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ABSTRACT

This paper presents Delphi, a mobile software controller that
helps applications select the best network among available
choices for their data transfers. Delphi optimizes a specified
objective such as transfer completion time, or energy per byte
transferred, or the monetary cost of a transfer. It has four
components: a performance predictor that uses features gath-
ered by a network monitor, and a traffic profiler to estimate
transfer sizes near the start of a transfer, all fed into a network
selector that uses the prediction and transfer size estimate to
optimize an objective.

For each transfer, Delphi either recommends the “best” sin-
gle network to use, or recommends Multi-Path TCP (MPTCP),
but crucially selects the network for MPTCP’s “primary sub-
flow”. The choice of primary subflow has a strong impact on
the transfer completion time, especially for short transfers.

We designed and implemented Delphi in Linux. It requires
no application modifications. Our evaluation shows that Del-
phi reduces application network transfer time by 46% for
Web browsing and by 49% for video streaming, compared
with Android’s default policy of always using Wi-Fi when it
is available. Delphi can also be configured to achieve high
throughput while being battery-efficient: in this configuration,
it achieves 1.9x the throughput of Android’s default policy
while only consuming 6% more energy.

1. INTRODUCTION

With the proliferation of Wi-Fi and cellular networks, mo-
bile users and applications often have multiple wireless net-
works at their disposal. Until recently, deciding which net-
work to use was easy because of the wide disparity in link
rates between Wi-Fi and wide-area cellular networks like
EDGE or 3G, as well as the difference in the monetary cost:
Wi-Fi is usually free, but cellular data plans were usage-based.

The economics of cellular data plans are changing. After
being offered in 2007, “unlimited” plans were halted in 2011
by several carriers (although pre-existing users could hold on
to them). Since 2013, however, unlimited plans have made a
resurgence especially in “Tier-2” operators, where 45% of the
users have such plans today [36]. In addition, an increasing
number of major app providers like Facebook, Google, and
WhatsApp, have proposed and are deploying “zero rating”
plans so that mobile device users will not be charged when
these apps generate cellular traffic [43].

These trends indicate that for many users and applications,
the choice of which network to use will not depend solely
on monetary cost. Performance also matters: LTE and var-
ious “4G” standards being deployed around the world now

exhibit rates competitive with, or even far exceeding, Wi-Fi
networks. In any given situation, it is no longer easy to tell
which network will perform the best for a given application,
because latency and throughput vary with time and location.
This state of affairs is likely to continue in the future as both
local-area and wide-area technologies will continue to exhibit
higher rates and significant variability.

Today’s mobile operating systems typically hard-code the
decision of which network to use when confronted with mul-
tiple choices. If the user has previously associated with an
available Wi-Fi network, they use that over a cellular option.
This choice often leads to frustrating results. For example,
when walking outdoors, users often find their device connect-
ing to a Wi-Fi access point inside a building and experiencing
poor performance when the right answer is to use the cellular
network. Even inside homes and buildings, a static choice is
not always the best: there are rooms where the Wi-Fi network
might be much slower than the cellular network, depending
on other users, time-of-day, and other factors.

A recent paper presented the results of empirical measure-
ments of Wi-Fi and LTE/4G networks [13]. The conclu-
sions from this study were that 73% of the time, the through-
put of one of the networks was higher than the other by at
least 1 Mbit/s, with each network dominating the other al-
most equally. The study also found that Multi-Path TCP
(MPTCP) [39], which uses multiple interfaces whenever pos-
sible, did not always out-perform single-path TCP.

These conclusions left a key question open: how do we
design a practical solution for mobile devices to select the
best network for applications? This question is important for
both single-path and Multi-Path TCP transfers.

In this paper, we present Delphi, a software controller that
solves this problem. Our starting point is from the perspective
of users and applications, rather than the transport layer or
the network. Depending on the objectives of interest, Delphi
makes different decisions about which network to use and
in what order. The way we formulate the objective function
takes into consideration 1) transfer completion time, 2) energy
efficiency and 3) monetary cost, which is still a major concern
for limited data plan users.

Delphi has four components:
1. A Traffic Profiler (Section 4) that provides an estimate

of the length of transfers.
2. The Network Monitor (Section 5) uses passive observa-

tions of wireless network properties such as the RSSI
and channel quality, lightweight active probes, and adap-
tive active probing triggered when passive indicators
suggest a significant change in conditions.
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3. A Network Performance Predictor (Section 6), which
estimates the latency and throughput of different net-
works by running a machine-learning algorithm using
features obtained from the Network Monitor.

4. A Network Selector (Section 7) that uses information
from the above components to select the best network.

We have implemented Delphi for Linux; using it requires
no changes to applications. We evaluated Delphi using trace-
driven simulations (Section 7.3) and real-world experiments
(Section 9.2). For trace-driven simulation, we conducted
measurements in 22 locations on the east and west coasts
of the United States, collecting both single-path TCP and
MPTCP performance results for different transfer sizes over
Wi-Fi and LTE (Verizon), as well as other measurement data
such as Wi-Fi RSSI, LTE signal strength, ping RTT, etc. In
our real-world experiments, we run Delphi with unmodified
applications. We also test Delphi when the user is moving.

Our results are as follows:
1. In the trace-driven simulations (Section 7.3), Delphi im-

proved the median throughput by 2.1x compared with
always using Wi-Fi, the default policy on Android de-
vices today. Delphi can also achieve high throughput
while being energy efficient: in this mode, it achieved
1.9x higher throughput while consuming only 6% more
energy compared with Android’s default policy.

2. When running with unmodified applications, Delphi re-
duces the network transfer time by 46% for web brows-
ing and by 49% for video streaming (Section 9.1), com-
pared with Android’s default policy. For file download-
ing (Section 9.2), Delphi increases average throughput
by between 1.25x and 4x.

3. Delphi is also proactive in switching networks (Sec-
tion 9.3) when the device is moving. It can detect that
the network currently in use is performing worse than
the alternatives, and can switch before the connection
breaks. In our experiments, Delphi switches networks
30 seconds earlier than the MPTCP handover mode
proposed in [27].

