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Abstract

In the absence of opportunities for capacity expansion or operational enhancements, air traffic

congestion mitigation may require scheduling interventions aimed to control the extent of over-

capacity scheduling at busy airports. Previous research has shown that large delay reductions

could be achieved through comparatively small changes in the schedule of flights. While existing

approaches have focused on minimizing the overall impact of scheduling interventions across the

airlines, this paper designs, optimizes, and assesses a novel approach for airport scheduling in-

terventions that incorporates inter-airline equity objectives. It relies on a lexicographic modeling

architecture based on efficiency (i.e., meeting airline scheduling preferences), equity (i.e., balanc-

ing scheduling adjustments fairly among the airlines), and on-time performance (i.e., mitigating

airport congestion) objectives, subject to scheduling and network connectivity constraints. The-

oretical results show that, under some scheduling conditions, equity and efficiency can be jointly

maximized. Computational results suggest that, under a wide range of current and hypothetical

scheduling settings, ignoring inter-airline equity can lead to highly inequitable outcomes, but that

our modeling approach achieves inter-airline equity at no, or small, losses in efficiency.

Keywords: airport demand management, inter-airline equity, efficiency-equity trade-off, integer

programming, dynamic programming, queuing model

1. Introduction

The development of air transportation systems worldwide has been supported by airport and air

traffic management infrastructure. However, limitations on infrastructure capacity, coupled with

significant growth in air traffic, have resulted in severe congestion at many of the world’s busiest

airports. This congestion typically materializes in the form of flight delays and cancellations. The

costs of air traffic congestion in the United States were estimated at over $30 billion for the year

2007 (Ball et al., 2010) and this issue is likely to become even more pressing over the medium- and

long-term horizons as demand for air traffic is expected to increase nationally and internationally.
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Most of the air traffic delays in the United States originate from imbalances between demand

and capacity at the busiest airports (Bureau of Transportation Statistics, 2013). In the absence of

opportunities for capacity expansion or operating enhancements, such imbalances can only be signif-

icantly mitigated through scheduling interventions that limit the extent of over-capacity scheduling

at peak hours. This paper proposes and evaluates a quantitative approach to optimize such inter-

ventions in a way that achieves on-time performance objectives, while minimizing interference with

airlines’ competitive scheduling and, for the first time, balancing the impact of such interventions

equitably among the airlines. Before presenting the contributions of this paper (Section 1.3), we

elaborate on the approaches for airport scheduling interventions (Section 1.1) and review existing

work on the trade-off between efficiency and equity in resource allocation (Section 1.2).

1.1. Airport Scheduling Interventions

Scheduling interventions refer to the demand management measures that impose limits, or

constraints, on the number of flights scheduled at an airport. They are implemented months in

advance of the day of operations (before flight schedules get published and tickets get marketed).

Most airports outside the United States operate under slot control policies that limit the number

of flights scheduled per hour (or other units of time) and distribute a corresponding number of

slots across the different airlines through an administrative procedure (International Air Transport

Association, 2015). In contrast, no demand management is applied at a large majority of US

airports. A few of the busiest airports were subject to slot restrictions under the High Density

Rule, but, since its phase-out in 2007, airline schedules of flights in the United States have been

subject to limited constraints. Given the high delays that ensued in 2007, “flight caps” have been

imposed at the three major airports in the New York Metroplex, but these were found too high

to effectively alleviate congestion (Office of Inspector General, 2010; Government Accountability

Office, 2012; de Neufville and Odoni, 2013). Given these regulatory differences, European airports

may reject flight requests that could be accommodated, resulting in smaller throughput than their

US counterparts. On the other hand, US airports face larger imbalances between demand and

capacity and hence, larger and less predictable delays (Morisset and Odoni, 2011; Odoni et al.,

2011).

Recent research has showed the potential to improve current scheduling intervention practices

to mitigate congestion and satisfy airline scheduling requests as closely as possible. First, market

mechanisms based on congestion pricing (Carlin and Park, 1970; Daniel, 1995; Brueckner, 2002;

Vaze and Barnhart, 2012a) or slot auctions (Rassenti et al., 1982; Ball et al., 2006; Harsha, 2009)

have been proposed to allocate airport capacity to the users that assign the highest value to it.

However, they have not been successfully implemented in the current institutional environment,

most likely due to the monetary transfers they involve. A second line of research has focused on

improving current slot allocation procedures at slot-controlled airports by optimizing the matching

of airlines’ scheduling requests (Zografos et al., 2012). Third, several studies have investigated the
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potential of demand management to mitigate congestion at US airports, based on the well-known

result from queuing theory that the relationship between air traffic demand, airport capacity and

on-time performance is highly non-linear at airports operating close to capacity (de Neufville and

Odoni, 2013; Pyrgiotis et al., 2013; Nikoleris and Hansen, 2012; Jacquillat and Odoni, 2015b).

Using a game-theoretic framework of airline frequency competition, Vaze and Barnhart (2012b)

showed that small reductions in allocated airport capacity can reduce delays and improve airline

profitability. By modeling the trade-off between flight delays and passenger schedule delay (i.e.,

schedule inconvenience), Swaroop et al. (2012) found that a reduction in allocated capacity of 10%

to 20% would improve passenger welfare at a majority of busy US airports. Using a different

approach, Pyrgiotis and Odoni (2016) and Jacquillat and Odoni (2015a) modeled and optimized

the intra-day scheduling interventions, and found that limited changes in airline timetabling of

flights could yield significant delay reductions. In summary, evidence suggests that performance

improvements could be achieved at the busiest US airports through limited scheduling interventions

that involve only temporal shifts in demand (i.e., changes in the intra-day timetabling of flights),

and no reduction in overall demand (i.e., no change in the set of flights scheduled in the day).

These existing approaches suffer from two main limitations. First, they are focused exclusively

on overall scheduling levels at the airports, without considering explicitly the impact of the interven-

tions on the different airlines. In turn, they may penalize one airline (or a small number of airlines)

disproportionately. Second, they do not investigate the potential for strategic behaviors from the

airlines when providing their scheduling inputs. This paper addresses the first of these concerns

by integrating inter-airline equity considerations into the decision-making framework underlying

airport scheduling interventions. We leave the second one for further research.

Our scheduling process uses, as a starting point, capacity estimates at an airport under con-

sideration, and the preferred schedule of flights. Airport capacity estimates can be obtained from

historical records of operations (Gilbo, 1993; Simaiakis, 2012). As in current practice, the preferred

schedule is typically provided by the airlines to a central decision-maker (e.g., administratively

appointed schedule coordinators at slot-controlled airports, the Federal Aviation Administration

(FAA) in the United States), who then produces a schedule of flights to reduce anticipated delays

at the considered airport. Per the discussion above, we focus primarily on the case where these ad-

justments involve only temporal shifts in demand. We also discuss the case where the adjustments

involve reductions in demand (i.e., the elimination of some flights), as may be required at a few

of the busiest slot-controlled airports worldwide, where unconstrained airline demand may be so

high that acceptable delay levels cannot be attained with existing levels of capacity. In addition,

we consider the general case where each flight is assigned a weight characterizing the cost, or the

inconvenience, of this flight being rescheduled (or eliminated). This captures the standard “a flight

is a flight” paradigm (with equal weights assigned to all flights, as currently practiced at slot-

controlled airports and assumed in other previously proposed mechanisms), as well as extensions

3



of existing mechanisms in which the airlines can signal the relative rescheduling costs of different

flights through non-monetary credit allocation or a monetary auction-based mechanism. In turn,

this paper introduces inter-airline equity in a wide range of settings representing current practice

as well as potential extensions of previously proposed mechanisms.

1.2. Equity in Resource Allocation

Airport scheduling interventions fall into a broader class of problems involving the allocation

of scarce resources by a central decision-maker to distributed agents (here, airlines). One major

challenge in this class of problems involves defining the objective of resource allocation to balance

the preferences and requirements of various stakeholders (Sen et al., 2014). This may create trade-

offs between efficiency (i.e., maximizing the sum of agents’ utilities), equity (i.e., balancing utilities

fairly among the agents), and, possibly, other objectives (e.g., maximizing outcome predictability,

ensuring incentive-compatibility, etc.). The trade-off between efficiency and equity was first studied

by Nash (1950) and Kalai and Smorodinsky (1975) for the two-player bargaining problem. It has

been recently extended by Bertsimas et al. (2011, 2012) to general problems of resource alloca-

tion, who obtained theoretical bounds on the “price of fairness” and the “price of efficiency”, i.e.,

the relative loss in efficiency if equity is maximized, and vice versa. These bounds were derived

with general utility functions, and in special instances involving compact and convex utility sets.

However, no study till date has incorporated inter-airline equity considerations into the design of

airport scheduling interventions.

In a related area, equitable mechanisms have been developed for allocating air transportation

capacity on the day of operations through Air Traffic Flow Management (ATFM) initiatives. ATFM

consists of optimizing the flows of aircraft at airports or through air traffic control sectors over the

day of operations to reduce local imbalances between demand and capacity. Whereas early ATFM

developments were exclusively based on efficiency objectives (minimizing total congestion costs),

recent studies have incorporated inter-airline equity considerations into the objective of ATFM

models, aiming to make the outcome of centralized decision-making more acceptable to each of the

individual airlines (Vossen et al., 2003; Vossen and Ball, 2006; Barnhart et al., 2012; Bertsimas

and Gupta, 2016; Glover and Ball, 2013). This paper aims to integrate similar objectives into the

optimization of scheduling interventions. However, the problem of scheduling interventions exhibits

several differences from the ATFM problem. First, unlike ATFM, no standard of equity has been

accepted in the industry with respect to scheduling interventions. Second, scheduling interventions

may result in flights being rescheduled later or earlier than their preferred times requested by the

airlines. This contrasts with the situation in ATFM where flights cannot be moved earlier than

their scheduled time. Thus, the ATFM schemes of ration-by-schedule and schedule compression

do not have any direct analogs in the context of scheduling interventions. It is thus necessary to

propose new metrics of inter-airline equity and to develop new modeling frameworks for scheduling

interventions.
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1.3. Contributions

The main contribution of this paper consists of developing and solving a set of optimization

models that incorporate inter-airline equity considerations in airport scheduling interventions. Our

approach builds upon the Integrated Capacity Utilization and Scheduling Model (ICUSM) from

Jacquillat and Odoni (2015a) that optimizes such interventions through temporal shifts in demand,

but extends it in a way that balances scheduling adjustments equitably among the airlines. We

name the resulting model the Integrated Capacity Utilization and Scheduling Model with Equity

Considerations (ICUSM-E).

Specifically, this paper makes the following contributions:

• Quantifying and optimizing the trade space between performance attributes for scheduling

interventions. We identify efficiency (i.e., meeting airline scheduling preferences), equity

(i.e., balancing scheduling adjustments fairly among the airlines), and on-time performance

(i.e., mitigating airport congestion) as three performance attributes. We develop quantitative

indicators for each of them, using a unified framework of scheduling interventions. We then

formulate a tractable lexicographic architecture to characterize and optimize the trade space

between efficiency, equity, and on-time performance in airport scheduling interventions.

• Characterizing conditions under which efficiency and equity can be jointly maximized. We

show that, in the absence of network connections and in the case where all flights are equally

costly (or equally inconvenient) to reschedule, efficiency and equity can be jointly maximized

when the interventions involve only reductions in demand, or when the interventions involve

only temporal shifts in demand and one of the following conditions is satisfied: (i) the im-

balances are limited to non-consecutive periods in the day, or (ii) the schedules of flights of

the different airlines exhibit the same intra-day patterns. We then describe instances where

the schedules of flights, network connections, or unequal flight valuations can give rise to a

trade-off between efficiency and equity.

• Generating and solving real-world full scale computational scenarios at the John F. Kennedy

Airport (JFK). We show that, under a wide range of realistic and hypothetical scheduling

conditions, the consideration of efficiency-based objectives exclusively in airport scheduling

interventions may lead to highly inequitable outcomes, but that inter-airline equity can be

achieved at no (or minimal) efficiency losses. This suggests that existing approaches for

scheduling interventions can be extended to include inter-airline equity considerations.

1.4. Outline

The remainder of this paper is organized as follows. In Section 2, we summarize the Integrated

Capacity Utilization and Scheduling Model (ICUSM) from Jacquillat and Odoni (2015a), and

discuss its limitations related to inter-airline equity. In Section 3, we formulate the Integrated
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Capacity Utilization and Scheduling Model with Equity Considerations (ICUSM-E) that builds

upon the ICUSM to account for inter-airline equity. Section 4 provides a theoretical discussion

of the trade-off, or lack of it, between efficiency and equity in the context of airport scheduling

interventions. In Section 5, we show computational results from a case study at JFK Airport.

Section 6 concludes.

2. Base Model of Scheduling Interventions

We first summarize the Integrated Capacity Utilization and Scheduling Model (ICUSM) from

Jacquillat and Odoni (2015a), which provides the baseline for the optimization of our scheduling

interventions. Moreover, this section introduces notations that will be used throughout this paper.

2.1. Formulation

The ICUSM considers a two-step process, under which the airlines provide a schedule of flights

to a central decision-maker, who may then propose scheduling adjustments to reduce above-capacity

scheduling at an airport, and hence reduce anticipated delays. We denote by Π the airport where

the scheduling interventions are considered. No flight is eliminated, and delays are reduced by

distributing flights more evenly over the day. The model takes as inputs each airline’s preferred

schedule of flights (e.g., the schedule in the absence of demand management) and estimates of the

capacity of airport Π (i.e., the expected number of movements that can be operated per unit of time

in various operating conditions). It determines which flights to reschedule to later or earlier times to

minimize the displacement from the airlines’ preferred schedule of flights, subject to scheduling and

network connectivity constraints and on-time performance constraints. Scheduling and network

connectivity constraints ensure that the airlines’ flight networks are minimally affected, and on-

time performance constraints ensure that expected arrival and departure queue lengths do not

exceed pre-specified targets. The modeling framework of the ICUSM integrates into an Integer

Programming model of scheduling interventions a Stochastic Queuing Model of airport congestion

and a Dynamic Programming model of airport capacity utilization.

Inputs.

T = set of 15-minute time periods, indexed by t = 1, ..., T

F = set of flights, indexed by i = 1, ..., F

Farr/Fdep = set of flights i ∈ F scheduled to land/take off at airport Π

C ⊂ F × F = set of ordered flight pairs (i, j) ∈ F × F such that there is a connection from i to j

Sarr
it /S

dep
it =

{
1 if flight i is scheduled to land/take off no earlier than period t

0 otherwise

tmin
ij /tmax

ij = minimum/maximum connection time between flight i and flight j ∀(i, j) ∈ C
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A connection refers to any pair of flights between which a minimum and/or a maximum time

must be maintained to enable an aircraft, passengers, or a crew to connect. Note that the set of

flights considered in the model may include flights that are not scheduled to land or take off at the

airport Π where the scheduling interventions are applied, i.e., Farr ∪ Fdep may be a strict subset

of F . This arises from the need to maintain feasible connections in a network of airports.

Variables.

warr
it /w

dep
it =

{
1 if flight i is rescheduled to land/take off no earlier than period t

0 otherwise

ui = displacement (positive or negative) of flight i, as number of 15-minute periods

λarr
t /λdep

t = number of arrivals/departures scheduled at airport Π during period t, after rescheduling

By convention, we assume that warr
i,T+1 = wdep

i,T+1 = 0,∀i ∈ F .

Objective. The model minimizes, first, the largest schedule displacement that any flight will sus-

tain, denoted by δ (Equation (1)), and, second, the total schedule displacement, denoted by ∆0

(Equation (2)).

δ = max
i∈F
|ui| (1)

∆0 =
∑
i∈F
|ui| (2)

Constraints. For notational ease, a parameter κ refers either to the “arr” or the “dep” superscript

of the inputs and variables defined above.

wκit ≥ wκi,t+1 ∀i ∈ F , ∀κ ∈ {arr, dep} , ∀t ∈ T (3)

wκi1 = 1 ∀i ∈ F , ∀κ ∈ {arr,dep} (4)∑
t∈T

(wκit − Sκit) = ui ∀i ∈ F , ∀κ ∈ {arr,dep} (5)

∑
t∈T

(
wdep
jt − w

arr
it

)
≥ tmin

ij ∀(i, j) ∈ C (6)

∑
t∈T

(
wdep
jt − w

arr
it

)
≤ tmax

ij ∀(i, j) ∈ C (7)∑
i∈Fk

(
wκit − wκi,t+1

)
= λκt ∀t ∈ T , ∀κ ∈ {arr,dep} (8)

Constraint (3) ensures that warr and wdep are non-increasing in t. Constraint (4) ensures that no

flight is eliminated. Constraint (5) defines flight displacement as the difference between rescheduled

and original scheduled times, and ensures that the scheduled block-times are left unchanged. Con-
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straints (6) and (7) maintain connection times within the specified ranges. Constraint (8) defines

the aggregate schedule of flights (i.e., the number of scheduled arrivals and departures per time

period). We summarize next the model of airport congestion that quantifies arrival and departure

queue lengths as a function of the schedule of flights (i.e., of λarr
t and λdep

t ).

