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Abstract 
The problem of building real options into physical systems has three features:  

 real options are not as easily defined as financial options;  

 path-dependency and interdependencies among projects mean that the standard 

tools of options analysis tools are insufficient; and 

 the focus is on identifying the best way to build flexibility into the design – not to 

value individual options. 

This paper suggests a framework for exploring real options in physical systems that 

especially addresses these two difficulties.  This framework has two stages: options 

identification and options analysis.  The options identification stage consists of screening 

and simulation models that focus attention on a small subset of the possible combination 

of projects.  The options analysis stage uses stochastic mixed-integer programming to 

manage the path-dependency and interdependency features. This stochastic formulation 

enables the analyst to include more technical details and develop explicit plans for the 

execution of projects according to the contingencies that arise.  The paper illustrates the 

approach with a case study of a water resources planning problem, but the framework is 

generally applicable to a variety of large-scale physical systems. 

 

 

Keywords: real options, stochastic mixed-integer programming, physical systems, and 

water resources planning 
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Building Real Options into Physical Systems 

with Stochastic Mixed-Integer Programming 
by 

Tao Wang1 and Richard de Neufville2 
 
 

The future is inherently unknown, but the unknown is not unmanageable.  Engineers 

increasingly recognize the great value of real options in addressing intrinsic uncertainties 

facing large-scale engineering systems and, more importantly, are learning to manage 

the uncertainties proactively [de Neufville et al, 2004].  This paper is part of a series of 

explorations of how to build real options analysis into the physical design of engineering 

systems.  This task requires us to adapt financial real options theory and develop new 

tools.   

 

Introduction 
Powerful and flexible analyses of options can be built on a simple binomial 

representation of the evolution of the value of an underlying asset.  Developed by Cox, 

Ross, and Rubinstein [1979], this method has been widely adopted, for example by 

Luenberger [1998], who provides textbook examples to value investment opportunities.  

In another text, Copeland and Antikarov [2001] show how to use binomial trees to value 

real projects and indicate that this method provides solutions equal to those of the partial 

differential equations (PDE) approach, and is easy to use without losing the insights of 

the PDE model.   

 

Most real options are not well-defined simple options.  They can be compound or parallel.  

Compound options are often options on options, and the interactions between them are 

significant.  For example, the opportunity to take a new product into mass production is 

an option on the R&D investment, whose value depends on the opportunity to proceed 

with R&D if the latter is exercised and successful.  The methodology for valuing 

compound options is important for the application of real options to the development and 

deployment of technologies.  Geske [1979] developed approaches to the valuation of 
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compound options.  Trigeorgis [1993a and 1993b] focused on the nature of the 

interactions of real options.  The combined value of a collection of real options usually 

differs from the sum of separate option values.  The incremental value of an additional 

option, in the presence of others, is generally less than its value in isolation, and declines 

as more options are present.   

 

Parallel options are different options built on the same project, such as the several 

possible applications or target markets of a new product.  Oueslati [1999] for example 

explored compound and three parallel options in Ford’s investment in fuel cell 

technology in automotive applications, stationary power, and portable power. 

 

The real options concept has been successfully applied in the energy industry.  Siegel, 

Smith, and Paddock [1987] valued offshore petroleum leases, and provided empirical 

evidence that options values are better than actual DCF-based bids.  Since then, 

research on real options on energy has been a hot topic.  Cortazar and Casassus [1997] 

suggested a compound option model for evaluating multistage natural resource 

investments.  Goldberg and Read [2000] found that a simple modification to the Black-

Scholes model provides better estimates of prices for electricity options.  Their 

modification combines the lognormal distribution with a spike distribution to describe the 

electricity dynamics.  Bodily and Del Buono [2002] examined different models for 

electricity price dynamics, and proposed a new mean-reverting proportional volatility 

model. 

 

Stochastic integer programming is the most important tool this paper suggests to deal 

with the path-dependency problem of real options valuation.  Bertsimas and Tsitsiklis 

[1997] provided a textbook introduction to integer programming. Birge and Louveaux 

[1997] discussed stochastic programming in detail.  Ahmed, King, and Parija [2003] 

suggested using a scenario tree approach to model uncertainty, developed a multi-stage 

stochastic integer programming formulation for the problem, and outlined a branch and 

bound algorithm to solve the problem of capacity expansion under uncertainty. 

 

Real options can be categorized as those that are either “on” or “in” projects (de 

Neufville, 2002).  Real options “on” projects are financial options taken on technical 

things, treating technology itself as a ‘black box’”.  Real options “in” projects are options 
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created by changing the actual design of the technical system.   For example, de Weck 

et al (2004) evaluated real options “in” satellite communication systems and determined 

that their use could increase the value of satellite communications systems by 25% or 

more.  These options involve additional positioning rockets and fuel in order to achieve a 

flexible design that can adjust capacity according to need.  In general, real options “in” 

systems require a deep understanding of technology.  Because such knowledge is not 

readily available among options analysts, there have so far been few analyses of real 

options “in” projects, despite the important opportunities available in this field.   

 

Besides knowledge of technology, there are more difficulties facing the analysis of real 

options “in” projects: 

1. Financial options are well-defined contracts that are traded and that need to be 

valued individually.  But real options “in” projects are fuzzy, complex, and 

interdependent: To what extent is there a predetermined exercise price?  What is 

the time to expire?  Moreover, it is not obvious the usefulness to value each 

element that provides flexibility. 

2. Real options “in” projects are likely to be path-dependent.  For example, the 

capacity of a thermal power system at some future date may depend on the 

evolutionary path of electricity use.  If the demands on the system have been 

high in preceding periods, the electric utility may have been forced to expand to 

meet that need, as it might not have done if the demand had been low.  Real 

options for public services may thus differ fundamentally from stock options, 

whose current value only depends on the prices at that time.  The evolutionary 

path of a stock price does not matter.  Its option value is path-independent.  This 

is not true for many real options. 

3. Real options “in” projects are likely to be highly interdependent, compound 

options.  Their interactions need to be studied carefully as they may have major 

consequences for important decisions about the design of the engineering 

system.  The associated interdependency rapidly increases the complexity and 

size of the computational burden. 

