
MIT Open Access Articles

Python Materials Genomics (pymatgen): A robust,
open-source python library for materials analysis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ong, Shyue Ping, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael
Kocher, Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder.
“Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library for Materials
Analysis.” Computational Materials Science 68 (February 2013): 314–319.

As Published: http://dx.doi.org/10.1016/j.commatsci.2012.10.028

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/101936

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/101936
http://creativecommons.org/licenses/by-nc-nd/4.0/

Python Materials Genomics (pymatgen) : A Robust,

Open-Source Python Library for Materials Analysis.

Shyue Ping Ong

Department of Materials Science and Engineering, Massachusetts Institute of

Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

William Davidson Richard

Department of Materials Science and Engineering, Massachusetts Institute of

Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Anubhav Jain

Lawrence Berkeley National Lab, 1 Cyclotron Rd Berkeley, CA 94720

Geoffroy Hautier

Université catholique de Louvain, Place de l’Université 1, 1348 Louvain-La-Neuve

Belgium

Michael Kocher

Lawrence Berkeley National Lab, 1 Cyclotron Rd Berkeley, CA 94720

Shreyas Cholia

Lawrence Berkeley National Lab, 1 Cyclotron Rd Berkeley, CA 94720

Dan Gunter

Lawrence Berkeley National Lab, 1 Cyclotron Rd Berkeley, CA 94720

Vincent L. Chevrier

3M, Electronics Markets Materials Division, St. Paul, Minnesota 55144, USA

Email addresses: shyue@mit.edu (Shyue Ping Ong), wrichard@mit.edu (William
Davidson Richard), ajain@lbl.gov (Anubhav Jain), geoffroy.hautier@uclouvain.be
(Geoffroy Hautier), mpkocher@lbl.gov (Michael Kocher), scholia@lbl.gov (Shreyas
Cholia), dkgunter@lbl.gov (Dan Gunter), vincentchevrier@gmail.com (Vincent L.
Chevrier), kapersson@lbl.gov (Kristin A. Persson), gceder@mit.edu (Gerbrand Ceder)

URL: http://ceder.mit.edu (Gerbrand Ceder)

Preprint submitted to Computational Materials Science July 25, 2012

Kristin A. Persson

Lawrence Berkeley National Lab, 1 Cyclotron Rd Berkeley, CA 94720

Gerbrand Ceder

Department of Materials Science and Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

We present the Python Materials Genomics (pymatgen) library, a robust,
open-source Python library for materials analysis. A key enabler in high-
throughput computational materials science efforts is a robust set of software
tools to perform initial setup for the calculations (e.g., generation of struc-
tures and necessary input files) and post-calculation analysis to derive useful
material properties from raw calculated data. The pymatgen library aims
to meet these needs by (1) defining core Python objects for materials data
representation, (2) providing a well-tested set of structure and thermody-
namic analyses relevant to many applications, and (3) establishing an open
platform for researchers to collaboratively develop sophisticated analyses of
materials data obtained both from first principles calculations and experi-
ments. The pymatgen library also provides convenient tools to obtain useful
materials data via the Materials Project’s REpresentational State Transfer
(REST) Application Programming Interface (API). As an example, using py-
matgen’s interface to the Materials Project’s REST API and phasediagram
package, we demonstrate how the phase and electrochemical stability of a
recently synthesized material, Li4SnS4, can be analyzed using a minimum
of computing resources. We find that Li4SnS4 is a stable phase in the Li-
Sn-S phase diagram (consistent with the fact that it can be synthesized),
but the narrow range of lithium chemical potentials for which it is predicted
to be stable would suggest that it is not intrinsically stable against typical
electrodes used in lithium-ion batteries.