Arrival and departure queues are quantified by means of stochastic M(t)/E3(t)/1 queuing sys-

tems, i.e., the demand processes are modeled as time-varying Poisson processes, and the service

processes are modeled as time-varying Erlang processes of order 3. For each period t, the arrival

and departure demand rates are determined by flight schedules, i.e., they are equal to λarr
t and λdep

t ,

respectively. Service rates are constrained by airport capacity. To capture the endogeneity of the

service rates with respect to airport capacity and flight schedules, a control of capacity utilization

procedures is integrated into the Stochastic Queuing Model of congestion. It is formulated as a

finite-horizon Dynamic Programming model, that minimizes congestion costs for a given schedule

of flights (Jacquillat et al., 2016). At the beginning of each 15-minute period, the control selects the

runway configuration and the balance of arrival and departure service rates for that period, under

capacity constraints, as a function of observed arrival and departure queue lengths, the runway

configuration in use, and wind and weather conditions. The combination of the Stochastic Queuing

Model and the Dynamic Programming model of capacity utilization provides an integrated model

of airport congestion that is computationally efficient and that approximates well the magnitude

and dynamics of delays at busy US airports (Jacquillat and Odoni, 2015b). This quantifies, in turn,

the relationship (denoted by q) between flight schedules and flight delays, represented as follows

(where At and Dt denote the random variables that represent the arrival and departure queue

lengths at the end of period t):

q : (λarr
1 , ..., λarr

T , λdep
1 , ..., λdep

T ) 7→ (A1, ..., AT , D1, ..., DT ) (9)

Based on this relationship, the ICUSM aims to ensure that, at any time of the day, the expected

arrival and departure queue lengths do not exceed the prespecified limits, denoted by AMAX and

DMAX, respectively (Constraints (10) and (11) below).

E(At) ≤ AMAX ∀t ∈ T (10)

E(Dt) ≤ DMAX ∀t ∈ T (11)

However, these constraints cannot be directly formulated into the Integer Programming schedul-

ing model described above, as the queuing dynamics (Equation (9)) depend nonlinearly on the

schedule of flights, hence on the model’s decision variables. The solution of the ICUSM therefore

relies on an algorithm that iterates between the Integer Programming model of scheduling inter-

ventions, the Dynamic Programming model of capacity utilization, and the Stochastic Queuing

Model of airport congestion outlined above, until it converges to the optimal value of the schedule
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displacement. For any given expected queue length targets, this algorithm terminates in 10-15 iter-

ations and in 90 minutes to several hours on a modern computer, depending on model parameters.

For more details, we refer the reader to Jacquillat and Odoni (2015a).

2.2. Inter-airline Equity Concerns

The ICUSM provides a modeling framework for optimizing congestion-mitigating scheduling

interventions. Its implementation quantifies the trade-off between schedule displacement (i.e., δ and

∆0) and peak expected queue length limits (i.e., AMAX and DMAX). However, it does not account

for inter-airline equity considerations. Its two-stage lexicographic formulation (characterized by

Equations (1) and (2)) ensures equity at the flight level, i.e., no flight is disproportionately displaced.

However, it does not ensure equity at the airline level. In turn, its solution may penalize one airline

(or a small subset of airlines) disproportionately.

To illustrate this, Table 1 shows an example with 18 flights scheduled by two airlines over a

one-hour interval, with twice as many flights scheduled by Airline 1 (12 flights) as by Airline 2

(6 flights). We consider simple on-time performance constraints that impose that no more than

five flights (arrivals and departures) can be scheduled during any 15-minute period. The original

schedule indicates the preferred schedule of each flight, as requested by the airlines. A total of 6

flights (3 flights between 8:00 and 8:14, and 3 flights between 8:30 and 8:44) need to be rescheduled

to comply with the limit of five flights per period. Schedule 1 provides a solution where 6 flights

from Airline 1 are rescheduled. This solution is clearly inequitable, as it assigns all the rescheduling

to one airline, and leaves the schedule of the other airline unchanged. In contrast, Schedule 2

provides a solution where 3 flights from Airline 1 and 3 flights from Airline 2 are rescheduled. This

solution does not appear equitable either, as it assigns a similar displacement to the two airlines,

even though Airline 1 has more flights scheduled at the airport than Airline 2. It thus imposes

a greater per-flight displacement to the schedule of Airline 2 than to that of Airline 1. Schedule

3, then, provides an equitable solution that displaces exactly twice as many flights from Airline 1

(4 flights) as from Airline 2 (2 flights). The modeling architecture presented in the next section

formalizes the measurement of inter-airline equity and integrates it into the optimization model for

airport scheduling interventions.

3. Multi-criteria Modeling Architecture

We now present our Integrated Capacity Utilization and Scheduling Model with Equity Consid-

erations (ICUSM-E). The model structure, the decision variables, and the scheduling and network

connectivity constraints are identical to those in the ICUSM, but the main difference lies in the

objectives of scheduling interventions. In addition to the notations introduced in Section 2, we

partition the set of flights scheduled at airport Π, i.e., Farr ∪ Fdep, into subsets scheduled by the
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Table 1: Example of inequitable and equitable scheduling interventions

Movement Airline Original schedule Schedule 1 Schedule 2 Schedule 3

Arrival Airline 1 8:00 8:15 8:15 8:15

Departure Airline 1 8:00 8:00 8:00 8:00

Arrival Airline 2 8:00 8:00 8:00 8:00

Departure Airline 1 8:05 8:20 8:05 8:05

Arrival Airline 2 8:05 8:05 8:20 8:20

Departure Airline 1 8:10 8:25 8:25 8:25

Arrival Airline 1 8:10 8:10 8:10 8:10

Departure Airline 2 8:10 8:10 8:10 8:10

Arrival Airline 1 8:15 8:15 8:15 8:15

Arrival Airline 1 8:30 8:45 8:30 8:45

Departure Airline 1 8:30 8:30 8:30 8:30

Arrival Airline 2 8:30 8:30 8:45 8:30

Departure Airline 1 8:35 8:50 8:50 8:50

Arrival Airline 1 8:35 8:35 8:35 8:35

Departure Airline 1 8:40 8:40 8:40 8:40

Arrival Airline 1 8:40 8:55 8:40 8:40

Departure Airline 2 8:40 8:40 8:55 8:55

Departure Airline 2 8:45 8:45 8:45 8:45

different airlines.

A = set of airlines, indexed by {1, ..., A}
Fa = set of flights scheduled by airline a at airport Π

With these notations, we have: Fa1 ∩Fa2 = ∅, ∀a1, a2 ∈ A, a1 6= a2 and ∪a∈AFa = Farr ∪Fdep.

We also introduce parameters vi, ∀i ∈ F to characterize “flight valuations”, reflecting airlines’

preferences regarding which flights to reschedule. Flights with lower valuations can be thought

of as less “costly” to reschedule, or as the flights that exhibit more timetabling flexibility. Note

that the current setting where “a flight is a flight” is a special case, where vi = 1, ∀i ∈ F . Even

though the valuations vi are not available to the central decision-makers in current mechanisms for

airport scheduling interventions, they could be considered in future extensions of these mechanisms.

For instance, they could be the result of non-monetary processes that would allow the airlines to

indicate their preferences through ranking or credit allocation. Alternatively, they could result from

an auction-based mechanism where airlines would submit a bid for each flight i, and pay an access

fee that is discounted by a fixed percentage for each period of displacement (e.g., if an airline bids

x for an 8:00 flight, it would pay an access fee equal to x if it is scheduled at 8:00, (1 − α)x if it

is scheduled at 7:45 or 8:15, (1 − 2α)x if it is scheduled at 7:30 or 8:30, etc., where α < 1). This

is similar to mechanisms proposed in energy (Newbery, 2003; Stern and Turvey, 2003), railway

transportation (Pena-Alcaraz, 2015) or telecommunications markets (Hoffman, 2010). While the

design of such mechanisms is beyond the scope of this paper, our modeling approach incorporates
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inter-airline equity objectives in instances with either identical of differentiated flight valuations.

vi = valuation of flight i,∀i ∈ F

3.1. Performance Attributes

We consider the following three performance attributes of scheduling interventions: efficiency,

inter-airline equity, and on-time performance. Efficiency and on-time performance extend the

notions of schedule displacement and expected queue length limits, respectively, that are considered

in the ICUSM, while the notion of equity is added to this framework by us.

Efficiency. This refers to the ability to meet airline scheduling preferences. Since no flight is

eliminated, efficiency is measured by the displacement from the schedule of flights requested by the

airlines. We consider two efficiency objectives. First, we define min-max efficiency as the largest

displacement sustained by any flight. As in Section 2, we denote it by δ. Second, we define weighted

efficiency as the weighted sum of schedule displacements sustained by all flights, and we denote

it by ∆. Weighted efficiency generalizes the total displacement ∆0 considered in the ICUSM in a

way that accounts for flight valuations. Directionally, maximizing efficiency involves minimizing δ

and/or ∆.

δ = max
i∈F
|ui| =⇒ min δ (12)

∆ =
∑
i∈F

vi |ui| =⇒ min ∆ (13)

Inter-airline Equity. This refers to the ability to balance schedule displacement fairly among the

airlines. We describe each airline’s disutility as the weighted average of per-flight displacements,

denoted by σa. Perfect equity is achieved when the weighted sum of displacements borne by any

airline is proportional to its number of flights scheduled at airport Π, i.e., when the weighted average

of per-flight displacements is the same for all airlines. In order to maximize inter-airline equity,

we minimize airline disutilities lexicographically, i.e., we first minimize the largest airline disutility,

then the second-largest, etc.

σa =
1

|Fa|
∑
i∈Fa

vi |ui| , ∀a ∈ A =⇒ lex minσ (14)

We denote the largest airline disutility by Φ:

Φ = max
a∈A

σa (15)

This lexicographic approach to inter-airline equity maximization extends the min-max formu-

lation proposed by Bertsimas et al. (2011, 2012), which maximizes the largest utility, i.e., mini-
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mizes the largest weighted average per-flight displacements borne by any airline in this case. Note

that other equity formulations could be considered. For instance, Bertsimas et al. (2012) also

propose a broader class of welfare functions Wα(u) =
∑n

i=1
u1−α
i

1−α , for each α ≥ 0, α 6= 1, and

W1(u) =
∑n

i=1 log(ui), where ui denotes the utility of agent i = 1, ..., n. This establishes a contin-

uum between the efficiency-maximizing outcome (α → 0) and the mix-max equity scheme consid-

ered in this paper (α → ∞). Other formulations could also be based on the dispersion of agent

utilities (e.g., by minimizing functions like
∑n

i,j=1 |ui − uj |, maxi,j=1,...,n |ui − uj | or
∑n

i=1 (ui − ū)2,

where ū denotes the average utility across all agents i (Leclerc et al., 2012). The choice of a lexi-

cographic inter-airline equity maximization is motivated by three main factors. From a theoretical

standpoint, it extends the solution of Kalai and Smorodinsky (1975) for the two-player bargaining

problem, which is the only solution that satisfies the axioms of Pareto optimality (i.e., no other

solution can improve the utility of one airline, without reducing that of another airline), symmetry

(i.e., all airlines are treated equivalently), affine invariance (i.e., it does not depend on the choice

of equivalent utility representations), and monotonicity (i.e., if the total displacement is reduced,

then the utility of any of the airlines should not decrease)—see (Bertsimas et al., 2011) for a more

detailed discussion. Note that the condition of monotonicity is not satisfied by dispersion-based

metrics, which would favor, for instance, a displacement of 100 flights for Airline 1 and 100 flights

for Airline 2 over a displacement of 100 flights of Airline 1 and 90 flights of Airline 2 (for two

symmetric airlines). From a computational standpoint, the lexicographic approach considered in

this paper can be formulated using linear mixed-integer programming models, which ensures far

greater computational efficiency than alternative approaches based on non-linear objectives. From

a practical standpoint, it has broad application in multi-criteria decision-making problems, for in-

stance in the context of resource allocation (Klein et al., 1992; Luss, 1999), telecommunications

(Ogryczak et al., 2005), and electricity (Sun, 2011) with significant equity gains at moderate losses

in efficiency.

On-time performance. This refers to the ability to mitigate airport congestion. We quantify

on-time performance by a non-decreasing function of the arrival and departure queue lengths

At and Dt (which depend on the schedule of flights according to Equation (9)), denoted by

g(A1, ..., AT , D1, ..., DT ). Examples of such functions include the peak expected arrival and de-

parture queue lengths, the total delay experienced over a day of operations, the 95th percentile

of the peak arrival and departure queue lengths, etc. Maximizing on-time performance involves

minimizing the function g.

min {g (A1, ..., AT , D1, ..., DT )} (16)

The optimization of scheduling interventions is a multi-objective optimization problem. First,

each of these three performance attributes comprises several dimensions (e.g., minimizing min-max

efficiency vs. weighted efficiency; minimizing the largest airline disutility vs. variations in airlines’

utilities for equity; minimizing arrival vs. departure delays for on-time performance). Moreover,
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there exists a trade-off between efficiency and on-time performance, quantified by the ICUSM: the

larger the schedule displacement, the larger the potential delay reductions (up to a limit). Finally,

there may be, for given on-time performance objectives, a trade-off between efficiency and equity.

3.2. Lexicographic Modeling Approach

We characterize the trade space between efficiency, equity, and on-time performance in airport

scheduling interventions. In order to provide a transparent and optimal characterization of this

trade space, we aim to find its Pareto frontier, i.e., the set of solutions such that no other feasible

solution could improve at least one of the three objectives without worsening the others. This

representation of the trade space is flexible enough to be used by system managers and policy makers

to select the most appropriate level of compromise between these objectives. To this end, we develop

a lexicographic optimization approach that (i) fixes on-time performance targets; (ii) maximizes

efficiency under on-time performance targets; and (iii) maximizes equity under on-time performance

and efficiency targets. This lexicographic structure is also consistent with industry practice. For

instance, air traffic flow management typically aims, first, to maximize system safety, then to

minimize total delays in the system, then the delay costs borne by various airlines, etc.

First, we quantify on-time performance by the peak expected arrival and departure queue

lengths, i.e. g(A1, ..., AT , D1, ..., DT ) =
(

maxt∈T E(At),maxt∈T E(Dt)
)
. It is motivated by the

objective of controlling the largest delays experienced over the day. Corresponding on-time perfor-

mance constraints are identical to those in the ICUSM (Constraints (10) and (11)). We then aim

to find the “best” schedule (in terms of efficiency and equity) that meets these constraints.

Second, we determine the schedule of flights that maximizes efficiency, subject to scheduling

constraints, network connectivity constraints, and on-time performance constraints. We formulate

the efficiency-maximizing problem by lexicographically maximizing, first, min-max efficiency δ,

and, second, weighted efficiency ∆. This is motivated by the objective of avoiding large flight

displacements, and consistent with the literature on this topic (Pyrgiotis and Odoni, 2016; Jacquillat

and Odoni, 2015a). This is expressed in Problems P1 and P2 described below:

P1. We minimize min-max efficiency metric δ, subject to scheduling, network connectivity and

on-time performance constraints. We denote by δ∗ its optimal value.

min δ (Equation (12))

s.t. Scheduling and network connectivity constraints: (3) to (8)

On-time performance constraints: (9) to (11)

P2. We minimize weighted efficiency metric ∆, subject to scheduling, network connectivity and

on-time performance constraints, and subject to the constraint that no flight may be displaced by
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more than δ∗. We denote by ∆∗ its optimal value.

min ∆ (Equation (13))

s.t. Scheduling and network connectivity constraints: (3) to (8)

On-time performance constraints: (9) to (11)

Min-max efficiency objectives: |ui| ≤ δ∗,∀i ∈ F

Third, we maximize inter-airline equity, subject to scheduling constraints, network connectivity

constraints, on-time performance constraints, and efficiency targets. This is formulated in the class

of problems P3(ρ) described below:

P3(ρ). We fix efficiency targets, and we lexicographically minimize airline disutilities, subject to

scheduling, network connectivity, on-time performance, and efficiency constraints. We characterize

the trade space between efficiency and equity by varying the efficiency target. Specifically, we

impose that min-max efficiency must be optimal (i.e., no flight may be rescheduled by more than

δ∗) and we denote by ρ ∈ [0,∞) the relative loss in weighted efficiency that is allowed (i.e., the

weighted displacement must not exceed (1+ρ)∆∗). When ρ =∞, we only maximize equity (without

any weighted efficiency consideration). When ρ = 0, we maximize equity, under optimal min-max

and optimal weighted efficiency.

lex min σ (Equation (14))

s.t. Scheduling and network connectivity constraints: (3) to (8)

On-time performance constraints: (9) to (11)

Min-max efficiency objectives: |ui| ≤ δ∗, ∀i ∈ F

Weighted efficiency objectives:
∑
i∈F

vi |ui| ≤ (1 + ρ) ∆∗

Problems P1, P2, and P3(ρ) together determine the Pareto frontier of the trade space between

efficiency, equity, and on-time performance. First, variations in the on-time performance targets

AMAX and DMAX quantify the trade-off between the costs of scheduling interventions (in terms of

inefficiency and inequity) and delay reductions. Second, for any on-time performance targets AMAX

and DMAX, varying the parameter ρ quantifies the potential trade-off between weighted efficiency

and inter-airline equity (under optimal min-max efficiency).