 

To develop a method for building real options “in” physical projects, the paper offers 

suggestions for addressing the above difficulties: 



  

 5

1. It proposes to identify candidate real options “in” projects by screening and 

simulation models.  This is important because, in an interdependent system, it 

may not be obvious where flexibility in the system may be most valuable.    The 

paper focuses on developing the most appropriate designs of flexibility and 

building up suitable contingency plans for dealing with future uncertainties.  

2. To simplify highly complicated path-dependent problem, it divides the decision 

time horizon into a small number of periods, then solves the path-dependent 

problem by a timing model using stochastic mixed-integer programming.  This 

process also deals with compound options difficulty mentioned in point 3 above. 

 

A case of a river basin in China illustrates the central ideas in this paper about real 

options “in” projects. It involves a set of possible hydropower station sites, reservoir 

capacities, and installed capacity alternatives.  The first phase of analysis uses 

screening and simulation models to identify a subset of projects (with specified locations, 

reservoir capacities, and installed capacities) for consideration in the real options 

analysis.  The second phase addresses the options for timing and choice of projects 

over 30 years given the uncertain development of energy prices, and of course subject 

to budget constraints and costs.  The issue of whether to build any particular project in a 

certain period can be considered an option.  The model for the analysis of these real 

options readily examines the set of compound options “in” projects.  The final products of 

the analysis include a contingent developing strategy for the river basin development 

that provides significant improvement in performance (thanks to the use of flexible 

design and an implementation process that responds to actual situations) and a much 

improved valuation of the projects important for investors interested in the projects. 

 

Analysis framework 
The analysis for the case of water resources planning builds upon standard procedures 

described by Major and Lenton [1979].  These divide the process into: 

 a deterministic screening model that identifies the possible elements of the 

system that seem most desirable; 

 a simulation model that explores the performance of candidate designs under 

stochastic loads; and 

 a timing model that defines an optimal sequence of projects. 
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The process of analysis for real options “in” water resources systems modifies these 

traditional elements.  At a higher level, it divides the analysis into 2 phases as indicated 

in Figure 1: 

 options identification, and 

 options analysis. 

      

Screening 
Model

Simulation 
Model

Options Identification Options Analysis

Timing Model

Execute and 
redesign when new 
information arrives

 
Figure 1: Process for Analysis of Real Options “in” Projects 

 

Options identification 
For real options “in” projects, the first task is to define the options.  This is in contrast 

with financial options, whose terms (exercise price, expiration day, and type such 

European, American or Asian) are clearly defined.  For financial options, the main task is 

to value the option and develop a plan for its exercise.  For real options “in” projects, it is 

only possible to analyze the options to show their value and develop a contingency plan 

for the management of the projects, after the options have been identified.  This first task 

for real options “in” projects is not trivial. 

 

Screening model 

The options “in” projects for an engineering system are complex. It is not obvious how to 

decide their exercise price, expiration day, current price, or even to identify the options 

themselves.  An engineering system involves a great many choices about the date to 

build, capacity, and location, etc. The question is: which options are most important and 

justify the resources needed for further study?   
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To identify significant options “in” projects for further analysis, it is desirable to use a 

simple screening model.  In water resources planning, this is a linear (or non-linear) 

programming model that optimizes the system assuming steady state, i.e. all projects 

are built all at once.  It does not consider all the complexities of the system; it considers 

a large numbers of possibilities, screens out most of them, and focuses attention on the 

promising designs.   

 

In detail, the screening model is a linear (or nonlinear) programming model: 

Max:  )(∑ −
j

jjjj YcYβ                                                      ( 1 )   

s.t. tTY ≥                                                                                  ( 2 ) 

eEY ≥                                                                    ( 3 )  

Yj are the design parameters.  The objective function ( 1 ) calculates the net benefit, or 

the difference between the benefits and costs, where βj and cj are the benefit and cost 

coefficients.  Usually we measure benefits in money terms, though sometimes we do so 

in other measures, e.g. species saved, people employed, etc.    Constraints ( 2 )  and 

( 3 ) represent technical and economic limits on the engineering systems, respectively.  

 

Any parameter in the formulation could be uncertain.  There are economic uncertainties 

in E, e, βj, or cj and technical uncertainties in T or t.  After identifying the key economic 

uncertainties, we can use them as underlying to build up real options analysis as 

illustrated in the case example. 

 

To identify the elements of the system that seem most promising for options, we execute 

a form of sensitivity analysis as follows: 

1. run the screening model using a range of values for key underlying uncertain 

parameters, such as the price of electricity; 

2. compare the resulting sets of projects that constitute optimal designs for each set 

of parameters used; and 

3. the design elements that vary across the sets are these that may or may not be 

good real options; 

4. conversely, the design elements that are included for all sets, that are insensitive 

to uncertainty, do not present interesting real options. 
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Simulation model   

The simulation model tests several candidate designs from runs of the screening model.  

Its main purpose is to examine, under technical and economic uncertainties, the 

robustness and reliability of the designs, as well as their expected benefits from the 

designs.  Such extensive testing is hard to do using the screening model.  After using the 

simulation model, we find a most satisfactory configuration with design parameters 

),...,,( 21 jYYY in preparation for the options analysis.   

 

In standard water resources planning, the simulation model involves many years of 

simulated stochastic variation of the water flows, generated on the basis of historical 

records.  This process leads to a refinement of the designs identified by the screening 

model.  For the analysis of real options “in” water resources systems, we propose to 

modify this standard simulation process.  Specifically, we will simulate the combined 

effect of stochastic variation of hydrologic and economic uncertain parameters. 

 

If the time series of the water flow consisted of the seasonal means repeating 

themselves year after year (no shortages with regard to the design obtained by the 

screening model) and the price of electricity were not changing, the simulation model 

should provide the same results as the screening model.  But the natural variability of 

water flow and electricity price will make the result (net benefit) of each run different, and 

the average net benefit is not going to be the same as the result from the screening 

model.  The simulated results should be lower because the designs are not going to 

benefit from excess water when water is more than the reservoir can store.  Thus 

occasional high levels of water do not provide compensation for lost revenues by 

occasional low levels of water.  Due to these uncertainties, the economies of scale 

seemingly apparent under deterministic schemes are reduced. 

 

Options analysis 
After identifying the most promising real options “in” projects, designers need a model 

that enables them to value the set of options and develop a contingency strategy for their 

exercise.  In contrast to standard financial options analysis, more characteristics are 
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required for the analysis of real options “in” projects, such as technical details and 

interdependency/path-dependency among options.   

