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ABSTRACT

The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neu-
trino oscillations through the observation of neutrinos from the solar core. In this paper we
present a search for neutrinos associated with sources other than the solar core, such as gamma-
ray bursters and solar flares. We present a new method for looking for temporal coincidences
between neutrino events and astrophysical bursts of widely varying intensity. No correlations
were found between neutrinos detected in SNO and such astrophysical sources.
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1. Introduction

The Sudbury Neutrino Observatory (SNO) col-
laboration has looked for time-dependent anoma-
lies due to both periodic variations (Aharmim
et al. 2005, 2010) in neutrino flux and short bursts
of neutrinos (Aharmim et al. 2011b). In the
present study, we are specifically searching for neu-
trino events that are correlated to other known as-
trophysical events. There is a wide variety of po-
tential astrophysical sources of neutrinos. In this
paper we consider “burst” events, which include
γ-ray bursters (GRB’s), solar flares, magnetars,
and an intense burst observed in the Parkes ra-
dio telescope. These astrophysical burst events
are short-lived and occur at random. It is ex-
pected that any related neutrino signal would be
undetectable (Piran 2004; Bahcall 1988) and the
present experimental constraints provide only lim-
its (Hirata et al. 1988, 1990; Aglietta et al. 1991;
Fukuda et al. 2002; Thrane et al. 2009).

Similar searches for neutrinos temporally cor-
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related with astrophysical events have treated all
bursts (regardless of their intensity) equally in
terms of their potential for ν production (Fukuda
et al. 2002), and/or examined only the highest-
intensity burst(s) (Thrane et al. 2009). We intro-
duce a novel technique, the Maximum Likelihood
Burst Analysis (MLBA), which features some ad-
vantages over previous analysis techniques when
searching data from neutrino detectors for tem-
poral correlations with astrophysical burst events.
The MLBA provides the versatility to deal with
bursts whose intensities vary over many orders of
magnitude, and to accommodate correlations be-
tween γ intensity and ν emission. This allows us to
use the integrated intensity over a large number of
bursts instead of only the most intense burst. The
results from the MLBA can therefore be employed
to test a variety of models in a straightforward
manner and, as with previous analysis techniques,
can be employed to set limits on the number of
neutrino events correlated with the bursts – and
hence indirectly set limits on the fluences.

We begin with a discussion of the SNO de-
tector before discussing two types of astrophysi-
cal events, GRB’s and solar flares, on which we
have chosen to focus. In section 4, we present the
MLBA method and motivation. Next, we examine
solar flare and GRB observations in conjunction
with the SNO neutrino data set, and give limits
for the associated parameter for neutrino fluences
from the burst events. We also show how this
can be related to the neutrino fluence limits that
have been typically presented in the literature. In
the final section, we search for signals in the SNO
data associated with two unusual isolated astro-
physical events: the Parkes radio burst (Lorimer
et al. 2007) and the SGR 1806-20 magnetar erup-
tion (Palmer et al. 2005). In all cases, no signifi-
cant correlations are seen between the SNO data
and the astrophysical sources. However, limits on
neutrino fluences from solar flares and GRB’s are
improved in the low-energy ν regime compared to
previous analyses in the literature.

2. The SNO Detector

The SNO detector (Boger et al. 2000), shown
schematically in Figure 1, consisted of an in-
ner volume containing 106 kg of 99.92% isotopi-
cally pure heavy water (2H2O, hereafter referred

PSUP

2H2O

Acrylic
Vessel

H2O

Fig. 1.— (Color online) Schematic diagram of the
SNO detector. We used a coordinate system with
the center of the detector as the origin, and z di-
rection as vertically upward.

to as D2O) within a 12 m diameter transpar-
ent acrylic vessel (AV). Over 7 × 106 kg of H2O
between the rock and the AV shielded the D2O
from external radioactive backgrounds. An array
of 9456 inward-facing 20 cm Hamamatsu R1408
photomultiplier tubes (PMTs), installed on an
17.8 m diameter stainless steel geodesic structure
(PSUP), detected Cherenkov radiation produced
in both the D2O and H2O. The PMT thresholds
were set to 1/4 of the charge from a single photo-
electron. The inner 1.7 × 106 kg of H2O between
the AV and the PSUP shielded the D2O against ra-
dioactive backgrounds from the PSUP and PMTs.