We denote by σ∗(ρ) the equity-maximizing vector of airline per-flight displacements, as a func-

tion of ρ, and Φ∗(ρ) = maxa∈A σ
∗
a(ρ). We denote by ∆eq the smallest equity-maximizing value

of ∆, and by ρ∗ the minimum loss in weighted efficiency required to attain optimal equity (i.e.,

∆eq = (1 + ρ∗)∆∗). With these notations, the “price of efficiency” and the “price of equity” will be

characterized by Peff = Φ∗(0)−Φ∗(∞)
Φ∗(∞) , and by Peq = ∆eq−∆∗

∆∗ = ρ∗, respectively.
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Figure 1 illustrates our approach to maximizing weighted efficiency and inter-airline equity, for

given on-time performance targets AMAX and DMAX, and the optimal value of min-max efficiency

δ∗. Specifically, it shows hypothetical variations in three airlines’ disutilities (σ1, σ2, and σ3) as a

function of the weighted efficiency target ∆ = (1 + ρ)∆∗. By construction, the region on the left

side of ∆∗ is infeasible, i.e., the weighted schedule displacement must be at least ∆∗. Moreover,

the largest airline disutility Φ is a non-increasing function of the value of weighted efficiency ∆

(i.e., of ρ). Note that the other airlines’ utilities (here, σ2 and σ3) may increase or decrease as Φ

is reduced. As the largest airline disutility Φ attains its optimal value, the second-largest disutility

may still be larger than its optimal value. In this case, further increases in ρ may yield further

improvements in the lexicographic minimization of airline disutilities. Optimal equity is attained

when the largest, second largest, third largest, etc., airline disutilities have all reached their optimal

values (i.e., the values that would be obtained without any efficiency consideration, or with ρ =∞).

This representation shows the price of efficiency and the price of equity as the relative difference

between Φ∗(∞) and Φ(0) and between ∆∗ and ∆eq, respectively. Note that Figure 1 shows an

instance where the order of airline disutilities remains identical for all values of ρ (i.e., in this case,

σ∗1(ρ) > σ∗2(ρ) > σ∗3(ρ),∀ρ ≥ 0), but this need not be the case (i.e., the curves may intersect).
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Figure 1: A schematic trade space between weighted efficiency and equity

3.3. Solution Architecture

As discussed in Section 2, the on-time performance constraints are not linear. Solving Problems

P1, P2, and P3(ρ) thus requires an iterative solution algorithm. To solve Problem P1, we update

iteratively a lower bound of the optimal maximum flight displacement δ∗, i.e., we increase the value

of the maximum flight displacement from 0 15-minute period to 1 period, then 2 periods, until

a feasible schedule that meets the on-time performance targets is found. To solve Problem P2,
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we iteratively update an upper bound ∆ and a lower bound ∆ on the optimal weighted efficiency

∆∗, using binary search. At each iteration, we consider a value of ∆ = ∆+∆
2 , and we update

∆ (respectively ∆) to ∆+∆
2 if the resulting delay estimates meet (respectively do not meet) the

on-time performance constraints. We repeat the process until the following stopping criteria is

reached: ∆−∆
∆ ≤ ε∆. This ensures that the schedule displacement obtained is within ε∆ of the

optimal schedule displacement. We use a value of 1% for ε∆. This algorithm is adopted from

Jacquillat and Odoni (2015a).

When solving the equity-maximizing problem (Problem P3(ρ)), one candidate approach is to

design a similar iterative algorithm. This would consist of iteratively updating lower and upper

bounds on the optimal value of each airline disutility σa until convergence. However, the com-

putational requirements of such an algorithm prevent it from being applied repeatedly for several

airlines, for several values of the parameter ρ, and with different sets of inputs. For this reason, we

develop an alternative approach that approximates Problem P3(ρ) while ensuring computational

tractability.

Specifically, we consider, instead of the on-time performance constraints (Constraints (10)

and (11)), scheduling limit constraints (Constraints (17) and (18), defined below). These con-

straints ensure that, for any period t, the number of scheduled arrivals and departures does not ex-

ceed limits denoted by λ̂arr
t and λ̂dep

t , respectively. We refer to these constraints as “time-dependent

schedule limit constraints”.

λarr
t ≤ λ̂arr

t ,∀t ∈ T (17)

λdep
t ≤ λ̂dep

t , ∀t ∈ T (18)

The resulting model is formulated below, and we refer to it as P̂3(ρ):

lex min σ (Equation (14))

s.t. Scheduling and network connectivity constraints: (3) to (8)

Time-dependent schedule limits constraints: (17) and (18)

Min-max efficiency objectives: |ui| ≤ δ∗, ∀i ∈ F

Weighted efficiency objectives:
∑
i∈F

vi |ui| ≤ (1 + ρ) ∆∗

Unlike Problem P3(ρ), Problem P̂3(ρ) is an Integer Programming model and can be solved

directly using a commercial solver. Its solution is substantially faster than that of Problem P3(ρ),

which required iterating 10-15 times between an Integer Program, a Dynamic Program, and a

Stochastic Queuing Model. The main challenge lies in setting appropriate values of the scheduling

limits λ̂arr
t and λ̂dep

t . If set too high, the resulting arrival and departure queue lengths would not
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meet the on-time performance targets AMAX and DMAX, respectively. If set too low, they may

not minimize the displacement impact on airline schedules of flights. In this paper, we set the

scheduling limits λ̂arr
t and λ̂dep

t equal to the aggregate schedule (i.e., the vector of the number of

scheduled arrivals and departures per time period) obtained by solving Problem P2. In other words,

we first determine the efficiency-maximizing schedule of flights. We then look for flight schedules

that achieve the same aggregate schedule (but not necessarily the same schedule for each individual

flight), while yielding a Pareto-optimal solution to the trade-off between weighted efficiency and

equity.

By construction, the schedule obtained through this computationally efficient approach meets

the delay reduction constraints (10) and (11). On the other hand, Constraints (17) and (18)

are more restrictive than Constraints (10) and (11), and may thus yield a sub-optimal solu-

tion. Nonetheless, this approach exhibits the following strengths. First, the approach yields

improvements in inter-airline equity without sacrificing other objectives, as compared to exist-

ing approaches. Second, it starts with the scheduling inputs provided by the airlines to determine

the aggregate schedule, which can thus exhibit some peaks and valleys in accordance with airline

scheduling preferences and passenger demand. Third, our computational results reported in Sec-

tion 5 show that it leads to high equity levels. Finally, its reliance on the aggregate schedule of

flights (instead of individual flight schedules and expected delay reductions) makes this approach

easily communicable and implementable.

Our full solution architecture is shown in Figure 2. It takes as inputs scheduling data, connec-

tions data, and flight valuation data, as well as on-time performance targets AMAX and DMAX set

by the central decision-maker. First, we successively solve Problems P1 and P2, and we store the

optimal efficiency values (δ∗ and ∆∗) and the aggregate schedule (λ̂arr
t and λ̂dep

t ). Second, we solve

Problems P̂3(ρ) to determine the Pareto frontier of the trade space between weighted efficiency

and equity to achieve this aggregate schedule (i.e., λ̂arr
t and λ̂dep

t ). We start by maximizing equity

with no weighted efficiency constraint (ρ =∞). We then maximize equity under optimal weighted

efficiency (ρ = 0), and we relax progressively the weighted efficiency requirements by increasing

ρ in increments of 0.001, until optimal equity is reached. We use the following stopping criteria:
σ∗a(ρ)−σ∗a(∞)

σ∗a(∞) ≤ εσ, ∀a ∈ A, i.e., the algorithm terminates when all airlines’ disutilities are within εσ

of their equity-maximizing values. We use here a value of 1% for εσ. This algorithm characterizes,

for any pair of on-time performance targets AMAX and DMAX, (i) the efficiency-maximizing sched-

ule of flights, and (ii) feasible flight schedules that achieve the same aggregate schedule and yield

a set of Pareto-optimal solutions to the trade-off between weighted efficiency and equity.

4. A Theoretical Discussion on Inter-airline Equity

We show that, under some conditions on the type of scheduling interventions or on the schedul-

ing inputs provided by the airlines, efficiency and equity can be jointly optimized. We consider in
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Figure 2: Solution architecture

Section 4.1 the case where no network connections need to be maintained and all flights are equally

valued. We first show that efficiency and equity can be jointly optimized if the scheduling interven-

tions involve only reductions in demand (i.e., “accept” or “reject” each flight request). Note that

this problem is slightly beyond the scope of the model presented in Section 3, but it guarantees that

our major theoretical and computational insights hold for a broader class of scheduling intervention

problems than those considered in this paper. We then show that efficiency and equity can also

be jointly optimized if the scheduling interventions involve only temporal shifts in demand (i.e., do

not eliminate any flights, but may modify their timetabling), if additional scheduling conditions

are satisfied. Last, we discuss in Section 4.2 the factors that may violate these conditions, and thus

create a trade-off between efficiency and equity in scheduling interventions.
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4.1. Cases of Joint Maximization of Efficiency and Equity

We assume in this section that no connections need to be maintained (i.e., C = ∅, and therefore

the set of relevant flights F includes only flights scheduled to or from the airport Π under considera-

tion) and that all flights are equally valued (i.e., vi = 1,∀i ∈ F). In the absence of connections, and

identical flight valuations, all flights in the set F can be treated the same irrespective of whether they

take-off or land at the airport Π under consideration. So we can simply eliminate the superscripts

“arr” and “dep” from all the discussion in this section. We denote by Dt the set of flights scheduled

during period t before the scheduling interventions, i.e., Dt =
{
i ∈ F

∣∣Sit = 1 & Si,t+1 = 0
}

. By

convention, we assume that D0 = DT+1 = ∅ and λ̂0 = λ̂T+1 = 0. We also denote the positive part

of any number x by x+ = max(x, 0).

We first consider the case where the scheduling interventions involve only reductions in demand,

i.e., are restricted to accepting or rejecting individual flight scheduling requests, without changing

the timetabling of these flights. We define the corresponding problems of efficiency maximization

(EFF-AR) and equity maximization (EQ-AR). The decision variable yi is equal to 1 if flight i ∈ F is

rejected, or 0 otherwise. Problem (EFF-AR) minimizes the number of flights rejected and Problem

(EQ-AR) lexicographically minimizes the proportion of individual airlines’ flights being rejected,

subject to the constraint that no more than λ̂t flights may be scheduled during any period t.

min
∑

i∈F yi (EFF-AR) lex min
(

1
|Fa|

∑
i∈Fa yi

)
a∈A

(EQ-AR)

s.t.
∑

i∈Dt(1− yi) ≤ λ̂t, ∀t ∈ T
∑

i∈Dt(1− yi) ≤ λ̂t, ∀t ∈ T
yi ∈ {0, 1}, ∀i ∈ F yi ∈ {0, 1}, ∀i ∈ F

Proposition 1 shows that, in the case where scheduling interventions are based purely on reduc-

tions in demand, efficiency and equity can be jointly maximized. The efficient solution is to reject

flights that are in excess of the limit, in each of the time periods. The result below shows that this

can be done in a way that also maximizes equity

Proposition 1. There exists a solution that simultaneously solves (EFF-AR) and (EQ-AR).

Proof. The constraint in both (EFF-AR) and (EQ-AR) can be re-written as:
∑

i∈Dt yi ≥
(
|Dt| − λ̂t

)+
,∀t ∈

T . Therefore, any solution that involves rejecting exactly
(
|Dt| − λ̂t

)+
flights in each period t is

an optimal solution of (EFF-AR), and the optimal objective function value is
∑

t∈T

(
|Dt| − λ̂t

)+
.

Let us now consider a solution of (EQ-AR) and assume that
∑

i∈F yi >
∑

t∈T

(
|Dt| − λ̂t

)+
, i.e.,∑

t∈T

(∑
i∈Dt yi −

(
|Dt| − λ̂t

)+
)
> 0, We denote by J =

{
t ∈ T |

∑
i∈Dt yi >

(
|Dt| − λ̂t

)+
}

. For

each t ∈ J , we select a subsetKt ⊆ {i ∈ Dt|yi = 1}, that contains exactly

(∑
i∈Dt yi −

(
|Dt| − λ̂t

)+
)
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elements. We now define a solution ȳ as follows:

ȳi =

{
yi, if i /∈ ∪t∈T Kt
0, if i ∈ ∪t∈T Kt

We now have, for all periods t ∈ T ,
∑

i∈Dt ȳi =
(
|Dt| − λ̂t

)+
. Indeed, if t /∈ J , then

∑
i∈Dt ȳi =∑

i∈Dt yi =
(
|Dt| − λ̂t

)+
. If t ∈ J , then

∑
i∈Dt ȳi =

∑
i∈Dt yi − |Kt| =

(
|Dt| − λ̂t

)+
. As a

result, the solution ȳ is feasible and solves (EFF-AR). Moreover, ȳi ≤ yi,∀i ∈ F , so
∑

i∈Fa ȳi ≤∑
i∈Fa yi, ∀a ∈ A, so ȳ also solves (EQ-AR).

We now turn to the case where the scheduling interventions involve temporal shifts in demand—

the case considered in the rest of this paper, which is more consistent with current practice at busy

airports and with recent research results (see Section 1). We define the following problems of

efficiency maximization (EFF) and equity maximization (EQ), subject to the constraint that no

more than λ̂t flights may be scheduled during any period t.

min
∑

i∈F |ui| (EFF) lex min
(

1
|Fa|

∑
i∈Fa |ui|

)
a∈A

(EQ)

s.t. wit ≥ wi,t+1,∀i ∈ F ,∀t ∈ T s.t. wit ≥ wi,t+1, ∀i ∈ F , ∀t ∈ T
wi1 = 1, ∀i ∈ F wi1 = 1,∀i ∈ F∑

t∈T (wit − Sit) = ui,∀i ∈ F
∑

t∈T (wit − Sit) = ui, ∀i ∈ F∑
i∈F (wit − wi,t+1) ≤ λ̂t, ∀t ∈ T

∑
i∈F (wit − wi,t+1) ≤ λ̂t,∀t ∈ T

|ui| ≤ δ∗,∀i ∈ F |ui| ≤ δ∗, ∀i ∈ F

Proposition 2 shows that efficiency and equity can be jointly maximized if the number of flights

scheduled over any set of three consecutive time periods is lower than the total number of flights

that can be scheduled over the same three periods. In that case, the scheduling interventions in

the periods with more than λ̂t flights scheduled can be treated independently and the problem can

thus be reduced to a series of one-period problems.

Proposition 2. If
∑t+1

l=t−1 |Dl| ≤
∑t+1

l=t−1 λ̂l,∀t ∈ T , then there exists a solution that simultaneously

solves (EFF) and (EQ).

Proof. Any feasible solution has to displace at least
(
|Dt| − λ̂t

)+
flights in every period t, so ∆∗ ≥∑

t∈T

(
|Dt| − λ̂t

)+
. We first construct a feasible solution that reschedules exactly

∑
t∈T

(
|Dt| − λ̂t

)+

flights. To do so, we reschedule flights recursively from t = 1, ..., T , first to the preceding period

(i.e., period t− 1), up to capacity, and then to the following period (i.e., period t+ 1). Specifically,
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we select a subset K−t ⊂ Dt and then a subset K+
t ⊂ Dt \ K

−
t such that:

∣∣K−t ∣∣ = min

{
λ̂t−1 −

(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣) ,(|Dt| − λ̂t +
∣∣K+

t−1

∣∣)+
}

∣∣K+
t

∣∣ =
(
|Dt| − λ̂t +

∣∣K+
t−1

∣∣− ∣∣K−t ∣∣)+

The subsets K−t and K+
t are not uniquely determined, but we can choose any subsets of Dt that

satisfy these properties. We define ueff as follows: ueff
i = −1,∀i ∈ K−t and ueff

i = +1,∀i ∈ K+
t . We

define weff accordingly (based on the constraints of (EFF)). According to Lemma 2 in Appendix 1,(
weff, ueff

)
is a feasible and optimal solution of (EFF). It reschedules exactly

(
|Dt| − λ̂t

)+
flights

from any period t by 1 period each, so δ∗ = 1 (unless |Dt| ≤ λ̂t,∀t ∈ T , in which case δ∗ = 0), and

∆∗ =
∑

t∈T

(
|Dt| − λ̂t

)+
.