2. RELATED WORK

We discuss related work on mobile network selection poli-
cies, MPTCP, scheduling algorithms that generalize processor
sharing [28] to multiple interfaces, roaming mechanisms to
seamlessly migrate between interfaces, and systems and APIs
that allow applications to benefit from multiple interfaces.

Mobile network selection. Zhao et al. [44] present a system
that picks from one of three choices for every flow: regular IP,
Mobile IP [31] with triangle routing, and Mobile IP with bidi-
rectional tunneling. Instead of selecting an entire path within
the Internet, as Zhao et al. do, Delphi picks either an LTE
link or a Wi-Fi link for the last hop alone. CoolSpots [30]
and SwitchR [1] address the question of network selection be-
tween Wi-Fi and Bluetooth networks available on the phone.
In contrast, Delphi chooses between Wi-Fi and LTE on the
last hop using different techniques. MultiNets [24] proposes

a mechanism to allow smartphones to use multiple networks
based on certain policies, such as energy saving, data of-
floading, and performance. However, MultiNets explicitly
assumes that Wi-Fi is faster than the cellular link, which no
longer holds [13]. ATOM [17] is a traffic management sys-
tem allocating mobile devices’ traffic between LTE and Wi-Fi
networks operated by the same service provider. ATOM’s
selection decision was made at the service provider side in a
centralized way. However, Delphi is able to make selections
across different Wi-Fi and LTE providers, in a distributed
approach, where the mobile devices make the decision.

Theoretical work on this problem includes multi-attribute
decision making [7], game theory and reinforcement learning
[25], and analytic hierarchy processes [34]. These are pri-
marily evaluated in simulation using simplified models of the
network and workloads. In contrast, our evaluation consists
of trace-driven simulations and real-world experiments with
traffic from unmodified applications.

Multi-Path TCP. Multi-Path TCP (MPTCP) [39], and its
recent implementation in iOS 7 [20] allow a single TCP con-
nection to use multiple paths. MPTCP does not specify if
interfaces should be used simultaneously, or in master-backup
mode. The iOS implementation operates in master-backup
mode using Wi-Fi as the primary path, falling back to a cellu-
lar path only if Wi-Fi is unavailable. Other implementations,
such as the default mode in Linux, use all available interfaces
in “striped” mode1. Delphi can be viewed as specifying an
MPTCP network-selection policy when operating on mobile
networks. The choice between a cellular link and Wi-Fi is
necessarily dynamic in such cases and a static policy such
as the one in Android (use Wi-Fi if it’s available) does not
suffice.

Processor sharing for multiple interfaces. Recent work [42]
extends generalized processor sharing [28] to multiple in-
terfaces. In follow-up work [41], the authors also propose
scheduling packets over multiple interfaces while respect-
ing relative preferences (e.g. Dropbox should get twice the
throughput of Netflix) and absolute preferences (e.g. give
YouTube at least 5 Mbps). These algorithms operate on every
packet, while Delphi is invoked only when a flow is created.

Roaming mechanisms. Mobile IP [31] and end-to-end al-
ternatives [33, 38] allow a mobile device to freely roam be-
tween networks without disconnecting connections. Multi-
Path TCP [39] supports break-before-make semantics as well:
an MPTCP connection can have no active subflows for a short
duration before a new subflow is created and attached to the
connection. These mechanisms are complementary to Delphi,
and Delphi can determine the network-selection policy while
retaining the roaming mechanisms of the underlying transport
protocol.

1“Striped” mode denotes that packets are striped across both inter-
faces with one being a primary interface and is the mode in which
we use MPTCP for the rest of the paper.
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Figure 1: Delphi design.

Systems and APIs to exploit multiple interfaces. The idea
of using multiple networks for increased capacity and fault-
tolerance has attracted significant attention from researchers
over the past decade. Early work [6] shows the benefits of
combining multiple networks and shows use cases where
selecting the right network can reduce energy consumption,
enhance network capacity, and manage mobility.

FatVAP [16] and MultiNet [10] improve throughput by
allowing a single Wi-Fi card to connect to multiple APs.
COMBINE [4] improves individual device throughput by
leveraging the wireless wide area network of neighboring de-
vices. Blue-Fi [5] is a system that uses Bluetooth and cellular
tower information to predict whether Wi-Fi is available to
reduce Wi-Fi duty cycle. Airdrop [2], a feature of Apple OS
X, allows users to share files over both Wi-Fi and Bluetooth.
However, it is designed explicitly for the purpose of file shar-
ing (a long-running flow), while our system focuses on the
more common case of both short and long flows on mobile
devices today.

Contact Networking [8] provides localized network com-
munication between devices with multiple networks and fo-
cuses on designing mechanisms that enable lightweight neigh-
bor discovery, name resolution, and routing. Intentional Net-
working [14] provides APIs that allow apps to label their
network flows. The labels include background or foreground
to specify whether the flow is delay-tolerant, and large or
small to specify the amount of data to be transmitted. In-
tentional Networking uses a connection scout that probes net-
work conditions periodically, an overhead Delphi can avoid by
using passive measurement only. We consider these abstrac-
tions orthogonal because Delphi’s network selection policy
is agnostic to the API exposed by the system to applications.
Delphi can be used as a decision-making module to select
network interfaces within these systems.

3. OVERVIEW

Delphi uses three pieces of information to select the net-

work(s) to use for a data transfer:
1. App traffic profile: how much data does a transfer send

or receive, for example, as part of a HTTP transaction.
2. Network conditions for the wireless interfaces, for ex-

ample, channel quality, current load in the network,
end-to-end delay, etc. This information allows us to es-
timate higher-layer network performance metrics, such
as flow completion time, average burst throughput, etc.

3. The objective function to be optimized, such as the flow
completion time, energy per byte, or monetary cost for
the transfer.

Figure 1 shows the four components in Delphi, which is
implemented as a software controller between the application
and transport layers. The Traffic Profiler (Section 4) estimates
transfer sizes, and the Network Monitor (Section 5) collects
data needed for the Predictor to predict current network per-
formance. The Predictor (Section 6) feeds the prediction to
Network Selector (Section 7), which selects the network(s)
to optimize the specified objective. Implementing this design
requires no modification to applications (Section 8).

