corresponding two
table entries of initialization parameters and signal its choice to the decoder by use
of the syntax element cabac init flag. Note that this mechanism is similar
to that already available in H.264/AVC where, however, the choice between three
instead of two pairs of initialization parameters is given for P and B slices [3, 51].

7.1 8-bit Design

To reduce the memory requirements for context initialization tables, it was proposed
in [48] to use 8-bit values to derive the initialization parameters rather than storing
the pair of 16-bit values (m,n) of the linear model directly, as in H.264/AVC. From
the high nibble of the 8-bit table entry InitValue, a variable slopeIdx is derived,
while the low nibble of InitValue represents the variable offsetIdx, from which the
slope m and offset n of the linear model are derived using [32]

m = slopeIdx ·5−45
n = (offsetIdx << 3)−16.
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Given the values of m and n, exactly the same initialization procedure as in
H.264/AVC is performed for derivation of the parameters of each probability model
[3, 51]. Note that the 8-bit design allows to cut in half the amount of storage needed
for context initialization tables. Further restriction to two instead of three table en-
tries for P and B slice types reduces the memory requirements for those tables
in HEVC by at least another 12.5–15% relative to those of an 8-bit equivalent of
H.264/AVC. Since there are 134 contexts for I slices and 154 for each of both slice
types P and B, a total amount of 442 bytes of memory is needed for storage of all
context initialization tables in HEVC.

7.2 Context Training

The main purpose of the context initialization tables is to bridge the learning phase
starting from a uniform distribution, i.e., the case of no prior knowledge of the statis-
tics of the given bin distributions, towards the well-adapted phase of the probability
estimator. Assuming that after processing of a number of Nτ bins, the probability
estimator that starts from p = 0.5 reaches such a well-adapted state, the bins for
each probability model were tracked for Nτ bins for each test sequence of a training
set at a particular QP and for a particular slice type. As a result, a model probability
pτ,QP was estimated from the relative frequency obtained after coding the first Nτ

bins for each probability model. This training procedure was performed separately
for each QP and each of the three slice types. To finally determine the pair of pa-
rameters (m,n) that describe the assumed linear relationship between QP and model
probability pτ,QP, a simple linear regression was applied for each slice type. Note
that a choice of Nτ = 50 was assumed to be appropriate.

7.3 Context Memory for Wavefront Parallel Processing and
Dependent Slices

For improving the parallelization and low-delay capabilities beyond the use of reg-
ular slices, as known from H.264/AVC, a partitioning of pictures into tiles, wave-
fronts and dependent slices have been introduced in HEVC. Since the use of regular
slices implies in particular that the corresponding CABAC bitstream must be inde-
pendently parsable, re-initialization of the CABAC probability models is required
at the beginning of each regular slice. Although the initialization procedure, as de-
scribed above, mitigates the effect of such a rigourous partitioning, the loss in coding
efficiency is still too large to be acceptable for certain applications.

Wavefront parallel processing (WPP) is such a technique for picture partitioning
with the focus on improving the capabilities for parallel processing at virtually no
loss in coding efficiency [37, 31]. According to the WPP scheme, a picture is parti-
tioned into rows of CTUs with each row being represented by its own CABAC bit-
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stream which, however, is not fully independently parsable except for the bitstream
belonging to first row of CTUs in a picture. Nevertheless, independent parsing and
decoding of the WPP bitstreams is possible, if the processing from one CTU row to
the next complies with an offset of two consecutive CTUs. This offset guarantees,
on the one hand, that all spatial dependencies for the decoding process are preserved
and, on the other hand, it permits inheritance of the adapted probability models from
the first two CTUs in the preceding row of CTUs. The latter functionality, however,
requires to store the content of all probability models after decoding the second
CTU in a row. As already discussed above, the required memory depends on the
slice type: for I slices 134 bytes and for P and B slices each 154 bytes of memory
are needed. Note, however, that by using a proper scheduling and synchronization
at the decoder, only one instance of such an additional context memory is required
in addition to the Nω context memories required for parsing and decoding Nω CTU
rows in parallel.