We now denote by (weq, ueq) an optimal solution of (EQ). If
∑

i∈F |u
eq
i | = ∆∗, then ueq also

solves (EFF). We now assume that
∑

i∈F |u
eq
i | > ∆∗. For each t ∈ T , we define the following

set: It =
{
i ∈ Dt

∣∣ |ueq
i | = 1

}
. We have |It| ≥

(
|Dt| − λ̂t

)+
,∀t ∈ T (otherwise, ueq would not

be a feasible solution of (EQ)). We can construct a set Jt ⊆ It such that |Jt| =
(
|Dt| − λ̂t

)+

for all t ∈ T . As with K−t and K+
t earlier, Jt is not uniquely determined, but we can choose

any subset of It that satisfies this property. Let J be defined by J = ∪t∈T Jt. We construct

a solution u∗ as follows: u∗i = 0, ∀i /∈ J and u∗i = ueq
i ,∀i ∈ J . We define w∗ accordingly.

By construction, for each period t such that |Dt| > λ̂t, this solution displaces exactly |Dt| − λ̂t
flights, so

∑
i∈F

(
w∗it − w∗i,t+1

)
= λ̂t. Moreover, the number of flights rescheduled to the preceding

and following time periods is smaller than under solution (weq, ueq) (i.e.,
∑

i∈F

(
w∗i,t−1 − w∗i,t

)
≤∑

i∈F

(
weq
i,t−1 − w

eq
i,t

)
and

∑
i∈F

(
w∗i,t+1 − w∗i,t+2

)
≤
∑

i∈F

(
weq
i,t+1 − w

eq
i,t+2

)
). Therefore, (w∗, u∗)

is a feasible solution of (EFF) and (EQ). Moreover, it satisfies:
∑

i∈F |u∗i | = ∆∗, and |u∗i | ≤
|ueq
i | ,∀i ∈ F . Therefore, u∗ solves (EFF) and (EQ).

Proposition 3 shows that efficiency and equity can be jointly maximized if each airline’s share of

flights is identical across all periods. Specifically, we assume that the number of flights scheduled by

each airline a during each period t is the product of an airline-related factor αa and a period-related

factor βt. In that case, there is significant flexibility in terms of the airlines whose flights should be

rescheduled, which enables equity-maximization at no efficiency loss. For simplicity, we focus on

the case of δ∗ = 1 period, which is also the most common case encountered with real-world data

(see Section 5).

Proposition 3. If δ∗ = 1 period and there exist integers (αa)a∈A and (βt)t∈T such that |Dt ∩ Fa| =
αaβt, ∀a ∈ A, t ∈ T , then there exists a solution that simultaneously solves (EFF) and (EQ).

Proof. We consider an optimal solution of (EFF), which we denote by
(
weff, ueff

)
. We denote by

21



X+
t (resp. X−t ) the number of flights that, under solution

(
weff, ueff

)
, are displaced from period t to

period t+ 1 (resp. t− 1), i.e., X+
t =

∣∣{i ∈ Dt∣∣ueff
i = +1

}∣∣ (resp. X−t =
∣∣{i ∈ Dt∣∣ueff

i = −1
}∣∣). We

also denote by Xt the total number of flights displaced from period t, i.e., Xt = X−t +X+
t ,∀t ∈ T .

The optimal objective value function of (EFF) is ∆∗ =
∑n

i=1

∣∣ueff
i

∣∣ =
∑

t∈T
(
X−t +X+

t

)
=
∑

t∈T Xt.

We aim to construct a solution (w∗, u∗) that is feasible, efficient and equitable.

A sufficient condition for (w∗, u∗) to be feasible and efficient is to ensure that, for each pe-

riod t, the number of flights rescheduled to t − 1 and to t + 1, respectively, under solution

(w∗, u∗) is equal to that under solution
(
weff, ueff

)
for every period t, that is

∣∣{i ∈ Dt∣∣u∗i = −1
}∣∣ =

X−t and
∣∣{i ∈ Dt∣∣u∗i = +1

}∣∣ = X+
t ,∀t ∈ T . Indeed, if this condition is satisfied, the aggre-

gate schedule is identical under solutions
(
weff, ueff

)
and (w∗, u∗)

(
i.e.,

∑
i∈F

(
weff
it − weff

i,t+1

)
=∑

i∈F

(
w∗it − w∗i,t+1

)
,∀t ∈ T

)
, so solution (w∗, u∗) is feasible. Moreover, under this condition:∑

i∈Dt |u
∗
i | = X−t + X+

t ,∀t ∈ T , and by summing over t we obtain:
∑

t∈T
∑

i∈Dt |u
∗
i | =

∑
t∈T Xt,

i.e.,
∑

i∈F |u∗i | = ∆∗, so solution (w∗, u∗) is efficient.

A sufficient condition for a feasible and efficient solution (w∗, u∗) to solve (EQ) is to ensure that

the vector U defined by Ua =
∑

i∈Fa |u
∗
i | ,∀a ∈ A solves the following problem, denoted by P(∆∗):

lex min

(
Ua
|Fa|

)
a∈A

s.t.
∑
a∈A

Ua ≥ ∆∗

Ua ≥ 0, Ua integer

We construct an optimal solution of Problem P(∆∗) in the appendix (Lemma 9), which we will use

in this proof to construct a solution of (EQ). First, let us summarize how this solution of Problem

P(∆∗) is constructed. We assume without loss of generality that the greatest common divisor

(gcd) of (αa)a∈A is equal to 1 (if that is not the case then we can adjust the values of (αa)a∈A
and (βt)t∈T to ensure that this condition holds). Note that |Fa| = αa

(∑
t∈T βt

)
, ∀a ∈ A and thus:

gcd (|Fa|)a∈A =
∑

t∈T βt. We then have: |Fa|
gcd(|Fa|)a∈A

= αa, ∀a ∈ A. We denote by N =
∑

a∈A αa.

Let 1 denote the indicator function. According to Lemma 9 (see appendix), there exists a sequence

(a1, ..., aN ) ∈ AN such that
∑N

i=1 1 (ai = a) = αa,∀a ∈ A and the |A|-dimensional vector U defined

by Ua = qαa +
∑r

i=1 1 (ai = a) , ∀a ∈ A is an optimal solution of P(∆∗), where q and r denote the

quotient and the remainder of the Euclidean division of ∆∗ by N (i.e., ∆∗ = qN + r). We denote

by Ψ the sequence Ψ = (a1, ..., aN , ..., a1, ..., aN , a1, ..., ar), where the full sequence (a1, ..., aN ) is

repeated q times. By construction,
∑∆∗

i=1 1 (Ψi = a) = qαa +
∑r

i=1 1 (ai = a) , ∀a ∈ A and thus the

vector U defined by Ua =
∑∆∗

i=1 1 (Ψi = a) , ∀a ∈ A is an optimal solution of P(∆∗).

We now construct a solution (w∗, u∗) that satisfies (i) the sufficient conditions for feasibility and

for efficiency maximization:
∣∣{i ∈ Dt∣∣u∗i = −1

}∣∣ = X−t , ∀t ∈ T and
∣∣{i ∈ Dt∣∣u∗i = +1

}∣∣ = X+
t ,∀t ∈ T ,

and (ii) the sufficient condition for equity maximization:
∑

i∈Fa |u
∗
i | =

∑∆∗

i=1 1 (Ψi = a) ,∀a ∈ A.
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To do so, we construct a solution that displaces flights from the sequence of airlines Ψ, i.e., a solu-

tion that displaces one flight from airline Ψ1 in period 1, then one flight from airline Ψ2 in period 1,

..., then one flight from airline ΨX1 in period 1, then one flight from airline ΨX1+1 in period 2, then

one flight from airline ΨX1+2 in period 2, ..., then one flight from airline ΨX1+X2 in period 2, etc.

(of course, each airline may be repeated several times in each sequence). We denote by yt the total

number of flights displaced from period 1 through t− 1 (both inclusive), i.e., yt =
∑t−1

s=1Xs. Note

that y1 = 0 and yT+1 =
∑

s∈T Xs = ∆∗. We denote by Vat the number of times airline a is repeated

in the Xt indices between yt + 1 and yt+1 (both inclusive), i.e., Vat =
∑yt+1

i=yt+1 1 (Ψi = a) ,∀a ∈ A.

Given the periodicity of the sequence Ψ, any consecutive set of Nβt values of Ψi includes exactly

αaβt elements equal to a,∀a ∈ A. Since yt+1 − yt ≤ Nβt, we have Vat ≤ αaβt, ∀a ∈ A, t ∈ T .

We can thus define a set Jat ⊆ (Dt ∩ Fa) such that |Jat| = Vat. As in the proof of Proposition 2,

Jat is not uniquely determined, but we can choose any subset of Dt ∩ Fa that satisfies this prop-

erty. We construct a solution that displaces the flights in the sets Jat such that the number of

flights rescheduled to period t − 1 (resp. t + 1) is equal to X−t (resp. X+
t ). For each t ∈ T , we

partition ∪a∈AJat into two subsets K+
t and K−t such that

∣∣K+
t

∣∣ = X+
t and

∣∣K−t ∣∣ = X−t . We then

define (i) u∗i = −1, ∀i ∈ K−t , (ii) u∗i = +1, ∀i ∈ K+
t , (iii) u∗i = 0,∀i /∈

(
K−t ∪ K

+
t

)
. We define w∗

accordingly (based on the constraints of (EFF) and (EQ)).

By construction, the solution (w∗, u∗) satisfies the sufficient conditions for feasibility and effi-

ciency maximization, so it solves Problem (EFF). Moreover, we have:
∑

i∈Dt∩Fa |u
∗
i | = Vat, ∀a ∈

A, t ∈ T . By summing over t ∈ T , we obtain:
∑

i∈Fa |u
∗
i | =

∑
t∈T

∑yt+1

i=yt+1 1 (Ψi = a), that is∑
i∈Fa |u

∗
i | =

∑yT+1

i=y1+1 1 (Ψi = a) =
∑∆∗

i=1 1 (Ψi = a). Therefore, the solution (w∗, u∗) solves Prob-

lem (EQ).

In summary, in the case where scheduling interventions are based on temporal shifts in demand,

efficiency and equity can be jointly maximized if (i) no network connections need to be maintained,

(ii) all flights are equally valued, and (iii) airline schedules of flights satisfy the conditions of

Proposition 2 or Proposition 3 (or both), shown in Figure 3. Under the conditions of Proposition 2

(Figure 3a), the imbalances between demand and capacity are small enough so no time period is

such that some flights get displaced to that period and some other flights get displaced from that

period. Under the conditions of Proposition 3 (Figure 3b), the schedules of flights of the airlines

exhibit the same intra-day variations. Even though these conditions are usually not exactly satisfied

in practice, our computational experiments reported in Section 5 show that the insights derived in

these two cases can be relevant and applicable in practical settings.

4.2. Instances of Efficiency/Equity Trade-off

Based on the discussion above, in the case where the scheduling interventions are based on

temporal shifts in demand, a trade-off between efficiency and equity might arise through (i) in-

ter-airline variations in intra-day flight schedule patterns (we refer to it simply by ‘differentiated
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(a) Proposition 2 (b) Proposition 3

Figure 3: Example of scheduling conditions of Propositions 2 and 3

airline schedules’), (ii) network connections, and (iii) intra-airline variations in flight valuations (we

refer to it simply by ‘differentiated flight valuations’). Note that, in the case where the scheduling

interventions are based on reductions in demand, a trade-off between efficiency and equity might

also arise through network connections, and differentiated flight valuations, which can be similarly

demonstrated through examples.

We first provide an example that shows that weighted efficiency and equity may not be jointly

maximized in the presence of differentiated airline schedules. Figure 4 shows a hypothetical example

with an unconstrained schedule in a 7-period case with 2 airlines and 26 flights per airline, and a

simple capacity constraint that ensures that no more than 10 flights may be scheduled per period.

We assume that all flights are valued equally and that there are no connections. We also assume

that airline 1’s flights (shown in red) are concentrated at earlier periods, and airline 2’s flights

(shown in green) are concentrated at later periods. Note that the conditions of either Proposition 2

or 3 are not satisfied here. Figure 4a (resp. Figure 4b) shows which flights are rescheduled to later

or earlier times for an efficiency-maximizing solution (resp. an equity-maximizing solution). Since

the capacity constraint is only violated during period 5, when all flights scheduled are airline 1’s

flights, every efficiency-maximizing solution displaces 4 flights from airline 1 to later times, by 1

period each (one such efficiency-maximizing solution is shown as “+1”s in Figure 4a). The resulting

total displacement is equal to 4 periods, and the airline disutilities are equal to 4/26 for airline 1 and

0 for airline 2. In contrast, every equity-maximizing solution displaces 3 flights of each to earlier

times, by 1 period each (one such equity-maximizing solution is shown as “-1”s in Figure 4b). The

resulting total displacement is equal to 6 periods, and each airline’s disutility is equal to 3/26. In

turn, the set of efficiency-maximizing solutions and the set of equity-maximizing solutions have no

overlap.

We now provide an example that shows that weighted efficiency and equity may not be jointly

optimized in the presence of network connections. Intuitively, if one airline’s network is signifi-

24



(a) Efficient solution (b) Equitable solution

Figure 4: Trade-off between weighted efficiency and equity due to differentiated airline schedules

cantly more connected than another airline’s, then the former airline’s flights are likely to be more

difficult to reschedule. In turn, maximizing efficiency may involve assigning more displacement

to the latter airline’s flights rather than the former’s, at some equity loss. Figure 5 shows such

an example with 5 periods, 2 airlines with 13 flights each, and a capacity of 6 flights per period.

Note that the conditions of both Propositions 2 and 3 would be satisfied in the absence of network

connections. But airline 2’s network involves a number of connections, whereas airline 1’s network

has no connections. We represent connections by dashed, gray “links” between flight pairs, and

we assume that each connection requires a 2-period interval between the flights in the connection

at a minimum. In this case, every efficiency-maximizing solution displaces 4 of airline 1’s flights

(the airline with no connections) by 1 period each. The resulting total displacement is equal to 4

periods, and the airline disutilities are equal to 4/13 for airline 1 and 0 for airline 2. In contrast,

every equity-maximizing solution displaces 3 flights of each airline, by 1 period each. The resulting

total displacement is equal to 6 periods, and each airline’s disutility is equal to 3/13. Again, the

set of efficiency-maximizing solutions and the set of equity-maximizing solutions have no overlap.

(a) Efficient solution (b) Equitable solution

Figure 5: Trade-off between weighted efficiency and equity due to differentiated airline connectivities
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Finally, we provide an example that shows that weighted efficiency and equity may not be

jointly optimized in the presence of differentiated flight valuations. Figure 6 shows an example

with 5 periods, 2 airlines with 10 flights each, and a capacity of 6 flights per period. Note that the

conditions of both Propositions 2 and 3 would be satisfied under uniform flight valuations. But

we assume that every flight, except the 6 flights scheduled by airline 1 in period 3, has a value

equal to vi = 1, and, among the remaining 6 flights, three have a value vi = 0.1 each, and three

others have a value vi = 1.9 each (as a result, the average value of airline 1’s flights is equal to 1).

Every efficiency-maximizing solution displaces the three flights of value vi = 0.1 and three flights of

value vi = 1 from period 3. The optimal value of the weighted displacement is equal to 3.3 and the

airline disutilities are equal to 0.3/10 for airline 1 and to 3/10 for airline 2. In contrast, every equity-

maximizing solution displaces four flights of airline 1 and two flights of airline 2. The weighted

displacement is equal to 4.2 and the airline disutilities are equal to 2.2/10 for airline 1 and to 2/10

for airline 2. Again, the set of efficiency-maximizing solutions and the set of equity-maximizing

solutions have no overlap.