The detector was located in Vale’s Creighton
mine (46◦28′30′′N latitude, 81◦12′04′′W longi-
tude) near Sudbury, Ontario, Canada, with the
center of the detector at a depth of 2092 m
(5890±94 meters water equivalent). At this depth,
the rate of cosmic-ray muons entering the detec-
tor was approximately three per hour. Ninety-one
outward-facing PMTs attached to the PSUP de-
tected cosmic-ray muons. An offline veto based
on information from these PMTs significantly re-
duced cosmogenic backgrounds.

SNO detected low energy neutrinos through the
following reactions:
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• νx + d→ p+ n+ νx, Neutral current (NC),

• νe+d→ p+p+e−, Neutrino Charged current
(CC),

• ν̄e+d→ n+n+e+, Anti-Neutrino Charged
current (CC-anti),

• νx + e− → νx + e−, Elastic scattering (ES),

where x implies electron, muon or tau neutrinos.
The NC reaction is equally sensitive to all three
active neutrino and anti-neutrino flavors. This re-
action is sensitive down to neutrino energies of
approximately 2.2 MeV, which gives us a lower
threshold than many other experiments. The CC
reaction is only sensitive to νes, and the CC-anti
reaction is only sensitive to ν̄es. The ES reaction
is sensitive to all neutrino and anti-neutrino fla-
vors, but the cross-section for νes (ν̄es) is approx-
imately six (three) times larger than that for the
other flavors. For neutrino energies above approxi-
mately 6 MeV, the CC reaction has a cross-section
more than ten times higher than the ES reaction,
which provides increased sensitivity for an equiva-
lent target exposure compared to experiments that
are only sensitive to the ES reaction.

The recoil electrons from both the ES, CC, and
CC-anti reactions were detected directly through
their production of Cherenkov light. The total
amount of light detected by the PMT array was
correlated with the energy of the recoil electron.

The SNO detector operated in three distinct
phases distinguished by how the neutrons from the
NC interactions were detected. In the D2O phase,
the detected neutrons captured on deuterons in
the D2O releasing a single 6.25 MeV γ-ray, and
it was the Cherenkov light of secondary Compton
electrons or e+e− pairs that was detected. In the
salt phase, 2 × 103 kg of NaCl were added to the
D2O, and the neutrons captured predominantly on
35Cl nuclei, which have a much larger neutron cap-
ture cross-section than deuterium nuclei, resulting
in a higher neutron detection efficiency. Capture
on chlorine also released more energy (8.6 MeV)
and yielded multiple γ-rays, which aided in iden-
tifying neutron events. In the NCD phase, an ar-
ray of proportional counters (the Neutral Current
Detection, or NCD, array) was deployed in the
D2O (Amsbaugh et al. 2007), but some sensitivity
remained in the data from the PMT array for neu-
trons capturing on the D2O as in the first phase.

Neutrino events observed with the PMT ar-
ray were selected with the same selection and re-
construction criteria as those in Aharmim et al.
(2011a) except the data-set features no high en-
ergy cutoff. It consists almost entirely of events
below 20 MeV. Table 1 gives the run times and
the rate of events consistent with being neutrinos.

3. Burst Events

3.1. Solar Flares

The Homestake solar neutrino experiment re-
ported a small excess of events possibly correlated
with large solar flares (Davis 1994, 1996), which
provided a motivation for subsequent searches. If
these events were associated with pion production
in the solar atmosphere then these would produce
both electron and muon neutrinos with energies
up to approximately 50 MeV. The Kamiokande-
II collaboration has reported no excess of events
associated with large solar flares (Hirata et al.
1988, 1990). Analysis of the LSD data has also
reported no excess of events associated with large
solar flares (Aglietta et al. 1991). Neutrinos could
also be produced by low energy beta decay due
to excitation in the solar atmosphere. Bahcall
(1988) has argued that although solar flares could
produce neutrinos, they should not be observable
in any current detector.

