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Abstract
Multichannel electroencephalography (EEG) offers a non-invasive tool to explore spatio-temporal
dynamics of brain activity. With EEG recordings consisting of multiple trials, traditional signal
processing approaches that ignore inter-trial variability in the data may fail to accurately estimate
the underlying spatio-temporal brain patterns. Moreover, precise characterization of such inter-
trial variability per se can be of high scientific value in establishing the relationship between brain
activity and behavior. In this paper, a statistical modeling framework is introduced for learning
spatiotemporal decomposition of multiple-trial EEG data recorded under two contrasting
experimental conditions. By modeling the variance of source signals as random variables varying
across trials, the proposed two-stage hierarchical Bayesian model is able to capture inter-trial
amplitude variability in the data in a sparse way where a parsimonious representation of the data
can be obtained. A variational Bayesian (VB) algorithm is developed for statistical inference of
the hierarchical model. The efficacy of the proposed modeling framework is validated with the
analysis of both synthetic and real EEG data. In the simulation study we show that even at low
signal-to-noise ratios our approach is able to recover with high precision the underlying
spatiotemporal patterns and the evolution of source amplitude across trials; on two brain-computer
interface (BCI) data sets we show that our VB algorithm can extract physiologically meaningful
spatio-temporal patterns and make more accurate predictions than other two widely used
algorithms: the common spatial patterns (CSP) algorithm and the Infomax algorithm for
independent component analysis (ICA). The results demonstrate that our statistical modeling
framework can serve as a powerful tool for extracting brain patterns, characterizing trial-to-trial
brain dynamics, and decoding brain states by exploiting useful structures in the data.
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1. Introduction
Thanks to advances in data recording technologies, the past decades have witnessed
widespread applications of multichannel electroencephalographs (EEG) in neuroscience
studies to probe into the working mechanisms of the human brain (Ray and Cole, 1985;
Miltner et al., 1999; Makeig et al., 2002), as well as in clinical applications to monitor brain
states (Rampil, 1998) and assist the diagnosis of neurological abnormalities (Cichocki et al.,
2005). In recent years, EEG has also been widely used in emerging fields such as neural
engineering (Wolpaw et al., 2002) and neuromarketing (McClure et al., 2004) for decoding
brain activity. Compared to microscopic recordings that measure the activities of only single
neuron or a group of nearby neurons with a spatial scale of at most millimeters (Wilson and
McNaughton, 1993), multichannel EEG has the advantage of being able to map the
macroscopic dynamics across the whole brain, albeit indirectly from the scalp, with a high
temporal resolution of milliseconds. On the other hand, in order to gain insights into brain
function for answering relevant scientific questions or for practical purposes, it is crucial to
link the spatio-temporal dynamics of EEG to the underlying neurophysiological processes or
behavioral changes. However, due to volume conduction, scalp EEG hardly preserves the
fidelity of the original brain dynamics, which often renders its interpretation difficult (Baillet
et al., 2001). In particular, functionally distinct brain activities that may well be separated in
the brain are mixed up in EEG in a simultaneous and linear manner1, leading to
substantially distorted signals with high correlations between spatially adjacent data
channels. The situation is made even worse by the contamination from various artifacts such
as electrocardiogram (ECG), electromyogram (EMG), and electrooculogram (EOG).

A major challenge, therefore, is to decompose multichannel EEG signals into a set of source
signals that represent functionally independent processes. Each source signal is associated
with a spatial pattern (SP), i.e., its activation map on the scalp, which is assumed to be fixed
across time under the same experimental condition. The SP reflects the spatial geometry of
the source signal and thus may have important functional significance. A vast range of
approaches have been proposed to perform spatio-temporal decomposition of EEG data
(Parra et al., 2005). Early approaches include principal component analysis (PCA) and factor
analysis (Koles et al., 1995; Lagerlund et al., 1997). More recently, the field of blind source
separation (BSS) has been dedicated to similar purposes (Hyvarinen et al., 2001; Cichocki
and Amari, 2002; Vigário and Oja, 2008). One unsupervised BSS methodology that has
proven to be highly successful in EEG signal processing is independent component analysis
(ICA) (Makeig et al., 2002), in which the non-Gaussianity of source signals is maximized.
Successful biomedical applications of ICA include analysis of event-related dynamics
(Makeig et al., 1997, 2002), artifact identification and removal (Vigário, 1997), and brain-
computer interfaces (BCIs) (Kachenoura et al., 2008).

Despite the apparent proliferation of methods for spatio-temporal decomposition of EEG,
our perspective is that there are two useful structures in EEG data yet to be fully utilized in
developing new signal processing approaches. The first is the multiple-trial structure. Within
an experiment it is often the case that each condition may be repeated for many trials. The

1The validity of simultaneity and linearity is guaranteed by the quasistatic approximation to the Maxwell equations, since the effective
frequency range of EEG lies below 1 kHz.
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inter-trial amplitude variability is a common phenomenon in part because the brain as a
dynamical system, its state is constantly changing over time. Well-known examples of trial-
to-trial fluctuations in EEG recordings include the habituation effects (Bruin et al., 2000),
the P300 effects (Klimesch, 1999) and the event-related desynchronization/synchronization
(ERD/ERS) effects (Pfurtscheller and Aranibar, 1977) (see Figure ?? for an illustration). As
will be shown in this paper, ignoring inter-trial amplitude variability may result in
inaccuracy in identifying the underlying spatiotemporal patterns. Furthermore, accurate
characterization of inter-trial amplitude variability in the brain activity may be of high
importance per se, e.g., in studies that examine the relationship between human brain
activity and variability in behavior (Ergenoglu et al., 2004; Fox et al., 2007). Albeit
relatively well-recognized in the channel space, to the best of our knowledge inter-trial
amplitude variability has been hitherto considered by few signal processing approaches for
spatio-temporal modeling of multichannel EEG data. A few studies of this line are aimed at
solving the EEG inverse problem (Friston et al., 2006; Limpiti et al., 2009), which is
different from our current setting, where the structural information of the brain is
unavailable.

The second structure that has been largely ignored is the multiple-condition structure of
EEG within an experiment. This structure may turn out to be highly useful if we have the
knowledge that the EEG data recorded under different conditions share certain
commonalities in their spatio-temporal patterns. Nonetheless, most conventional signal
processing approaches (e.g., factor analysis and ICA) by design are only able to handle one
condition at a time and thus their application to multiple-condition EEG data does not seem
to be straightforward. To proceed, in data analysis they are either employed to deal with
each condition separately, or simply applied to the entire data consisting of both conditions,
which is problematic in theory as it violates the stationarity assumption of the basic models
underlying these approaches without proper model extensions. Development of appropriate
statistical models to take into consideration the non-stationarity and shared information, if
any, between conditions may make more efficient use of the data and hence could
potentially yield findings that are unable to be obtained using conventional approaches.

Motivated by the two abovementioned useful structures in EEG signals, in this paper we cast
the problem of learning spatio-temporal decomposition of multichannel EEG data into a
statistical modeling setting. Without loss of generality, we focus on the EEG data that are
recorded under two experimental conditions, each presented over multiple trials. A two-
stage hierarchical Bayesian model is developed to take account of both the aforementioned
multiple-condition structure and inter-trial amplitude variability in the EEG data. Here
amplitude refers to the standard deviation of each source signal at each trial. The strength of
the hierarchical modeling lies in that it endows the variance of each source signal with a
second-stage distribution to model its evolution across trials. For the purpose of inferring the
hierarchical model, we derive a variational Bayesian learning algorithm, which enables us
not only to obtain posterior distributions of the model parameters but also to automatically
infer the model size (i.e., source number) via sparse learning.