Keywords: materials, project, design, thermodynamics, high-throughput

2

1. Introduction

First principles calculations have the potential to greatly accelerate the
design and optimization of new materials. In the past decade, electronic
structure calculation codes[1, 2, 3, 4] have reached a level of maturity such
that it is now possible to reliably automate and scale first principles calcula-
tions across any number of compounds, subject only to the limits of available
computing resources. Indeed, there are currently several parallel initiatives
that employ high-throughput first principles calculations in materials design.
For example, the Materials Project (http://www.materialsproject.org) aims
to calculate the properties of all known inorganic materials and make this
data publicly available to the materials community to accelerate innovation
in materials research. The Materials Project is based on the high-throughput
framework developed by Jain et al.[5] and subsequently extended by collab-
orators at the Lawrence Berkeley Laboratory and National Energy Research
Scientific Computing Center (NERSC). This framework has been used to
screen over 80,000 inorganic compounds for a variety of applications, includ-
ing Li-ion and Na-ion batteries.[6, 7, 8, 9, 10] Similarly, Curtarolo et al.[11]
have developed the AFLOW (Automatic Flow) software framework for high-
throughput calculation of crystal structure properties of alloys, intermetallics
and inorganic compound and applied it to the investigation of the effect
of structure on the stability of binary alloys[12] and superconductors,[13]
and the search for topological insulators.[14] Yet another example of high-
throughput materials design can be found in the CatApp developed by Hum-
melshoj et al.,[15] which provides a web application to access activation en-
ergies of elementary surface reactions and is part of a larger database of
surface reaction data being developed under the Quantum Materials Infor-
matics Project (http://www.qmip.org). On the molecular front, the Clean
Energy Project[16] uses high-throughput computational chemistry to look
for the best organic molecules for various applications, including organic
semiconductors[17] and polymers for the membranes used in fuel cells for
electricity generation. In this paper, we describe the Python Materials Ge-
nomics (pymatgen) library, a robust, open-source Python library for mate-
rials analysis. A key enabler in high-throughput computational materials
science efforts is a robust set of software tools to perform initial setup for
the calculations (e.g., generation of structures and necessary input files) and
post-calculation analysis to derive useful material properties from raw calcu-
lated data. The aims of pymatgen are as follows:

3

1. Define core Python objects for materials data representation.
2. Provide a well-tested set of structure and thermodynamic analysis tools

relevant to many applications.
3. Establish an open platform for researchers to collaboratively develop

sophisticated analyses of materials data obtained both from first prin-
ciples calculations and experiments.

The pymatgen library is currently used in the Materials Project for structure
generation, manipulation and thermodynamic analysis. As such, it has been
robustly tested over the large database of compounds in the Materials Project
database. However, it should be noted that while the pymatgen library
supports the Materials Project, its is designed to be a standalone library,
and most of its analysis tools are flexible enough to be used by any materials
researcher with other electronic structure codes and sources of data. The
latest stable version of pymatgen (version 2.0.0 as of this paper) can be
obtained via the Python Package Index at http://pypi.python.org/pypi/
pymatgen, while the “bleeding edge” developmental version can be obtained
from the official GitHub repo at http://github.com/materialsproject/

pymatgen.

2. Overview of pymatgen

The pymatgen library is written in the Python programming language,
and leverages the large number of available standard and scientific program-
ming libraries, including the widely used numpy and scipy libraries.[18] It
is compatible with Python version 2.7.x, but a transition to Python 3 is
planned when the necessary libraries become available. It is primarily based
on the object-oriented programming paradigm to facilitate code reuse and en-
sure modularity in design. In terms of development, we adopt a test-driven
approach, and pymatgen includes unit tests for all non-trivial classes and
methods. We also place an emphasis on clear and concise documentation,
which is available at http://materialsproject.github.com/pymatgen/.
Figure 1 provides an overview of the pymatgen library. A typical workflow
would involve a user converting data (structure, calculations, etc.) from
various sources (first principles calculations, crystallographic and molecule
input files, Materials Project, etc.) into Python objects using pymatgen’s io
packages, which are then used to perform further structure manipulation or
analyses. The pymatgen library is structured in modular Python packages.
The main packages are as follows:

4

http://pypi.python.org/pypi/pymatgen
http://pypi.python.org/pypi/pymatgen
 http://github.com/materialsproject/pymatgen
 http://github.com/materialsproject/pymatgen
http://materialsproject.github.com/pymatgen/

Figure 1: Overview of the pymatgen library. Text in italics represent names of Python
packages, modules or classes.

5

1. The core package, as its name implies, provides the core definitions
of various objects used by the rest of the library. Core objects in-
clude representations of elements in the periodic table (Element class
in the core.periodic table module), infinite periodic lattices (Lattice in
the core.lattice module), periodic and non-periodic sites (Site and Peri-
odicSite classes in the core.structure module), molecules and structures
(Molecule and Structure classes in the core.structure module) and com-
positions (Composition class in the core.structure module). The core
objects encapsulates information relevant to many materials applica-
tions. For example, the Element class includes useful properties such
as electronegativity, atomic numbers and atomic masses, etc.