 

This paper proposes a model based on the scenarios established by a binomial lattice.  

In essence, it proposes a new way to look at the binomial tree, recasting it in the form of 

a stochastic mixed-integer programming model.  The idea is to: 

Maximize: binomial tree 

Subject to:  constraints consisting of 0-1 integer variables representing the 

exercise of the options  (= 0 if not exercised,  =1 if exercised) 

 

Appendix I illustrates the use of this model to value binomial lattices.  Such formulation is 

unnecessarily complicated for a simple financial option.  But for complex and highly 

interdependent real options “in” projects, we can specify the relationship of options using 

the 0-1 integer variable constraints.  Without integer programming, a binomial tree for a 

path-dependent real option “in” projects may be too messy to build.  With technical, 

budget, and real options constraints, a stochastic mixed-integer programming model 

accounts for highly complex and interdependent issues, and delivers both a valuation of 

the options and a contingency strategy.   

 

Stochastic mixed-integer programming and real options constraints 

This section develops a general formulation for the analysis of real options “in” projects, 

especially these with path-dependency.   

 

The stochastic mixed-integer programming assumes that the economic uncertain 

parameters in E, e, βj, or cj in objective function ( 1 ) and constraints ( 2 ) and ( 3 ) evolve 

as discrete time stochastic processes with a finite probability space.  A scenario tree is 

used to represent the evolution of an uncertain parameter [Ahmed, King, and Parija, 

2003].  Figure 2 illustrates the notation.  The nodes k in all time stages i constitute the 

states of the world. iδ  denotes the set of nodes corresponding to time stage i.  The path 

from the root node 0 at the first stage to a node k is denoted by P(k).  Any node k in the 

last stage n is a terminal node.  The path P(k) to a terminal node represents a scenario, 

a realization over all periods from 1 to the last stage n.  The number of terminal nodes Q 

corresponds to all Q scenarios.  Note there is no recombination structure in this tree 
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representation (each node except the root has a unique parent node).  For example, we 

will break a binomial tree structure as in Figure 3, where S is the value of the underlying 

asset, u is up factor, and d is the down factor. 

 

Terminal nodes

q = 1

A path P(k ) q = 2

.

.

.

.

.

.

q = Q

i = 1 … i = n - 1 i = n

0

k

A scenario

 

Figure 2: Scenario tree 
 

Suu Suu
Su Su

Sud
S rather than S Sud

Sdu
Sd Sd

Sdd Sdd  

Figure 3: Breaking path-independence of a binomial tree 
 

A joint realization of the problem parameters corresponding to scenario q is denoted by  

















=
q
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q
1

q

ω
...
ω

ω , 
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where q
iω  is the vector consisting of all the uncertain parameters for time stage i in 

scenario q.   pq denotes the probability for a scenario q.  The real options decision 

variables corresponding to scenario q is denoted by  

















=
q
T

q

R

R
...

1
qR , 

where q
iR is the decision on the option at time stage i in scenario q. 0 denotes no 

exercise and 1 denotes exercise. 

 

At any intermediate stage i, the decision maker cannot distinguish between any scenario 

passing through the same node and proceeding on to different terminal node, because 

the state can only be distinguished by information available up to time stage.  

Consequently, the feasible solution q
iR must satisfy: 

21 q
i

q
i RR =  nikkqq i ,...,1,, node through ),( 21 =∀∈∀∀ δ  

where q1 and q2 represent two different scenarios. These constraints are known as non-
anticipativity constraints.   

 

To illustrate the use of the above approach, we apply it to some standard financial 

options.  The formulation is: 

Max )( )1(

1
∑ ∑ −⋅∆⋅−

=

⋅⋅⋅
q

iTr
T

i

q
i

q
i

q eREp       ( 4 ) 

s.t. KSE q
i

q
i −=  (American call)   or  q

i
q
i SKE −=   (American put)  qi,∀      ( 5 ) 

 ∑ ≤
i

q
iR 1  q∀        ( 6 ) 

 21 q
i

q
i RR =   nikkqq i ,...,1,, node through ),( 21 =∀∈∀∀ δ  ( 7 ) 

 }1,0{∈q
iR   qi,∀        ( 8 ) 

where q
iS  is the value of underlying asset at time stage i in scenario q, K is the exercise 

price, r is the risk-free interest rate, and ∆T is the time interval between two consecutive  

stages. 
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The objective function ( 4 ) is the expected value of the option along all scenarios.  

Constraint ( 5 ) can be any equations that specify the exercise condition.  Constraint ( 6 ) 

makes sure that any option can only be exercised at most once in any scenario.  

Constraint ( 7 ) are the non-anticipativity constraints.  We call constraints ( 6 ) and ( 7 ) 

real options constraints. 

 

To illustrate and validate the above formulation, consider an example of an American put 

option without dividend payment. For this case, unlike similar call options, it may be 

optimal to exercise before the last period.  The variables for this example are S = $20, K 

= $18, r = 5% per year, σ = 30%, ∆T = 1 year, and time to maturity T = 3 years. Up factor 

u = 1.35, down factor d = 0.74. A standard binomial lattice gives the value of the options 

as $2.20 as in Table 1.  

 

Now considering the reformulated problem according to equations ( 4 ) to ( 8 ).  Solve it 

using GAMS©, the maximum value of the objective function is also 2.20. The optimal 

solution of 0-1 variables is shown in Table 2. Since 1 means exercise, the result exactly 

corresponds to that of the ordinary binomial tree (Table 1).  Note there is an exercise in 

scenarios 7 and 8 that is not at the last time point.  This means the formulation can 

successfully find out early exercise points and define contingency plans for decision 

makers. 