The same context memory handling applies also to the concept of dependent slice
segments [69]. In HEVC, slices are composed of one initial independent slice seg-
ment and zero or more dependent slice segments, all of which contains an integer
number of CTUs. Compared to regular slices or independent slice segments, depen-
dent slice segments do not break the coding dependencies within the picture area to
which the corresponding CTUs belong. Although each dependent slice segment has
its own CABAC bitstream, the parsing of this bitstream cannot start before the pars-
ing of the preceding dependent or independent slice segment has been finished. In
particular, the content of all adapted probability models after parsing the last CTU
in the preceding slice segment needs to be stored and propagated to the current de-
pendent slice segment. Therefore, the same amount of additional context memory is
required as in the WPP case. Note, however, that WPP and dependent slices, even
though most often used together, are different concepts. While WPP is targeting at
parallel processing, dependent slices cannot be processed in parallel and are most
useful in applications requiring ultra-low delay, since each dependent slice segment
can be put into a separate transport packet. Please refer to Chap. “Block Structures
and Parallelism Features in HEVC” for more details.

8 Overall Performance

This section analyzes the improvements of CABAC in HEVC relative to CABAC
in H.264/AVC. In the first part of this section, the impact of all relevant CABAC
changes in terms of coding efficiency is experimentally evaluated, while in the sec-
ond part, an assessment of its throughput implications is performed. Finally, the
reduction in memory requirements is analyzed.

Simulations were performed under common test conditions set by the JCT-VC
[4, 11] as well as corresponding settings for H.264/AVC JM [1]. Note that those
common conditions for the HEVC reference software HM [2] are intended to reflect
the typical bitstreams in applications of HEVC. During standardization of HEVC,
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this configuration was also used to evaluate the coding efficiency impact of propos-
als.

In [11], four different test cases labeled as Intra, RandomAccess, LowDelayB,
and LowDelayP are specified. The Intra test case specifies that all pictures are coded
as intra pictures. In the RandomAccess test case, intra pictures are inserted in regular
intervals of approximately 1.1 sec in order to enable random access. As a temporal
coding structure, hierarchical B pictures with groups of eight pictures are employed.
Both the LowDelayB and LowDelayP test case specify that the pictures are coded
in display order, so that the resulting structural encoding-decoding delay is suitable
for low-delay communication applications. The latter two coding conditions differ
only in the used slice type. In the LowDelayB test case, B slices are used, whereas
only P slices are used in the LowDelayP test case. Note that in those low-delay test
cases only one intra picture is used at the beginning of each test sequence.

The same set of test sequences as in the standardization process of HEVC has
been used [11]. The test sequences are categorized into different classes, each with
a particular spatial resolution. As an exception, the class labeled as Screen content
in the following represents a special class that contains test sequences with typical
screen and graphics content, but with varying spatial resolutions.

8.1 Coding Efficiency

Evaluation of coding efficiency for CABAC has been restricted to the syntax ele-
ments of transform coefficient coding. For that purpose, an extension of the residual
coding scheme, specified for CABAC in H.264/AVC [51], was implemented into
the HM to also cover residual coding of 16×16 and 32×32 TBs. This straightfor-
ward extension was realized by increasing the number of successive scan positions
sharing the same context model for both SIG and LAST of those TBs. For the re-
maining syntax elements related to transform coefficient level coding, the same rules
as defined for CABAC in H.264/AVC are applied [51].

Resolution and
class of test sequences

Intra RandomAccess LowDelayB LowDelayP

Class A: 2560×1600 -4.08 -2.86 – –
Class B: 1920×1080 -4.18 -3.16 -3.17 -2.89
Class C: 832×416 -3.79 -2.82 -3.31 -3.13
Class D: 416×240 -4.15 -2.61 -2.43 -2.33
Class E: 1280×720 -4.92 – -2.94 -2.69
Class F: Screen content -7.74 -6.44 -5.79 -5.65
Average -4.78 -3.56 -3.54 -3.35