The paper is organized as follows. Section 2.1 presents and elaborates the proposed
hierarchical Bayesian model. Section 2.2 introduces the variational Bayesian algorithm for
model inference. Section 3 demonstrates the efficacy of the proposed modeling framework
using both simulated and real data experiments. Discussions and concluding comments are
given in Section 4.

The notation used in this paper is listed in Table 1. Note that a few symbols might be
slightly abused depending on the context. We will redefine them where necessary.
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2. Methods
2.1. A Hierarchical Bayesian Spatio-Temporal Model for EEG

Given an EEG data set recorded under two conditions,  (i, j, k are indices for trials,
sample points in each trial, and experimental conditions, respectively. k = 1, 2; i = 1, …, Nk;
j = 1, …, Jk), the two-stage hierarchical Bayesian model can be constructed as follows:

(1)

where without loss of generality we assume that observations  are adjusted to have zero
mean, and that M ≤ C, i.e., that there are no more sources than EEG channels.

2.1.1. First stage: modeling multiple-condition structure—The first stage of model
(1) essentially consists of two factor-analysis models, with each giving a linear spatio-
temporal decomposition of the data from one condition. Each factor-analysis model

specifies for condition k the probability distribution  of observations 

conditioned on parameters , which are assumed as random variables in the

Bayesian framework. Here  are diagonal covariance matrices2, implying that

the source signals, namely , are mutually independent, and that the additive noise

components, namely , are independent among channels. Ψ1 and Ψ2 are allowed to be
non-isotropic to permit noise variance to differ across channels. For simplicity, it is also

assumed that  are i.i.d. across time.

To utilize the multiple-condition structure in EEG data, a key modeling assumption at the
first-stage model is that the mixing matrix A, which contains the SPs as the columns, is
identical for both conditions. The assumption is reasonable in a broad range of situations;
since by designing experiments involving two contrasting conditions, experimenters often
hope to discover differences in spatio-temporal patterns of brain activities between
conditions, and the differences are typically observed by first fixing an SP and then
comparing the source signals associated with this SP in both conditions. Furthermore, from
an estimation standpoint the assumption of identical A allows us to integrate information
from both conditions to improve the estimation accuracy.

2.1.2. Second stage: modeling inter-trial amplitude variability—The second stage
of model (1) specifies for condition k the prior probability distribution

 of source covariance  conditioned on hyperparameters

. In other words, the second-stage model assumes that within a condition
each source signal’s variance across trials is multiple draws from a common unknown

2Henceforth we assume that all covariance matrices are positive definite.

Wu et al. Page 4

Neuroimage. Author manuscript; available in PMC 2012 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inverse-gamma distribution, which has two important consequences. First, each source
signal’s variance is allowed to vary from trial to trial within a condition. Second, the
variation is nonetheless structured rather than arbitrary since it is known a priori that for
each condition the source signal’s variance across trials follows an inverse-gamma

distribution parameterized by , which are to be estimated by pooling data of all
trials within the condition (refer to Section 2.2 for details). As such, the second-stage model
provides a useful way of sharing information among multiple trials. Figure 1 offers an
intuitive illustration of how the second-stage model allows each trial to borrow strength
from one another in the inference of the posterior distribution of the source signal’s
covariance within the trial. We emphasize here that although the actual variability may not
restrict to the variance of source signals, such simplification is especially appropriate for
modeling modulations in the power of ongoing oscillatory EEG activity (Pfurtscheller and
Aranibar, 1977).

To ensure the uniqueness of model inference, in model (1) we avoid the issue of scaling
indeterminancy (i.e., any column of A may be scaled by a non-zero scalar as long as the

corresponding columns in  are multiplied by the inverse value) by
constraining

(2)

where  is the prior mean of the variance of the m-th source signal for condition k. The
spatial patterns corresponding to different source signals are now placed on the same scale
to be able to be compared with each other.

2.1.3. Sparse learning of the source number—To facilitate computation, in model

(1) we assume conjugate gamma priors for precisions . In specifying the
prior distribution for the mixing matrix A, the idea of automatic relevance determination
(ARD) (MacKay, 1992) comes into play for determining the number of source signals: at the
outset, without any a priori knowledge regarding the true source number we simply assume
the full model (i.e., M = C). Each column of A, denoted by am, is then assigned an
associated precision parameter α(m) to control its magnitude/relevance, where α(m) is again
endowed with a conjugate gamma prior. The zero mean assumption for each element of A is
appropriate when the elements are allowed to take both positive and negative values. After
model inference, if the posterior distribution of α(m) turns out to be concentrating upon large
values, am in the mixing matrix would essentially be switched off, with only the relevant
columns remaining. Thus, α = [α(1), …, α(M)]T can be viewed as the index for models of
varied complexities, and its posterior reflects the belief of each model generating the
observed data. Model averaging can then be effectively achieved by marginalizing over α
when computing the posterior of other variables of interest.

Further insights can be gained into ARD by observing that the prior distribution placed on A
encourages the sparsity of the number of source signals since the marginal distribution of am
by integrating out αm yields a Student-t distribution (Andrews and Mallows, 1974)
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(3)

which has heavy tails. The Student-t prior encompasses the well-known Gaussian-Jeffreys
prior as a special case when u(m) → 0 and v(m) → 0 (recall that being the parameters of a
gamma distribution, u(m) and v(m) cannot attain exact zero), and in this case it is sharply
peaked at zero, a hallmark of sparsity-inducing priors. The Jeffereys hyperprior for α(m)

 is noninformative in the sense that it is scale-invariant (Robert, 2007). By
setting u(m) and v(m) to values close to zero, there is no need for tuning of hyperparameters
to control the degree of sparsity in our model.

In light of the analysis in (Wipf and Rao, 2007), using an independent Student-t prior for
each column of A in model (1) has the effect of enabling significant posterior mass of A to
be centering on matrices with as many zero columns as possible. It is noteworthy that this
idea of learning sparse representations of data by shrinking the elements within each group
(in this paper each column of A) in a collective manner is similar in spirit to many popular
algorithms developed for simultaneous sparse learning, e.g., group LASSO (Yuan and Lin,
2007) and M-FOCUSS (Cotter et al., 2005).

2.1.4. More insight into model (1)—The following remarks examine model (1) more
closely:

• The linearity of the first-stage model complies well with the physical process of
volume conduction. Moreover, the assumption of an identical A resolves the issue
of rotational indeterminancy that is inherent in the standard factor-analysis model
(Anderson, 2003), thus rendering the spatio-temporal decomposition in model (1)

unique. Indeed, a rotation of A can no longer be offset by changing all 
identically without altering their diagonality.

• The Gaussianity assumption of source signals conditioned on each condition and
trial3 is suited to modeling mildly amplitude-modulated oscillatory activities as
their kurtoses are close to zero (Hyväarinen et al., 2010), a hallmark of Gaussian
random variables. Spontaneous EEG signals as well as induced reponses in EEG
are typically made up of such amplitude-modulated oscillatory activities across
multiple frequency bands, each attributed to a different underlying physiological
process (Niedermeyer and da Silva, 2004). In this case, the Gaussian distribution is
a valid description of our stage of knowledge.