For the coincidence analysis presented here, the
solar flare data is taken from HESSI (the High
Energy Solar Spectroscopic Imager), which regis-
ters radiation ranging from 3 keV to 17 MeV with
highly accurate timing. Extensive data-sets are
available from (Mission 2009), with data from over
20000 flares – the analysis performed in this paper
requires simply the time (tj), duration (δtj) and
intensity (Ij) of each flare. Ij is defined as the to-
tal number of registered counts and varies over 10
orders of magnitude. To speed up the analysis we
only include events with intensity Ij > 105 pho-
ton counts, which reduces the number of events
to 842. δtj is typically around 30 minutes, but
is also event-dependent. Data from HESSI starts
on modified Julian date (MJD) 52330, thus over-
lapping with the last half of the salt phase and
completely with the NCD phase.
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Table 1: Run times and event rates for the three phases of SNO. The dates are given in modified Julian date
(MJD).

Phase On (MJD) Off (MJD) Low energy cutoff (MeV) Livetime (days) Event rate (day−1)
D2O 51484 52056 5.0 282.6 9.29
Salt 52116 52879 5.5 385.5 8.15
NCD 53336 54067 6.5 364.4 4.09

3.2. γ-ray Bursters

γ-ray bursters (GRB’s) have been known since
the 1960’s, and an exhaustive review is provided
in (Piran 2004). GRB’s produce very large fluxes
of γ rays over a definite period of time. There
are two classes, short and long. Short GRB’s emit
90% of the energy within about 100 ms, while long
GRB’s emit 90% of the energy within about 100 s.
Many models for explaining GRB’s have been pro-
posed. Some models suggest a comparatively large
flux of high energy (GeV to TeV) ν’s, which might
be detectable in (e.g.) ICECUBE. Hence it is rea-
sonable to ask if ν’s could be seen by SNO. The
answer is almost certainly not, as fluxes of low-
energy (MeV) ν’s should be very low, such that
no existing or planned detector could see them
from cosmological distances (Piran 2004). How-
ever, given the uncertainty in the GRB models, it
is useful to look for coincidences between GRB’s
and SNO events. Note that Super-Kamiokande
(SK) (Fukuda et al. 2002; Thrane et al. 2009) has
already searched for such coincidences, but with
no significant effect observed.

The “time of a GRB” is defined as the time at
which the burst starts. Since the real nature of
GRB’s is unknown, there are various possibilities
for the timing of the associated ν’s. In this anal-
ysis we have chosen two time windows to cover
different possible scenarios:

1. Assume that the ν’s are produced before the
γ’s (e.g. a hypernova would have a core
collapse followed by a visible outburst after
some hours.) Based on SN 1987a the time
difference could be as much as 3 hours. For
this, we search for ν’s in an asymmetrical
window -3 hrs < δt < 0.

2. Assume the initial γ’s then trigger a sec-
ondary process which emits ν’s. In addition,
assuming the ν’s are massive, they would be

slightly delayed due to the travel time. For
this, we search for ν’s in an asymmetrical
window 0 < δt < 3 hrs.

The GRB data for this analysis is taken from
Swift (NASA 2006), which is a multi-wavelength
observatory dedicated to the study of GRB’s, with
three instruments that cover γ-ray, X-ray, UV and
optical frequencies. The Swift data set starts on
MJD 53329, which overlaps completely with the
NCD phase, and includes a total of 190 events.

4. Maximum Likelihood Burst Analysis

4.1. Motivation and Assumptions

Both solar flares and GRB’s have hugely vary-
ing fluxes. Clearly, if a burst event is “strong”, it
is more likely to have associated ν’s; some bursts
would be (hypothetically) too weak to produce
a ν in SNO. We also need to take into account
ordinary solar neutrino (“background”) events in
SNO. In addition, the duration of solar flares is
highly variable, while various different time win-
dows can be used for GRB’s. A Maximum Like-
lihood Burst Analysis (MLBA) can adeptly deal
with all the above challenges. For the MLBA, we
suppose the neutrino events in SNO fall into two
classes:

1. Random events that arrive at a constant
background rate rB .

2. Burst events that are associated with some
astrophysical trigger (i.e. GRB’s or solar
flares). These consist of nx events at a time
tj with a characteristic spread δtj . In the
case of a flare, tj would be the start of the
flare and δtj its duration. In the case of a
GRB, tj and δtj would be dictated by the
time window being used (see Section 3.2).