Table 16: BD-rate performance of CABAC transform coefficient coding in HEVC
compared to the extended CABAC transform coefficient coding of H.264/AVC.
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Tab. 16 shows the so-called Bjøntegaard delta bit rate (BD rate) for the luma
component [10] as a measure of the gain in coding efficiency obtained for the trans-
form coefficient level coding in HEVC relative to the aforementioned straightfor-
ward CABAC extension. Overall performance gains of 3.4–4.8% in terms of aver-
aged BD-rate savings can be attributed to the improved transform coefficient coding
techniques in HEVC. The largest improvements are achieved for the Intra test case,
which is mainly due to the relatively large energy of the corresponding residual
signals.

Tab. 17 summarizes the individual coding efficiency impact of various adopted
tools for HEVC. Note, however, that the majority of adopted tools focused on
throughput improvements with minimal coding loss, as will be discussed in the fol-
lowing.

Tool HM Benefit BD rate
Neighbor based context selection for SIG [102] 1.0 coding gain -2.8% to -1.4%
Group bypass sign [14] 1.0 throughput 0.0%
Mode dependent coefficient scanning [106] 2.0 coding gain -1.2% to -0.1%
Reduce neighboring dependency for SIG [22] 2.0 throughput * -0.1% to 0.0%
Reduce regular coded level bins [62, 58] 3.0 throughput -0.1% to 0.0%
Last position coding [73] 3.0 throughput -0.1% to 0.0%
Group bypass level [88] 4.0 throughput 0.0%
Diagonal Scan [87] 4.0 throughput -0.1% to 0.0%
CSBF & subblock scan [57, 76] 5.0 throughput -0.1% to 0.1%
Reduce regular coded level bins per 4×4 [21] 6.0 throughput -0.1% to 0.1%
Sign Bit Hiding [104] 6.0 coding gain -0.9% to -0.6%
Use CSBF of neighboring subblocks for SIG [43] 7.0 throughput 0.1% to 0.2%

Table 17: Coding efficiency impact of adopted TU coding tools. Note that positive
BD-rate values indicate coding loss and negative BD-rate values indicate coding
gain.

8.2 Throughput Analysis

This section describes throughput of HEVC relative to H.264/AVC. The impact of
the techniques, outlined in Sect. 3.3, are discussed. Analysis was also done for the
worst case throughput which is defined as the case with the maximum number of
bins per 16×16 coding tree unit (CTU) or macroblock. The results for both common
conditions and worst case are summarized in Tab. 18 and Tab. 19, respectively.
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Common condition Context Bypass Term
configurations (%) (%) (%)

H.264/AVC Hierarchical B 80.5 13.6 5.9
Hierarchical P 79.4 12.2 8.4

HEVC Intra 67.9 32.0 0.1
LowDelayP 78.2 20.8 1.0
LowDelayB 78.2 20.8 1.0

RandomAccess 73.0 26.4 0.6

Table 18: Distribution of regular coded, bypass and termination bins for CABAC in
H.264/AVC (JM-16.2) and HEVC (HM8.0) under common test conditions [4, 11]

Metric H.264/AVC HEVC Reduction
Max regular coded bins 7825 882 9×
Max bypass bins 13056 13417 1×
Max total bins 20882 14301 1.5×
Number of contexts 441 154 3×
Line buffer for 4k×2k 30720 1024 30×
Coefficient storage 8×8×9-bits 4×4×3-bits 12×
Initialization Table 1746×16-bits 442×8-bits 8×

Table 19: Reduction of worst case number of bins and memory in HEVC over
H.264/AVC. Note max total bins includes termination mode bins, but does not in-
clude impact of bit limit per CTU or macroblock.

8.2.1 Reduce regular coded bins

As mentioned earlier, bypass coded bins can be processed faster than regular coded
bins, since they don’t have data dependencies due to context selection, and their
range division can be performed by a simple shift. Tab. 18 shows that the per-
centage of regular coded bins under common conditions is lower for HEVC than
H.264/AVC. Tab. 19 also shows that in the worst case conditions, there are 9×
fewer regular coded bins in HEVC than H.264/AVC. The reduction in regular coded
bins is primarily due to the improved binarizations of absolute coefficient levels and
components of the motion vector difference.