2. The electronic structure package defines objects representing various
electronic structure analyses, including density of states (electronic structure.dos
module) and bandstructures (electronic structure.bandstructure mod-
ule). Plotting capabilities for these analyses are also provided using
the matplotlib library (see Figure 2).

3. The entries package defines the basic ComputedEntry object (in the
computed entries module) for performing analyses. The ComputedEn-
try object is essentially a container for materials information. At the
most basic level, a ComputedEntry comprise a composition and an
energy, which are necessary for phase diagram generation (using the
phasediagram package) and calculating reaction energies (using the
analysis.reaction calculator package). However, a ComputedEntry is
designed to be flexible enough to encompass any data of interest for a
material, such as its structure, spacegroup, etc. The ComputedEntry
object is also designed to be agnostic to the source of the information,
e.g., the energy can be obtained from VASP,[1] ABINIT[3, 4] or any
other electronic structure calculation. A similar ExpEntry object (in
the exp entries module) is also available as a container for experimental
thermochemical data to be used in analyses.

4. The io (input/output) package provides facilities to read and write
common structure and molecule file formats as well as input and output
files for various electronic structure codes. Support for the commonly
used Crystallographic Information File (CIF) format is provided using
the PyCifRW library,[19] and support for a large number of molecular
file formats is supported via an adaptor to the OpenBabel library.[20]
Among the io modules for electronic structure codes, the vaspio mod-
ule is currently the most mature and supports most Vienna Ab initio

6

Simulation Package (VASP)[1] input and output files. VASP input pa-
rameters based on those used in the Materials Project as well as the
originating MIT high-throughput project[5] are provided in the vas-
pio set module. Limited support is currently available for Gaussian[2]
input files as well, though we expect this to improve considerably in
future. In addition, pymatgen also provides an adaptor (the aseio mod-
ule) to provide conversion between pymatgen’s Structure object and the
Atoms object used by the Atomic Simulation Environment (ASE).[21]
A trivial use of the io package is for the conversion between various
file formats (e.g, converting CIF files to VASP POSCAR files). A more
powerful use is converting flat files into Python objects (such as Struc-
ture or ComputedEntry), which can then be used for further structure
manipulation or analysis. The pymatgen library is highly extensible
in terms of electronic structure code support, and parsers for ABINIT
and other first principles codes are currently under development.

5. The serializers package implements customized modules for the serial-
ization of pymatgen objects. Serialization allows users to save pymat-
gen objects easily for subsequent reuse. In pymatgen, most non-trivial
objects implement a to dict property, which is a Python dictionary rep-
resentation that can be serialized in the lightweight JavaScript Object
Notation (JSON) format, and a from dict static method that regener-
ates that object from a JSON representation. The JSON representation
can be easily stored on a user’s hard disk or inserted into a database
such as the MongoDB used by the Materials Project.

In addition to the above packages, several packages have been implemented
to aid structure manipulation and transformation and to perform thermody-
namic analyses. These packages are outlined in the following sections.

3. Compound generation and structure transformations

Pymatgen provides a powerful framework for performing compound gen-
eration and structure transformations via the transformations package. A
transformation is essentially a well-defined algorithm for generating new com-
pounds and structures from existing structures. For example, a common ap-
proach to developing new materials from existing materials involve the substi-
tution of existing species in the structure for others. Users can, for instance,
use the data-mined substituted rules developed by Hautier et al.[22] to ob-

7

Γ L B1|B Z Γ X|Q F P1 Z|L P
Wave Vector

-4

-2

0

2

4

E
−

E
f
(e
V
)

Figure 2: Bandstructure of Fe2O3, plotted using data from the Materials Project and
pymatgen’s electronic structure package. Up spins are in blue while down spins are in red.