Table 1: Binomial tree for the example American put 
 Period 1 Period 2 Period 3 Period 4
Stock Price 20.00 27.00 36.44 49.19
Exercise Value -2.00 -9.00 -18.44 -31.19
Hold Value 2.20 0.69 0.00 0.00
Option Value 2.20 0.69 0.00 0.00
Exercise or not? No No No No

Stock Price 14.82 20.00 27.00
Exercise Value 3.18 -2.00 -9.00
Hold Value 4.00 1.48 0.00
Option Value 4.00 1.48 0.00
Exercise or not? No No No

Stock Price 10.98 14.82
Exercise Value 7.02 3.18
Hold Value 6.15 0.00
Option Value 7.02 3.18
Exercise or not? Yes Yes

Stock Price 8.13
Exercise Value 9.87
Hold Value 0.00
Option Value 9.87
Exercise or not? Yes  
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Table 2: Stochastic programming result for the example American put 

 Stock Price Realization  Decision 
Scenario i = 1 i = 2 i = 3 i = 4 Probability i = 1 i = 2 i = 3 i = 4 

q = 1 S Su Suu Suuu 0.132 0 0 0 0 
q = 2 S Su Suu Suud 0.127 0 0 0 0 
q = 3 S Su Sud Sudu 0.127 0 0 0 0 
q = 4 S Su Sud Sudd 0.123 0 0 0 1 
q = 5 S Sd Sdu Sduu 0.127 0 0 0 0 
q = 6 S Sd Sdu Sdud 0.123 0 0 0 1 
q = 7 S Sd Sdd Sddu 0.123 0 0 1 0 
q = 8 S Ds Sdd Sddd 0.118 0 0 1 0 

 
 

Formulation for the real options timing model 

The stochastic mixed-integer programming reformulation is much more complicated than 

a simple binomial lattice. It is like using a missile to hit a mosquito to value ordinary 

financial options.  But such reformulations empower analysis of complex path-dependent 

real options “in” projects for engineering systems. 

 

Technical constraints in the screening model are modified in the real options timing 

model.  Since the screening and simulation models have identified the configuration of 

design parameters, these are no longer treated as decision variables.  On the other hand, 

the timing model relaxes the assumption of the screening model that the projects are 

built together all at once.  It decides the possible sequences of the construction of each 

project in the most satisfactory designs for the actual evolution of the uncertain future.   

 

Y is the most satisfactory configuration of design parameters obtained by the “options 

identification” stage, it is a vector ),...,,( 21 jYYY  corresponding to j design parameters.  

The real options decision variable corresponding to scenario q is expanded to:  
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q
ijR denotes the decision on whether to build the feature according to jth design 

parameter for ith time stage in scenario q.  The objective function ( 1 ) corresponding to 

scenario q is denoted by )(⋅qf . qp and )(⋅qf are derived from the specific scenario tree 

based on the appropriate stochastic process for the subject under study.  The real 

options constraints ( 6 ) to ( 7 ) are concisely denoted by φ.  Most importantly, the 

objective function is modified to get the expected value along all scenarios.   

 

The real options timing model formulation is as follows. 

Max )(∑ ⋅
q

qq fp Y,Rq  

s.t.  tT ≥
















q
ijj

q
i

RY

RY
:

11

 and   eE ≥
















q
ijj

q
i

RY

RY
:

11

 iq,∀  

 ϕ∈qR  

}1,0{∈q
ijR     jiq ,,∀  

In short, the formulation has an objective function averaged over all the scenarios, 

subject to three kinds of constraints: technical, economic, and real options.  By 

specifying the interdependencies by constraints, we can take into account highly 

complex relationship among projects.   

 

Case study: Development of river-run hydropower stations 
The case example concerns the development of a river basin involving decisions to build 

dams and hydropower stations in China.  The developmental objective is mainly hydro-

electricity production.  Irrigation and other considerations are secondary because the 

river basin is in a remote and barren place.   

 

Screening model 

The screening model identifies initial configurations of design parameters for the river 

basin development, which are sites, reservoir storage capacity, and installed electricity 

generation capacity.  The objective function is to maximize the net present value (NPV) 
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from the river basin development projects.  The constraints include water continuity, 

reservoir storage capacity, hydropower production, and budget constraints.  See 

Appendix II for details. 

 

The key uncertain economic parameter here is the price of electricity, which may vary 

dramatically as China develops economically and moves toward market determination of 

prices.  We should account carefully for this critical uncertain element in planning.  If we 

optimize using expected electricity price, the problem usually leads to economies of 

scale arguments indicating that bigger is better.  Unfortunately, given the uncertain 

economic elements, in many cases it does not pay to build as big as possible by 

exploiting economies of scale, since the demand is often insufficient to justify the biggest 

capacity. It may well be more attractive to build smaller projects with options thinking 

[Mittal, 2004].  This reality is a prime motive for studying real options in large-scale 

engineering systems.  To identify the options worth investigating due to the uncertainty 

of electricity price, we run the screening model with different electricity prices ranging 

around the estimated current price of 0.25 RMB/KwH. 

 

This example screening model involves 3 sites and 2 seasons.  According to practice, it 

is run for a typical year with mean water flows for the dry and wet seasons, implying that 

all years are the same by setting the initial storage of season 1 equal to the final storage 

of season 2.  (Once the screening model has determined optimal designs of the system, 

and thus reduced the number of variables, the subsequent simulation and timing models 

introduce the stochastic elements.  This strategy allocates computational effort to where 

it is most productive.)  

 

This example screening model involves 46 variables and 58 constraints.  It contains only 

the most important considerations, yet has a fair amount of technical details, and shows 

how complex the interdependencies among real options “in” projects for large-scale 

engineering systems can be.  

 

The optimization model was written in GAMS©, and the results are as in Table 3.  

“Optimal value” represents the optimal net benefit calculated by the objective function.  

Vs and Hs represent the reservoir storage capacity and the installed electricity generation 

capacity for site s.  Note that for the first site, the design with reservoir storage capacity 
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of 9600×106 m3 and installed electricity generation capacity of 3600 MW is robust since it 

is the best choice for any price scheme except when the price is extremely low.  For the 

other two sites, the optimal design depends on the price of electricity.  For case 1, no 

projects are built; for cases 2 and 3, site 3 is screened out.  In a real application 

considering many more sites, there may be a great number of sites entered the 

screening models and most of them are screened out.  Although current electricity price 

was 0.25 RMB/KwH at the time of the study, we cannot assume that the design that 

corresponds to this price is optimal, because this screening model does not consider the 

uncertainty of electricity price.  Follow-on analysis is needed. 

