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Task-free connectivity analyses have emerged as a powerful tool in functional

neuroimaging. Because the cross-correlations that underlie connectivity measures are

sensitive to distortion of time-series, here we used a novel dynamic phantom to provide

a ground truth for dynamic fidelity between blood oxygen level dependent (BOLD)-like

inputs and fMRI outputs. We found that the de facto quality-metric for task-free fMRI,

temporal signal to noise ratio (tSNR), correlated inversely with dynamic fidelity; thus,

studies optimized for tSNR actually produced time-series that showed the greatest

distortion of signal dynamics. Instead, the phantom showed that dynamic fidelity is

reasonably approximated by a measure that, unlike tSNR, dissociates signal dynamics

from scanner artifact. We then tested this measure, signal fluctuation sensitivity (SFS),

against human resting-state data. As predicted by the phantom, SFS—and not tSNR—is

associated with enhanced sensitivity to both local and long-range connectivity within the

brain’s default mode network.

Keywords: Functional MRI, signal fluctuation sensitivity, resting state connectivity, temporal signal to noise ratio,

dynamic phantom, fidelity

INTRODUCTION

Unprecedented investment in functional neuroimaging has ushered in a new era of brain research,
in which fMRI’s original role in mapping the areas of the brain most “active” under a task, now
includes task-free characterization of brain connections and circuits. This evolution implies a
fundamental—and yet largely unacknowledged—shift in how we understand signal vs. noise.

During fMRI’s first decade, researchers almost exclusively used stimulus presentation to evoke
blood oxygen level dependent (BOLD) activity in subjects. To identify the relationship between
different brain regions and their functional roles, tasks included one or more experimental
conditions (tasks), as well as a baseline measure absent of stimuli (rest). FMRI time-series were
then fitted to the expected hemodynamic shape for each condition (canonical hemodynamic
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response function, or HRF). Once fitted, trials for each condition
were averaged and used to statistically compare hemodynamic
amplitudes for each condition (contrasts) across subjects.
Contrasts that met statistical thresholds were then represented
as activity, producing activation maps. Importantly, the fitting,
averaging, and subtraction approach used to analyze task-based
data was designed to distinguish between time-series fluctuations
originating from two sources. On the one hand, it amplified
fluctuations of interest corresponding to task-based activation
and that therefore were correlated with the experiment’s design
matrix. On the other hand, it suppressed fluctuations of nuisance
corresponding to (scanner, physiological) artifact and that
therefore were independent of the experiment’s design matrix.

In the late 1990’s several influential papers (Biswal et al.,
1997; Greicius et al., 2003; Salvador et al., 2005) showed for the
first time that the brain showed strong and reliable correlations
between fMRI time-series even in the absence of a well-defined
task (resting-state connectivity); more recently, the relationship
between correlation-derived networks, and the neuronal events
that underlie them, has been identified using fMRI acquired
simultaneously with electrophysiological recordings of local
field potentials (Logothetis et al., 2012). The fMRI community
quickly responded, and today task-free connectivity studies—
which map connections between brain nodes as defined by
correlations between their time-series—comprise over 20% of
human neuroimaging studies published every year (Bandettini,
2014). Connectivity analyses include not only those obtained
by correlations with a pre-defined region (seed-based) but also
those that describe graph-theoretic features of the functional
connectome (complex network analyses) (Bullmore and Sporns,
2009). Together, connectivity studies have contributed a wealth
of new human brain data on aging (Damoiseaux et al., 2008),
psychiatric (Greicius et al., 2007) and neurological (Bettus et al.,
2009) disorders, and injury (Mayer et al., 2011). Resting-state
fMRI protocols are easily standardized, require minimal patient
compliance, and permit exploratory analyses; as such, they would
appear to be well positioned for both clinical neurodiagnostics as
well as large-scale international bio-repositories established for
epidemiological research.