The simplest assumption is that the number of ex-
tra neutrino events in SNO (i.e. burst-associated
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events rather than background) is directly related
to the fluence:

nx (I) = αI. (1)

This assumption would be exact if all bursts have
identical physical causes but are at varying dis-
tances, so that the variations in both ν and γ
fluxes are purely geometric. It is also likely to
be approximately true in cases where there is a
significant variation in intrinsic luminosity, as in
the case of Type II supernovae.

A Maximum Likelihood fit can be used to esti-
mate α by averaging over many bursts. It is well
known that supernovae fall into two very different
classes: Type Ia (carbon detonation) supernovae
produce very few prompt neutrinos (Odrzywolek,
A. & Plewa, T. 2011), whereas Type II (core
collapse) supernovae emit approximately 1057 ν’s
over a 10 s period. It is quite possible that GRB’s
follow a similar pattern. In such a case it should be
noted that we have fitted for the average α over
all bursts, and if only some bursts include neu-
trino emissions then the α for these bursts would
be higher.

4.2. Maximum Likelihood Fitting

We have a total NSNO events spread over a to-
tal time Ttot and a live time Tlive. Assuming any
actual signal is small, we have a background rate

rB =
NSNO

Tlive
(2)

Note that the background rates rB for the various
phases are given in Table 1. Now suppose there
is a burst with some characteristic intensity Ij at
time tj which lasts for a time δtj . By hypothesis,
this will produce nx (Ij) = αIj ν’s. In time δtj
around the j’th burst, we would expect

nj = wj (rBδtj + αIj) (3)

events, where wj is a weighting factor for the de-
tector livetime given by

wj =
1

δtj

∫ tj+δtj

tj

∑
m

H (t− tsm)H (tem − t)dt (4)

where tsm (tem) are the start (end) times of run m,
and H(x) is the Heaviside function. If wj < 0.05

the burst is ignored altogether. This implicitly as-
sumes that the events are uniformly distributed
over the time window. The actual number of
events will form a Poisson distribution, so we
would observe kj events with a relative probability

P (kj , α) =
n
kj
j

kj !
e−nj (5)

Hence for all the bursts taken together, the like-
lihood is:

L (α) =

Nbursts∏
j=1

P (kj , α) (6)

The best-fit value, αfit, is found by minimizing
− ln(L) with respect to α. The 90% upper limits
on α are given by

− ln(L(α90)) = − ln(L(αfit)) + 0.821762. (7)

It is possible for the fit to give αfit < 0, which
is obviously unphysical, but in such a case Eq (7)
can still give us a physical upper limit on α.

An upper limit can also be obtained via
Monte Carlo simulations using a Feldman-Cousins
style (Feldman & Cousins 1998) method, which
provides a completely independent check on the
method. This involves creating many MC datasets
with some fixed α value (αin) and running each
dataset through the Maximum Likelihood fitter to
obtain a result αout, repeating this procedure for
many different αin values, then plotting the αin
vs αout distributions. We can extract from this an
upper limit on αin (i.e. the “real” value of α) for
a given value of αout (i.e. the value of α obtained
from the Maximum Likelihood fitter). Results for
this technique are completely consistent with the
MLBA results reported herein.

4.3. Obtaining Fluence Limits

Once a limit on the number of burst-related
SNO events is obtained, the next logical step is to
turn this into a fluence limit. Due to the lack of
well known spectra, previous results documented
in the literature (Fukuda et al. 2002; Hirata et al.
1988) express limits on neutrino fluences at the
detector in terms of “Green’s function” fluence for
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mono-energetic neutrinos:

Φν (Eν) =
N90

nR∑
i=1

Ni
∫
σi (E′ν) εi (E′ν) δ (Eν − E′ν) dE′ν

.

(8)
This form takes into account the possibility that
there may be several (nR) possible reactions for
detecting any particular neutrino flavour. For a
given reaction i , σi (Eν) is the cross-section for
neutrinos of energy Eν , εi (Eν) the detection ef-
ficiency, Ni the total number of targets and N90

the 90-percent confidence limit on the number of
burst-associated neutrinos registered at the detec-
tor. Note that only data from the photomultiplier
array in the SNO detector was used, not the data
from the independent array of neutron detectors
in the NCD phase of the experiment.