 

Table 3: Results from the screening model  

Case 
Electricity Price 

(RMB/KwH) 

H1 

(MW) 

V1 

(106m3)

H2 

(MW)

V2 

(106m3)

H3 

(MW)

V3 

(106m3)

Optimal Value 
(106RMB) 

1 0.09 0 0 0 0 0 0 0 

2 0.12 3600 9600 1700 25 0 0 367 

3 0.15 3600 9600 1700 25 0 0 796 

4 0.18 3600 9600 1700 25 1564 6593 853 

5 0.22 3600 9600 1700 25 1723 9593 1607 

6 0.25 3600 9600 1700 25 1946 12242 2196 

7 0.28 3600 9600 1700 25 1966 12500 2796 

8 0.31 3600 9600 1700 25 1966 12500 3396 

 

Simulation model 

The example simulation model introduces stochastic considerations, both in electricity 

price and in seasonal flows.  In that respect, it uses 60 years of 6-month flows to account 

for the aspects of over year storage not considered in the screening model.  Using the 

simulation model reveals more aspects of the designs chosen by the screening model, 

especially the hydrologic reliability.  The example simulation model does not look into the 

hydrologic reliability issue deeply, because its main purpose is to validate the 

identification of the real options. 

 

The simulation model was constructed using Excel© and Crystal Ball©. All designs from 

the screening model in Table 3 were tested.  The optimal design by the screening model 
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that corresponds to the current electricity price of 0.25 RMB/KwH is not necessarily the 

best design after various uncertainties enter the picture.   

 

For cases 5 and 6 (electricity price = 0.22 RMB/KwH and 0.25 RMB/KwH), the 

simulation results are as Figure 4.  Note that the expected NPV in both cases are 

substantially below those indicated in Table 3 (1138 vs. 1607 for case 5; 1098 vs. 2196 

for case 6).   As indicated before, this result is not unexpected since higher capacity 

designs often cannot be fully used (due to lower flows) yet cannot take advantage of 

higher flows (due to limited capacity).  Note also that the lower capacity design (case 5) 

provides higher expected NPV than the higher capacity design (case 6) that appeared 

better in the deterministic design.  This is a common, but not necessary, result.   

 

The final design chosen is the design for case 5.  It was analyzed further using real 

options “in” projects timing model.  Each project in the design is an option.  We have the 

right but not obligation to exercise it; in other words, we can choose whether to build a 

project at a specific time.   
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Figure 4a: Simulation result for electricity price = 0.22 RMB/KwH (case 5) 
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Figure 4b: Simulation result for electricity price = 0.25 RMB/KwH (case 6) 
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Real options timing model 

After applying the screening and simulation models, the next step is to relax their 

assumption that all projects are built at once, and study the development process from 

no project onwards.  The key issues in the real options timing model is the order and 

timing of the construction of the projects, given various constraints. 

 

The example real options timing model assumes that projects can be constructed during 

3 time periods of 10 years.  The calculation considers a 70-year life for each project.    

 

As a baseline, consider the result of the timing model when the electricity price is 

deterministic, that is, when we do not consider the real options.  (The Use of GAMS© to 

solve the timing model without real options considerations as described in Appendix III.)  

The timing model takes into account the transition process that projects, once built, 

gradually increase the production to full capacity.  It recognizes that it takes time to build 

reservoirs and power plants and to fill up reservoirs.  This deferral of benefits over many 

years has a huge impact on the NPV for large, capital-intensive projects.  Thus, projects 

that appeared good in the screening or simulation model analyses may turn out to be 

less attractive when timing issues are considered. 

 

The real options timing model incorporates uncertainty in the hydropower benefit 

coefficient (energy price).  It gives a contingency plan in reaction to the actual realization 

of energy price.  In this connection, we would again like to point out the path-dependent 

feature of this problem. Refer to Figure 3. For example, in the second stage, if electricity 

price goes up, a project is built; but if it goes down, no project is built.  According to the 

formula for binomial tree, the middle point of the third stage has a price of Sud or Sdu, 

numerically the same, however, it is different for the following two paths leading into the 

point because of the hydrological conditions: first path, the price goes up in the second 

stage, and goes down the third stage with a project changing the water flow; the second 

path, the price goes down in the second stage, and goes up in the third stage with no 

project and the natural water flow. 

 

For the example analysis, the movement of electricity price is assumed to follow a 

geometric Brownian motion (GBM).  This is not necessarily the best model for electricity 

price: a mean-reverting proportional volatility model might improve the quality of analysis 
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[Bodily and Del Buono, 2002].  However, GBM is sufficient to illustrate the analysis 

framework and stochastic mixed-integer programming methodology.  To use a different 

stochastic process, we only need to generate an appropriate scenario tree, and the 

analysis framework remains valid.  In this example, we use the volatility of electricity 

price as %96.6=eσ , its current electricity price as 0.25 RMB/KwH, and its drift rate as µ 

= –0.33% per year [Wang, 2003]. 

 

Compared to the timing model without real options considerations (Appendix III), the 

objective of the real options timing model is changed to: 

Max  
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Likewise, the constraints differ because this formulation adds the real options constraints: 
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Using GAMS©, we obtain the results for the real options timing model as Table 4.  For 

example, for the first scenario q = 1 that occurs with probability = 0.138: the electricity 

prices for the first, second, and third 10-year time period (i = 1, 2, and 3) are 0.250, 

0.312, and 0.388 RMB/KwH, respectively.  The real options decision variables for Project 

2 in the first period and Project 1 in the third period are 1’s, and the other 7 real options 

decision variables are 0’s (we have 9 real options decision variables for each scenario, 3 

projects times 3 periods each).  Therefore, for scenario 1, the decision is to build Project 
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2 in the first period and Project 1 in the third period.  The rest of Table 4 can be read in 

the same way.  In summary, as in Figure 5, the optimal strategy or contingency plan is to 

build Project 2 in the first time stage whatever the electricity price is.  And build nothing 

in the second stage.  In the last stage, we only build Project 1 in the case that price is up 

for the second stage and up again for the third stage, for other cases, we build nothing.   

 

Table 4: Results for real options “in” projects timing 
model (Current electricity price 0.25 RMB/KwH) 

  Electricity Price 
Realization Decision 

Scenario i = 1 i = 2 i = 3 Prob   i = 1 i = 2 i = 3
Project 1 0 0 1 
Project 2 1 0 0 q = 1 0.250 0.312 0.388 0.138
Project 3 0 0 0 
Project 1 0 0 0 
Project 2 1 0 0 q = 2 0.250 0.312 0.250 0.233
Project 3 0 0 0 
Project 1 0 0 0 
Project 2 1 0 0 q = 3 0.250 0.201 0.250 0.233
Project 3 0 0 0 
Project 1 0 0 0 
Project 2 1 0 0 q = 4 0.250 0.201 0.161 0.395
Project 3 0 0 0 

 

 

The overall expected net benefit is 4345 Million RMB.  This is almost 4 times bigger than 

the simulation result in Figure 4a.  There are two reasons for it:  

1. Timing model can eliminate the unprofitable projects, while the simulation model 

cannot.  As a comparison, the timing model without real options considerations 

as in Appendix III suggests that only project 2 should be built in the first time 

period and that projects 1 and 3 should never be built, with an overall expected 

net benefit of 4239 million RMB. 