8

tain new materials. Such a manipulation can be performed using the Substi-
tutionTransformation class in the transformations.standard transformations
module. Other supported transformations include the partial or complete re-
moval of a species in a structure, ordering of disordered structures, and gen-
eration of supercells and primitive cells. In addition, pymatgen also provides
the facility to perform high-throughput compound generation and electronic
structure run generation via the alchemy package. Using the alchemy pack-
age, a developer can define a sequence of transformations to be applied to a
set of structures to generate a corresponding set of new structures. The set
of structures can be conveniently provided as a directory of CIF files, VASP
POSCAR files, etc. These structures can then be output to the necessary
input formats for electronic structure calculations. Furthermore, the alchemy
package provides a means to store the history of all transformations applied
on a structure, allowing one to trace back the origins of a new structure.
The alchemy package is currently used in the CrystalToolkit of the Materials
Project (http://www.materialsproject.org/apps/crystal toolkit/) to perform
structure manipulations with unlimited undo and redo capabilities (see Fig-
ure 3).

4. Analysis tools

The pymatgen library provides many tools for high-throughput, auto-
mated assimilation of data from electronic structure calculations, and for
subsequent analysis of the assimilated data.

4.1. Data assimilation and processing

The borg package can automatically traverse a directory tree to search
for calculations and assimilate calculation data, utilizing multiple proces-
sors where available using Python’s multiprocessing package. A predefined
algorithm for converting VASP runs into a list of ComputedEntry objects
has been implemented. ComputedEntry objects, which are essentially con-
tainers for calculated data, serve as the basic unit for subsequent analysis.
Sometimes, some post-processing of the list of ComputedEntry objects is nec-
essary before they can be reliably used in analyses. In the pymatgen library,
the entries.compatibility module implements the scheme for mixing energies
calculated using different functionals, in particular, those calculated using
the generalized gradient approximation (GGA) and the +U extension to it
(GGA+U)[23, 24, 25] as outlined by Jain et al.[26] While standard GGA

9

(a) CrystalToolkit (b) PhaseDiagramApp

Figure 3: The CrystalToolkit and PhaseDiagramApp in the Materials Project, utilizing
pymatgen’s alchemy and phasediagram packages respectively.

10

is reasonably accurate for calculating energy differences between delocal-
ized states, it generally fails when the degree of electronic localization varies
greatly between the products and reactants, such as in a redox reaction.[27]
For the latter, the addition of a Hubbard U parameter generally improves the
accuracy of calculated reaction energies considerably. The “mixing” scheme
adjusts the GGA+U energies using known experimental binary formation
enthalpies in a way that makes them compatible with GGA energies. In
addition, it also adjusts the energy of well-known gaseous elements such as
O2, N2, etc. to correct for well-known tendency of GGA to overbind such
molecules.[28] Jain et al. demonstrated that this “mixing” scheme provides
reasonably accurate results for formation enthalpies and phase diagrams.[26]
With some modifications, this module could be used to combine energies ob-
tained with any set of different functionals. It should be noted that the set of
pseudopotentials and Hubbard U parameters used by the Materials Project
are different from those originally used by Jain et al.; the pseudopotentials
used by the Materials Project generally include more electrons in the valence
shell and the Hubbard U parameters have been fitted using the approach of
Wang et al.[28] for this set of pseudopotentials. Thus, the necessary “mixing”
scheme corrections have been refitted for the Materials Project parameter set.
Two Compatibility classes, MaterialsProjectCompatibility and MITCompat-
ibility, are provided, and it is recommended that users use the appropriate
class to process their runs prior to other analyses. The Materials Project
parameters and corrections are provided in the Supplementary Information.

4.2. Calculating reactions

The analysis.reaction calculator module provides classes for the analysis
of reactions, including reaction balancing and calculation of reaction energies.
A user can calculate reactions energies from computed data (using Comput-
edEntry objects) or experimental data (using ExpEntry objects). These fea-
tures are currently used in the ReactionCalculator of the Materials Project
to provide calculated reaction energies and comparison of those energies with
experimental reaction energies where available.