(a) Efficient solution (b) Equitable solution

Figure 6: Trade-off between weighted efficiency and equity due to network connections

5. Computational Results

We implement the models developed in Section 3 for a case study at JFK Airport. We show

that, in realistic instances, inter-airline equity can be significantly improved at no (or minimal)

efficiency losses if flights are equally valued. We then show that significant equity gains can be

obtained even under differentiated flight valuations, at small losses in efficiency. In fact, the price

of equity is consistently significantly smaller than the price of efficiency even under differentiated

flight valuations.

5.1. Experimental Setup

We consider data from September 18, 2007 at the John F. Kennedy Airport (JFK). JFK was

chosen as the study airport because it is one of the most congested airports in the US, and its peaked
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schedule of flights offers opportunities for delay reductions through scheduling interventions. The

day of 09/18/2007 was chosen because no scheduling interventions were in place at JFK in 2007, and

because the number of flights scheduled on 09/18 equals the median of the number of daily flights

at JFK in 2007. Estimates of JFK’s capacity in various operating conditions were obtained from

Simaiakis (2012). Flight schedules were obtained from the Aviation System Performance Metrics

(ASPM) database (Federal Aviation Administration, 2013). We group partner airlines together,

as major airlines typically coordinate planning and scheduling decisions with their subsidiaries,

and passengers can easily connect between flights operated by partner airlines. Specifically, we

consider four groups of airlines: (i) Delta Airlines (DAL) and its regional partners (which operated

a total of 320 flights on 09/18/2007 at JFK), (ii) American Airlines (AAL) and its regional partners

(260 flights), (iii) JetBlue Airways (JBU) (174 flights), and (iv) all other airlines, each of which

represents a smaller share of traffic at JFK (408 flights combined). These scheduling data were

used to construct sets F , Farr, Fdep, Fa, Sarr, and Sdep.

We reconstructed aircraft and passenger connections to determine C, tmin, and tmax. Aircraft

connections were obtained from the ASPM database (Federal Aviation Administration, 2013). We

use the minimum aircraft turnaround time between any pair of flights estimated by Pyrgiotis

(2011) as a function of the aircraft type, of the airline and of whether the airport is a hub airport

for the airline or not. We use a maximum turnaround time equal to the planned turnaround time

plus 15 minutes to maintain comparable aircraft utilization. We obtained passenger connections

data from a database developed by Barnhart et al. (2014), based on a discrete choice model for

estimating historical passenger flows. We estimate the minimum passenger connection time at JFK

as the 5th percentile of the distribution of all planned passenger connection times. Because of data

unavailability, we do not reconstruct crew connections here, but their consideration could be easily

added as estimates of historical crew schedules become available (Vaze and Wei, 2015).

With the actual schedule of flights on 09/18/2007, the peak expected arrival and departure

queue lengths are equal to maxt∈T E(At) = 14.6 aircraft and maxt∈T E(Dt) = 28.1, respectively—

obtained using the model of airport congestion shown in Equation (9). We vary the expected arrival

queue length target AMAX from 15 to 11 aircraft, and the expected departure queue length target

DMAX from 30 to 15 aircraft. These are the targets that can be met under scheduling interventions

restricted only to temporal shifts in demand and without imposing a prohibitively large set of flight

displacements. With these on-time performance targets, the optimal value of the maximum flight

displacement δ∗ is equal to 1 period, i.e., all on-time performance targets can be achieved without

displacing any flight by more than 15 minutes (Jacquillat and Odoni, 2015a). Our computational

results will thus focus on weighted efficiency ∆ (which, for simplicity, we refer to by “efficiency”

in the remainder of this section) and on inter-airline equity Φ (obtained from the vector of airline

disutilities, σ), for any set of on-time performance targets.

We implemented the Integer Programming models of scheduling interventions in GAMS 24.0
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using CPLEX 12.5 and the Dynamic Programming model of capacity utilization and the Stochastic

Queuing Model of airport congestion in MATLAB 8.1. We looked for solutions to the Integer

Programming models within an optimality gap of 1%. If none was found after 30 minutes, we

accepted the solution obtained at that time.

5.2. Results under Uniform Flight Valuations

We first consider the case where all flights are equally valued, i.e., vi = 1,∀i ∈ F . This

corresponds to current practice, where the airlines do not provide any inputs on relative timetabling

flexibility of their flight, and scheduling interventions are thus performed under the “a flight is a

flight” paradigm. We compare the results obtained under an efficiency-maximization objective

(Problems P1 and P2) to those obtained with inter-airline equity objectives (Problems P̂3(ρ)).

This comparison thus shows the extent to which inter-airline equity can be achieved in scheduling

interventions under current scheduling conditions and uniform flight valuations.

Note that the solution of Problem P2 is arbitrarily “chosen” by the optimization solver from

the set of (possibly) multiple optimal solutions. In order to characterize the equity range among

efficiency-maximizing solutions, we also determine the solution which minimizes inter-airline eq-

uity, i.e., which lexicographically maximizes airline disutilities, while ensuring the optimal value of

efficiency. This characterizes the efficiency-maximizing solution that performs the worst in terms

of inter-airline equity. We denote this problem by P2.

Table 2 shows, for different sets of on-time performance targets AMAX and DMAX, the total

schedule displacement faced by each airline (that is, the number of its flights displaced by 15

minutes each, as the maximum displacement δ∗ is equal to 1 15-minute period), and each airline’s

disutility (i.e., its weighted average per-flight displacement) for Problems P2, P2 and P̂3(ρ∗). It

also reports the ratio of the largest to smallest airline disutility. As AMAX and DMAX become

smaller, the resulting schedule displacement increases, as noted by Jacquillat and Odoni (2015a),

but these results show that, for any set of values of AMAX and DMAX considered, the modeling

approach developed in this paper provides strong equity gains at no loss in efficiency. Note, first,

that Problem P2 results in max-min ratios maxa σa
mina σa

ranging between 10 and 50. For the cases

considered, AAL and JBU tend to be much more significantly penalized than DAL, which is reflected

through more of their flights being rescheduled and through much higher disutility values. The set

of efficiency-maximizing solutions thus contains highly inequitable outcomes. Problem P2 does

not result in the most inequitable outcome in that set, but provides solutions that still impact

some airlines (here, AAL, JBU and the “other” airlines) more negatively than others (here, DAL).

Inter-airline equity is achieved only by solving Problem P̂3(ρ∗). In that case, airline disutilities

are much closer to each other than those obtained by solving Problems P2 and P2. Note that the

differences in airlines’ schedules of flights and network connectivities result in all four airlines not

having the exact same disutility, but differences are very small (i.e., the max-min ratio maxa σa
mina σa

is

very close to 1) under the equitable solution. Most importantly, the equity-maximizing solution
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(Problem P̂3(ρ∗)) results in the same total displacement as the efficiency-maximizing solution

(Problem P2) in all cases considered. Only the distribution of schedule displacement across the

airlines is modified. In other words, efficiency and equity can be jointly maximized, and the price

of equity ρ∗ and the price of efficiency are both zero.

Table 2: Number of flights displaced and airline disutilities per airline under uniform flight valuations

On-time targets Number of flights displaced Disutility: σa = 1
|Fa|

∑
i∈Fa

|ui|

AMAX DMAX Model DAL AAL JBU Others All DAL AAL JBU Others maxa σa
mina σa

14 23 P2 1 13 1 5 20 0.3% 5.0% 0.6% 1.2% 16.00

P2 1 9 2 8 20 0.3% 3.5% 1.1% 2.0% 11.08

P̂3(ρ∗) 4 5 3 8 20 1.3% 1.9% 1.7% 2.0% 1.57

13 20 P2 1 29 9 7 46 0.3% 11.2% 5.2% 1.7% 35.69

P2 7 18 8 13 46 2.2% 6.9% 4.6% 3.2% 3.16

P̂3(ρ∗) 13 10 7 16 46 4.1% 3.8% 4.0% 3.9% 1.06

12 18 P2 1 28 27 9 65 0.3% 10.8% 15.5% 2.2% 49.66

P2 10 27 10 18 65 3.1% 10.4% 5.7% 4.4% 3.32

P̂3(ρ∗) 18 14 10 23 65 5.6% 5.4% 5.7% 5.6% 1.07

11 15 P2 37 113 39 17 206 11.6% 43.5% 22.4% 4.2% 10.43

P2 50 57 32 67 206 15.6% 21.9% 18.4% 16.4% 1.40

P̂3(ρ∗) 57 46 31 72 206 17.8% 17.7% 17.8% 17.6% 1.01

Therefore, joint optimization of efficiency and equity is achievable under current schedules of

flights and uniform flight valuations (which is the assumption widely used in current practice). In

light of the results from Section 4, this suggests that inter-airline variations in flight schedules and

network connectivities are relatively weak and do not create, by themselves, a trade-off between

efficiency and equity. This is due to the fact that peak-hour schedules typically include flights from

several airlines and the schedules of all airlines exhibit network connections to some extent (so the

situations depicted in Figures 4 and 5 are not typical of actual scheduling patterns at busy airports).

Under these conditions, incorporating inter-airline equity objectives in scheduling interventions can

thus yield significant benefits by balancing scheduling adjustments more fairly among the airlines

at no efficiency losses.

5.3. Results under Differentiated Flight Valuations

We now consider the case where all flights are not equally valued, and compare the outcomes of

scheduling interventions when only the efficiency objectives are considered to the outcomes when

equity objectives are also considered. This captures potential extensions of existing and other

previously proposed mechanisms for airport scheduling interventions that would allow the airlines

to provide the relative timetabling flexibility of their flights (e.g., auction, credit-based mechanism).

Since the flight valuations rely on information that is often private to the airlines and since they

are challenging to estimate using available public data, we two different types of approximate
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approaches to estimate their impact on our efficiency-equity trade-off results. We first consider

the case where the average flight valuation is identical for all airlines, to identify the impact of

the distribution of flights valuations. We then consider the more general case where average flight

valuations may vary across the airlines, by approximating them by revenue estimates.

We first sample (vi)i∈F by keeping the average flight valuation of all airlines equal to 1 (without

loss of generality), and varying the distribution of flight valuations for one given airline a. We set

vi = 1,∀i /∈ Fa. We partition the set of flights Fa of airline a into two subsets F (1)
a and F (2)

a such

that F (1)
a ∩F (2)

a = ∅ and F (1)
a ∪F (2)

a = Fa. We can think of F (1)
a (resp. F (2)

a ) as the set of the more

flexible flights (resp. the less flexible flights) of airline a. We choose to represent the valuations of the

flights in F (1)
a (resp. F (2)

a ) by a Gamma distribution Γ1(µ1, k) (resp. Γ2(µ2, k)) with mean µ1 (resp.

µ2) and shape parameter k, with µ1 < µ2. We adjust the shape parameter of these distributions

such that the 95th percentile of the former distribution coincides with the 5th percentile of the

latter. These choices of distributions and parameters are made in order to provide a transparent

and flexible bimodal characterization of flight valuations such that the valuations of flights in F (1)
a

are, in most cases, lower than the valuations of flights in F (2)
a . Finally, we set the values of flights

in F (1)
a (resp. F (2)

a ) equal to Θ−1
1

(
1/(∣∣∣F(1)

a

∣∣∣+1
)), Θ−1

1

(
2/(∣∣∣F(1)

a

∣∣∣+1
)), ..., Θ−1

1

(∣∣∣F(1)
a

∣∣∣
/(∣∣∣F(1)

a

∣∣∣+1
))(

resp. Θ−1
2

(
1/(∣∣∣F(2)

a

∣∣∣+1
)),Θ−1

2

(
2/(∣∣∣F(2)

a

∣∣∣+1
)), ..., Θ−1

2

(∣∣∣F(2)
a

∣∣∣
/(∣∣∣F(2)

a

∣∣∣+1
))), where Θ1 (resp. Θ2)

denotes the cumulative distribution function of Γ1(µ1, k) (resp. Γ2(µ2, k)). This sampling strategy

ensures that the resulting set of flight valuations is distributed “smoothly” across the distributions

considered without sampling these values multiple times. For each airline, we vary two parameters:

(i) the fraction of flights in F (1)
a , denoted by η =

∣∣∣F(1)
a

∣∣∣
|Fa| (so that 1− η =

∣∣∣F(2)
a

∣∣∣
|Fa| ), and (ii) the mean

valuations of flights in F (1)
a , i.e., µ1 (such that ηµ1 + (1 − η)µ2 = 1). Within each set, F (1)

a and

F (2)
a , we sort flights from the least valuable to the most valuable using 10 random permutations.

In other words, the 10 tests have the same sets of flight valuations, but differ in terms of which

flights are more flexible and which are less flexible.

Table 3 shows results (with AMAX = 11 and DMAX = 15, which are the most stringent set of on-

time targets from those in Table 2) under different sets of flight valuations provided by DAL (left)

and AAL (right)—similar results are obtained by varying the flight valuations provided by the other

airlines. The first row provides a baseline where all flights are equally valued (i.e., vi = 1, ∀i ∈ F).

In the top half, we assume that F (1)
a and F (2)

a both comprise 50% of the flights from DAL or AAL,

and we progressively increase the valuation differential µ2−µ1. In the bottom half, we fix µ1 = 0.75

and we progressively decrease the proportion of flights in F (1)
a (and we thus decrease µ2 to ensure

that ηµ1 + (1 − η)µ2 = 1). Table 3 reports, in each scenario, the total schedule displacement∑
i∈Fa |ui| of each airline a obtained in the equity-maximizing scenario (i.e., Problem P̂3(ρ∗)), as

well as the prices of equity and efficiency, averaged across all 10 samples.

The observations from variations in µ2 − µ1 (top) and in η (bottom) are threefold. First, as
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an airline’s flight valuations become more differentiated, the displacement of this airline’s schedule

increases. In turn, flight valuations create, for each airline, a trade-off between prioritizing which

flights get rescheduled, on the one hand, and minimizing their total displacement, on the other hand.

Second, as the variance in any airline’s flight valuations increases, other airlines’ displacements do

not change significantly (in fact, sometimes they decrease a little). In other words, the model can

account for any airline’s scheduling preferences without negatively impacting the other airlines.

Third, the price of equity is much smaller than the price of efficiency across all the scenarios

considered, therefore indicating strong gains in inter-airline equity at small efficiency losses.

Table 3: Average values of the total displacement per airline (
∑
i∈Fa

|ui|), the price of equity and the price of efficiency
under differentiated flight valuations

Scenario For variations in DAL’s flight valuations For variations in AAL’s flight valuations

µ1 µ2 η DAL AAL JBU Others Peq Peff DAL AAL JBU Others Peq Peff

1.0 1.0 – 57.0 46.0 31.0 72.0 0% 0% 57.0 46.0 31.0 72.0 0% 0%

0.9 1.1 50% 57.7 44.0 36.2 70.0 4.4% 15.4% 55.5 46.9 36.0 69.5 2.8% 24.8%

0.8 1.2 50% 57.0 44.7 36.4 70.5 4.5% 15.3% 53.4 50.0 34.6 67.9 2.4% 26.5%

0.7 1.3 50% 58.1 44.1 35.9 70.2 5.6% 14.5% 52.2 50.5 33.1 66.6 2.0% 23.3%

0.6 1.4 50% 59.8 43.5 36.2 69.1 6.8% 14.4% 51.5 59.1 32.7 65.1 2.1% 15.8%

0.5 1.5 50% 63.5 43.4 35.3 68.8 7.2% 13.7% 49.9 64.0 32.1 63.4 2.3% 11.6%

0.4 1.6 50% 67.3 43.5 34.9 68.9 8.1% 13.4% 48.8 70.7 31.4 61.4 2.0% 7.8%

0.3 1.7 50% 73.2 42.3 34.0 67.1 9.3% 13.3% 46.5 78.4 31.7 59.0 2.7% 9.7%

0.2 1.8 50% 77.4 42.4 34.8 67.2 11.2% 13.4% 44.4 87.5 29.9 56.5 2.8% 10.7%

0.1 1.9 50% 84.1 42.9 34.0 67.8 13.5% 11.8% 42.0 95.8 29.6 53.4 3.8% 15.7%

0.75 3.25 90% 57.6 44.4 36.6 70.4 4.1% 16.9% 49.3 42.3 32.2 62.4 2.4% 19.9%

0.75 2.00 80% 57.4 44.7 36.6 70.7 4.4% 17.3% 54.9 48.7 35.2 69.0 2.2% 19.6%

0.75 1.58 70% 57.3 44.4 36.3 70.4 4.3% 17.2% 53.5 49.6 35.1 68.4 2.2% 17.9%

0.75 1.37 60% 57.2 44.7 36.2 70.7 4.5% 16.4% 54.3 50.8 35.1 68.2 2.6% 17.7%

0.75 1.25 50% 57.5 44.1 36.4 69.7 5.1% 15.2% 53.0 52.0 33.8 67.6 1.9% 21.2%

0.75 1.17 40% 57.6 44.3 36.0 70.5 5.5% 13.6% 52.7 54.2 34.4 66.9 2.7% 24.2%

0.75 1.11 30% 58.6 44.1 36.5 70.1 6.2% 12.0% 51.9 55.8 33.4 65.9 2.8% 33.0%

0.75 1.06 20% 59.7 44.0 35.6 69.6 6.6% 10.8% 51.0 58.2 33.0 65.0 2.8% 35.8%

0.75 1.03 10% 66.6 43.1 35.4 67.9 6.9% 9.9% 50.0 62.6 31.8 63.3 2.7% 33.8%

We further investigate the trade-off between equity and efficiency in the case where average flight

valuations may vary across the airlines. We estimate (vi)i∈F as the product of aircraft sizes and

average “non-stop” airfares. This aims to capture variations in operating revenues across flights.