2. Real options add additional value by building project 1 in favorable situation 

(electricity price high) and avoiding it in unfavorable situation (electricity price 

low).  Refer to Figure 5.  In this example, the added value is not enormous, but 

the principle is established. 

. 
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Price = 0.388 RMB/KwH
Project 1 build

Project 3 no build

Price = 0.312 RMB/KwH Price = 0.250 RMB/KwH
Project 1 no build Project 1 no build

Price = 0.25 RMB/KwH Project 3 no build Project 3 no build
Project 1 no build
Project 2 build Price = 0.250 RMB/KwH

Project 3 no build Price = 0.201 RMB/KwH Project 1 no build
Project 1 no build Project 3 no build
Project 3 no build

Price = 0.250 RMB/KwH
Project 1 no build
Project 3 no build  

Figure 5: Contingency plan 
 

There are three important notes regarding the results:  

1. This real options timing model provides a contingency plan (as Figure 5) 

depending on how events roll out, as well as the value of the system with real 

options.  Using the real options timing model, we learn to build Project 2 in the 

first stage, and build Project 1 in the third stage given certain electricity price 

condition; if using the timing model without real options considerations, the 

decision is to build Project 2 in the first stage, and then build nothing else, surely 

missing something compared to the real options timing model.   

2. This contingency plan takes into account the complex interdependencies among 

projects, in this case, through the water flows (for example, one dam in the 

upstream will store water and help downstream stations to produce more in dry 

season).  Using conventional options analysis, it is hard to deal with such 

interdependencies.  This example is simpler than real water resources planning; 

nevertheless, we can use exactly the same methodology, with more computation 

and other resources, to tackle much more complex real water resources planning 

problem. 

3. The value of options is the difference between the optimal benefits from the 

timing model with and without real options considerations, 106 million RMB.  

Note the valuation of real options “in” projects looks not for an exact numeric 

result as valuation of financial options, but assesses whether flexible designs are 

worth.  The cost to get the real options “in” projects is usually 0 as in this case 

study.  This process about real options valuation is more about the process of 

designing flexibility itself rather than a specific value of optimal benefit. 
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Before we finish our analysis, let us see how the optionality of the plan can be more 

significant if the current electricity price is higher.  If we take the current electricity price 

as 0.30 RMB, the result is as Table 5.  The contingency plan is to build Project 2 in the 

first stage, build Project 1 in the second stage if the price goes up, build Project 3 in the 

third stage if the price goes up both in the second and third stage.  Refer to Figure 6.  

Note the path-dependent feature: in the third stage, for the same electricity price of 0.30 

RMB/KwH, Project 1 can have been built or not, depending whether the electricity price 

in the second stage were high or low. 

 

Table 5: Results for real options “in” projects timing model (Current electricity 
price taken to be 0.30 RMB/KwH) 

  Electricity Price Realization Decision 
Scenario i = 1 i = 2 i = 3 Prob   i = 1 i = 2 i = 3

Project 1 0 1 0 
Project 2 1 0 0 q = 1 0.300 0.374 0.466 0.138 
Project 3 0 0 1 
Project 1 0 1 0 
Project 2 1 0 0 q = 2 0.300 0.374 0.300 0.233 
Project 3 0 0 0 
Project 1 0 0 0 
Project 2 1 0 0 q = 3 0.300 0.241 0.300 0.233 
Project 3 0 0 0 
Project 1 0 0 0 
Project 2 1 0 0 q = 4 0.300 0.241 0.193 0.395 
Project 3 0 0 0 

 
Price = 0.466 RMB/KwH

Project 3 build
Price = 0.374 RMB/KwH

Project 1 build Price = 0.300 RMB/KwH
Price = 0.300 RMB/KwH Project 3 no build Project 3 no build

Project 1 no build
Project 2 build Price = 0.300 RMB/KwH

Project 3 no build Price = 0.241 RMB/KwH Project 1 no build
Project 1 no build Project 3 no build
Project 3 no build

Price = 0.193 RMB/KwH
Project 1 no build
Project 3 no build  

Figure 6: Contingency plan (if current electricity price = 0.30 RMB/KwH) 
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Computational issues 
A key consideration in solving a stochastic mixed-integer programming is whether a 

result is a global or local optimum.  It is not simple to prove the result of an integer 

programming problem is a global optimum.   And it may be hard to find a general 

solution for the real options timing model because of the special structure of the 

technical and economic constraints.  Nevertheless, integer programming improves 

solutions to highly complex and interdependent real options that cannot be solved by 

ordinary binomial trees.  When there is no dependency among nodes, it is possible to 

optimize on each node and roll back to get the option value. When dependency exists, 

this simple approach no longer works.  A stochastic mixed-integer programming at least 

provides a local optimum better than the results from conventional approaches or human 

intuition.   

 

Finally, a few words about the computational costs: for the example river basin 

development problem, the number of variables is 187, of which 36 are 0-1 discrete 

variables, and the number of constraints is 261.  It takes a laptop (PIII 650, 192M RAM) 

less than 2 seconds to use GAMS© to figure out a solution.   

 

Conclusion 
By proposing a new way to formulate real options “in” projects, this paper attacks the 

possibility of building real options into the design of the physical facilities themselves.  

This generalizable solution will improve the design and planning of large engineering 

systems, such as manufacturing systems, commercial satellite systems, and logistics 

systems.  It is not only in the sense of designing with full awareness of uncertainties, but 

also how to design options (flexibility) into systems to proactively manage inevitable 

uncertainties. 