4.3. Phase diagrams

The phasediagram package provides facilities to generate and plot phase
diagrams. The methodology and algorithms are based on those developed by
Ong et al.[29, 30] Both “standard” compositional and grand canonical phase

11

diagrams (representing phase equilibria in systems open to one or more com-
ponents) are supported. Phase diagrams representing the thermodynamic
phase equilibria of multicomponent systems reveal fundamental material as-
pects regarding the processing and reactions of materials. For example, two
key considerations in designing a new material are its stability and potential
synthesis routes. By comparing a new material’s energy relative to compet-
ing phases in the phase diagram, a user can assess the new material’s phase
stability and the predicted phase equilibria at a particular composition. The
phasediagram package is currently used in the Phase Diagram App of the
Materials Project (see Figure 3(b)) to generate phase diagrams from calcu-
lated materials data. Currently, only 0K phase diagrams are available in the
Materials Project as only energies are available at this point.

5. Integration with the Materials Project REST API

One of the key impediments to materials design is the availability of mate-
rials information. The Materials Project aims to meet this need by providing
open, public access to a large database of calculated data on known materials.
Currently, there are several user-friendly “apps” available on the Materials
Project that use this data. In order to reach a broader materials commu-
nity, we have created an application programming interface (API) based on
a subset of the principles of REpresentational State Transfer (REST).[31]
Like the APIs of many well-known sites, the Materials Project API uses
some shared knowledge about the form and semantics of URIs, as well as
pre-determined media types, to reduce the number of round-trips needed to
discover and use the interface. By convention, this deviation from the full
set of requirements of a REST API are indicated by the term “RESTful”.
The Materials Project RESTful API allows users to directly access Materials
Project data via the Hypertext Transfer Protocol (HTTP), and provides a
powerful way for users to programmatically query for materials information
instead of relying on browser-based interfaces. We hope that this capability
to query the database directly spurs the creation of applications for other
materials properties and applications. Under RESTful design, each object
is represented as a unique resource and can be queried in a uniform man-
ner. A RESTful HTTP service exposes a consistent set of semantics that
uses HTTP methods (GET, POST, PUT, DELETE, etc.) in conjunction
with unique Uniform Resource Identifiers (URIs) to access the underlying re-
sources. This allows for the creation of an API using a combination of HTTP

12

methods and URIs. For the purposes of the Materials Project, this means
that each object (such as a material) can be represented by a unique URI
(e.g., http://www.materialsproject.org/rest/[unique-id]) and an HTTP verb
can be used to act on that object. In most cases, this action returns struc-
tured data that represents the object or the result of an operation against
the object. The JavaScript Object Notation (JSON) is used as the data
interchange format to represent this structured data. In conjunction with
this beta release, the pymatgen library has released the matproj package to
provide a convenient set of tools for users to obtain pymatgen objects and
data via the Materials Project RESTful API. For instance, users can obtain
formation energies, calculated VASP energies and calculation parameters for
all database entries with given formula. Users can also query the Materials
Project’s database of experimental thermochemistry data. In addition, users
can obtain pymatgen Structure and ComputedEntry objects, which can serve
as the starting point for further structure manipulation or thermodynamic
analysis.

6. Application example - Phase stability of a new material

To illustrate the power of the pymatgen library, we will present a practi-
cal example of how it can be used to determine the phase stability of a new
material. One of the main obstacles to performing phase stability analyses
on new materials is that the phase stability of a particular material depends
on its energy relative to that of competing phases. Without relying on an
external database of pre-computed materials data, such an effort requires the
materials researcher to identify all competing phases of interest and invest a
fairly large amount of computational resources to calculating their energies.
For example, to determine the phase stability of a new AxByCz phase, the
materials researcher needs to calculate the energies of all known A, B, C,
AxBy, AxCy, BxCy and AxByCz phases. Using pymatgen’s analysis tools
and interface with the Materials Project, this can be accomplished with a
minimal of computational resources. We will use the example of Li4SnS4, a
material of interest as a lithium superionic conductor, which has been just
recently synthesized by Kaib et al.[32] Li4SnS4 is isostructural with Li4GeS4,
a well-known compound for which data is available in the Materials Project.
The structure of Li4SnS4 itself is currently not reported in the Inorganic
Crystal Database (ICSD)[33] or the Materials Project. Using the Materials
Project’s CrystalToolkit, we perform a Sn for Ge substitution on Li4GeS4,