• In the case when there is merely a single trial of EEG recorded for each condition,
by performing the maximum likelihood estimation of the following model, which is
the first-stage model with all parameters viewed as fixed:

(4)

3However, the distribution of source signals, taken over conditions and trials, is a Gaussian scale mixture (GSM) (Wainwright and
Simoncelli, 2000), which is known to be super-Gaussian, except in the case of trivial degeneracy.
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an interesting connection with the common spatial patterns (CSP) algorithm
(reviewed in Appendix A, also known as Fukunaga-Koontz transform (FKT)
(Fukunaga and Koontz, 1970) in the pattern recognition community) would
emerge, as formalized by the following theorem (Parra and Sajda, 2003; Blankertz
et al., 2008; Wu et al., 2009; Gouy-Pailler et al., 2010):

Theorem 1. Let Â be the ML estimate of A in model (4). The transformation
matrix W in the CSP algorithm is equal to Â−T if the following three additional
assumptions hold: (i) the additive noise vanishes to zero; (ii) A is a non-singular
square matrix; (iii) for two distinct sources m and n (m ≠ n), their variance ratios

are not equal in both conditions, i.e.,  .

The proof of the theorem is provided in Appendix B. Therefore, despite that CSP
optimizes a discriminative criterion, Theorem 1 offers a generative perspective in
terms of its formulation, which not only gives insights into the algorithm but also
opens up the possibility of its further performance improvement (Wu et al., 2009).
In particular, in the case when data is in fact corrupted by additive noise and the
source number is significantly lower than the channel number, in estimation the
noise-free model assumed by CSP may yield a substantial number of spurious
sources to fit the additive noise. These spurious sources not only do not lend
themselves to easy interpretation but also lower the estimation accuracy (see
Section 3). In other words, CSP is prone to overfitting noisy observations due to
under-constrained estimation (Hill et al., 2007; Blankertz et al., 2008). A robust
noise model was introduced in (Wu et al., 2009) to extend the CSP model to
address the issues of both additive noise and outliers.

The probabilistic relationships between the variables in model (1) are shown in Figure 2 as a
graphical model (Koller and Friedman, 2009).

2.2. The Variational Bayesian (VB) Algorithm for Model Inference
The goal of Bayesian estimation for model (1) is to compute the posterior distribution of
relevant variables using Bayes’ rule. Nonetheless, the computation of the posteriors is
analytically intractable due to the marginalization operation involved in the Bayesian
inference of model (1). We adopt the variational method for approximate Bayesian inference
in our work as it permits fast computation and enables us to glean intuition as well as insight
into the results. The VB inference is also invariant to re-parameterization of the model
(MacKay, 2003).

Let Xk denote collectively all the EEG data recorded from condition k, and similarly Zk
denote collectively TPs of all the sources for condition k. The key idea of VB is to seek a
“simple” distribution q*, termed variational distribution, from a structured subspace of
probability distributions to achieve the minimum Kullback-Leibler (KL) divergence
between the distributions from and the true posterior distribution:

where . Thus, VB reformulates Bayeisian inference into an
optimization problem. However, direct computation of D(q ‖ p) is again intractable because
it depends on p(Θ|X1, X2), which is exactly what we seek to approximate. Fortunately, it
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turns out that minimizing D(q ‖ p) is equivalent to maximizing a functional ℒ thanks to the
following decomposition of the log marginal probability of the data (MacKay, 2003):

where

(5)

Hence we can work with ℒ(q) without altering the structure of the search space of  For the
choice of  we adopt the so-called mean-field approximation, assuming that the
distributions in can be factorized over the elements of Θ, namely,

Given the structure of the hierarchical model (1), the lower bound ℒ in (5) can be
maximized with respect to q(Θ) via a coordinate ascent optimization technique: in each
iteration only the variational posterior of one variable in Θ is updated, while the variational
posteriors of other variables are fixed; the update then cycles through each variable in Θ
iteratively until convergence. The derivation of the update equations for the variational
posteriors is provided in detail in Appendix C. The update equations for the variational
posteriors are

(6)

where ãc denotes the transpose of the c-th row of A, and

. The parameters used
in (6) are given by

(7)
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(8)

(9)

(10)

(11)

(12)

where 〈·〉p denotes the mathematical expectation with respect to probability distribution p.
After each iteration, the lower bound ℒ can be evaluated to check the correctness of the
update (with each iteration ℒ must be non-decreasing) and the convergence of the
algorithm. The derivation and the form of ℒ can be found in Appendix D.

2.2.1. Learning the hyperparameters in model (1)—The hyperparameters

 in the model also need to be determined. In the current
work, we use the nonin-formative Jeffreys prior for  and α(m) by setting

 to a constant that is close to zero, e.g. 10−8. By contrast, for the
purpose of sharing information among trials, we employ the method of empirical Bayes

(Carlin and Louis, 2000) to obtain the point estimates of  by maximizing the

marginal likelihood of the EEG data, namely, . However, since
the marginal likelihood is difficult to evaluate for the same reason why the exact Bayesian
inference is intractable, we instead resort to maximizing the lower bound of ℒ with respect

to , expecting that this would increase the marginal likelihood as well, or
even if it does not, the bound would at least become tighter. Specifically, maximizing ℒ

with respect to the hyperparameters  and taking into account the
constraint in (2) leads to the following update equations
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(13)

where Ϝ denotes the digamma function, and  can then be obtained by
solving the above equations. Since the hyperparameters are coupled with

 which are estimated in VB, their computation needs to alternate with
(6). In our implementation, to speed up the computation the hyperparameters are updated
once after every fixed number of iterations (say, 100) for VB.

2.2.2. Initialization—The initialization of the VB algorithm is important since the lower
bound ℒ is a non-convex function of the variational distribution, which means different
local maxima may be reached with different initializations. In our implementation, the initial
conditions are set as follows:

(14)

where R ̂1 and R ̂2 are the empirical spatial covariance of both conditions (see Equation (19)
in Appendix A), and Λk, ãc, am are all estimated using the CSP algorithm. In our experience,
the above choice of initial conditions works well on both simulated and real data sets.
However, it is possible that certain modifications are needed when the VB algorithm is
applied to a broader range of EEG data sets.

The VB algorithm is summarized in Algorithm 1. Each iteration of the VB algorithm
requires (C + N1 + N2)M3) operations. The algorithm terminates when the change of the
lower bound ℒ is less than some predefined threshold (say, 10−8). Note that the VB
algorithm is guaranteed to converge due to the non-decreasing property of the variational
lower bound as the iteration increases.
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Algorithm 1

The V B pseudocode

Input: Multichannel EEG data Xk (k = 1, 2) that are recorded from two experimental conditions

Output: The variational distributions q*(Zk), q*(A), q*(α), 

Initialization: Use the settings in (14), and set iter = 0, ℒ(0) = −inf,

 (c = 1, …, C; k = 1, 2; m = 1, …, M)

Method:

repeat

    iter = iter + 1

    Update the parameters in the variational distributions using (7) – (12)

    if (iter mod 100) = 0 then

      Compute  by solving (13)

    end if

    Compute the variational lower bound ℒ(iter) using (19)

until ℒ(iter) − ℒ (iter − 1) ≤ a pre-defined threshold (e.g., 10−8)

2.2.3. More insight into the VB algorithm—The following remarks offer insights into
how the ideas of model size determination and hierarchical modeling in (1) are manifested
in the VB algorithm:

• To see how VB leads to a sparse mixing matrix, applying matrix inversion lemma
to the right-hand side of (8) yields

(15)

where

Thus the (m, m)-th element of  is calculated as

which is close to zero when 〈α(m)〉q* is sufficiently large. In light of (9) the m-th

element of  is close to zero as well (note that the results apply to all c’s). Hence

a sufficiently large 〈α(m)〉q* results in a small . In addition, it follows from
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(10) that , which means that a small  would in
turn increase 〈α(m)〉q*. Therefore through such a re-weighting scheme, when

〈α(m)〉q* becomes sufficiently large,  will keep decreasing as the iterations
are continued until the convergence criterion is met.

• It is also clear that the hierarchical modeling has a pooling effect on the source

variance across trials. Indeed, based on the variational distribution of , its

variational mean can be computed as .