 

Three most important points in the paper are: 

 two stage analysis, identifying the most interesting real options “in” projects 

before analyzing them; 

 using stochastic mixed-integer programming to value real options as well as to 

find a contingency plan for excising the options.  In the stochastic mixed-integer 

programming formulation, there are real options constraints added onto technical 



  

 24

constraints and economic constraints.  Highly complex interdependencies among 

options can be specified using constraints; and 

 focusing on developing the most appropriate design of system flexibility and 

building up suitable contingency plan for dealing with future uncertainties, rather 

than valuing individual options. 
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Appendix I: Using mixed-integer programming to solve a binomial 
lattice 
 
By simple examples on financial options, we would illustrate the basic idea of using 

stochastic mixed-integer programming model to value options. 

 

Important variables for options valuation are as follows 

S: Current Stock Price 

K: Exercise Price 

T: Time to Expiration 

r: Risk free interest rate 

σ: Volatility 

∆T: Time interval between nodes 

 

Important Formulas for Binomial Tree Model include: 
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On each node of a binomial tree, the calculation is as Table 6.  Note this is for the 

valuation of American options, and p is risk-neutral probability. 

 
Table 6: Decision on each node of a binomial lattice 

Stock Price S 
Exercise Value S – K (for call); K – S (for put) 
Hold Value 

r
du

e
pdownpriceifValueOptionpuppriceifValueOption ⋅+⋅ ________

 
Options Value Max (Exercise Value, Hold Value) (0 for the last period) 
 

Now we will compare an ordinary binomial tree and an integer programming binomial 

tree.  The interesting part is to compare the option value from the binomial tree and the 

optimal value from the integer programming, as well as the “exercise or not” result for 

each node of the binomial tree and the value of 0-1 integer variables in the optimal 
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solution of the integer programming.  The American option is of special interest because 

we want to examine if the integer programming can correctly identify the case of early 

exercise before the last period. 

 

For example, the parameters for an American call option are S = $20, K = $21, T = 3 

years, r = 5% per year, σ = 30%, ∆T = 1 year.  The binomial tree is as Table 7, and the 

value of the options is $5.19. 

 

Table 7: Binomial tree for the American call option 
 Period 1 Period 2 Period 3 Period 4 
Stock Price 20.00 27.00 36.44 49.19 
Exercise Value -1.00 6.00 15.44 28.19 
Hold Value 5.19 9.34 16.47 0.00 
Option Value 5.19 9.34 16.47 28.19 
Exercise or not? No No No Yes 

Stock Price 14.82 20.00 27.00 
Exercise Value -6.18 -1.00 6.00 
Hold Value 1.41 2.91 0.00 
Option Value 1.41 2.91 6.00 
Exercise or not? No No Yes 

Stock Price 10.98 14.82 
Exercise Value -10.02 -6.18 
Hold Value 0.00 0.00 
Option Value 0.00 0.00 
Exercise or not? No No 

Stock Price 8.13 
Exercise Value -12.87 
Hold Value 0.00 
Option Value 0.00 
Exercise or not? No  
 

Node 11

Node 21

Node 22

Node 31

Node 32

Node 33

 

Figure 7: Node representation for a binomial tree 
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Now let us use Integer programming to value this binomial tree.  The node im on a 

binomial tree is indexed in the following way: i represents the ith stage, m represents the 

mth node for a specific stage.  Because of the nice feature of recombination of a binomial 

tree when there is path independence, the number of nodes at ith time point is exactly i, 

so m takes the number from 1 to i.   Please refer to Figure 7. 

 

At node im, let imS  denote the stock price, imE  denote the exercise value, imH  denote 

the hold value, imV  denote the option value, imR be a 0-1 integer variable denoting 

whether the option is exercised at node im, 0 is not exercise and 1 is exercise.  The 

number of stages is n. 

 

The objective function is to get the maximum value of V11 at the beginning node.  The 

option value imV  is specified by 

)1( imimimimim RHREV −⋅+⋅=  

Since the programming maximizes the value, its final result will satisfy that imV  is the 

maximum of imE  and imH . 

 

The exercise value imE  for a call options is  

KSE imim −=  

 

The hold value for the last time point is 0, or 0, =mnH .  For ni < , the hold value 

Tr
mimi

im e
pVpV

H ∆⋅
+++ −⋅+⋅

=
)1(1,1,1  

We are using continuous compounding here.  
  

The stock price imS  at node im is defined by the following formula 

Tmi
im eSS ∆−+= σ)21(

11  

where 11S  is the current stock price. 
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Complete formulation of the integer programming problem is as follows: 

Maximize  11V         ( 9 ) 

Subject to )1( imimimimim RHREV −⋅+⋅=  imi ,...,1; =∀   ( 10 ) 

  KSE imim −=     imi ,...,1; =∀   ( 11 ) 

  Tr
mimi

im e
pVpV

H ∆⋅
+++ −⋅+⋅

=
)1(1,1,1   imni ,...,1;1,...,1 =−=  ( 12 ) 

  0, =mnH     m∀    ( 13 ) 

  Tmi
im eSS ∆−+= σ)21(

11    imi ,...,1; =∀   ( 14 ) 

Solve the integer programming using GAMS, the maximum value of the objective 

function is 5.19.  The values for 0-1 integer variables are as Table 8.  Since 1 means 

exercise, the result is exactly correspondent to the ordinary binomial tree as Table 7. 

oo 

Table 8: Result of the stochastic programming for the American call option 

Rij i = 1 i = 2 i = 3 i = 4 
j = 1 0 0 0 1 
j = 2  0 0 1 
j = 3   0 0 
j = 4    0 
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Appendix II: Formulation of the screening model for river basin 
development problem 
 

The screening model for this problem can be described in the following mathematical 

programming: 

Max  ))(( ss
s t s

sssstP HVVCFCcrfP δβ ++−∑∑ ∑
                    

( 15 ) 

s.t. (Technical constraints Part I - Continuity constraints) 

  tstststts kXESS )(1, −=−+        ts,∀     ( 16 )                                 

  sttsst FXE ∆+= − ,1                    ts,∀                            ( 17 )                                

(Technical constraints Part II - Reservoir storage/capacity constraints) 

0≤− sst VS                                       ts,∀                                  ( 18 )                                  

0≤⋅− sss CAPDyrV                          s∀                                    ( 19 ) 

0)( =− stsst AS σ                               ts,∀                                ( 20 ) 

(Technical constraints {Part III - Hydropower constraints} 

073.2 ≤⋅⋅⋅⋅− ststtsst AXkeP            ts,∀                              ( 21 ) 

0≤− ststst HhYP                                ts,∀                            ( 22 ) 