13

download the necessary input files based on the parameters used in the Mate-
rials Project and perform first principles calculations using VASP to obtain
the ground state structure and energy for Li4SnS4. We then combine the
data from the Li4SnS4 VASP calculation (assimilated using pymatgen’s borg
package) with the data available on other Li-Sn-S phases in the Materials
Project (using the matproj.rest module) to generate the Li-Sn-S phase dia-
gram shown in Figure 4 (see Supplementary Information for the code snippet
used to perform this analysis). We may observe that Li4SnS4 is indeed pre-
dicted to be stable in the Li-Sn-S phase diagram. A slightly more advanced

Li

Li7Sn2
Li13Sn5

Li2S

LiSn
Li4SnS4

SnSSnS2
S Sn

Figure 4: The Li-Sn-S phase diagram generated using a single Li4SnS4 calculation and data
from the Materials Project using pymatgen’s borg, matproj and phasediagram packages.

example is given in Figure 5, where we have plotted the Li-Sn-S phase di-
agram in the Li and S chemical potential space. From Figure 5, we may
observe that Li4SnS4 is stable only over a narrow range of µLi, indicating

14

that when used as an electrolyte in a lithium-ion battery, this material will
likely react via lithium absorption at the anode and lithium desorption at
the cathode to form a solid electrolyte interphase. In this example, we have

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
µLi−µ 0

Li (eV)
−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

µ
S
−µ

0 S
 (e

V
)

Li2S

S
Li4SnS4

Li7Sn2

SnS2

Li13Sn5

LiSn

Sn

SnS

Figure 5: The chemical potential stability map for the Li-Sn-S system generated using
a single Li4SnS4 calculation and data from the Materials Project using pymatgen’s borg,
matproj and phasediagram packages. µ0

Li and µ0
S refers to the calculated bulk energies of

lithium and sulfur respectively. This map shows the ranges of µLi and µS for which each
phase is stable. Note that chemical potential values to the right of the Li2S line (shaded
in grey) are forbidden ranges.

determined the phase stability of the newly-synthesized Li4SnS4 compound
by performing only a single first principles ground state calculation and us-
ing pymatgen’s analysis tools and interface to the Materials Project’s REST
API. This determination would otherwise have required the user to obtain
all relevant crystal structure, generate the necessary input files, and per-
form first principles calculations on more than 30 structures (based on the
number of Li-Sn-S phases in the Materials Project), incurring significantly
greater computational expense. There is also significant time savings for the
user, in that he/she needs only to obtain initial candidate structures and per-
form calculations and analysis for the particular phase he/she is interested

15

in (Li4SnS4), while querying the Materials Project for pre-computed data for
the other phases.

7. Conclusion

The Python Materials Genomics (pymatgen) library is a robust, open-
source python library for materials data analysis. By defining core Python
objects for materials data representation, providing a well-tested set of struc-
ture and thermodynamic analysis tools relevant to many materials applica-
tions, and establishing an open platform for researchers to collaboratively
develop sophisticated analyses of materials data, the pymatgen library is
a key enabler of the Materials Project, powering several of the Project’s
web applications. The pymatgen library also provides convenient tools to
obtain useful materials data via the Materials Project’s REST API. Using
pymatgen’s interface to the Materials Project’s REST API and phasediagram
package, we demonstrate how the phase and electrochemical stability of a re-
cently synthesized material, Li4SnS4, can be analyzed using a minimum of
computing resources. We hope that the open source dissemination of this li-
brary and the free access to the Materials Project data will spur the creation
of more property apps that use computed data, and ultimately to a broader
impact of computational modeling on the materials community.

8. Acknowledgments

This work was supported in part by the Department of Energy’s Basic
Energy Sciences program under Grant No. DE-FG02-96ER45571. We also
thank the National Energy Research Scientific Computing Center (NERSC)
for providing invaluable computing resources and IT support for this project.
A. Jain acknowledges funding from the Laboratory Directed Research and
Development Program of Lawrence Berkeley National Laboratory under US
Department of Energy Contract No. DE-AC02-05CH1123.

Appendix A. Supplementary information

Appendix A.1. VASP calculation and compatibility parameters used in the
Materials Project.

The figures and tables below summarizes the current VASP calculation
and compatibility parameters used in the Materials Project, as of the time of

16

publication of this paper. Please note that the parameters and compatibility
parameters are subject to change and may be refined as more data becomes
available.

Figure A.6: VASP pseudopotentials used in the Materials Project.