4. TRAFFIC PROFILER

Recent study [11] analyzed 90,000 Android apps and found
that 70,000 of them used HTTP or HTTPS, and that among
the 70,000, 70% of them used HTTP and not HTTPS. Thus,
we design the Traffic Profiler by first focusing on HTTP.

When a mobile user downloads a file using a HTTP GET,
the HTTP GET response header usually contains a “Content-
Length” field specifying the length of the response. Dur-
ing uploads, the mobile device issues a HTTP POST whose
“Content-Length” field specifies the transfer size. In both
cases, the Content-Length field provides the relevant transfer
size information to the Traffic Profiler readily.

Count Percentage
HTTP Transactions 59679 100%
Transactions with Content-Length 50865 85%
Predictable Transactions 50613 84%
Chunked-Encoding Transactions 3559 6%

Table 1: HTTP transaction data lengths for the Alexa top-500
sites. 84% of the transfer lengths are predictable by the Traffic
Profiler.

However, the “Content-Length” field is not mandatory for
HTTP headers; for instance, HTTP transactions often use
chunked encoding when the length of data to be transmitted
is dynamic. To determine how many HTTP transactions
contain the “Content-Length” header, we use a record-and-
replay tool, Mahimahi [23], to record the HTTP requests and
responses when loading the homepage of the Alexa top-500
websites [3]. The results are listed in Table 1. When each site
is loaded once, the total number of HTTP transactions are
59679. We note that 84% of the transactions are predictable
by Traffic Profiler. Here, predictable means relative difference
between the “Content-Length” value and the actual amount of
data transmitted is less than 10%. Thus, using the “Content-
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Length” field to predict the size of the data transfer works for
most (84%) HTTP transactions. For HTTPS, the header is
encrypted. To be able to look into the headers, we could set
up a SSL proxy on the mobile device and make all traffic go
through it [35].

Delphi also provides an API for the application to let the
Traffic Profiler know how much data it is going to transfer.
Compared with the Traffic Profiler monitoring data trans-
missions on its own, this API allows the Traffic Profiler to
unambiguously determine the amount of data the application
is going to transfer. As shown in Section 6.2.1, providing
accurate transfer length helps Delphi to make better network
selection. This benefit can incentivize application developers
to adopt the API for better performance, as while as better
security guarantees (for applications using HTTPS).

The Traffic Profiler notifies the Predictor by sending it
(TCP_CONNECTION_ID, data_length, direction)
(direction means whether the device is downloading or up-
loading data) when any of the following events occur:

1. an API call occurs from the app,
2. a request to initiate a new TCP connection is observed,
3. an HTTP request/response is observed.
The Traffic Profiler may not be able to tell how much

data is going to be transmitted in Case 2, and sometimes in
Case 3 (e.g., chunked encoding). In such cases, the Traf-
fic Profiler will simply return a data_length of 3 KB.
Once chunked encoding was observed, the profiler up-
date predicted transfer size to be 100 KB. We chose these
numbers because they are the median values of data transmis-
sion length observed in Alexa top-500 sites. Section 6.2.1
analyzes how these default data length values affect network
selection results.

5. NETWORK MONITOR

The Network Monitor tracks a set of network-condition
indicators for both Wi-Fi and LTE, and notifies the Predictor
whenever an indicator value changes.

Category Wi-Fi Indicators LTE Indicators
Passive
Indica-
tors

RSSI, Link
Speed,Wi-Fi AP
Count

Signal Strength, DBM, RSSNR,
CQI,RSRP, RSRQ, Wi-Fi AP Count

Active
Probing

Max/Min/Mdev Ping RTT, DNS Lookup Time, UDP
throughput, UDP lossrate, UDP packet Inter-arrival-time
mean/median/90 percentile

Table 2: Network Indicators monitored by Delphi.

5.1 Network Indicators
Table 2 lists the indicators used by Delphi. These indicators

are categorized into 2 sub-groups: passive measurement and
active probing. The passive measurements capture channel
quality and contention for the last-hop wireless link, which is
often the bottleneck along both the forward and reverse paths
between the mobile device and the Internet. However, this
last-hop information does not always reflect network condi-
tions along the whole path. For example, for LTE networks,

the delay introduced by packet buffering at the cell tower
side can be significant [15], but is not captured by last-hop
passive measurements. Wi-Fi access in public areas such as
shopping malls, airports, etc. may be subject to bandwidth
limits introduced at the gateway to the Internet, and these are
not captured by last hop measurements. To capture these non-
last-hop, or end-to-end network performance factors, Delphi
also runs active probes between the mobile device and an
Internet server (see Section 8).

To quantify how each indicator affects TCP throughput,
we analyze data collected from 22 locations. Those locations
included shopping malls, Wi-Fi-covered downtown areas,
and university campuses, where both Wi-Fi and LTE were
available. At each location, the total measurement time is
at least 1 hour. We compute the Pearson Correlation [37]
between the throughput and each indicator. The correlation is
a number between -1 and 1, inclusive. A value close to 1/-1
means strong positive/negative correlation. A value close to 0
means weak correlation.

Figure 2 shows the absolute value for correlation between
throughput and each indicator. The bars in each sub-figure are
sorted from strongest to weakest correlation. Figure 2a and
2b shows the correlation over the entire dataset. For both Wi-
Fi and LTE, among the most correlated indicators, we see both
active probing indicators (such as Wi-Fi UDP throughput and
LTE Average Ping RTT) and passive indicators. Figure 2c
and 2d show the correlation values calculated using data
collected at only one location. Compared to Figure 2a, at
each location, the order of the correlation strength changes.
Similar results can be seen in LTE and MPTCP analysis.

5.2 Adaptive Probing

Probe Type DNS Query 10 Pings UDP
Data Transferred (Bytes) 271 1K 200K
Wi-Fi Median Delay (Sec) 0.64 9.02 0.65
Wi-Fi Energy (mJ) 331 4730 366
Cellular Median Delay (Sec) 0.63 9.01 0.58
Cellular Energy (mJ) 1378 19697 1613

Table 3: Overhead for one occurrence of active probing. The
delay values are the median value across all measurement data
collected at 22 locations. The energy values are measured in
a indoor setting. The cellular energy values do not contain
tail-energy [12].