0≤− sts AAMIN                             ts,∀                               ( 23 ) 

0≤− sst AMAXA                                ts,∀                         ( 24 ) 

02 ≤− ss AMINAMAX                     ts,∀                         ( 25 ) 

0≤− ss CAPPH                            ( 26 ) 

  (Budget constraints) 

BHVVCFC
s

sssss ≤⋅+⋅+∑ )( δ      s∀                           ( 27 )                                  
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Table 9: List of Variables for the screening model 

Variable Definition Units 
yrs Integer variable indicating whether or not the reservoir is 

constructed at site s 
 

Sst Storage at site s for season t 106m3

Xst Average flow from site s for season t m3/s 
Est Average flow entering site s for season t m3/s 
Pst Hydroelectric power produced at site s for season t MwH 
Ast Head at site s for season t m 
Hs Capacity of power plant at site s MW 
VS Capacity of reservoir at site s 106m3

AMAXs Maximum head at site s m 
AMINs Minimum head at site s m 
 

Table 10: List of Parameters for the screening model 

Parameter Definition Units Value 
Qin,t Upstream inflow for season t m3/s (374,283) 
CAPDs Maximum feasible storage capacity 

at site s 
106m3 (9600, 25, 

12500) 
CAPPs Upper bound for power plant 

capacity at site s 
MW ( 3600, 1700, 

3200) 
∆Fst Increment to flow between sites s 

and the next site for season t 
m3/s (212, 105) 

for site 3, 
others are 0 

es Power plant efficiency at site s  0.7 
kt Number of seconds in a season Million 

Seconds 
15.552 

ht Number of hours in a season Hours 4320 
Yst Power factor at site s for season t  0.35 
βP Hydropower benefit coefficient 103 RMB 

/MwH  
0.25 

FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41)
VCs Variable cost for reservoir at site s B 

RMB/106m3 
(4.49×10-4, 0, 
6.68 ×10-4) 

δs Variable cost for power plant at site s B RMB/MW (7.65×10-4, 
1.85×10-3,  
8.80 ×10-4) 

r Discount rate  0.086 
crf Capital recovery factor for 60 years  0.087 
B Total Budget available 103 RMB 80,000,000 
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Above is a simplest version of a river basin planning screening model without losing the 

critical considerations, there will be much more details added for real planning.  The 

objective function 
 

( 15 ) is to maximize the annualized profit from electricity sales.  

Technical constraints include continuity constraints, reservoir storage and capacity 

constraints, and hydropower constraints.  Besides the information from the lists of 

variables and parameters (Table 9 and Table 10), several notes:  constraint ( 20 ) 

specifies the relationships between reservoir storage volume and head, they are decided 

by specific geological conditions for sites; constant 2.73 in constraint ( 21 ) is a 

conversion factor; constraints ( 23 ) to ( 25 ) are to limit marked head variation that is 

very inefficient for power production. 

 

The calculation of the conversion factor in constraint ( 21 ) is as follows: Since 1 Joule = 

1 N·m (or m2·kg/s2), and per m3 of water weighs 103 Kg, so per m3 of water can generate 

103·g  power (where g is the acceleration of gravity, equal to 9.81 m/s2).  One more issue 

to think about is that the energy is counted in MwH, and the time unit in the formulation is 

“million seconds”, so we need a conversion factor: 

326

6233

73.2
10min/60min/60
10/81.9/10
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Appendix III: Formulation of the timing model without real options 
considerations  
 

The timing model has almost all 0-1 integer variables except for the flow variables 

representing stream flow at different points of the river basin and the energy variables 

representing the energy production, while the screening model has most continuous 

variables to decide reservoir capacity and power plant sizes that can take any real value 

within the constraints.  In the timing model, the sizes of the projects have been decided.  

The remaining decisions are whether to construct a particular project within a specific 

period of time.  Such decisions are appropriately represented by integer variables.   

 

The calculation considers 70 years of life for each project.  Different time span can be 

used, but the difference on results would be small.  Complete formulation of the timing 

model: 

 

Objective function: 

Max  
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Table 11: List of variables for the timing model 

Variable Definition Units 
Xist Average flow from site s for season t for time period i  m3/s 
Pist Hydroelectric power produced at site s for season t for time 

period i 
MwH 

Ris 0-1 variable indicating whether or not the project is built at 
site s for time period i  
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Table 12: List of parameters for the timing model 

Parameter Definition Units Values 
Qin,t Upstream inflow for season t m3/s (374,283) 
∆Fst Increment to flow between sites s and 

the next site for season t 
m3/s (389, 154) for site 

3, others are 0 
es Power plant efficiency at site s  0.7 
kt Number of seconds in a season Million 

Seconds 
15.552 

ht Number of hours in a season Hours 4320 
Fst Power factor at site s for season t  0.35 
βP Hydropower benefit coefficient 103 RMB 

/MwH  
0.25 

βPi Hydropower benefit coefficient for time 
stage i in the real options timing model 

  

FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41) 
VCs Variable cost for reservoir at site s B 

RMB/106m3
(4.49×10-4, 0, 6.68 
×10-4) 

sH  Capacity of power plant at site s MW (3600, 1700, 1723) 

sV  
Capacity of reservoir at site s 106m3 (9600, 0, 9593) 

stA  Head at site s for season t m (262, 262; 280, 
280; 240, 253) 

stY  Reservoir yield at site s for season t (the 
change of the flow if a reservoir is built) 

m3/s (0, 0; 0, 0;  
-63.6, 63.6) 

stc  Part of flow at site s season t to be used 
in the construction period to ensure a 
full reservoir of the next period 

m3/s 0 

f The ratio of average yearly power 
production during the construction 
period over the normal production level 

 0.226 

δs Variable cost for power plant at site s B 
RMB/MW 

(7.65×10-4, 
1.85×10-3,  8.80 
×10-4) 

PVi Factor to bring 10-year annuity of 
benefit back to the present value as of 
year 0 (now) 

 (6.532, 2.863, 
1.254) 

PVOi Factor to bring the annuity from year 31 
to year 70 back to year 0 

 (0.896, 0.943, 
0.963) 

PVCi Factor to bring cost in the ith period 
back to year 0 

 (1, 0.438, 0.192) 

r Discount rate  0.086 

syr  Indicating whether or not the project is built 
at site s 

 (1, 1, 1) 

crf Capital recovery factor  0.087 
 