Table A.1: Fitted Hubbard U parameters and compatibility corrections for various tran-
sition metals (TM).

Element U (eV/TM) Compatibility Correction (eV/TM)

Co 3.32 -1.874
Cr 3.7 -2.013
Fe 5.3 -2.733
Mn 3.9 -1.681
Mo 4.38 -3.531
Ni 6.2 -1.682
V 3.25 -2.164
W 6.2 -4.351

Appendix A.2. Example pymatgen code to generate Li-Sn-S phase diagram

In the example code below, the user’s Materials Project API key is des-
ignated as “USER API KEY”. This code snippet is based on pymatgen
version 2.0.0.

from pymatgen.matproj.rest import MPRester

17

from pymatgen.apps.borg.hive import VaspToComputedEntryDrone

from pymatgen.apps.borg.queen import BorgQueen

from pymatgen.phasediagram.pdmaker import PhaseDiagram

from pymatgen.phasediagram.plotter import PDPlotter

Assimilate user VASP calculation (assumed to be located in

current directory) into ComputedEntry object

drone = VaspToComputedEntryDrone()

queen = BorgQueen(drone, rootpath=".")

entries = queen.get_data()

entries now contain a single ComputedEntry for Li4SnS4

Obtain all existing Li-Sn-S phases using the

Materials Project RESTful API

adaptor = MPRester("USER_API_KEY")

mp_entries = adaptor.get_entries_in_chemsys(["Li", "Sn", "S"])

Combine entry from calculated run with Materials Project entries

entries.extend(mp_entries)

Filter entries using the MaterialsProjectCompatibility

compat = MaterialsProjectCompatibility()

entries = compat.process_entries(entries)

Generate and plot Li-Sn-S phase diagram

pd = PhaseDiagram(entries)

plotter = PDPlotter(pd)

plotter.show() # Produces Figure 4 of this paper

[1] G. Kresse and J. Furthmuller, Physical Review B 54, 11169 (1996).

[2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Sal-
vador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

18

J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Ko-
maromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, “Gaussian 03,
Revision C.02,” .

[3] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,
P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch,
L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann,
P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese,
D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and
J. W. Zwanziger, Computer Physics Communications 180, 2582 (2009).

[4] X. Gonze, G. M. Rignanese, M. J. Verstraete, J. M. Beuken, Y. Pouillon,
R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez,
M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. W.
Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeitschrift für
Kristallographie 220, 558 (2005).

[5] A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller,
K. A. Persson, and G. Ceder, Computational Materials Science 50, 2295
(2011).

[6] G. Hautier, A. Jain, S. P. Ong, B. Kang, C. Moore, R. Doe, and
G. Ceder, Chemistry of Materials 23, 3495 (2011).

[7] G. Hautier, A. Jain, H. Chen, C. Moore, S. P. Ong, and G. Ceder,
Journal of Materials Chemistry 21, 17147 (2011).

[8] G. Ceder, G. Hautier, A. Jain, and S. P. Ong, MRS Bulletin 36, 185
(2011).

[9] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma,
and G. Ceder, Energy & Environmental Science 4, 3680 (2011).

[10] Y. Mo, S. P. Ong, and G. Ceder, Chemistry of Materials 24, 15 (2012).

[11] S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chepulskii,
R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T.

19

http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/ 10.1524/zkri.220.5.558.65066
http://dx.doi.org/ 10.1524/zkri.220.5.558.65066
http://dx.doi.org/ 10.1016/j.commatsci.2011.02.023
http://dx.doi.org/ 10.1016/j.commatsci.2011.02.023
http://dx.doi.org/10.1021/cm200949v
http://dx.doi.org/10.1039/c1jm12216a
http://dx.doi.org/10.1039/c1ee01782a
http://dx.doi.org/10.1021/cm203303y

Stokes, D. O. Demchenko, and D. Morgan, Computational Materials
Science 58, 218 (2012).

[12] S. Curtarolo, D. Morgan, and G. Ceder, Computer Coupling of Phase
Diagrams and Thermochemistry 29, 163 (2005).

[13] A. Kolmogorov, M. Calandra, and S. Curtarolo, Physical Review B 78,
1 (2008).

[14] K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Cur-
tarolo, Nature Materials 11, 614 (2012).