Aircraft sizes are obtained from the ASPM database (Federal Aviation Administration, 2013). Non-

stop airfares are obtained from the Bureau of Transportation Statistics website for each domestic

origin-destination market (averaged over the third quarter of 2007) (Bureau of Transportation

Statistics, 2013). International airfares are inferred by using a regression model to estimate airfares

as a function of flight distance (calibrated using domestic markets data), to which we added a 20%

premium, reflecting the fact that international flights are typically more expensive than domestic
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flights traveling the same distance. Of course, this procedure can only be treated as highly approxi-

mate, and many other drivers of operating profitability and other measures of scheduling flexibility

(e.g., load factors, operating margins, connecting passengers) could not be estimated from the pub-

licly available data. Our aim here is to assess the impact of such differentiated flight valuations on

the efficiency and equity trade-off in scheduling interventions.

Table 4 shows the results for different on-time performance targets AMAX and DMAX. For each

set of values for these targets, we report the largest flight displacement (i.e., δ∗ = maxi∈F |ui|,
the total schedule displacement (i.e.,

∑
i∈F |ui|), and the disutility of each airline (i.e., the average

per-flight weighted displacement 1
|Fa|

∑
i∈Fa vi |ui| for each airline a, expressed in $, since our flight

valuations are based on revenue estimates) under the inequitable (Problem P2), efficient (Problem

P̂3(0)) and equitable (Problem P̂3(ρ∗)) solutions. We also report the price of equity and the price

of efficiency. First, note that the inequitable solution (obtained by minimizing equity, under optimal

efficiency) and the efficient solution (obtained by maximizing equity, under optimal efficiency) result

in the same airline disutilities. This contrasts with the case of uniform valuations (Section 5.2),

where the efficient solution vastly improved inter-airline equity. This is because differentiations

in flight valuations restrict the set of efficiency-maximizing solutions, thus reducing the flexibility

to select the set of flights to be rescheduled in an equitable way. Second, the equitable solution

(Problem P̂3(ρ∗)) balances per-flight weighted displacement much more equitably across the four

groups of airlines. Third, inter-airline equity is achieved through moderate increases in the number

of flights displaced and, in some instances, by rescheduling fewer flights than under the efficient

solution. Last, even though the price of equity is higher than in our previous tests, the price of

efficiency remains nonetheless significantly higher than the price of equity. This is particularly

true for the more aggressive on-time performance targets, which can be explained by the fact that

the flexibility to select the set of flights to displaced in a more equitable manner increases with

the schedule displacement. Overall, these results suggest that inter-airline equity can be achieved

through comparatively small increases in efficiency, even under strong differentiations in flight

valuations across the airlines and across the flights of an airline. Note that such differentiations

could arise in many future extensions of the existing mechanisms for airport demand management.

6. Conclusion

Any airport demand management scheme involves a trade-off between mitigating airport con-

gestion, on the one hand, and minimizing interference with airlines’ competitive scheduling, on the

other hand. In this paper, we have developed, optimized and assessed models for airport scheduling

interventions that, for the first time, incorporate inter-airline equity considerations. The result-

ing Integrated Capacity Utilization and Scheduling Model with Equity Considerations (ICUSM-E)

relies on an original lexicographic modeling architecture that optimizes scheduling interventions

based on on-time performance, efficiency and inter-airline equity objectives.
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Table 4: Displacement, airline disutilities and prices of equity and efficiency under revenue-based flight valuations

Targets # flights displaced Weighted per-flight displacement

AMAX DMAX Solution maxi∈F |ui|
∑
i∈F |ui| DAL AAL JBU Others Performance

14 23 P2 1 23 $119 $432 $101 $218
Peq = 20.2%
Peff = 54.1%P̂3(0) 1 23 $119 $432 $101 $218

P̂3(ρ∗) 1 26 $267 $280 $183 $218

13 20 P2 1 41 $368 $781 $384 $257
Peq = 17.8%
Peff = 53.4%P̂3(0) 1 41 $368 $781 $384 $257

P̂3(ρ∗) 1 44 $455 $509 $420 $489

12 18 P2 1 75 $809 $1,566 $1,596 $611
Peq = 17.6%
Peff = 33.6%P̂3(0) 1 75 $809 $1,566 $1,596 $611

P̂3(ρ∗) 1 85 $1,186 $1,189 $1,173 $1,197

11 15 P2 1 226 $4,389 $6,530 $5,909 $2,393
Peq = 6.9%
Peff = 38.5%P̂3(0) 1 226 $4,389 $6,530 $5,909 $2,393

P̂3(ρ∗) 1 224 $4,714 $4,744 $4,686 $4,686

Theoretical results have shown that, in the absence of network connections and under the stan-

dard paradigm that “a flight is a flight” (i.e., all flights are equally inconvenient to reschedule),

efficiency and inter-airline equity can be jointly maximized if the interventions involve accepting

or rejecting flight requests without changing the timetabling of the flights, or if the interven-

tions involve temporal shifts in demand and some additional scheduling conditions are satisfied.

Computational results suggested that, under a wide range of realistic and hypothetical scenarios,

inter-airline equity can be achieved at small efficiency losses (if any). In other words, achieving

maximum equity requires no (or small) sacrifice in terms of efficiency losses. On the other hand,

for some of our computational scenarios, our results showed that ignoring inter-airline equity (i.e.,

considering efficiency-based objectives exclusively, or, in some cases, requiring maximum efficiency)

may lead to highly inequitable outcomes. This further highlights that it is critical to explicitly

incorporate inter-airline equity objectives in the optimization of scheduling interventions. In turn,

this offers the potential to extend existing approaches to airport demand management (either the

slot control policies in place at busy airports outside the United States, or the scheduling practices

at a few of the busiest US airports where flight caps are in place) in a way that balances scheduling

interventions fairly among the airlines, thus considerably enhancing their applicability in practice.

The potential equity benefits of scheduling interventions also motivate future research direc-

tions on airport scheduling interventions. Most importantly, this paper has assumed knowledge of

the scheduling inputs provided by the airlines. An important opportunity lies in the design and

optimization of scheduling intervention mechanisms through which the airlines can provide their

preferred schedules of flights (and, potentially, some other inputs as well). The design of such
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mechanisms would also create an opportunity to analyze the strategic interactions among the air-

lines and minimize the potential for gaming. More broadly, this research lays down the modeling

framework to optimize and compare non-monetary mechanisms to market-based mechanisms such

as congestion pricing and slot auctions, based on common efficiency, inter-airline equity, and on-

time performance objectives. The approach developed in this paper provides the methodological

foundation to address such problems of airport capacity allocation to mitigate delay externalities,

promote airline competition, and maximize social welfare in a way, as the results have shown, that

ensures inter-airline equity.
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Appendix 1: Construction of a solution for Proposition 2

In Proposition 2, we make the following assumption, which we refer to by (Ht):

(Ht) :
t+1∑
l=t−1

|Dl| ≤
t+1∑
l=t−1

λ̂l, ∀t ∈ T

We construct a solution recursively by rescheduling flights from each period t = 1, ..., T first to the

preceding period (i.e., period t − 1), up to capacity, and then to the following period (i.e., period

t+ 1). This is done by selecting a subset K−t ⊂ Dt and then a subset K+
t ⊂ Dt \ K

−
t such that:

∣∣K−t ∣∣ = min

{
λ̂t−1 −

(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣) ,(|Dt| − λ̂t +
∣∣K+

t−1

∣∣)+
}

∣∣K+
t

∣∣ =
(
|Dt| − λ̂t +

∣∣K+
t−1

∣∣− ∣∣K−t ∣∣)+

The subsets K−t and K+
t are not uniquely determined, but we can choose any subsets of Dt that

satisfy these properties. By convention, we set K−t = K+
t = ∅ if t < 1 or t > T . We define u as

follows: ui = −1,∀i ∈ K−t and ui = +1,∀i ∈ K+
t . We define w accordingly (based on the constraints∑

t∈T (wit − Sit) = ui,∀i ∈ F).
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We want to show that this solution is feasible and optimal for Problem (EFF), defined as follows:

min
∑

i∈F |ui| (EFF)

s.t. wit ≥ wi,t+1,∀i ∈ F ,∀t ∈ T
wi1 = 1, ∀i ∈ F∑

t∈T (wit − Sit) = ui, ∀i ∈ F∑
i∈F (wit − wi,t+1) ≤ λ̂t,∀t ∈ T

|ui| ≤ 1,∀i ∈ F

Lemma 1 first shows that the solution is well defined. To show this, we need to prove that

λ̂t ≥ |Dt|+
∣∣K+

t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣ , ∀t ∈ T , so the cardinality of the set K−t is positive for all t ∈ T .

Lemma 1. The solution satisfies: λ̂t ≥ |Dt|+
∣∣K+

t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣ ,∀t ∈ T
Proof. We prove the lemma by recursion over t ∈ T .

First, let us prove the property for t = 1. By convention, we have
∣∣K+

0

∣∣ = 0, |D0| = 0 and

λ̂0 = 0, so
∣∣K−1 ∣∣ = 0. Then: we have

∣∣K+
1

∣∣ =
(
|D1| − λ̂1

)+
≥ |D1| − λ̂1 and the property holds.

Let us now assume that the property holds for t− 1 and prove it for t, i.e., let us now assume

that λ̂t−1 ≥ |Dt−1|+
∣∣K+

t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣ and prove that λ̂t ≥ |Dt|+
∣∣K+

t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣.
• If |Dt| − λ̂t +

∣∣K+
t−1

∣∣ ≤ 0, . The property is clearly satisfied because
∣∣K−t ∣∣ ≥ 0, and

∣∣K+
t

∣∣ ≥ 0.

• If |Dt| − λ̂t +
∣∣K+

t−1

∣∣ > 0, then:

– If |Dt| − λ̂t +
∣∣K+

t−1

∣∣ ≤ λ̂t−1 −
(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣), then
∣∣K−t ∣∣ = |Dt| −

λ̂t +
∣∣K+

t−1

∣∣ and
∣∣K+

t

∣∣ = 0. The property is satisfied (as an equality).

– If |Dt| − λ̂t +
∣∣K+

t−1

∣∣ > λ̂t−1 −
(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣), then
∣∣K−t ∣∣ = λ̂t−1 −(

|Dt−1|+
∣∣K+

t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣) and
∣∣K+

t

∣∣ = |Dt|− λ̂t+
∣∣K+

t−1

∣∣− ∣∣K−t ∣∣. Note that K−t
is well defined, because its cardinality is positive by the induction hypothesis. Thus the

property is still satisfied (as an equality).

This concludes the proof.

We now prove that the solution thus constructed is feasible and optimal for Problem (EFF).

We partition the set of time periods T into periods with demand greater than the capacity, and

periods with demand less than or equal to the capacity. We denote by T + =
{
t ∈ T ; |Dt| > λ̂t

}
,

and T − = T \ T +. Lemma 2 shows that the solution displaces exactly |Dt| − λ̂t flights (i.e., the

flights in excess of capacity) from periods in T + (i.e., from periods with demand greater than the

capacity), and no flight from periods in T − (i.e., periods with demand less than or equal to the

capacity). In other words, under hypotheses (Ht), the imbalances between demand and capacity

are small enough so no period is such that flights get displaced to and from that period. Moreover,

35



Lemma 2 shows that the resulting schedule is feasible (i.e., meets the schedule limits constraints of

(EFF)) and optimal.

Lemma 2. For each t ∈ T +, the following properties are satisfied: (i)
∣∣K+

t−1

∣∣ = 0, (ii)
∣∣K−t+1

∣∣ = 0,

(iii)
∣∣K−t ∣∣+∣∣K+

t

∣∣ = |Dt|−λ̂t, and (iv) if
∣∣K+

t

∣∣ > 0, then |Dt+1|+
∣∣K+

t

∣∣ ≤ λ̂t+1 and
∣∣K−t+1

∣∣ =
∣∣K+

t+1

∣∣ = 0.

For each t ∈ T −, the following properties are satisfied: (iv)
∣∣K−t ∣∣ = 0, (v)

∣∣K+
t

∣∣ = 0,

(vi)
∣∣K−t+1

∣∣ ≤ λ̂t − |Dt| − ∣∣K+
t−1

∣∣, and (vii) if
∣∣K+

t−1

∣∣ > 0, then
∣∣K+

t+1

∣∣ = 0,

Moreover,
∣∣K−1 ∣∣ =

∣∣K+
T

∣∣ = 0.

Therefore, the solution is feasible and optimal for Problem (EFF).

The rationale underlying the lemma is the following. For any initial schedule, flights get resched-

uled from period 1 to period T recursively, and, for each period t, the number of flights in the re-

sulting schedule is less than or equal to capacity during each period s = 1, ..., t, since all the excess

flights are rescheduled to the “next” period. In the general case, this could lead to unfeasibility if

“too many” flights got carried over from period t to period t+ 1. But under hypotheses (Ht), the

imbalances are small enough that this situation does not occur and, as Properties (iv) and (vii)

show,
∣∣K+

t

∣∣ > 0 for at most one period t in every set of three consecutive periods. We now prove

formally the lemma, and thus the feasibility and optimality of this solution under hypotheses (Ht).

Proof. We proceed by induction over t = 1, ..., T .

First, let us prove it for t = 1:

• If |D1| − λ̂1 > 0, then
∣∣K−1 ∣∣ = 0 and

∣∣K+
1

∣∣ = |D1| − λ̂1 (as in Lemma 1). Also, by definition,

K+
0 = ∅. This proves (i) and (iii). Moreover, from (H1), we have: |D2|+

∣∣K+
1

∣∣ = |D2|+ |D1|−
λ̂1 ≤ λ̂2, so

∣∣K−2 ∣∣ = 0 and
∣∣K+

2

∣∣ = 0. This proves (ii) and (iv).

• If |D1| − λ̂1 ≤ 0, then
∣∣K−1 ∣∣ =

∣∣K+
1

∣∣ = 0. Properties (iv), (v) and (vii) are clearly satisfied.

This also implies that
∣∣K−2 ∣∣ ≤ λ̂1 − |D1|, which proves (vi).

This also proves that
∣∣K−1 ∣∣ = 0.

We now assume that all properties hold for s = 1, ..., t − 1. We want to prove them for t. To

do so, we consider 4 cases: – Case 1.a. t ∈ T + and t− 1 ∈ T + – Case 1.b. t ∈ T + and t− 1 ∈ T −

– Case 2.a. t ∈ T − and t− 1 ∈ T + – Case 2.b. t ∈ T − and t− 1 ∈ T −

Case 1.a. t ∈ T + and t − 1 ∈ T +: In this case, we have t − 2 ∈ T − (otherwise, hypothesis

(Ht−1) would clearly not be satisfied). From the induction hypotheses (iv) and (v) applied to t−2,

we have
∣∣K−t−2

∣∣ =
∣∣K+

t−2

∣∣ = 0. Let us first prove that
∣∣K+

t−1

∣∣ = 0.

• If
∣∣K+

t−3

∣∣ > 0, then
∣∣K+

t−1

∣∣ = 0 from the induction hypothesis (vii) applied to t− 2.

• If
∣∣K+

t−3

∣∣ = 0, then we have, from (Ht−1): |Dt−1| − λ̂t−1 ≤
(
λ̂t−2 − |Dt−2|

)
+
(
λ̂t − |Dt|

)
,

thus, |Dt−1| − λ̂t−1 ≤
(
λ̂t−2 − |Dt−2|

)
as t ∈ T +, and therefore: |Dt−1| − λ̂t−1 +

∣∣K+
t−2

∣∣ ≤
λ̂t−2 −

(
|Dt−2|+

∣∣K+
t−3

∣∣− ∣∣K−t−2

∣∣− ∣∣K+
t−2

∣∣). In turn,
∣∣K−t−1

∣∣ = |Dt−1| − λ̂t−1, and
∣∣K+

t−1

∣∣ = 0.
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This proves (i).