Here  play the role of pooling  towards a global quantity
since they are estimated using the data from all trials. On the other hand, if the
priors of the source variance are instead chosen to be noninformative with

, the variational mean would simply be

, for which there is no pooling effect among trials as
merely the data from the i-th trial are used to estimate the source variance of the i-
th trial.

Figure 3 illustrates a scheme for exploratory data analysis by using the proposed hierachical
modeling framework. Note that in the last step the variational mean of the mixing matrix
and source signals is employed for visualization in the source space.

3. Experiments
A range of experiments are conducted on both simulated and real EEG data. The goal is to
provide empirical evidence for verifying the aforementioned properties of the proposed
statistical modeling framework, and to evaluate the performance of the VB algorithm by
comparing it with the state-of-the-arts algorithms, namely CSP and Infomax (Bell and
Sejnowski, 1995; Amari et al., 1996), the latter being the predominant algorithm for ICA
and extensively employed for multichannel EEG data analysis.

In the simulation experiment where ground truth is available, we compare the performance
of the VB, CSP, and Infomax algorithms on the reconstruction accuracy of spatio-temporal
patterns and evolution of source amplitude across trials, all based on Monte Carlo
simulations. Here CSP is chosen for comparison as it is shown by Theorem 1 to yield
maximum likelihood estimates for generative model (4), and the fact that it has no regard for
inter-trial variability makes it interesting to see how the algorithm performs in the presence
of inter-trial variability in the data. Besides, given that the simulated data within each trial
follow a Gaussian distribution, due to the inter-trial variability of the variance the
distribution of the data, taken over conditions and trials, is a Gaussian scale mixture, which
is non-Gaussian, thus justifying the use of Infomax.

For real EEG data analysis, we assess on two multiple-trial motor imagery BCI data sets
whether the VB algorithm can extract physiologically meaningful task-related spatio-
temporal patterns. Here motor imagery data sets are chosen for real data analysis because
previous studies have shown that inter-trial amplitude variability is generally present in
subjects’ EEG data during motor imagery due to fluctations in their attention, arousal, and
task strategy (Pfurtscheller and Aranibar, 1977). In addition, to show that the extracted
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patterns are indeed useful, we employ them for predicting the unknown class labels in the
test sets, and compare the prediction accuracies with those of the CSP and Infomax
algorithms.

All computations are done using MATLAB (The MathWorks, Inc.). The Infomax algorithm
is implemented using runica.m in the EEGLAB toolbox (Delorme and Makeig, 2004). The
learning rate of Infomax is set heuristically to 0.00065/ log(C), where C is the number of
channels; the algorithm converges when the weight change between consecutive iterations is
smaller than 10−7.

3.1. Experimental Setup and Data Analysis
3.1.1. Simulation Study—The study consists of Monte Carlo simulations of 50 runs. In
each run, Nk = 50 trials of data from model (1) are generated for each of two conditions. In
each trial a set of M = 10 mutually uncorrelated sources are generated. Each source signal
comprises Jk = 300 data points that are generated using either of the following two settings.
The first setting generates data points that are independently and identically Gaussian
distributed with zero mean, which is consistent with the assumption in model (1) (Figure
4(A)). By contrast, to simulate source signals that more resemble real EEG signals, the
second setting generates data points from fourth-order autoregressive (AR) models (Figure
4(B)). For each condition in this study, 8 source signals are simulated using the first setting,
while the rest 2 are simulated using the second.

To simulate inter-trial amplitude variability, for each condition the variances of each source
signal across trials are random samples from a fixed gamma distribution ( a(5, 0.5) for
condition 1 and a(2, 0.5) for condition 2), with a correlation coefficient between the
variances in the i-th trial and the (i + d)-th trial being 1 − 0.1|d| for −9 ≤ d ≤ 9 and 0
otherwise (Figure 4(C)). Although this violates the conditional independence assumption in
model (1), it is interesting to see if in this more realistic situation our VB algorithm is still
able to recover the true source amplitude evolution faithfully. Finally, a 20 × 10 mixing
matrix is randomly generated (thus C = 20), with each entry standard Gaussian distributed,
and additive non-isotropic white Gaussian noise is simulated with varying SNRs of 20, 15,
10, 5, and 0 dB. The channel-wise SNR is defined as the ratio of the variance of the mixture
signal over the noise variance at each channel.

The simulated noisy mixture signals are then presented to VB, CSP, and Infomax separately
to estimate the underlying spatio-temporal source patterns. To form the inputs to the
algorithms, for CSP the multiple-trial signals are concatenated across trials for each
condition, while for Infomax they are concatenated across both conditions and trials.

The Amari index (Amari et al., 1996) is used as the first performance index to measure the
proximity of the estimated mixing matrix Â and the true one A, which is invariant to
permutation and scaling of the columns of A and Â:

where bij = ((ATA)−1AT Â)ij. A smaller value of the Amari index indicates a more accurate
estimate of A, with zero implying a perfect fit.

To compute the Amari index, based on the output of each algorithm it is necessary to form
Â that has the same dimension as the true mixing matrix (20 × 10). To achieve this, we
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select the 10 columns in the estimated mixing matrix (For VB, it refers to the variational
mean of A computed using Equation (9)) that have the 10 largest l2 norms to form ÂVB,
ÂCSP, and ÂInfomax, respectively. Note that for both CSP and Infomax, the columns of the
estimated mixing matrix are normalized by the sum of the estimated source variances of the

two conditions, i.e., , where  are the estimated variance
of the source signals associated with the m-th SP for condition 1 and 2, respectively.

The correlation coefficient between the estimated source signals and the true ones is used as
the second performance index:

(16)

where  denotes the m-th true source signal and  denotes the m-th estimated source

signal using either of the two algorithms. For VB,  is simply the variational mean of the
m-th source signal computed using Equation (7). Note that for each run of the Monte Carlo
simulation the correlation coefficient is averaged over conditions, trials, and sources. To
resolve beforehand the permutation indeterminancy of the estimated source signals, we pair
the true source signals with the estimated ones through the following strategy: for the first
true source signal, we compute the correlation coefficient of its associated SP with the SP
associated with each estimated source signal in turn and pair it with the estimated source
signal that achieves the largest correlation coefficient. The remaining true source signals are
paired similarly except that each time the estimated source signals that have been chosen
earlier are excluded from consideration.

Likewise, the third performance index is the correlation coefficient that assesses the
reconstruction accuracy of the evolution of source amplitudes across trials for the two
algorithms:

(17)

where  .

3.1.2. Real EEG Data Analysis
Data Set 1: Seven healthy volunteers (s1–s7, four males and three females, all right handed,
21–24 years old) participated in our online motor imagery experiments with visual feedback.
The left- or right-hand movement imagination was designated to control the vertical
movement of a cursor. Figure 5 shows the paradigm of the feedback experiment. The EEG
was recorded using a BioSemi ActiveTwo system. A total of 32 data channels were placed
at positions according to the 10/20 international system, including C3/C4 and FCz electrodes
over the primary motor area (M1) and the supplementary motor area (SMA). All the data
channels were referenced to the left earlobe. Signals were sampled at 256 Hz. For each
subject, a data set of 240 trials (120 trials per task) recorded in a single session is used for
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offline algorithmic studies, where the whole data set is split into a training set of 160 trials
and a test set of 80 trials, with equal number of trials per class.