As shown in Figure 2, actively probing the network can
provide important information to estimate network perfor-
mance. However, active probing can be expensive in terms
of energy, bandwidth and delay. Table 3 summaries the over-
head in terms of delay, amount of data transferred, and energy
consumption.

To reduce the probing overhead, the Network Monitor
probes the network adaptively, only if there is a significant
change in the passive indicators. Otherwise, it will reuse
active probing information collected previously. To further
reduce probing overhead, Delphi adaptively probes only when
the mobile device’s screen is on, which suggests that the
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(a) Wi-Fi: All Data
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(b) LTE: All Data
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Figure 2: Correlation between Wi-Fi/LTE single path TCP throughput and each indicators.

user is currently interacting with the device, and is more
sensitive to network delays. There are, of course, times when
background applications also need low delays (e.g., a cloud-
based navigation app), but in the common case, delay is less of
a concern in such situations. For background transmissions,
Delphi will only probe the network when both conditions
occur: 1) there is a large change in the passive measurements;
and 2) there is a data transmission request.

Adaptive probing has two benefits:
1. It is energy-efficient compared with fixed-rate probing.
2. It is proactive compared with probing only on a trans-

mission request, which would delay the request.
To evaluate adaptive probing, we simulate it using our

collected data as follows. We take the first run’s passive and
active measurement as input. Then, for the second run, we
compare the passive measurement values with the first run.
If the passive measurement difference d is less than a certain
threshold T h, we keep the first run’s active probing values
as our measured number, and use the second run’s active
probing values as the ground truth to calculate an error e. If d
is greater than T h, we do active probing again.

The definitions of d and e for a run r are:

dr =
m

∑
i=1

|pi,r− pi,r−1|
pi,max− pi,min

(1)

er =
n

∑
j=1

|â j,r−a j,r|
a j,r

(2)

Here, m is the total number of passive indicators. pi is the
value of the passive indicator i. pi,max and pi,min are the max
and min values for these indicators. n is the total number of
active indicators. â j,r is the active probing value for indicator
j and a j,r is the ground truth value, in run r.

Figure 3 shows that as the probing threshold increases,
fewer probes are triggered. Also, as the probing threshold
increases, the error of reusing the previous active probing
value increases. In Section 6, we will analyze the extent
to which the choice of network is affected by this adaptive
probing error.

6. PREDICTOR
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Figure 3: As the adaptive probing threshold (x-axis) increases,
the number of probing decreases and the probing error in-
creases. Here the left y-axis shows the probing frequency,
which is the average number of proving in every five minutes.

Delphi’s Predictor takes the traffic profile and network sta-
tus as input to estimate network performance. In this section,
we focus on how it estimates TCP flow completion time,
because flow completion time is used in all our objectives
mentioned in Section 7. However, similar techniques can be
used to estimate other metrics such as average throughput
(for steaming applications) or average RTT (for interactive
applications).

To predict TCP flow completion time, or related metrics
such as the end-to-end throughput for Wi-Fi and LTE net-
works, previous work either uses historical data from the
same flow to predict current throughput [40], or outputs bi-
nary results such as high/low throughput [9]. However, for
Delphi, the prediction is more challenging: first, it needs to
make its decision just before the connection transfers data
and recent historical data may not always available. Second,
it needs to return numerical values instead of binary results to
be fed into the Selector.

We use a machine learning model, Regression Tree [26] to
estimate TCP flow-completion time. This learning method
matches well with our problem definition, as it takes multi-
dimensional vectors as input, and produces a real-valued
result. In our case, the multi-dimensional input includes
data size and network condition indicators. Another advan-
tage of using a regression tree is that by assigning different
weight to different indicators when traversing through differ-
ent branches, per-location differences (Figure 2) are captured
naturally. Regression trees have been used to solve other
network performance estimation problems [40] due to its low
memory and computation overhead.

Delphi constructs the four regression trees to predict the
flow completion time for single-path TCP over Wi-Fi or LTE,
and for MPTCP using Wi-Fi or LTE for the primary subflow.
We estimate the flow completion time of MPTCP using sep-
arate trees, instead of deriving it from the flow completion

0

0.25

0.5

0.75

1.0

 0  0.1  0.2  0.3  0.4  0.5

C
D

F

Relative Error

Tree

SVR

(a) TCP over Wi-Fi

0

0.25

0.5

0.75

1.0

 0  0.1  0.2  0.3  0.4  0.5

C
D

F

Relative Error

Tree

SVR

(b) TCP over LTE

Figure 4: Relative error when using regression tree and sup-
port vector regression to learn flow-completion time. The
line marked with “Tree” shows the relative error of regression
tree model. The line with “SVR” shows the relative error of
support vector regression model.

time estimated for single-path TCP, because previous mea-
surement study [13] shows that throughputs of single-path
TCP over two networks do not add up to the throughput of
MPTCP. Besides, there are cases where MPTCP over both
networks gives lower throughput than single-path TCP over a
single network.

The prediction accuracy is affected by two factors:
1. the predictive power of the machine learning model, i.e.,

whether regression trees are a good model for predicting
flow completion time, and

2. the measurement accuracy of the inputs to the machine-
learning methods.

6.1 Regression Tree Prediction Accuracy
Here, we use our dataset collected from 22 locations to

analyze Delphi’s prediction accuracy. To train the regression
tree model, we randomly select 10% of the total samples
from our dataset. We then use the remaining 90% as our
testing data. As a comparison, we also trained support vector
regression (SVR) models with radio basis kernel [29], which
also take a multi-dimensional vector as input and outputs
numerical results. The SVR models also consists of four
separate models, each for one network configuration. To train
each SVR model, we first sort all the indicators from the most-
correlated to the least-correlated with the flow completion
time. Here, we compute the correlation across all the data,
not just the 10% in the training set, so that the sorting would
not be biased by the training set. Then, we train the SVR
model using the N most correlated features. As N increases,
the testing errors first decrease (because the model improves
in predictive power) and then increase (because the model
overfits to the training set). For each SVR model, we choose
the N that gives the smallest error. Thus, the resulting models
are the best that can be achieved using the SVR method given
the features that we measure.