We then have, from the induction hypothesis (iii) applied to t − 1:
∣∣K−t−1

∣∣ = |Dt−1| − λ̂t−1,

so λ̂t−1 −
(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣) = 0. As a result,
∣∣K−t ∣∣=0, and therefore:

∣∣K+
t

∣∣ =

|Dt|− λ̂t. This proves (iii). Moreover, this implies
∣∣K−t+1

∣∣ ≤ λ̂t−(|Dt|+ ∣∣K+
t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣) = 0,

which proves (ii).

Then, |Dt+1|+
∣∣K+

t

∣∣ = |Dt+1|+ |Dt|− λ̂t ≤ λ̂t+1 +
(
λ̂t−1 − |Dt−1|

)
, from (Ht). Since t−1 ∈ T +,

it implies: |Dt+1|+
∣∣K+

t

∣∣ ≤ λ̂t+1, so
∣∣K−t+1

∣∣ = 0 and then
∣∣K+

t+1

∣∣ = 0. This proves (iv).

Case 1.b. t ∈ T + and t − 1 ∈ T −: From the induction hypotheses (iv) and (v) applied to

t− 1, we have
∣∣K−t−1

∣∣ =
∣∣K+

t−1

∣∣ = 0. This proves (i).

We now prove (iii) and (iv):

• If
∣∣K+

t−2

∣∣ > 0, then from the induction hypothesis (vii) applied to t − 1,
∣∣K+

t

∣∣ = 0. This

implies that |Dt| − λ̂t ≤
∣∣K−t ∣∣. But since

∣∣K−t ∣∣ ≤ |Dt| − λ̂t, it means that
∣∣K−t ∣∣ = |Dt| − λ̂t.

This proves (iii). (Since
∣∣K+

t

∣∣ = 0, (iv) is trivially satisfied).

• If
∣∣K+

t−2

∣∣ = 0

– If |Dt| − λ̂t ≤ λ̂t−1 − |Dt−1|, then
∣∣K−t ∣∣ = |Dt| − λ̂t and

∣∣K+
t

∣∣ = 0. This proves (iii).

(Since
∣∣K+

t

∣∣ = 0, (iv) is trivially satisfied).

– If |Dt|− λ̂t > λ̂t−1−|Dt−1|, then
∣∣K−t ∣∣ = λ̂t−1−|Dt−1| and

∣∣K+
t

∣∣ = |Dt|− λ̂t−
∣∣K−t ∣∣. This

proves (iii). Then, we have: |Dt+1| +
∣∣K+

t

∣∣ = |Dt+1| +
(
|Dt| − λ̂t

)
+
(
|Dt−1| − λ̂t−1

)
≤

λ̂t+1 from (Ht). As a result,
∣∣K−t+1

∣∣ = 0, and
∣∣K+

t+1

∣∣ = 0. This proves (iv).

Moreover, (i) and (iii) imply
∣∣K−t+1

∣∣ ≤ λ̂t−(|Dt|+ ∣∣K+
t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣) = 0, which proves (ii).

Case 2.a. t ∈ T − and t−1 ∈ T +: From the induction hypothesis (i) applied to t−1, we have∣∣K+
t−2

∣∣ = 0. From the induction hypothesis (iii) applied to t− 1, we have:
∣∣K−t−1

∣∣+
∣∣K+

t−1

∣∣ =

|Dt−1| − λ̂t−1. Therefore, λ̂t−1 −
(
|Dt−1|+

∣∣K+
t−2

∣∣− ∣∣K−t−1

∣∣− ∣∣K+
t−1

∣∣) = 0 and thus
∣∣K−t ∣∣ = 0.

This proves (iv). We now want to prove (v) and (vii).

– If
∣∣K+

t−1

∣∣ = 0, then |Dt| − λ̂t +
∣∣K+

t−1

∣∣ = |Dt| − λ̂t ≤ 0, so
∣∣K−t ∣∣ = 0 and

∣∣K+
t

∣∣ = 0. This

proves (v). (Since
∣∣K+

t−1

∣∣ = 0, (vii) is trivially satisfied).

– If
∣∣K+

t−1

∣∣ > 0, then from the induction hypothesis (iv) applied to t − 1, we have |Dt| +∣∣K+
t−1

∣∣ ≤ λ̂t and
∣∣K+

t

∣∣ = 0. This proves (v). Moreover, from induction hypothesis (iii)

applied to t − 1, we have:
∣∣K+

t−1

∣∣ ≤ |Dt−1| − λ̂t−1. Therefore (since
∣∣K−t ∣∣ = 0), we

obtain from (Ht): λ̂t −
(
|Dt|+

∣∣K+
t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣) = λ̂t − |Dt| −
∣∣K+

t−1

∣∣ ≥ λ̂t −
|Dt| + λ̂t−1 − |Dt−1| ≥ |Dt+1| − λ̂t+1 = |Dt+1| − λ̂t+1 +

∣∣K+
t

∣∣. This implies
∣∣K−t+1

∣∣ =(
|Dt+1| − λ̂t+1 +

∣∣K+
t

∣∣)+
=
(
|Dt+1| − λ̂t+1

)+
and

∣∣K+
t+1

∣∣ = 0. This proves (vii).

Finally, (iv) and (v) imply
∣∣K−t+1

∣∣ ≤ λ̂t − (|Dt|+ ∣∣K+
t−1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣) = λ̂t − |Dt| −
∣∣K+

t−1

∣∣,
which proves (vi).
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Case 2.b. t ∈ T − and t− 1 ∈ T −: From the induction hypothesis (v) applied to t− 1, we

have
∣∣K+

t−1

∣∣ = 0, so |Dt| − λ̂t +
∣∣K+

t−1

∣∣ ≤ 0. Then,
∣∣K−t ∣∣ = 0 and

∣∣K+
t

∣∣ = 0. This proves (iv)

and (v). As in Case 2.a, (iv) and (v) imply (vi) and, last, since
∣∣K+

t−1

∣∣ = 0, (vii) is trivially

satisfied.

Last, in order for the solution to be feasible for Problem (EFF), we investigate the recursion

for period T separately to check that the recursion terminates without requiring to displace flights

later than period T .

• If T ∈ T +, then T − 1 ∈ T − (otherwise (HT ) is not satisfied). Thus,
∣∣K−T−1

∣∣ =
∣∣K+

T−1

∣∣ = 0

from the induction hypotheses (iv) and (v). This proves (i).

– If
∣∣K+

T−2

∣∣ > 0, then
∣∣K+

T

∣∣ = 0, from the induction hypothesis (vii) applied to T − 1 (this

proves (iv)). This implies that |DT | − λ̂T ≤
∣∣K−T ∣∣. But since

∣∣K−T ∣∣ ≤ |DT | − λ̂T , it means

that
∣∣K−T ∣∣ = |DT | − λ̂T . This proves (iii). Since |DT+1| = λ̂T+1 = 0, we then obtain∣∣K−T+1

∣∣ = 0. This proves (ii).

– If
∣∣K+

T−2

∣∣ = 0, then we have λ̂T−1 −
(
|DT−1|+

∣∣K+
T−2

∣∣− ∣∣K−T−1

∣∣− ∣∣K+
T−1

∣∣) = λ̂T−1 −
|DT−1| ≥ |DT | − λ̂T from (HT ). In turn,

∣∣K−T ∣∣ = |DT | − λ̂T and
∣∣K+

T

∣∣ = 0. This

proves (iii) and (iv). Since |DT+1| = λ̂T+1 = 0, we then obtain
∣∣K−T+1

∣∣ = 0. This

proves (ii).

• If T ∈ T −, then if
∣∣K+

T−1

∣∣ > 0 (which will require T − 1 ∈ T + as per induction hypothesis (v)

applied to T − 1), then
∣∣K−T ∣∣ = 0,

∣∣K+
T

∣∣ = 0, and |DT | +
∣∣K+

T−1

∣∣ ≤ λ̂T from the induction

hypothesis (iv) applied to T − 1. Since
∣∣K−T+1

∣∣ = 0, this proves (i), (ii) and (iii). In the case

of
∣∣K+

T−1

∣∣ = 0,
(
|DT | − λ̂T +

∣∣K+
T−1

∣∣)+
= 0, so

∣∣K−T ∣∣ =
∣∣K+

T

∣∣ = 0 and |DT | +
∣∣K+

T−1

∣∣ ≤ λ̂T ,

which proves (i), (ii) and (iii).

This also proves that
∣∣K+

T

∣∣ = 0 and that the recursion terminates.

This completes the proof of Properties (i) to (vii).

We now use these properties to show that the solution is feasible. Since all flights are rescheduled

by at most one period, for each period t ∈ T , the number of flights scheduled during period t is

equal to |Dt|+
∣∣K+

t−1

∣∣+
∣∣K−t+1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣, and we need to show that it is smaller than λ̂t.

• For each period t ∈ T +,
∣∣K+

t−1

∣∣ = 0 (Property (i)),
∣∣K−t+1

∣∣ = 0 (Property (ii)) and |Dt| −∣∣K−t ∣∣− ∣∣K+
t

∣∣ = λ̂t (Property (iii)). This proves that |Dt|+
∣∣K+

t−1

∣∣+ ∣∣K−t+1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣ ≤ λ̂t.
• For each period t ∈ T −,

∣∣K−t ∣∣ = 0 (Property (iv)),
∣∣K+

t

∣∣ = 0 (Property (v)), and |Dt|+
∣∣K+

t−1

∣∣+∣∣K−t+1

∣∣ ≤ λ̂t (Property (vi)). This proves that |Dt|+
∣∣K+

t−1

∣∣+
∣∣K−t+1

∣∣− ∣∣K−t ∣∣− ∣∣K+
t

∣∣ ≤ λ̂t.
Last, we prove that the solution is optimal. First, |ui| ≤ 1,∀i ∈ F . So the maximal flight

38



displacement maxi∈F |ui| is equal to 0 if |Dt| ≤ λ̂t,∀t ∈ T , and to 1 otherwise. Moreover,:∑
i∈F |ui| =

∑
i∈F |ui|

=
∑

t∈T
∑

i∈Dt |ui|
=

∑
t∈T

(∣∣K−t ∣∣+
∣∣K+

t

∣∣)
=

∑
t∈T +

(∣∣K−t ∣∣+
∣∣K+

t

∣∣) from Properties (iv) and (v)

=
∑

t∈T +

(
|Dt| − λ̂t

)
from Property (iii)

=
∑

t∈T

(
|Dt| − λ̂t

)+

Since any feasible solution of the problem has to displace at least
∑

t∈T

(
|Dt| − λ̂t

)+
flights by

at least 1 period each, we have shown that the proposed solution solves (EFF).

Appendix 2: Construction of a solution for Proposition 3

In this Appendix, we characterize the optimal solution of Problem P(∆) defined as follows,

where ∆ designates any non-negative integer. Problem P(∆) involves allocating a “budget” of ∆

items (think of each item as an inconvenience or cost) across “groups” (or airlines, in our case)

indexed by a ∈ A in a way that lexicographically minimizes the weighted cost borne by any group,

where the weight for each group a is given by 1
|Fa| .

lex min

(
Ua
|Fa|

)
a∈A

s.t.
∑
a∈A

Ua ≥ ∆

Ua ∈ Z+, ∀a ∈ A

We introduce the following notations. We denote the indicator function by 1. For each solution

vector (Ua)a∈A, we sort
(
Ua
|Fa|

)
a∈A

by non-increasing order, and we denote by si(U) the i-th element

of the resulting vector. In other words, s1(U) = maxa∈A
Ua
|Fa| . Recursively, if a1, ..., ai−1 are such

that
Uaj

|Faj |
= sj(U),∀j = 1, ..., i− 1, then si(U) = maxa∈A:a6=a1,...,ai−1

Ua
|Fa| . We denote by Θ(U) the

set of indices that attain the maximum of
(
Ua
|Fa|

)
a∈A

, i.e., Θ(U) =
{
a ∈ A, Ua|Fa| = s1(U)

}
. Last,

we write U �lex V (resp. U �lex V ) to signify that
(
Ua
|Fa|

)
a∈A

is lexicographically larger (resp.

lexicographically strictly larger) than
(
Va
|Fa|

)
a∈A

. In other words, U �lex V if ∃i ∈ {1, ..., |A|},
such that s1(U) = s1(V ), s2(U) = s2(V ), ..., si−1(U) = si−1(V ) and si(U) > si(V ), and U �lex V if

U �lex V or si(U) = si(V ), ∀i = 1, ..., |A|.
Lemma 3 shows that, for any optimal solution of P(∆), the constraint

∑
a∈A Ua ≥ ∆ is binding.

Lemma 3. Any optimal solution (Ua)a∈A of P(∆) satisfies
∑

a∈A Ua = ∆.
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Proof. Let us assume that (Ua)a∈A is an optimal solution of P(∆) such that
∑

a∈A Ua > ∆. We

denote by ε the integer defined by ε =
∑

a∈A Ua − ∆ > 0. We introduce a vector (ηa)a∈A of

non-negative integers which satisfies the condition
∑

a∈A ηa = ε (Note that (ηa)a∈A thus defined

is not unique, but we can choose any vector that satisfies these properties). We then define U∗a =

Ua − ηa, ∀a ∈ A. By construction,
∑

a∈A U
∗
a = ∆, U∗a ≤ Ua, ∀a ∈ A and ∃a ∈ A, U∗a < Ua. Thus

U �lex U
∗, which contradicts the fact that (Ua)a∈A is an optimal solution of P(∆).

In Lemma 4, we prove an intermediate result that shows that, if we start with an optimal

solution of Problem P(∆) and we add one item to any group, then the resulting weighted cost

borne by that group is at least equal to the optimal value of the largest weighted cost.

Lemma 4. If (Ua)a∈A is an optimal solution of P(∆), then Uc+1
|Fc| ≥ s1(U), ∀c ∈ A.

Proof. Let us consider c ∈ A. If Uc
|Fc| = s1(U), then Uc+1

|Fc| > s1(U). If Uc
|Fc| < s1(U), then ∃b 6=

c, Ub|Fb| = s1(U) as the set A is non-empty and finite. We define U as follows: U c = Uc + 1,

U b = Ub − 1 and Ua = Ua,∀a 6= b, c. U is a feasible solution of P(∆). If |Θ(U)| > 1, then

Ua = Ua,∀a ∈ Θ(U) \ {b} and s1(U) = s2(U) = ..., s|Θ(U)|−1(U) = s1(U) = ..., s|Θ(U)|−1(U).

Since U is an optimal solution of P(∆), s|Θ(U)|(U) ≥ s|Θ(U)|(U) = s1(U). We have: s|Θ(U)|(U) =

max
{

maxa/∈Θ(U),a 6=c
Ua
|Fa| ,

Uc+1
|Fc| ,

Ub−1
|Fb|

}
. We know that maxa/∈Θ(U),a6=c

Ua
|Fa| < s1(U) and that Ub−1

|Fb| <

s1(U). This implies that Uc+1
|Fc| ≥ s1(U).

Lemmas 3 and 4 show that if the constraint
∑

a∈A Ua ≥ ∆ is not binding, or if there exists

c ∈ A such that Uc+1
|Fc| < s1(U), then U is not an optimal solution of P(∆). In Lemma 5, we identify

necessary conditions over a feasible solution (Va)a∈A of Problem P(∆) to ensure that U �lex V

even if (Ua)a∈A does not satisfy these two conditions.

Lemma 5. Let (Ua)a∈A be such that
∑

a∈A Ua = ∆ and Uc+1
|Fc| ≥ s1(U),∀c ∈ A, and V denote

any feasible solution of P(∆). If U �lex V , then there exist b1, ..., bq, c1, ..., cq ∈ A such that:

(i)
Ubi
|Fbi |

= s1(U), ∀i = 1, ..., q, (ii)
Uci+1

|Fci |
= s1(U), ∀i = 1, ..., q, (iii) Vbi = Ubi − 1,∀i = 1, ..., q,

(iv) Vci = Uci + 1, ∀i = 1, ..., q, and (v) Va = Ua, ∀a 6= b1, ..., bq, c1, ..., cq.

Proof. Let (Ua)a∈A be a feasible solution of P(∆) such that
∑

a∈A Ua = ∆ and Uc+1
|Fc| ≥ s1(U),∀c ∈

A. We can partition the set A into Ω1 =
{
a ∈ A, Ua|Fa| = s1(U)

}
, Ω2 =

{
a ∈ A, Ua+1

|Fa| = s1(U)
}

and

Ω3 =
{
a ∈ A, Ua|Fa| < s1(U) < Ua+1

|Fa|

}
. Let V be any feasible solution of P(∆) such that U �lex V .