Data Set 2 (Data Set IVa, BCI Competition III (Blankertz et al., 2006)): The EEG data
of five healthy subjects (aa, al, av, aw, and ay) were recorded during motor imagery
experiments without feedback, in which they were instructed to perform one of three motor
imageries in each trial: left-hand, right-hand, or right-foot. The tasks in the data set include
only the right-hand and right-foot imageries. The EEG was recorded using BrainAmp
amplifiers. A total of 118 data channels were placed according to the international 10/20
system. Each trial lasted for 3.5 seconds following the visual cues. Signals were
downsampled to 100 Hz for analysis. A total of 280 trials of EEG data were collected for
each subject, with varying number of training and test trials per subject (see Table 2).

We compare the performance of VB, CSP, and Infomax on both real EEG data sets. To
avoid any potential bias towards a specific algorithm, for each data set identical
preprocessing settings (e.g., channel selection, band-pass filtering, time windowing) are
applied before using any algorithm, with details as follows:

• All data channels are used in the analysis for Data Sets 1 and 2, i.e., no channel
selection is performed.

• All EEG signals are band-pass filtered between 8 Hz and 30 Hz, which is known to
encompass the ERD/ERS effects4.

• The specific time windows for each trial of each data set are (0s denotes the start of
each trial) (1) 2.5–6s (Data Set 1), (2) 0.5–3.5s (Data Set 2). The 0.5s delay of the
window following the appearance of visual cues excludes the reaction period of
subjects in the data.

The VB, CSP, and Infomax algorithms are then employed to learn spatiotemporal
decompositions of each preprocessed data set from its training set. Since VB is naturally
able to deal with multiple-trial and multiple-condition data, each training set is formed as a
direct input to the algorithm. For CSP, because it can handle multiple conditions, within
each condition the EEG data is first concatenated across trials before being fed into the
algorithm. By ignoring both multiple-trial and multiple-condition structures, Infomax is
applied to the EEG data concatenated across trials and conditions.

An informative source signal should carry signatures in distinguishing different conditions;
to assess to what degree each estimated source signal exhibits task-related changes, we use
the R-square (coefficient of determination) (Casella and Berger, 2002) as a metric of its
correlation with condition labels. Specifically, for each individual source signal we compute
the R-square between its variance and the condition labels across trials in the unseen test
tests; the larger is the resulting R-square, the more task-related is the corresponding source
signal. Note that the variance is a legitimate measure that has long been used to quantify
changes in EEG power that are associated with ERD/ERS (Pfurtscheller and Aranibar,
1977).

In addition to considering each source signal separately, we can also assess how much
information they collectively carry regarding the condition labels. For such a purpose, we
predict the condition labels in the unseen test sets from all three data sets, using all the
sources signals estimated from each algorithm. Fisher linear discriminant analysis (FLDA)
(Bishop, 2006), which is simple and computationally efficient, is employed as the classifier.

4The issue of learning optimal temporal filters for classification is not addressed in this work. Refer to (Dornhege et al., 2006; Lemm
et al., 2005; Wu et al., 2008) for various treatments of the topic.
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As the input to FLDA, the feature vector of each trial consists of features that are each
defined as the log-variance of a source signal. Note that the log-transform makes the features
follow a Gaussian-like distribution, which is to ensure the optimality of FLDA. Moreover, to
avoid the overfitting of FLDA, it is crucial to select only part of the features that are
discriminative to form the feature vector5. We opt for a simple feature selection approach
based on the R-square: The estimated source signals are first ranked according to their R-
squares on the training set, and then only the n features derived from the source signals with
the n largest R-squares are selected; the optimal n is determined using 10-fold cross-
validation on the training sets.

3.2. Results on Synthetic Data
Figure 6 summarizes the results of comparison among VB, CSP, and Infomax using all three
performance measures. Overall, it is clear that VB outperforms CSP and Infomax
significantly under all SNR settings for all performance indices. Specifically, the fast
increase of the Amari index for CSP and Infomax as the SNR decreases indicates the
algorithms’ significant degrade in performance at low SNRs. By contrast, the Amari index
remains quite stable around a small value for VB under all SNR settings. Figure 6(B)(C)
shows similar superior performance of VB over CSP and Infomax in terms of the other two
indices. Remarkably, VB recovers the trial amplitude evolution of the source signals well
even under the SNR as low as 0dB, whereas CSP and Infomax performs poorly when the
SNR becomes low. It is encouraging that excellent and robust performance is achieved in
VB despite the presence of both strong within-trial temporal dynamics and between-trial
amplitude dynamics in the data.

As an intuitive example, Figures 7~ 8 give results from one Monte Carlo run at 0dB. For this
specific run, d(ÂVB, A) = 0.1365, rz = 0.7542, and rs = 0.9678 for VB; d(ÂCSP, A) = 2.0726,
rz = 0.5107, and rs = 0.7253 for CSP; d(ÂCSP, A) = 2.4369, rz = 0.4153, and rs = 0.5654 for
Infomax. Figure 7 shows the estimated mixing matrices using the Hinton diagram. It can be
seen that CSP and Infomax fail to differentiate the 10 redundant columns in the mixing
matrix. These redundant columns play the role of fitting the additive noise and hence cause
an overfit. By contrast, VB successfully shrinks the redundant columns to negligible values
that are barely discernible; the remaining columns are highly close to the true mixing matrix
according to both visualization and small value of the Amari index. Figure 8 shows the
estimated temporal dynamics and trial amplitude evolution of a specific source signal. It is
observed that the estimates from VB result in significantly less distortion to the true ones
than those from CSP and Infomax do. In particular, as shown in Figure 8(B), in estimating
the trial amplitude evolution for one condition VB correctly identifies the large positive
deflection of the amplitude that lasts approximately from trial 38 to trial 46; the one that
CSP identifies is clearly misplaced forward in time. Worse still, the deflection is completely
missed by Infomax.

All the above results demonstrate that ignoring inter-trial amplitude variability and
misidentification of source number in the modeling phase, as in CSP and Infomax, can lead
to significant estimation error for spatiotemporal patterns and trial amplitude evolution of
source signals. On the other hand, by explicitly modeling the inter-trial amplitude variability
in the data, VB is able to accurately recover the underlying spatio-temporal patterns and
track the dynamics of source amplitude across trials.

5This differs from the model size determination issue encountered in the generative modeling phase; a source signal may be
indispensable for the generative description of the data yet the feature constructed therefrom may be useless for discrimination
purpose.
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3.3. Results on Real EEG Data
Table 3 shows the classification accuracies for Infomax, CSP, and VB on the test sets of all
12 subjects from the two BCI data sets. As can be seen, VB’s prediction performance is
consistently better than Infomax and CSP’s for most of the subjects, with equal performance
for others. In terms of the mean classification accuracy, VB also has a higher rate (92.27%)
than Infomax (87.21%) and CSP (85.77%). One-sided paired-sample t test shows that the
improvement is significant, with P-values being 0.0018 versus Infomax and 0.0353 versus
CSP6. The improvement is most conspicuous for subjects ay, whose results are thus picked
out for illustration below.

Figures 9~ 11 show for subject ay the mixing matrices estimated by the three algorithms
(upper panels) and the R-squares of each estimated source signal computed on the test set
(lower panels). The sparseness of the mixing matrix estimated by VB is clearly visible in
Figure 9, with merely less than 30 non-zero columns remaining. CSP and Infomax by
contrast have no shrinking effect on the number of sources – the mixing matrices are simply
118 × 118 full matrices, as shown in Figures 10~ 11.