We test both models using the same testing set. Figure 4
shows the CDF of relative error between the learned result and
the ground truth when predicting Wi-Fi and LTE. MPTCP pre-
dictions give similar results. Here, the regression-tree model
predicts the flow completion time with smaller error than the
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SVR model. Regression tree is more powerful because it
is able to traverse through different paths in the tree when
predicting different locations.

The median testing error ranges from 2% to 10% across
the four regression tree models. Given that the training set
only consists of 10% of the data, this shows the TCP flow
completion time is predictable using regression trees.

6.2 Input Error Analysis
Section 6.1 shows the prediction error when the input fea-

ture vectors are accurate. As described earlier, the Traffic
Profiler sometimes needs to guess the transfer size, and the
Network Monitor may reduce active probing frequency to
reduce energy and traffic overhead. Thus, the input to the
regression tree is not always perfect. In this section, we
investigate what impact do these imperfections have.

6.2.1 Traffic Profiler Error
As mentioned in Section 4, when there is no “Content-

Length” field specified in a burst of transmission, the Traffic
Profiler returns an empirical number of 3 kbytes. Figure 5
shows the relative error using an inaccurate transfer size as a
regression tree’s input (in Figure 5, we only show the results
for TCP over LTE for clarity, but similar results hold for Wi-
Fi and MPTCP). Here, we split the testing dataset into smaller

subsets, each subset contains measurement done for a certain
transfer size. As the difference between the actual transfer
size and 3 KB increases, the relative error increases. The
prediction error is significantly higher than the previous 2%-
10%. Fortunately, however, only less than 15% of transfers
are affected by this error, as noted in Section 4.

6.2.2 Network Monitor Error
Another source of error is adaptive probing. We run the

regression tree testing over different T h values, which is an
adaptive probing parameter. Figure 6 shows the CDF curves
of relative errors for LTE. Here, as T h increases (i.e., probing
less frequently), the prediction error increases. Wi-Fi and
MPTCP predictions also gives similar results.

7. NETWORK SELECTOR

Delphi’s Selector uses network performance predictions,
transfer lengths, and the specified objectives for application
transfers to determine which network to use. The choice
of network depends on three factors: throughput, energy
efficiency, and monetary cost.

7.1 Objective Functions
Throughput, S: The Selector can estimate the average

throughput of the current transfer using the transfer size f that
is provided by the Traffic Profiler, and the flow completion
time t that is provided by the Predictor. Using the subscript i
to refer to the choice of the network (either Wi-Fi or LTE or
MPTCP with a specified primary subflow), we have:

Si =
f
ti

(3)

Energy per byte, Ei: Knowing the power level pi of each
network choice i, together with the above ti and f , the energy
to transmit one byte is:

Ei =
pi · ti

f
(4)

The energy per byte is a metric that captures both battery
consumption and transfer rate. A faster transfer over a net-
work that has a higher power consumption may incur a lower
energy per byte. As a result, minimizing energy per byte
is not always the same as picking the network with lowest
power consumption.

Monetary cost per byte, Mi: The “dollar” cost incurred
when transferring each byte of the transfer on network choice
i.

By knowing Si, Ei and Mi, the Selector chooses the network
that maximizes the following objective function:

Oi =
Si

α

Ei
β ·Mi

γ (5)

This objective function prefers networks with high Si val-
ues, meaning in a given second, it wants the device to transfer
more bytes. It also prefers networks with low Ei value, mean-
ing when consuming one Joule of energy, it wants the device
to transfer more bytes. Similarly, it prefers network with low
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Mi values, meaning when consuming one dollar, it wants the
device transfer more bytes.

The exponents α , β , γ ∈ [0,∞) determine the relative im-
portance of throughput, energy efficiency, and monetary cost
respectively. For example, if α = 1, β = 0 and γ = 0, then
Oi = Si, and the Selector will select the network with high-
est average throughput. This optimization is realistic if the
device has an unlimited data plan and is connected to a AC
power source. As another example, if α = 0, β = 1 and γ = 0,
then Oi = 1/Ei , and the Selector will select the network that
consumes the least amount of energy. This optimization is
preferable when the device is about to run out of battery.

In our experiments, we set α , β , γ to different values
to experiment with different scenarios. In a more realistic
implementation, α , β and γ can be pre-defined by users,
or decided by Delphi dynamically according to the phone’s
current status. For example, β can increase as the battery level
decreases. If the mobile device user has a limited monthly
data plan for a cellular network, γ can increase as the amount
of data plan consumed is approaching the budget, and fixed
at a large number once the cellular usage exceeds the budget.
Picking different values of α , β and γ makes the objective
function expressive enough to handle a range of preferences.

7.2 Energy Model

Interface LTE Wi-Fi
Send Tput (mbps) 2.3 ∼ 4.4 7.4∼ 9.4
Send Power (mW) 2778± 56 536 ± 23
Recv Tput (mbps) 0.1∼1.5 7.3∼9.5
Recv Power (mW) 1674 ± 95 428 ± 58

Table 4: Power Level measurement for Wi-Fi and LTE.

An energy model is required to estimate Ei. We measured
the power level of both Wi-Fi and LTE by connecting the
phone to a power monitor [18]. We measured the power
level during both TCP uploads and downloads using Wi-Fi
and LTE. We also measured the power level across different
transmission rates for both Wi-Fi and LTE, by changing the
underneath channel quality. To do so, for Wi-Fi, we change
the distance between the phone and the access point. For
LTE, we change the channel quality by moving into and out
of buildings.

Table 4 shows the results. For each network, both while
uploading and downloading data, the power level stays the
same regardless of the data rate. Hence, we model the power
pi for each network using two constant numbers (one for
upload and one for download). However, for LTE, there is
an additional “tail energy” [12] component that is consumed
after a transfer finishes, which we treat as a constant number.
As a result, when estimating the energy consumed for LTE,
Delphi adds this tail energy to the total energy consumed.