To calculate N90 in Eq (8), we start by taking
the fitted value α90 (the 90% confidence limit for
α.) From this, we find the expected number of
burst-related ν’s per burst from Eq (1), weighted
by the windowing function in Eq (4). Altogether,
this yields:

N90 =
α90

Nburst

Nburst∑
j=1

Ijwj (9)

Note that this does not include systematic uncer-
tainties, which are small compared to the statisti-
cal uncertainties.

For each of the reactions we parameterize the
low-energy cross-section in Eq (8) as

σi (E) = σ0
i

(
Eν − E0

i

)ki
(10)

where the values of the threshold energy E0
i are

calculated, and σ0
i and ki are fitted using ener-

gies below 20 MeV. Each reaction also has its
own εi(Eν), which depends on one or more factors
(photomultiplier tube efficiency for electron detec-
tion, neutron capture efficiency, etc.) and varies
from phase to phase in the SNO experiment. The
number of targets also varies from reaction to re-
action.

5. Results

5.1. Flare Results

The MLBA results for α for the solar flares are
shown in Table 2: the larger number of flares dur-
ing the SNO salt phase is due to the overlap with

the solar maximum. There is no evidence for a sig-
nal, for either the SNO salt phase or NCD phase.

Figure 2 shows a comparison of the excess ob-
served in Homestake run 117 in comparison to
exclusion limits from the results presented here
and KAM II (Hirata et al. 1988). Excesses were
claimed to be seen in other Homestake runs with
similar limits. The results are obtained assuming
all the neutrinos are generated as νe’s in the Sun’s
atmosphere, but due to vacuum oscillations the
probability of detecting the neutrinos in that state
is 0.55. The remaining probability has the neutri-
nos as either νµ or ντ . This analysis excludes the
Homestake result down to approximately 2.2 MeV.
The KAM II and Homestake results are both ob-
tained from single large bursts, whereas this result
is obtained from multiple bursts. Also the Homes-
take result is obtained with a burst occurring dur-
ing a run that lasted six days (MJD 48408.89 to
48414.85), whereas this result is obtained with a
significantly shorter interval corresponding to the
actual flare.
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Fig. 2.— Fluence of neutrinos from solar flares
versus neutrino energy. The excess shown for
Homestake occurred during run 117, which cor-
responded to a large solar flare. The Homestake
result is obtained assuming the excess in run 117 is
attributed to a solar flare.The results for all exper-
iments are calculated assuming pure νe production
in the solar atmosphere and include vacuum oscil-
lations during their journey to Earth. The results
for Kam II are recalculated from (Hirata et al.
1988) based on this model and assuming a 100%
detection efficiency for scattered electrons above
19 MeV and 0% efficiency below this.
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Table 2: MLBA results for solar flares. Note that the units of α are [SNO events/HESSI photon counts]. α90

refers to the 90% upper confidence bound on α, and N90 is the 90% upper confidence bound on the average
number of flare-associated SNO events per flare.

SNO Data αfit α90 ln[L(α)]− ln[L(0)] No. Flares N90

Salt Phase 2.79× 10−9 1.21× 10−8 0.13 172 0.057
NCD Phase 5.38× 10−10 3.44× 10−9 0.07 94 0.022

5.2. GRB Results

The MLBA results for the GRB’s are shown in
Table 3. There is no evidence for a signal in either
timing window. The 90% upper confidence bound
on α obtained from the Maximum Likelihood fit-
ting was verified using Monte Carlo simulation and
the Feldman-Cousins technique as described at the
end of Section 4.2.

To facilitate comparison with the results of
SK (Fukuda et al. 2002), Table 4 converts the
Swift results for the NCD phase (-3 hrs< δt <
0 timing window) to a “Green’s function” fluence,
using Monte Carlo to obtain the necessary upper
limits on the number of GRB-associated events.
These results are plotted in comparison to SK’s in
Figure 3 for various neutrino flavours.
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Fig. 3.— Fluence of neutrinos from GRB versus
neutrino energy. The results for SK are obtained
from (Fukuda et al. 2002). The authors do not cal-
culate results below 7 MeV, but the limits are ex-
pected to have a sharp turn up due to the thresh-
old for detecting scattered electrons. The results
from SNO presented here are from the NCD phase
using SWIFT data with a −3 hrs < δt < 0 hrs
time window. Results from other time windows
and phases are similar.