[15] J. S. Hummelshø j, F. Abild-Pedersen, F. Studt, T. Bligaard, and J. K.
Nø rskov, Angewandte Chemie (International ed. in English) 51, 272
(2012).

[16] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-
Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brock-
way, and A. Aspuru-Guzik, The Journal of Physical Chemistry Letters
2, 2241 (2011).

[17] A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S.
Sánchez-Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A. P.
Zoombelt, Z. Bao, and A. Aspuru-Guzik, Nature communications 2, 437
(2011).

[18] T. E. Oliphant, Computing in Science & Engineering 9, 10 (2007).

[19] J. R. Hester, Journal of Applied Crystallography 39, 621 (2006).

[20] N. M. O’Boyle, M. Banck, C. a. James, C. Morley, T. Vandermeersch,
and G. R. Hutchison, Journal of cheminformatics 3, 33 (2011).

[21] S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 (2002).

[22] G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, and G. Ceder, Inorganic
chemistry , 656 (2010).

[23] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Physical Review B 44,
943 (1991).

20

http://dx.doi.org/ 10.1016/j.commatsci.2012.02.005
http://dx.doi.org/ 10.1016/j.commatsci.2012.02.005
http://dx.doi.org/10.1016/j.calphad.2005.01.002
http://dx.doi.org/10.1016/j.calphad.2005.01.002
http://dx.doi.org/10.1103/PhysRevB.78.094520
http://dx.doi.org/10.1103/PhysRevB.78.094520
http://dx.doi.org/ 10.1038/nmat3332
http://dx.doi.org/10.1002/anie.201107947
http://dx.doi.org/10.1002/anie.201107947
http://dx.doi.org/10.1021/jz200866s
http://dx.doi.org/10.1021/jz200866s
http://dx.doi.org/10.1038/ncomms1451
http://dx.doi.org/10.1038/ncomms1451
http://link.aip.org/link/?CSX/9/10/1
http://dx.doi.org/10.1107/S0021889806015627
http://dx.doi.org/ 10.1186/1758-2946-3-33
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/ 10.1021/ic102031h
http://dx.doi.org/ 10.1021/ic102031h

[24] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Con-
dens. Matter 9, 767 (1997).

[25] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Physical Review B
52, R5467 (1995).

[26] A. Jain, G. Hautier, S. Ong, C. Moore, C. Fischer, K. Persson, and
G. Ceder, Physical Review B 84, 045115 (2011).

[27] F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder,
Physical Review B 70, 235121 (2004).

[28] L. Wang, T. Maxisch, and G. Ceder, Physical Review B 73, 195107
(2006).

[29] S. P. Ong, L. Wang, B. Kang, and G. Ceder, Chemistry of Materials
20, 1798 (2008).

[30] S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Electrochemistry
Communications 12, 427 (2010).

[31] R. T. Fielding and R. N. Taylor, ACM Transactions on Internet Tech-
nology 2, 115 (2002).

[32] T. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. S. Der, H. Eckert,
B. Roling, and S. Dehnen, Chem. Mater. 8, 2 (2012).

[33] G. Bergerhoff, R. Hundt, R. Sievers, and I. D. Brown, Journal of chem-
ical information and computer sciences 23, 66 (1983).

21

http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevB.52.R5467
http://dx.doi.org/10.1103/PhysRevB.84.045115
http://dx.doi.org/ 10.1103/PhysRevB.70.235121
http://dx.doi.org/10.1103/PhysRevB.73.195107
http://dx.doi.org/10.1103/PhysRevB.73.195107
http://dx.doi.org/ 10.1021/cm702327g
http://dx.doi.org/ 10.1021/cm702327g
http://dx.doi.org/ 10.1016/j.elecom.2010.01.010
http://dx.doi.org/ 10.1016/j.elecom.2010.01.010
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/dx.doi.org/10.1021/cm3011315

	Introduction
	Overview of pymatgen
	Compound generation and structure transformations
	Analysis tools
	Data assimilation and processing
	Calculating reactions
	Phase diagrams

	Integration with the Materials Project REST API
	Application example - Phase stability of a new material
	Conclusion
	Acknowledgments
	Supplementary information
	VASP calculation and compatibility parameters used in the Materials Project.
	Example pymatgen code to generate Li-Sn-S phase diagram