7.3 Selector Performance
To quantify the Selector’s performance, we run simulations

using data that we collected from 22 locations. We wrote
a custom-built simulator that operates on this data set as

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7

Th
ro

ug
hp

ut
 (M

B
its

/S
ec

)

Energy Efficiency (MBits/J)

Max(S/E)

Max(S)

Wi-Fi
LTE

MPTCP(Wi-Fi)
MPTCP(LTE) Oracle Frontier

Figure 7: Median megabits per Joule and throughput values
for different schemes. The black line shows a frontier of
the best that can be achieved when setting α = 1, γ = 0 and
changing β from 0 to 5.

Objective Max(S) Max(S/E) Wi-Fi
Throughput (Mbits/Sec) 3.0 2.6 1.4
Energy Efficiency (Mbits/J) 2.8 4.9 5.2

Table 5: Median values for Max(S), Max(S/E) and Wi-Fi as
shown in Figure 7.

described below. The dataset collected earlier maps a feature
vector (made of up all the features listed in Table 2) to a
tcpdump trace captured when running standard TCP on Wi-Fi
and LTE and a tcpdump trace for MPTCP in striped mode
using Wi-Fi as the primary subflow and using LTE as the
primary subflow.

When evaluating any scheme, we assume all the features
required by Delphi are available at the beginning of each run.
We run Delphi’s selection algorithms described earlier using
the features collected at the beginning of the run along with
flow size as input. We then pick the network interface that
maximizes the objective function described above and look
at the previously collected tcpdump trace to determine the
duration from the beginning of the trace until a transfer size
worth of bytes are transferred. We repeat the same procedure,
without any prediction, for the other policies for every run at
each location.

In these simulations, we set γ = 0, meaning we do not
consider monetary cost. Figure 7 shows the simulation results.
The x-axis of the figure shows the number of bits that can
be transmitted when consuming 1 Joule. The y-axis shows
the throughput. We first draw a frontier line by changing β
from 0 to 5. When computing the frontier, we also use the
ground-truth value of each flow’s completion time, so that the
frontier represents the best that can be achieved if we have a
perfect predictor. We call this line “Oracle Frontier”.

In Figure 7, Wi-Fi, LTE, MPTCP(Wi-Fi) and MPTCP(LTE)
are four fixed schemes, where the same network is used across
all locations. Here Wi-Fi and LTE refer to transmitting data
using single path TCP over Wi-Fi or LTE. MPTCP(Wi-Fi)
and MPTCP(LTE) refer to transmitting data over MPTCP,
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while use Wi-Fi or LTE for primary subflow. “Max(S)” and
“Max(S/E)” are two schemes run by the Selector. In Figure 7,
the two Delphi schemes, “Max(S)” and “Max(S/E)”, fall
close to the frontier line. In “Max(S)”, the Selector set β =
0, meaning it is simply trying to maximize throughput. In
“Max(S/E)”, β = 1, meaning it tries to select networks with
high throughput but without consuming too much energy. We
can see that “Max(S)” and “Max(S/E)” are much closer to the
Oracle Frontier line than any other schemes.

Table 5 lists the x and y-axis values for “Max(S)” and
“Max(S/E)”, together with the median value for the fixed
scheme that always uses Wi-Fi for comparison. Here, “Max(S)”
gives the highest median throughput of 3.0 Mbits/sec, which
is a 2.1x gain over Wi-Fi’s 1.4 Mbits/sec. “Max(S/E)” tries
to achieve high throughput with high energy efficiency. Its
median energy efficiency is 4.9 Mbits/J, 6% worse than al-
ways using Wi-Fi, but it achieves a median throughput of 2.6
Mbits/sec, a 1.9x gain over Wi-Fi.

We now take a closer look at each scheme: when an ob-
jective function is defined, how many times is each available
choice selected? Figure 8 shows the percentage of time that
each network choice is selected when trying to optimize differ-
ent objectives. First, we can see that Delphi makes very simi-
lar decisions compared with an omniscient oracle. However,
for each specific objective function, Delphi chooses different
networks. For example, when maximizing throughput, Del-

phi selects LTE more often than Wi-Fi or any other MPTCP-
based scheme because LTE provides the highest throughput
in most cases in our dataset. For “Max(S/E)” (maximizing
throughput over energy), or for “Max(1/E)” (minimizing en-
ergy consumption), Delphi tends to choose Wi-Fi much more
often, since Wi-Fi is generally more energy-efficient. How-
ever, both the oracle and Delphi still select other network(s)
because there are cases where Wi-Fi gives really low through-
put, lengthening the transfer and consuming significant energy
in the process.

To understand these errors in more detail, we compare the
decision made by the oracle and by Delphi. We say that
Delphi makes a successful decision if it selects the same net-
work(s) as the oracle. Figure 9 shows the ratio of successful
decisions affected by different error sources. Here, “Active”
refers to using active probing information for flow-completion
time prediction. “Adaptive” refers to our adaptive probing
technique described earlier. “3 KB” refers to the using active
probing, where the traffic profiler outputs “3 KB” in 16%
of the total outputs. We select 16% because we found that
in 16% of the total network transactions’ data size is not
predictable (Table 1 in Section 4).

We can see that “Active” gives highest success ratio (93%
for Max(S/E) and 85% for Max(S)). As we add error to the
network measurement input, i.e., “Adaptive”, the success
ratio is lower (90% and 81% respectively). Finally, inaccurate
transfer size information gives us the lowest success rate
(86% and 78% respectively). These results show that we can
achieve high success rates by adding active probing overhead.
If the overhead is a concern, removing active probing can still
give reasonable results. However, being able to predict the
size of the burst of traffic is more important.

7.4 System Generalization

Model Type Obj. Throughput
(Mbits/Sec)

Energy Ef-
ficiency
(Mbits/J)

SVR Max(S) 2.3 1.6
Reg. Tree Max(S) 2.1 2.0
Wi-Fi Only - 1.4 5.6
LTE Only - 1.7 1.5
SVR Max(S/E) 1.4 5.6
Reg. Tree Max(S/E) 1.9 2.7

Table 6: Median values for throughput and energy efficiency
when testing different model at new locations.