6. Other Events

Two isolated astrophysical events are worth ex-
amining. The first of these events is the “Parkes
Burst” (Lorimer et al. 2007), a very intense ra-
dio signal with a duration of less than 5 ms found
in archival data from the Parkes radio telescope.
It occurred on 24 August 2001 at UT 19:50:01
(MJD 52145.82640046). The source is unknown,
but is believed to be at great distance. The second
is a giant γ-ray flare from the magnetar SGR 1806-
20 (Palmer et al. 2005) on 27 December 2004 at
UT 21:30:26.65 (MJD 53366.89614178). In this
case, there was a precursor burst 143 s before the
main burst.

As well as searching in the SNO neutrino data-
set employed in the rest of this paper, we have
also searched a different set of SNO events: the
“muon” set employed in (Aharmim et al. 2009).
The “muon” set, comprised of 77285 events, is de-
signed to enhance the muon signal rather than the
neutrino signal; approximately 500 of the events
are likely to be atmospheric neutrinos while the
rest are likely muons. By searching both SNO
data-sets, we can look for correlations of either
neutrinos or muons with these isolated astrophysi-
cal events. (High energy muon-neutrinos from any
astrophysical source would produce muons in the
rock, which is confirmed by the observation of up-
ward going muons. It is straightforward to test for
SNO muon events that are time-correlated with
one of these isolated astrophysical events.)

We have searched for anomalous SNO events in
short time-windows (±180 s) around these two as-
trophysical events: results are shown in Table 5.
Obviously there is no effect, and the SNO event
rate at these times is compatible with the back-
ground rate.

8



Table 3: MLBA results for GRB’s, for the Swift dataset (with the SNO NCD data). Note that units of α are
[SNO events × cm2/10−7 erg]. N90 is the 90% upper confidence bound on the number of GRB-associated
SNO events, based on α90.

Timing αfit α90 ln[L(αfit)]− ln[L(0)] No. GRB’s N90

-3 hrs < δt < 0 −2.6× 10−4 2.1× 10−3 0.013 116 0.084
0 < δt < 3 hrs 1.2× 10−3 3.9× 10−3 0.286 116 0.164

Table 4: GRB fluence 90% CL upper limits: “Green’s function” fluences, using MLBA results for Swift data
with the SNO NCD phase (-3 hrs < δt < 0 hrs timing window.)

Energy [MeV] Φνe
[
cm−2

]
Φν̄e

[
cm−2

]
Φνx ,Φν̄x

[
cm−2

]
5 3.89× 1011 2.79× 1011 3.92 ×1011

7 3.96× 1010 3.83× 1010 9.64× 1010

9 1.92× 109 4.50× 109 3.51× 1010

11 6.43× 108 1.44× 109 1.99× 1010

13 4.01× 108 8.28× 108 1.35× 1010

Table 5: Isolated astrophysical events. The number of SNO events observed is in a ±180 s window around
the event. The number of SNO events expected is calculated based on the rate of “ordinary” SNO neutrino
or muon events, which here constitute the “background”. Note that due the lower energy and therefore
stricter requirements on backgrounds for the neutrino data compared to the muon data, the neutrino data
did not include the run corresponding to SGR 1806.

Astrophysical Event SNO Data-set SNO Events Observed SNO Events Expected
Parkes Burst Muon 0 2.62
Parkes Burst Neutrino 3 1.69

SGR 1806 Muon 1 2.62
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7. Conclusions

We can conclude that SNO has found no evi-
dence for low energy neutrinos produced in coin-
cidence with solar flares or GRB’s. The MLBA
technique allows for a robust search for temporal
correlations between events recorded in detectors
and astrophysical events of widely varying intensi-
ties. In addition, regarding neutrino fluences from
solar flares, SNO has provided limits in the low-
energy ν regime that are improved compared to
previous analyses in the literature.
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