Using the implementation found in [103], where up to 2 regular coded bins or 4
bypass coded bins can be processed per cycle, HEVC gives 2× higher throughput
than H.264/AVC under the worst case (this includes the impact of 1.5× fewer total
bins in HEVC). This can also be translated into power saving using voltage scaling
as mentioned earlier.



Entropy Coding in HEVC 59

8.2.2 Group bypass coded bins

Grouping bypass bins together into longer chains increases the number of bins pro-
cessed per cycle and reduces the number of cycles required to process a single by-
pass bin. This is a technique used in coding of syntax elements related to motion
vector difference, intra mode, last position, and coefficient levels. For instance, for
the Kimono sequence, encoded using the RandomAccess configuration, grouping
bypass bins increases the average bypass bin run length from 2.1 to 6.4. In HEVC,
under common test conditions, up to a 30% reduction in number of cycles can be
achieved compared to the case of no grouping [90].

The benefit of bypass grouping can also be seen in the example of Fig. 8 and
Fig. 9. If bypass grouping was not used, it would take 5 cycles to process the 5 sign
bypass bins. Assuming the architecture of [103], where 4 bypass bins are processed
per cycle, only 2 cycles are required to process the 5 sign bins.

8.2.3 Group bins with same context

Grouping bins with same context together is done for motion vector difference,
significance map and coefficient level. As a results, fewer speculative calculations
are needed to decode multiple bins per cycle since all bins that use the same logic
for context selection are grouped together.

Fig. 3 showed the speculation required when significant coeff flag and
last significant coeff flag are interleaved in H.264/AVC. In HEVC, no
speculation is required for significance map as shown in Fig. 26. Thus for this ex-
ample, the number of operations are reduced from 14 to 5.

Fig. 26: No context speculation is required to achieve 5× parallelism when pro-
cessing the 4×4 significance map in HEVC. i = coefficient position; EOB = end of
block; SIG = sig coeff flag

8.2.4 Reduce context selection dependencies

Context selection dependencies were reduced such that coding gains could be
achieved without significant penalty to throughput. For instance, the last signifi-
cant coefficient position information is sent before the SIG flag to remove a tight
bin to bin data dependency. Relative to HM1.0, the neighboring dependencies for
SIG were reduced from 10 to 5 neighboring SIG bins, and then further modified
to only depend on neighboring 4×4 subblocks. The remaining context selection for
SIG is only based on its position within the block as in H.264/AVC.
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8.2.5 Reduce total number of bins

When comparing the total number of bins in the worst case, and thus the through-
put requirement, HEVC has 1.5× fewer bins than H.264/AVC. Assuming the same
number of cycles per bin are required, HEVC can run at a 1.5× lower clock rate
at a lower voltage for 50% power savings assuming linear scaling with voltage and
frequency, or it can process at a bin rate that is 1.5× faster than H.264/AVC.

8.2.6 Reduce parsing dependencies

Parsing dependencies were removed or reduced such that coding gains could be
achieve without significantly sacrificing throughput. Removing the parsing depen-
dency for merge and mvp enables parsing to be mostly decoupled from the recon-
struction process, as it is the case for H.264/AVC. HEVC does have parsing depen-
dencies on intra mode reconstruction, which are not present in H.264/AVC; how-
ever, efforts were made to keep intra mode reconstruction simple to avoid affecting
parsing throughput.

8.2.7 Summary of throughput improvement techniques

Tab. 20 contains a summary of the techniques for throughput improvement and re-
lated standard contributions.

Technique PU coding TU coding
Reduce regular coded bins [60] [62, 58, 21]
Group bypass bins [67, 23] [88]
Group bins with same context [60] [15, 14, 73]
Reduce context modeling dependencies [80, 86, 22, 87]
Reduce total number of bins [18, 57]
Reduce memory requirements [60, 95, 83, 96] [81, 83, 100, 82, 64, 68, 20, 25, 66, 99, 8]
Reduce parsing dependencies [108, 107]

Table 20: Summary of throughput improvement techniques with references to re-
lated standard contributions.