In terms of the R-squares, for VB it can be seen that the number of the discriminative source
signals (the 10th and 11th) are sparse as well. For Infomax, apart from the 19th and 32th
ones, many of the extracted source signals have small yet non-negligible R-squares. In fact,
much of the discriminative information carried by these source signals may well be
redundant for classification, as evidenced by the lower classification accuracy of Infomax
than that of VB on subject ay. For CSP, it is observed that there is one source signal (the
60th) with fairly high R-square, which means it correlates well with the tasks. Why in this
case is CSP only able to achieve an accuracy slightly above random guessing? It should be
noted that the displayed R-squares are computed ad hoc on the test set with its task labels
known, whereas during classification the R-squares on which the ranking of features are
based are computed on the training set, whose size is very small for subject ay. As a
consequence, it is found that on the training set some ”noisy” source signals in fact yield
inflated R-squares that surpass the one achieved by the 60th source signal simply due to
overfitting. Thus through our feature selection procedure, the features associated with
these ”noisy” source signals, rather than that associated with the 60th source signal, are
selected to form the feature vector, resulting in a low classification accuracy.

Another interesting observation is that the CSP’s test accuracy for subject ay is much lower
than the winning entry of the competition (which was 97.6% contributed by the authors’
group. See http://www.bbci.de/competition/iii/results/). Note that intensive manual tuning of
parameters were done on the training set in achieving the winning entry. In particular, only
part of the 118 channels were carefully selected to avoid the overfitting issue. The reason
why overfitting does not happen to VB is that most of the redudant sources that represent
noise in the data have been eliminated after the VB estimation, again stressing the
importance of model size determination. That said, we note that the most discrminative
source signal (the 10th) for VB still has a higher R-square value than the one for CSP.
Moreover, for VB there is another source signal (the 11th) attains a R-square value larger
than 0.5, which further increases the discriminability of the features.

Figure 12 shows for subject ay the spatio-temporal patterns for the 10th and 11th source
signals estimated by VB, with the left column for the 10th and the right column for the 11th.
Figure 12(A) shows the SPs corresponding to both source signals, which are located over the
left sensorimotor cortex. Figure 12(B) shows the change of instantaneous power (i.e., square

6Note that for some subjects (e.g., al, s5, s6, s7) since their EEG data are so strongly correlated with the tasks that there is barely any
space for further performance improvement. Nonetheless we report all the results for the sake of integrity.
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of the source signal at each time point) across time for the two source signals. Each curve is
obtained by averaging over the test trials associated with the corresponding condition. For
both source signals, it can be observed that there is a clear ERD phenomenon, which is a
short-lasting decrease of EEG power, for the right-hand movement imagery shortly after the
visual cues appeared. The results are consistent with the exisiting neurophysiological
knowledge that ERD typically appears in the contralateral sensorimotor cortex during
movement imagination (Pfurtscheller and Aranibar, 1977). Figure 12(C) shows for each
condition the evolution of trial amplitude. For both source signals the inter-trial variaiblity
during the right-foot movement imagination is prominent, suggesting the need to explicitly
take it into account in the modeling stage.

4. Discussion and Conclusion
4.1. Discussion

By taking into account the inter-trial variability in the data, it appears that the complexity of
model (1) may be too high given the large number of parameters involved. Two techniques
keep us on a safe ground. First, we have shown earlier in (3) that ARD as a principled way
for model size determination induces sparsity of A in model (1). Sparse learning is
especially suited in situations where the source number is smaller than the channel number.
Even in scenarios where sparsity is not the case for the true model, sparse learning may still
be desirable since estimation of a model with a dimension as high as the true one may be
unreliable due to the limited amount of data available (also known as the curse of
dimensionality) – a parsimonious model would typically lead to a better generalization
ability (Hastie et al., 2009). Furthermore, compared to the MAP methods for sparse learning,
e.g., group-LASSO and M-FOCUSS, which aim to search for the mode in the posterior
distribution, it is argued that sparse learning by means of ARD is more likely to capture
significant posterior mass and has much less risk of getting stuck at local optima (Wipf and
Rao, 2007). Second, the use of hierarchical modeling adds another layer of guard against
model overfitting. Indeed, in model (1) the source covariance across trials is designated to
follow a common unknown multivariate gamma distribution. Such a top-down constraint of
the prior distribution imposes an underlying structure (via Bayes’ rule) on the posterior
distribution of the source covariance and thus leads to a significantly reduced search space
of covariance parameters.

The VB principle has recently attracted a fair amount of attention in the EEG signal
processing community (Nagarajan et al., 2006; Hoffmann, 2007; Chatzis et al., 2008; Wipf
and Nagarajan, 2009). Nonetheless, as an approximation one might wonder how close the
variational distribution is to the true posterior. This remains an open question as the
closeness is dependent on the structure of the specific model at hand. In general, the quality
of variational approximation is good provided that the structured subspace is in a
sufficiently small neighborhood of the true posterior distribution. (Beal, 2003) presented a
simulation study on a mixture factor-analysis model, where the KL divergence between the
variational and exact posterior distribution was found to be fairly small, yet it increased
approximately linearly with the number of parameters in the model. This inevitably would
have an unfavorable influence on model selection within the variational framework, in that
simpler models might always be preferred to complex ones. However, in our Monte Carlo
simulation study we do not found this to be a severe issue as in nearly all runs VB can
accurately identify the correct model size. Furthermore, from a pragmatic viewpoint, the
variational distribution is useful for the following intuitive reason (MacKay, 2003). The way
of computing the MAP solution can be viewed as using a delta-function shape probability
distribution to fit the full posterior distribution. Regardless of its geometry, the structured
probability space for variational approximation is larger in size than the one containing only
delta-function shape probability distributions, thus leading to a better approximation to the
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full posterior distribution. In fact, the modified EM algorithm for computing the MAP
estimates (Dempster et al., 1977) is recovered by restricting the form of the variational
distribution of parameters to a delta function or point estimate. More recently, VB has also
been postulated as an inference principle implemented in the brain (Friston, 2010).

A similar Bayesian treatment of the amplitude variability in the context of EEG inverse
problem can be found in (Friston et al., 2006). (Limpiti et al., 2009) has recently proposed a
likelihood-based framework for modeling the inter-trial amplitude variability in event-
related potentials (ERPs). In particular, two approaches, namely linear dynamical system
response (LDSR) and independent response (IR), were employed for the amplitude
estimation. There are three important distinctions of how inter-trial amplitude variability is
modeled between our paper and (Limpiti et al., 2009). First, because ERP is a phase-locked
response in EEG, that is, positive or negative deflections always occur at the same time
relative to the external stimulus, it is typically modeled as a fixed effect, that is, its
waveform is assumed to be constant across trials. By contrast, induced responses such as
ERD/ERS reflect changes in ongoing oscillatory EEG activity that are not phase-locked to
any external stimuli, and as such they are modeled as random variables in our model.
Second, unlike the LDSR approach where a first-order AR model is employed to track the
dynamics of the learning effect across trials, we have not modeled the learning effect
because in an experiment involving multiple conditions, trials of different conditions are
mingled and randomized so as to avoid the habituation confound. In this case, the dynamics
of the learning effect may not be simply modeled by an AR model since the transition
between inter-condition trials and the transition between intra-condition trials are likely to
differ from each other, e.g., in terms of change in amplitude. Third, despite that in the IR
approach the amplitude is modeled as i.i.d. random variables across trials, the negative
values allowed by the underlying Gaussian distribution may lead to difficulty in interpreting
results. By contrast, in our framework the variance of each source signal is drawn from an
inverse-gamma distribution, which has non-zero probabilities at non-negative values only.
With that said, it is true in theory that the conditional independence assumption for trial
amplitude in our hierarchical model may be overly strong for modeling certain types of
inter-trial amplitude variability, such as those where the amplitude changes smoothly across
trials. Nonetheless, we believe our hierarchical modeling framework provides a natural basis
for further development of more complex models. Besides, our simulation study has shown
that our VB algorithm works satisfactorily even in the cases when there are strong
correlation between the amplitude of consecutive trials.