First, we note that Vb ≤ Ub, ∀b ∈ Ω1 ∪ Ω3 and Vb ≤ Ub + 1,∀b ∈ Ω2. Indeed, if ∃b ∈ Ω1 ∪
Ω3, Vb > Ub (i.e., Vb ≥ Ub + 1 since Vb and Ub are integer), then Vb

|Fb| ≥
Ub+1
|Fb| > s1(U), thus

V �lex U . Similarly, if ∃b ∈ Ω2, Vb ≥ Ub + 2, then Vb
|Fb| ≥

Ub+1
|Fb| + 1

|Fb| = s1(U) + 1
|Fb| > s1(U), thus

again V �lex U . We denote by X−1 =
∑

a∈Ω1
1 (Va < Ua) and X−3 =

∑
a∈Ω3

1 (Va < Ua), and by

X+
2 =

∑
a∈Ω2

1 (Va = Ua + 1).
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Second, we show that X+
2 = X−1 and X−3 = 0. For every b ∈ A such that Vb < Ub (i.e.,

Vb ≤ Ub−1), there exists some corresponding c ∈ Ω2, Vc = Uc+1. This is because: (i)
∑

a∈A Ua = ∆

and
∑

a∈A Va ≥ ∆; (ii) Va ≤ Ua + 1,∀a ∈ A
(
otherwise, Va

|Fa| >
Ua+1
|Fa| ≥ s1(U), which contradicts

U �lex V
)
; and (iii) Va ≤ Ua,∀a ∈ Ω1 ∪ Ω3. Therefore, X+

2 ≥ X−1 + X−3 . Moreover, the number

of indices such that Va
|Fa| = s1(U) is equal to:

∑
a∈A 1

(
Va
|Fa| = s1(U)

)
=
∑

a∈Ω1
1 (Va = Ua) +∑

a∈Ω2
1 (Va = Ua + 1) =

(
|Ω1| −X−1

)
+X+

2 . Therefore, s1(V ) = ... = s|Ω1|−X−1 +X+
2

(V ) = s1(U) =

... = s|Ω1|(U), while s|Ω1|+1(U) < s1(U). Thus, if X+
2 > X−1 , then V �lex U , which contradicts our

assumption. Therefore, X+
2 = X−1 , which also implies that X−3 = 0.

Third, we note that Vb ≥ Ub − 1,∀b ∈ Ω1. Indeed, if ∃b0 ∈ Ω1, Vb0 ≤ Ub0 − 2, then ∃c0, d0 ∈
Ω2, c0 6= d0, Vc0 = Uc0 + 1 and Vd0 = Ud0 + 1, and for each b 6= b0 ∈ Ω1 such that Vb < Ub, there

exists c ∈ Ω2, c 6= c0, d0 such that Vc = Uc + 1 (this is a direct consequence of points (i), (ii) and

(iii) in the previous paragraph). This results in X+
2 ≥ X

−
1 + 1, which contradicts X+

2 = X−1 .

In summary, we have shown that, if U �lex V , then Vb = Ub,∀b ∈ Ω3 (since X−3 = 0) and

for each b ∈ Ω1 such that Vb < Ub, Vb = Ub − 1 and there exists exactly one corresponding

c ∈ Ω2 such that Vc = Uc + 1. Also, for each c ∈ Ω2 such that Vc > Uc, Vc = Uc + 1 and

there exists exactly one corresponding b ∈ Ω1 such that Vb = Ub − 1. Therefore, there exist

b1, ..., bq ∈ Ω1 and c1, ..., cq ∈ Ω2 such that Vbj = Ubj − 1, ∀j = 1, ..., q, Vcj = Ucj + 1,∀j = 1, ..., q,

and Va = Ua,∀a 6= b1, ..., bq, c1, ..., cq.

Lemma 6 then shows that if we start with a solution of Problem P(∆), then we can construct

a solution of Problem P(∆− 1) by removing one item from the group (or one of the groups) that

bears the largest weighted cost.

Lemma 6. If ∆ ≥ 1 and (Ua)a∈A is an optimal solution of P(∆), then there exists an optimal

solution
(
U0
a

)
a∈A of P(∆− 1) and a0 ∈ A such that: U0

a0
= Ua0 − 1 and U0

a = Ua, ∀a 6= a0.

Proof. Let (Ua)a∈A be an optimal solution of P(∆). We choose a0 ∈ arg mina∈Θ(U) |Fa|, and we

define U0 such that: U0
a0

= Ua0 − 1 and U0
a = Ua,∀a 6= a0. Note that U0

a ≤ Ua,∀a ∈ A, so

si(U) ≥ si(U
0), ∀i = 1, ..., |A|. Let (Va)a∈A be any feasible solution of P(∆ − 1) and we need to

show that V �lex U
0.

First, we have
∑

a∈A U
0
a = ∆− 1. According to Lemma 4, we know that Ua+1

|Fa| ≥ s1(U), ∀a ∈ A,

so U0
a+1
|Fa| ≥ s1(U),∀a 6= a0. Since

U0
a0

+1

|Fa0 |
=

Ua0

|Fa0 |
= s1(U), we also have U0

a+1
|Fa| ≥ s1(U) ≥ s1(U0),∀a ∈

A. Therefore, U0 satisfies the conditions of Lemma 5. Thus, V �lex U0 unless there exist

b1, ..., bq, c1, ..., cq ∈ A such that: (i)
U0
bi

|Fbi |
= s1(U0),∀i = 1, ..., q, (ii)

U0
ci

+1

|Fci |
= s1(U0),∀i = 1, ..., q,

(iii) Vbi = U0
bi
−1,∀i = 1, ..., q, (iv) Vci = U0

ci+1,∀i = 1, ..., q, and (v) Va = U0
a , ∀a 6= b1, ..., bq, c1, ..., cq.

We now assume these conditions to be satisfied. By construction,
Vci
|Fci |

=
U0
bi

|Fbi |
, ∀i = 1, ..., q. There-

fore, V �lex U
0 if and only if

(
Vbi
|Fbi |

)
i=1,...,q

�lex

(
U0
ci

|Fci |

)
i=1,...,q

.
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We now note that if
U0
a0

|Fa0 |
= s1(U0), then U0

c+1
|Fc| > s1(U0), ∀c 6= a0. We already know from

Lemma 4 that U0
c+1
|Fc| ≥ s1(U) ≥ s1(U0), ∀c 6= a0. Let us assume that ∃c ∈ A, U

0
c+1
|Fc| =

U0
a0

|Fa0 |
= s1(U0).

We can then define U such that U c = Uc + 1, Ua0 = Ua0 − 1 = U0
a0

and Ua = Ua,∀a 6= a0, c. U

is a feasible solution of P(∆). Since
U0
a0

|Fa0 |
= s1(U0), Ua

|Fa| = U0
a
|Fa| ≤

U0
a0

|Fa0 |
,∀a 6= a0. Therefore,

s1(U) =
Ua0−1

|Fa0 |
= Uc+1
|Fc| <

Ua0

|Fa0 |
= s1(U). This contradicts the fact that U is an optimal solution of

P(∆).

Last, we show that for each b such that
U0
b
|Fb| = s1(U0) and for each c such that U0

c+1
|Fc| = s1(U0),

we have
U0
b−1

|Fb| ≥
U0
c
|Fc| . Based on the previous result, b 6= a0 (otherwise there exists no c such that

U0
c+1
|Fc| = s1(U0)), so we need to consider only the following two cases:

(i) If b, c 6= a0, we define U as follows: U c = Uc + 1, U b = Ub − 1 and Ua = Ua, ∀a 6= b, c.

Since
∑

a∈A Ua = ∆, U is a feasible solution of P(∆), so U �lex U . Since Ub
|Fb| = Uc

|Fc| and

Ua
|Fa| = Ua

|Fa| , ∀a 6= b, c, this implies that Ub
|Fb| ≥

Uc
|Fc| , i.e., Ub−1

|Fb| ≥
Uc
|Fc| , i.e.,

U0
b−1

|Fb| ≥
U0
c
|Fc| .

(ii) If c = a0, then
U0
b
|Fb| =

Ua0

|Fa0 |
, i.e., Ub

|Fb| =
Ua0

|Fa0 |
, and b ∈ Θ(U). By construction, a0 ∈

arg mina∈Θ(U) |Fa|, so |Fa0 | ≤ |Fb|. We thus have
U0
b
|Fb|−

1
|Fb| ≥

Ua0

|Fa0 |
− 1

|Fa0 |
, i.e.,

U0
b−1

|Fb| ≥
U0
a0

|Fa0 |
.

Therefore,
Vbi
|Fbi |

≥ U0
ci

|Fci |
, ∀i = 1, ..., q. This implies that V �lex U

0.

Lemma 7 extends Lemma 6 to construct, from a solution of Problem P(∆), solutions of Problems

P(∆− 1),...,P(0) such that each one differs from the following one by only one element.

Lemma 7. If ∆ ≥ 1 and
(
U∆
a

)
a∈A is an optimal solution of P(∆), then there exist

(
U∆−1
a

)
a∈A,

...,
(
U0
a

)
a∈A that are optimal solutions of P(∆ − 1),...,P(0), respectively, and a1, ..., a∆ ∈ A such

that: U i−1
ai = U iai − 1 and U i−1

a = U ia, ∀a 6= ai,∀i = 1, ...,∆.

Proof. This is obtained directly by repeatedly applying Lemma 6 to P(∆), P(∆− 1), ..., P(2) and

P(1).

We now introduce the following notations. We denote by γ the greatest common divisor of

(|Fa|)a∈A, i.e., γ = gcd (|Fa|)a∈A. We also introduce ξa = |Fa|
γ and N =

∑
a∈A ξa. We show in

Lemma 8 that if we know a solution of Problem P(∆), then we can construct easily the solution of

P(∆ +N) by adding ξa items to each group a.

Lemma 8. If (Ua)a∈A is an optimal solution of P(∆), then (Ua + ξa)a∈A is an optimal solution of

P(∆ +N).
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Proof. The construction of the proof is very similar to that of Lemma 6. Let (Ua)a∈A be an optimal

solution of P(∆). We have: Ua+ξa
|Fa| = 1

γ+ Ua
|Fa| ,∀a ∈ A, and thus: si(U+ξ) = 1

γ+si(U), ∀i = 1, ..., |A|.
Let (Va)a∈A be any feasible solution of P(∆ +N) and we need to show that V �lex U + ξ.

First, we have
∑

a∈A (Ua + ξa) = ∆ + N . According to Lemma 4, we know that Ua+1
|Fa| ≥

s1(U),∀a ∈ A, so Ua+ξa+1
|Fa| ≥ s1(U+ξ), ∀a ∈ A. Therefore, U+ξ satisfies the conditions of Lemma 5.

Thus, V �lex U+ξ unless there exist b1, ..., bq, c1, ..., cq ∈ A such that: (i)
Ubi+ξbi
|Fbi |

= s1(U+ξ),∀i = 1, ..., q,

(ii)
Uci+ξci+1

|Fci |
= s1(U+ξ), ∀i = 1, ..., q, (iii) Vbi = Ubi+ξbi−1,∀i = 1, ..., q, (iv) Vci = Uci+ξci+1,∀i = 1, ..., q,

and (v) Va = Ua + ξa,∀a 6= b1, ..., bq, c1, ..., cq. We now assume these conditions to be satis-

fied. By construction,
Vci
|Fci |

=
Ubi+ξbi
|Fbi |

,∀i = 1, ..., q. Therefore, V �lex U + ξ if and only if(
Vbi
|Fbi |

)
i=1,...,q

�lex

(
Uci+ξci
|Fci |

)
i=1,...,q

.

We now show that for each b such that Ub+ξb
|Fb| = s1(U + ξ) and for each c such that Uc+ξc+1

|Fc| =

s1(U + ξ), we have Ub+ξb−1
|Fb| ≥ Uc+ξc

|Fc| . We define U as follows: U c = Uc + 1, U b = Ub − 1 and

Ua = Ua, ∀a 6= b, c. Since
∑

a∈A Ua = ∆, U is a feasible solution of P(∆), so U �lex U . Since
Ub
|Fb| = Uc

|Fc| and Ua
|Fa| = Ua

|Fa| , ∀a 6= b, c, this implies that Ub
|Fb| ≥

Uc
|Fc| (otherwise U �lex U), i.e.:

Ub−1
|Fb| ≥

Uc
|Fc| , i.e.: Ub+ξb−1

|Fb| ≥ Uc+ξc
|Fc| .

Therefore,
Vbi
|Fbi |

≥ Uci+ξci
|Fci |

, ∀i = 1, ..., q. This implies that V �lex U + ξ.

Finally, Lemma 9 uses the result from Lemma 8 to construct a sequence of N elements a1, ..., aN

in A that contains exactly ξa repetitions of each a ∈ A and from which we can construct the solution

of Problem P(∆), for any ∆ ≥ 0. Their order is chosen such that, for each ∆ = 1, ..., N , we can

construct a solution of Problem P(∆) by counting the number of times that ai is equal to a, for

i = 1, ...,∆. In other words, P(∆) is solved by the vector U defined by Ua =
∑∆

i=1 1(ai = a), ∀a ∈ A.

If ∆ > N , then we use a similar process based on the Euclidean division of ∆ by N in combination

with Lemma 8.

Lemma 9. There exists a sequence (a1, ..., aN ) ∈ AN such that, for any ∆ ≥ 0, if q and r

denote the quotient and remainder of the Euclidean division of ∆ by N , then (Ua)a∈A defined by

Ua = qξa +
∑r

i=1 1(ai = a),∀a ∈ A is an optimal solution of P(∆). (By convention,
∑0

i=1 1(ai =

a) = 0,∀a ∈ A).

Proof. We consider an optimal solution
(
UNa
)
a∈A of Problem P(N). According to Lemma 7, there

exist
(
U0
a

)
a∈A, ...,

(
UN−1
a

)
a∈A and a1, ..., aN ∈ A such that for all p = 1, ..., N : (Upa )a∈A is an

optimal solution of P(p) and Up−1
ap = Upap − 1 and Up−1

a = Upa ,∀a 6= ap. In other words, there exists

a sequence a1, ..., aN such that for all p = 1, ..., N − 1, the vector U defined by Ua =
∑p

i=1 1(ai =

a) solves Problem P(p). We apply this result to r ∈ {0, ..., N − 1} to get the optimal solution

(U ra)a∈A of Problem P(r). Then according Lemma 8 (applied q times), the vector U defined by

Ua = qξa +
∑r

i=1 1(ai = a),∀a ∈ A is an optimal solution of P(r + qN), i.e., of P(∆).
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We end with a simple example to illustrate how the solution of P(∆) is constructed. We consider

a case with three “groups” (i.e., |A| = 3) such that |F1| = 20, |F2| = 30 and |F3| = 50. We have

γ = 10, ξ1 = 2, ξ2 = 3, ξ3 = 5 and N = 10. We construct the sequence (a1, ..., aN ) by sorting

in the increasing order the elements in the following set
{

1
ξ1
, 2
ξ1
, ..., ξ1ξ1 ,

1
ξ2
, 2
ξ2
, ..., ξ2ξ2 ,

1
ξ3
, 2
ξ3
, ..., ξ3ξ3

}
,

i.e., in the set
{

1
2 , 1,

1
3 ,

2
3 , 1,

1
5 ,

2
5 ,

3
5 ,

4
5 , 1
}

. The sorted set is
{

1
5 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

4
5 , 1, 1, 1

}
. By taking the

corresponding indices, we obtain the following sequence: (a1, ..., aN ) = (3, 2, 3, 1, 3, 2, 3, 3, 2, 1). In

other words, we allocate the first item (if ∆ = 1) to a = 3 (with a corresponding objective function

value equal to 1
5), the second item (if ∆ = 2) to a = 2 (with a corresponding objective function

value equal to 1
3), the third item (if ∆ = 3) to a = 3 (with a corresponding objective function value

equal to 2
5), etc. Note that the last three items (with ∆ = 8, 9, 10) are allocated to a = 3, a = 2

and a = 1 in this specific sequence (from the largest to the smallest value of |Fa|) to guarantee that

the sequence lexicographically minimizes the elements in the set for ∆ = 8 and ∆ = 9. Table 5

shows a vector (Ua)a∈A that solves Problem P(∆) for different values of ∆, based on the sequence

(a1, ..., aN ) thus constructed.

Table 5: Solution (Ua)a∈A of P(∆) for |A| = 3, ξ1 = 2, ξ2 = 3, ξ3 = 5, and different values of ∆

∆

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

1 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 ...

2 0 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 ...

3 1 1 2 2 3 3 4 5 5 5 6 6 7 7 8 8 9 10 10 10 ...
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