In our above analysis, our both training and testing datasets
are generated from the 22 locations we measured. These
results show the improvement when we have prior knowledge
of the network condition of each location. In this section,
we show the result in a more challenging condition: we test
Delphi’s performance when there is no prior knowledge. This
corresponds to the real use case where a smartphone user
enters a new location that he/she has never been to.

We train Delphi using data collected from 21 out of the
22 locations, and test it on the last location. We repeat this
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process 22 times by using each location to be the testing
set. Table 6 shows that when maximizing throughput, Delphi
achieves up to 1.6x (when using SVR model) improvement
over Wi-Fi. When maximizing throughput over energy con-
sumption, Delphi behaves as good as Wi-Fi and better than
using LTE only. These results show that: 1) when there is no
prior knowledge, the improvement decreases; 2) SVR model
achieve higher improvement than Regression Tree. This is
because Regression Tree is powerful when characterizes data
in training set, which means it tend to overfit and being less
powerful when predicting new data. Thus, Delphi can use
SVR model to make decisions when entering new locations,
or crowd-sourcing measurement techniques [32] can be used
to feed the smartphone with prior knowledge of new loca-
tions, to further improve performance. The details of model
generalizing is part of our future work.

8. IMPLEMENTATION

We implement Delphi on a laptop (2.4GHz Due Core with
4GB RAM, comparable to a smartphone) running MPTCP
enabled (Ubuntu Linux 13.10 with Kernel version 3.11.0,
with the MPTCP Kernel implementation version v0.88 [22]).
We tethered two smartphones to the laptop, one in “airplane”
mode with Wi-Fi enabled, and the other with Wi-Fi disabled
but connected to the Verizon LTE network. The reason we im-
plemented Delphi on laptop instead of Android phones is that
we want to utilize already existed machine learning libraries.
Importing the machine learning algorithms into Android plat-
form will be our future work. We also enabled MPTCP on
Galaxy Nexus running Android 4.1 [19] to validate that all
the following functionality is feasible on smartphones. All the
measurement data used for simulation in the previous settings
are also collected under the same setting.

The current implementation of Delphi is a user-level appli-
cation implemented in Python. One thread of Delphi serves as
the Network Monitor; it continuously polls passive indicator
values from both phones over the USB interface very 500
milliseconds.

Switch Type Send Delay (ms) Recv Delay (ms)
LTE switch on 494± 1 507 ± 13
Wi-Fi switch on 495 ± 2 782 ± 47

Table 7: Switching delay, averaged across ten measure-
ments. The switching delay is defined as the time between
a iptable rule changing command is issued and a packet
transfer occurred on the newly brought up interface. The send
delay is the delay for the first out-going packet showing up,
and the receive delay is for the first ACK packet coming from
the server.

The other thread serves as the Traffic Profiler, Predictor
and Selector. It runs tcpdump to monitor packet transmis-
sions in real time. Once it sees that a network transfer has
been initiated, it looks for a HTTP request or response header
and reads the “Content-Length” information from the header.
It then calls the prediction function to predict the transfer

completion time, and then calls the Selector function to se-
lect the a single network by changing iptable rules [21].
These procedure of turning an interface off allows MPTCP
to migrate to the new connection because it supports break-
before-make semantics. When the network is idle, this thread
also reads the passive indicator values periodically (every 5
seconds), and uses a default value of “3KB” as transfer length
when calling the Predictor and Selector function, so that the
network can be pre-selected before a new TCP connection
starts. When a connection is actively transmitting, Delphi
also periodically (every 1 second) reads the passive indicator
values, so that it can detect significant network environment
changes, in case the mobile device is moving. This allows
Delphi to dynamically select networks during long-running
transfers. Once the Selector decide a interface switching is re-
quired, it achieves the switch by changing iptable entries
for that specific TCP connection. Table 7 shows the interface
switching delay measured in a indoor setting. Each number is
an average across ten measurements. The switching delay is
defined as the time between a iptable rule changing com-
mand is issued and a packet transfer occurred on the newly
brought up interface. In our currently implementation, the
out-going delay is 500 ms. During this 500 ms, the transfer
does not pause, but continues on the pre-selected network.
Noticed that not all connections will experience this delay
because Delphi can pre-select the network configurations as
it observes a network condition change. This switch delay
will only happen when 1) network condition changes during
a transfer 2) the network selection result based on the actual
transfer size is different from the result based on the default
“3KB” value. In our experiments (Section 9.2), 18% of HTTP
transactions needs a network switch during data transfer.

We configured the laptop to pass all its HTTP traffic through
an MPTCP-enabled proxy server. Because current app servers
do not always support MPTCP, the proxy server allows our
client to run apps over MPTCP, while talking to the apps’ orig-
inal server. Also, since MPTCP is enabled on both the client
and the proxy server, we can migrate connections from Wi-Fi
to LTE easily using ip link set dev [interface]
multipath on/off, without breaking them.

9. EVALUATION

In previous sections, we analyze the performance of each
module using a trace-driven approach. This serves as micro-
benchmark evaluation of Delphi. In this section, we focus
on macro-benchmark evaluation done by emulation and real-
world experiments.

9.1 Delphi over Emulated Networks
To understand Delphi’s performance under real applica-

tion workloads, we use Mahimahi [23], a record-and-replay
tool that can record and replay client-server interactions over
HTTP. In our experiment, we record client-server interac-
tions when the client runs two applications: Web brows-
ing and video streaming. During replay, Mahimahi replays
the recorded interactions on top of an emulated network.
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Figure 10: Objective function value normalized by oracle.
The histogram shows the median value, the error bar shows
one standard deviation.

Mahimahi can emulate network delays and variable-rate links
using packet-delivery traces. In our experiment, we used the
tcpdump traces captured during our measurement at 22 loca-
tions as packet-delivery traces for network emulation. During
the tcpdump measurements, we also measured passive indi-
cator values, which are fed into Delphi during our emulation
as inputs to the Network Monitor. This emulation setup en-
able us to compare different network selection schemes when
running exactly the same application traffic, and under the
same network conditions.