Canonical correlation analysis (CCA) (Hotelling, 1936) is another popular tool for the joint
analysis of two multivariate data sets. To avoid possible confusion, Appendix E reviews
CCA and contrasts it with our current methodology.

The hierarchical Bayesian modeling framework is flexible in that it may serve as a basis for
exploring potential extensions in a wide variety of settings. First, extension of the current
framework to the cases where there are more than two experimental conditions is
straightforward by expanding the number of sub-models in model (1). Second, similar
models can be developed to learn spatio-temporal decomposition of phase-locked
components in the EEG data. A crucial part of this effort will be to integrate the phase-
locking information into model development. Again, it would be interesting to evaluate its
prediction performance on ERP data sets, such as P300. Third, the idea of hierarchical
modeling can also be applied to factor analysis and ICA to enable them to cope with the
inter-trial amplitude variability in the EEG data. In fact, such a strategy has recently been
applied to ICA for the fusion of multi-subject data sets in the context of fMRI data analysis
(Varoquaux et al., 2010). Fourth, as opposed to the i.i.d. assumption in this paper, extending
model (1) into a state-space form would allow it to capture the temporal correlations in
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source signals (Brockwell and Davis, 2002). However, as the model complexity increases
the computational load of the associated inference algorithm will grow as well. Finally, the
generative modeling framework allows us to use unlabelled data for augmenting the labelled
training data to perform semi-supervised learning in classification since both types of data
can be employed to jointly specify the likelihood function of the generative model (Zhu,
2005).

4.2. Conclusion
In this paper, we have introduced a hierarchical Bayesian framework for learning spatio-
temporal decomposition of multichannel EEG data. The major features of the proposed
framework are summarized as follows:

• The hierarchical model is capable of accounting for the inter-trial amplitude
variability that is prevalent in multichannel EEG data, which has rarely been
brought into the attention of practitioners in EEG data analysis.

• The hierarchical model provides a natural characterization for spatiotemporal
decomposition of EEG data recorded under multiple conditions, which makes it
appealing for the analysis of data collected in a large array of neuroscience studies.

• The model can be viewed as an extension to the CSP algorithm, which has
achieved great successes in BCI data analysis. Meanwhile, it precludes the
overfitting issue of CSP by enforcing sparsity on the number of sources7; each
estimated source now much more likely represent a physical or physiological
process rather than random noise.

• The VB algorithm yields approximate posterior distributions of all the variables in
the model, which facilitates the potential assessment of their statistical significance
in future studies.

Using both simulated and real data sets, we have demonstrated that our VB algorithm is able
to produce more accurate estimates of spatio-temporal patterns as well as better prediction
performance than the CSP and Infomax algorithms. The reason why our proposed method
outperforms CSP and Infomax is because a proper probabilistic model is chosen to
characterize the complex nature of multi-trial EEG data. In conclusion, we believe that our
statistical modeling framework can serve as a powerful tool for extracting brain patterns,
characterizing trial-to-trial brain dynamics, and decoding brain states by exploiting useful
structures in the data.
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A. A Brief Review of the CSP Algorithm
Let us introduce the CSP algorithm in the context of EEG signal processing. Consider two
classes of zero-mean multichannel EEG signals Xk ∈ ℝC×Jk (k = 1, 2). The empirical spatial
covariance matrices for the two classes can then be computed as

7An elegant treatment of the same issue from a discriminative learning perspective can be found in (Tomioka and Müller, 2010).
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(18)

The aim of CSP is to find a set of spatial filters by which the ratio of variance between the
two classes is maximized. Here the ratio of variance potentially serves as a measure of
separability between the two classes. Mathematically, the spatial filters can be obtained in a
collective manner by solving the following optimization problem

where W ∈ ℝC×C contains all C spatial filters as rows. Equivalently, the eigenvectors are
given by simultaneous diagonalization of the covariance matrices R ̂1 and R ̂2

where Ω1 and Ω2 are both diagonal matrices.

B. CSP as ML Estimation of Model (4): Proof of Theorem 1
The proof is in line with the idea in (Pham and Cardoso, 2001).

Under the setup of the noiseless and square mixing matrix (assumptions (i) and (ii)), the log-
likelihood of the observed EEG data is

where Rk = AΛkAT, and DKL(S1‖S2) denotes the KL divergence between two Gaussian
distributions with covariance matrices S1 and S2, respectively. The last equality follows
from the definition of KL divergence.

Because the KL divergence is invariant to invertible linear transformations and the
Pythagorean decomposition holds as the involved distributions are all Gaussian, the log-
likelihood is further rewritten as
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where Λ1 and Λ2 are fully parameterized diagonal matrices. Therefore, regardless of A the
second KL divergence in the bracket can always be made exactly to zero. The first KL
divergence will be zero if and only if A−1R ̂kA−T is a diagonal matrix. In other words, the
log-likelihood is maximized if and only if R ̂1 and R ̂2 are jointly diagonalized by Â−1 and
Â−T. In addition, it can be shown that under assumption (iii) the matrix that jointly
diagonalizes R ̂1 and R ̂2 is unique (Belouchrani, 1997), hence Â−T = W.

C. Derivation of the VB updates for Model (1)
The joint probability distribution of all the random variables in model (1) is derived as

The variational posteriors can then be computed as follows by maximizing (5) with respect
to q (see (Bishop, 2006) for the derivation)

where  denotes all

the random variables in Θ except .

where
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where .

where .

where  .

D. Derivation of the variational lower bound ℒ in (5)
In light of (6), the variational lower bound is expanded as

(19)

where each term in (19) is given by
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E. Connections with Canonical Correlation Analysis (CCA)
CCA (Hotelling, 1936) is a useful data analysis tool for exploring the associations between
two multivariate data sets (termed views) X1 ∈ ℝC1×J and X2 ∈ ℝC2×J (both assumed to
have zero mean for simplicity). It has been successfully employed in both EEG and fMRI
data analysis (Friman et al., 2003; Lin et al., 2006).

The idea of CCA is to first find the pair of linear combinations  having the largest

correlation, and then to find the pair of linear combinations  having the largest
correlation among all pairs uncorrelated with the initially selected pair, and so forth. The

pairs of linear combinations  are called canonical directions, and their
correlations are called canonical correlations. Specifically, the canonical directions can be
obtained by solving the following generalized eigenvalue problem:

where . The following generative model can be written for CCA:
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(20)

where Ψk can be non-diagonal. It is proved in (Bach and Jordan, 2006) that the connection
between the ML estimate of Ak and the canonical directions is given by

where Uk ∈ ℝCk×D contains the first D canonical directions as columns, Mk ∈ ℝD×D are
arbitrary matrices such that  (where P is the diagonal matrix consisting of the first
D canonical correlations) and the spectral norms of Mk are smaller than one.

Similarities of models (4) and (20), and the fact that they both are able to deal with two data
sets notwithstanding, important differences exist between CCA and our proposed
methodology on both conceptual and technical levels. Conceptually, as clearly shown in
model (20) the two data sets involved in the CCA analysis are supposed to reflect a common
underlying physical process, which can be estimated by maximally correlating the two data
sets. An example is simultaneously recorded EEG and fMRI signals, which are different
modalities yet reflect the same brain state. By contrast, the two data sets in our analysis are
regarded as being associated with two different conditions. The goal is not to correlate the
data sets but typically to estimate the task-related components for each condition.