Entropy Coding in HEVC 61

8.3 Memory Requirement Reduction

This section describes how the size and bandwidth requirements of various memo-
ries in CABAC have been reduced in HEVC in order to increase throughput as well
as lower implementation cost and power consumption.

8.3.1 Context memory

The motivation for context reduction was first proposed in [81], where the number
of contexts was reduced for coeff abs level greater1 flag and coeff
abs level greater2 flag without impacting coding efficiency. Subsequent

proposals [66, 99, 8] were made to reduce the number of contexts for other syntax
elements (e.g. sig coeff flag). HEVC uses only 154 contexts as compared to
441 (or 292 without interlaced) used in H.264/AVC as shown in Tab. 21; thus, a 3×
reduction in context memory size is achieved with HEVC.

H.264/AVC HEVC(w/ interlace) (w/o interlace)
CTU/CU contexts 25 22 16
PU contexts 26 26 14
TU contexts 390 244 124
Total 441 292 154

Table 21: Context memory requirements for H.264/AVC (4:2:0) and HEVC.

8.3.2 Line buffer memory

The motivation to reduce the size of the line buffer in the CABAC was first proposed
in [95, 97], where the line buffer size was reduced by changing the context selection
for motion vector difference. Subsequent proposals [83, 96, 68, 20, 25, 60] were
made to further reduce neighboring dependencies to reduce the line buffer size.
Based on these optimizations, in the worst case, the line buffer only need to store
the CU depth (2-bits) of the top neighbor for context selection of split cu flag
for every 8×8 block, and to indicate if the top neighbor is skipped (1-bit) for context
selection of cu skip flag for ever 4×4 block. Assuming a minimum CU size of
8×8 for a 4k×2k sequence, HEVC only requires a line buffer size of 1,024 bits
versus 30,720 bits in H.264/AVC, which is a 30× reduction.
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8.3.3 Coefficient storage

Large TB sizes have large hardware cost implications. Compared to H.264/AVC,
the 16×16 and 32×32 TBs in HEVC have 4× and 16× more coefficients than an
8×8 TB, respectively, and consequently require an increase in storage cost. Several
techniques were used to reduce the coefficient storage cost. First, the sign informa-
tion is sent before coeff abs level remaining such that only 3-bits storage
is required per coefficient for the partial decoded value (if stored as a 2-bit num-
ber with a range from 0 to 3, and a sign bit). Second, the coefficient information is
interleaved at a 4×4 subblock level, such that the fully constructed coefficient can
be achieved for every subblock and be sent out to the next module [75]. Thus, only
a coefficient storage of 4×4×3-bits is required in HEVC CABAC (compared with
8×8×9-bit in H.264/AVC) in order to reconstruct the coefficient levels.

8.3.4 Context initialization tables

As already discussed in Sect. 7, the memory requirements for storing the context
initialization tables in HEVC have been reduced to a large extent when compared to
those of H.264/AVC. Accounting for the reduction in number of contexts, number
of bits per InitValue and number of InitValue sets, HEVC has an 9× smaller context
initialization table than H.264/AVC.

9 Conclusions

Entropy coding was a highly active area of development throughout the HEVC stan-
dardization process with proposals for both coding efficiency and throughput im-
provement. The trade-off between the two requirements were carefully evaluated in
multiple Core Experiments and Ad Hoc Groups [17, 13, 16, 98, 39]. Beside coding-
efficiency improving technology, many techniques were incorporated to improve
throughput including reducing regular coded bins, grouping bypass bins together,
grouping bins that use the same contexts together, reducing context selection de-
pendencies, and reducing the total number of signaled bins. CABAC memory re-
quirements were also significantly reduced. The final design of CABAC in HEVC
shows that by accounting for implementation cost and coding efficiency when de-
signing entropy coding algorithms results in a design that can maximize processing
speed and minimize area cost, while delivering high coding efficiency in the latest
video coding standard.
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