We use Delphi to optimize two different objective func-
tions: 1) Max(S): maximizing average throughput, i.e. mini-
mizing transfer completion time. 2) Max(S/E): maximizing
average throughput over energy per byte. In each experiment,
we record the actual value of S and S/E achieved by Delphi
and by using different fixed choices. After running Delphi
and the fixed network(s) schemes at one location, we can
determine which network choices gives the highest value of S
and S/E. We call this highest value the optimal ground truth.
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Figure 11: Objective function value normalized by oracle.
The histogram shows the median value, the error bar shows
one standard deviation.

We use the optimal ground truth to normalize the predictions
of all schemes that we consider.

Figure 10 shows the median normalized value for each
scheme across all locations. Figure 10a shows the results for
Web browsing. For Max(S), Delphi gives the highest through-
put over all the other fixed schemes. When compared with
Wi-Fi, which is the default network selection on most mobile
devices, our throughput improvement is 83%, which corre-
sponds to a 46% reduction in transfer time. For Max(S/E),
Delphi improves the median normalized throughput over en-
ergy per byte by 0% (over Wi-Fi, since Wi-Fi tends to be
much more energy efficient than other schemes) to 6x (over
MPTCP(Wi-Fi)). In Figure 10b, for video-streaming appli-
cations, for Max(S), Delphi improves the throughput by 93%
over Wi-Fi, corresponding to a 49% reduction in transfer time.
For Max(S/E), Delphi’s improvement ranges from 41% (over
Wi-Fi) to 3.9x (over MPTCP(LTE)).

9.2 Experiments
To understand how Delphi behaves in the real world, we
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first train Delphi’s predictor using data we collected at the
22 locations. The model training was done using a desktop
(Intel Xeon(R) CPU, 3.30GHz Quad Core, 16 GB RAM).
The total training process takes 5 minutes. Then among
the 22 locations, we visited 5 close to our campus. On our
Delphi enabled laptop, we ran wget to download files with
various sizes (1 KB, 3 KB, 10 KB, 100 KB and 1000 KB)
from a remote server. For comparison, we also ran the same
wget with only Wi-Fi or LTE enabled before or after we run
Delphi. We randomized the sequence of configurations (file
sizes, network measured). For each configuration, we ran five
times.

Figure 11 shows the average improvement of Delphi over
Wi-Fi and LTE, when Delphi’s objective is set to maximizing
throughput. Due to high variation of the actual throughput
across different configuration, here we show the throughput
normalized by Wi-Fi’s throughput. Figure 11a shows Delphi’s
performance at each location. We can see that Delphi does
not perform perfectly well. At Location 3, the LTE has a
higher average throughput than Wi-Fi, but Delphi still selects
Wi-Fi. However, at other locations, Delphi performs better
than always using Wi-Fi or LTE. At Location 2, 4 and 5,
Delphi performs better than both Wi-Fi and LTE, because it
uses MPTCP running over both networks. In Figure 11b, we
can see that Delphi achieves improvement for small (1KB,
3 KB and 10 KB) and large (100 KB) transfers. A deeper
investigation reveals that the middle sized (1 MB) transfers
are affected by the switching delay the most: most of the
transfers go through the sub-optimal network(s). However,
for large transfers, although Delphi transfers on sub-optimal
network(s) for some time, most of the transfer happens on
the optimal network. Thus, Delphi performs well for large
transfers. In summary, Delphi increases average throughput
by between 1.25x and 4x compared with Android’s default
policy which always use Wi-Fi when it is available.

9.3 Handling User Mobility

Another benefit of using Delphi is that by continuously
monitoring the network conditions using the Network Moni-
tor, Delphi can tell whether the network performance is get-
ting worse, and trigger handover proactively. This is best
demonstrated when the mobile device is moving. In this ex-
periment, we keep Delphi running on the laptop while moving
it from inside a building to outside a building. The tethered
Wi-Fi phone was initially connected to the Wi-Fi AP inside
the building. As we walk outside the building, the Wi-Fi
signal keeps decreasing until the phone cannot associate with
the AP. We run wget on the laptop to download a large file
from our proxy server. (In this experiment, we configured
Delphi to Max(S), and only select between Wi-Fi and LTE,
not the MPTCP choices, to study the handover behavior). In
our experiment, We first run wget without running Delphi,
and with only one interface at a time, to measure the through-
put of Wi-Fi and LTE as the laptop moves, shown as “Wi-Fi”
and “LTE” in Figure 12. Then we run Delphi, while moving
the laptop along the same path. In Figure 12, we can see
that at time 10.5, Delphi predicted that Wi-Fi is worse than
LTE, and consequently triggered a switch and the throughput
drops but soon recovers to LTE’s throughput. In Figure 12,
we also marked the time when the Wi-Fi phone loses its IP
address; this is when a handover will happen according to
Multi-Path TCP Handover-Mode proposed in [27]. However,
we can see that in this case, Wi-Fi throughput has already
dropped to zero before it loses IP address. Compared with
this scheme, Delphi triggers LTE/Wi-Fi handover earlier, so
that the application sees constantly high throughput.

10. CONCLUSION AND FUTURE WORK

We have presented Delphi, a mobile software controller
to help applications select the best network among multiple
choices for their data transfers. Delphi’s selection schemes
are able to handle trade-offs between high throughput and
energy efficiency. Thus it outperforms static schemes such
as using Wi-Fi by default (the policy on Android today), or
using LTE by default, or always using both, since neither
Wi-Fi nor LTE is unequivocally better than the other, in terms
of average throughput, and using both networks consumes an
excessive amount of energy.

Applications could care about other metrics such as av-
erage per-packet delay, and tail per-packet delay, or more
app-centric metrics such as page-load time for web pages
or minimizing the risk of a stall for streaming video. We
view Delphi as a first step in answering these more involved
questions. One direction of our future work is to provide ex-
pressive APIs for applications to express their specific needs
to Delphi.

In this paper, we use machine learning as a tool to make
decisions where a static policy does not suffice. Another di-
rection that we plan to explore is to further enhance Delphi’s
learning capability by using online learning or crowd-sourced
learning mechanisms. This would allow mobile devices to
make better network selection decisions when they enter lo-
cations for the first time.
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