The fundamental distinction in their goals in turn helps us understand the structural
differences between the generative models (4) and (20). First, the dimensions of the two data
sets are allowed to differ in model (20), which again can be exemplified by the extremely
high dimensionality of fMRI data (~ 104 voxels) and the comparatively moderate
dimensionality of EEG data (~ 102 channels). Second, as representing the same physical
process the TPs of the sources are identical for the two data sets, while the mixing matrices
are different. Third, as long as they are positive semidefinite, the noise covariance matrices
in model (20) are allowed to have full degrees of freedom as apposed to being restricted to
be diagonal in model (4). Indeed, model (20) is formulated such that the latent space merely
captures the cross-correlations between data sets, leaving the correlations within each data
set to be fully accounted for by the noise covariance, which is hence modeled as being non-
diagonal. By contrast, in model (4) the cross-correlations between the data sets recorded

under two conditions are zero because the TPs  are assumed to be uncorrelated.
Thus fitting both data sets reduces to fitting each individual data set separately with the only
a priori information being that they share common SPs. To avoid any trivial solutions when
fitting individual data set, the noise covariance matrices are constrained to be diagonal.
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Figure 1.
An illustration of how the second-stage model allows information to be shared among trials

for condition k. The hyperparameters  in the prior of  are estimated via
empirical Bayes (described in Section 2.2) by pooling information from all trials. For the i-
th trial, the Bayes’ rule then combines the evidence from single-trial data (likelihood) with

the prior information to yield the posterior distribution of .
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Figure 2.
A graphical model representation of the hierarchical model (1), with arrows indicating
statistical dependencies. The outer plate represents the multiple-trial data set with Nk trials
for condition k (k = 1, 2), where the trial index is given by i; the inner plate represents
single-trial data within the data set with Jk observations for condition k, and the observation
index is given by j.
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Figure 3.
A scheme for exploratory EEG data analysis by using the proposed hierarhical modeling
framework. The source number M can be determined by discarding those sources whose
corresponding columns in the estimated mixing matrix (variational mean of A) are with
negligible l2 norms (see Section 3.1.1).

Wu et al. Page 31

Neuroimage. Author manuscript; available in PMC 2012 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
An example of the simulated waveforms and inter-trial amplitude variability of source
signals. (A) A source signal with i.i.d. data points generated from a Gaussian distribution.
(B) A source signal generated from a fourth-order AR model. (C) Trial amplitude evolution
of a source signal for condition 1.
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Figure 5.
Paradigm of the online motor imagery experiment for Data Set 1. In each trial, the subject
was in the relaxed state for the first two seconds when the screen was blank. Starting from
the 3rd second, a visual cue (an arrow) appeared on the screen, indicating the imagery task
to be initiated. The arrow pointing upward and downward indicated the tasks of imagination
of the left hand and the right hand movement, respectively. From the 4th second, a cursor
started to move horizontally in a constant speed from the left side to the right side of the
screen. The vertical position of the cursor was determined by the accumulated power
difference between channel C3 and C4. At the end of the trial, a tick or cross mark appeared
to indicate correctness of the classification.
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Figure 6.
Comparison between the results of the VB, CSP, and Infomax algorithms at different SNR
settings. Each result is obtained by averaging over 50 Monte Carlo runs. (A) The Amari
indices between the estimated mixing matrix and the true one. (B) The correlation
coefficients between the estimated source signals and the true ones. (C) The correlation
coefficients between the trial amplitude of the estimated source signals and that of the true
ones.
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Figure 7.
An example from one Monte Carlo run illustrating that ARD can effectively determine the
source number. (A) Hinton diagram of the true mixing matrix A. (B) Hinton diagrams of
ÂVB, whose Amari index is 0.1365. (C) Hinton diagram of ÂCSP, whose Amari index is
2.0726. (D) Hinton diagram of ÂInfomax, whose Amari index is 2.4259. Each entry in the
matrices is represented by the size of the area of a red (positive value) or green (negative
value) square.
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Figure 8.
Temporal dynamics and trial amplitude evolution of a specific source signal at one Monte
Carlo run. (A) True and estimated temporal dynamics of the source signal at a specific trial.
(B) True and estimated trial amplitude evolution of the source signal across trials for
condition 1.
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Figure 9.
The mixing matrix estimated by VB and the R-squares of all the estimated source signals for
subject ay. The upper pannel shows the estimated mixing matrix as a Hinton matrix; the
lower pannel shows the R-squares of each source signal computed on the test set. Note that
both plots are drawn such that each source is located at the same position on the horizontal
axes.
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Figure 10.
The mixing matrix estimated by CSP and the R-squares of all the estimated source signals
for subject ay. The layout of both pannels is the same as in Figure 9.
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Figure 11.
The mixing matrix estimated by Infomax and the R-squares of all the estimated source
signals for the right-hand motor imagery for subject ay. The layout of both pannels is the
same as in Figure 9.
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Figure 12.
The spatio-temporal patterns of the two most discriminative source signal estimated by VB
for subject ay. The left column is for the most discriminative source signal, and the right
column is for the second most discriminative source signal. (A) The spatial pattern on the
scalp. (B) The change of instantaneous power across time for both conditions. Both curves
are obtained by averaging over the associated test trials. (C) The evolution of trial amplitude
for both conditions. The amplitude at each trial is smoothed by taking its average within the
subsequent 3 trials. Note that the trial order on the horizontal axis may not be important in
the interpretation of the results since the trials may have been randomized in order in the
BCI competition data set.
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Table 1

List of Notation

Symbol Definition

k index for experimental conditions

i index for trials

j index for sample points in each trial

c index for data channels

m index for source signals

Nk number of trials for each condition

Jk number of sample points in each trial

C number of data channels

M number of source signals

A mixing matrix

Â estimated mixing matrix

am the m-th column of A

ãc the transpose of the c-th row of A

α(m) precision parameter for am

multichannel EEG signals at the j-th sample for condition k

source signals at the j-th sample for condition k

additive noise component at the j-th sample for condition k

Λk

source covariance matrix for condition k, with the variance for source m being 

Ψk

noise covariance matrix for condition k, with the variance for channel c being 

ℝn real n-dimensional vectors

ℝm×n real m × n matrices

Γ(y) gamma function (y > 0)

Ϝ (y)

digamma function defined as 

µ, Σ) multivariate Gaussian distribution with mean µ and covariance Σ

a(a, b)

gamma distribution defined as 

subspace of probability distributions

q* variational distribution

ℒ(p) variational lower bound as a functional of probability distribution p

Lmax maximal value of the log-likelihood function for an estimated model

D(p ‖ q) Kullback-Leibler (KL) divergence between probability distribution p and q

〈·〉p mathematical expectation with respect to probability distribution p
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Symbol Definition

B−1 inverse of matrix B

BT transpose of matrix B

I identity matrix

tr(B) trace of matrix B

|B| determinant of matrix B

d(B, C) Amari index between matrix A and matrix B

diag(b) diagonal matrix with vector b as diagonal entries

diag(B) diagonal matrix with diagonal entries identical to those of matrix B

‖ b ‖2 l2 norm of vector b

ln natural logarithm function

Const constant

i.i.d. independent and identically distributed
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Table 2

Number of training and test trials for each subject in Data Set 2

aa al av aw ay

training trials 168 224 84 56 28

test trials 112 56 196 224 252
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Table 3

Comparison of Infomax, CSP, and VB’s classification accuracies (%) on the test sets from two BCI data sets.

Data Set Subject Infomax CSP VB

s1 93.75 93.75 93.75

s2 93.75 100 100

s3 73.75 81.25 88.75

1 s4 86.25 83.75 90.00

s5 96.25 100 100

s6 96.25 98.75 98.75

s7 96.25 98.75 98.75

aa 76.79 74.11 77.68

al 100 100 100

2 av 73.47 57.14 79.08

aw 83.04 93.30 95.98

ay 76.98 48.41 85.71

mean 87.21** 85.77* 92.27

**
P = 0.0018,

*
P = 0.0353
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