However, the transition from activation maps to connections
between nodes not only produced a conceptual shift with
respect to the role of functional neuroimaging, but also
increased dependence upon time-series power spectra (see
Section Materials and Methods). The standard measure for
establishing the quality of task-based data has been the contrast-
to-noise ratio (CNR), defined as the contrast (mean activation
level acquired during task minus the mean activation level
acquired during rest) divided by the standard deviation of the
time-series (Bandettini and Cox, 2000). For task-free designs
however, CNR cannot be computed, and thus normally is
replaced by the temporal signal-to-noise ratio (tSNR), defined as
the mean of the time-series divided by its standard deviation
(Kruger et al., 2001). Intuitively, both CNR and tSNR compare
the amplitude of a signal against a background of undesired
physiological, thermal, and scanner noise present in all fMRI
studies. This manner of conceptualizing what is “signal” vs. what
is “noise” makes perfect sense within the context of activation

maps, in which a task activates the brain reliably more under
one condition (signal) than another (noise)(Murphy et al.,
2007). However, for task-free analyses, the “baseline” fluctuations
themselves also include the “signal.” Thus, for most task-free
analyses, tSNR would appear to do exactly the opposite of what
one would wish, as it penalizes sensitivity to the fluctuations
(i.e., the standard deviation of the time-series) upon which
experimental results are also based. Indeed, several recent studies
have reported little correspondence between resting-state tSNR
and the detection of stable functional networks (Smith et al.,
2013; Welvaert and Rosseel, 2013; Gonzalez-Castillo et al., 2014;
Molloy et al., 2014).

For task-free analyses, rather than relegate time-series
fluctuations to the category of noise as per tSNR, we want to—
as with task-based analyses—functionally distinguish between
fluctuations of interest that are neurobiologically significant
(e.g., emanating from BOLD signal consequent to neuronal
response) from fluctuations of nuisance that are neurobiologically
insignificant (e.g., physiological, scanner, and motion artifact).
The dissociation between the two can be characterized by signal
fluctuation sensitivity (SFS), which we define at a single-voxel
level as:

SFSvoxel =
µROI

<µglobal>
×

σROI

<σnuisance>
(1)

In the first term, the numerator consists of the mean signal (µ)
of a time-series acquired from a voxel in the region of interest
(ROI). For the denominator, we average over all voxel-specific
signal for the entire brain (global). The first term ensures that SFS
decreases for regions with signal drop out, while remaining unit-
less (as with tSNR). In the second factor, the numerator consists
of the standard deviation (σ) of the time-series acquired from the
voxel of interest. For the denominator, we average over all voxel-
specific σ from a region in which BOLD signals are not expected,
but in which physiological, scanner, and motion artifacts are still
present (nuisance). Prior work suggests that time-series obtained
from cerebrospinal fluid (CSF) meet criteria for the nuisance
denominator (Wald, 2012). SFS for a region of interest is then
computed by averaging voxel-specific SFS values over all voxels
in the region (SFSROI = <SFSvoxel>ROI). In order to more
easily compare SFS with tSNR, we scale them comparably by
multiplying SFS values by 100.

We define dynamic fidelity as the degree to which fMRI
accurately captures true BOLD fluctuations. In order to test our
hypothesis that SFS should reflect dynamic fidelity of time-series
more accurately that tSNR, we first needed to know the “ground
truth” for those fluctuations. To access that ground truth, we
designed and constructed a dynamic phantom, which provides
user-controlled—and thus known—dynamic BOLD-like inputs
to which fMRI-derived outputs can be compared. We then tested
the impact of dynamic fidelity, as defined by our phantom,
in predicting detection sensitivity to functional connectivity in
human data across three different sets of acquisition parameters,
chosen to represent a breadth of realistic optimization strategies
utilized within the neuroimaging field for human connectivity
studies.
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MATERIALS AND METHODS

Design and Prototyping of Dynamic
Phantom
Summary of Strategy
We designed a dynamic phantom that is fully automated,
capable of producing complex waveforms detected by fMRI,
and contains no paramagnetic materials. The basis for the
signal is the fact that the magnetic susceptibility of agarose
gels is concentration dependent (Olsrud et al., 2008), in which
higher concentrations produce lower fMRI signal. By varying the
concentration of agarose gel present within a voxel over time, the
dynamic phantom produces changes in T2* that can be tuned to
amplitudes typically seen with BOLD in humans; the phantom
can be programmed to simulate both task-based and resting-state
BOLD-like signals. With known inputs, the relationship between

the signal produced (by the dynamic phantom) and the signal
detected (by the fMRI scanner) can be rigorously quantified as a
measure of dynamic fidelity.

The dynamic phantom is composed of calibrated agarose
gels housed within two concentric cylinders. The outer cylinder
contains a baseline gel, while the inner cylinder is longitudinally
divided with both (i) a baseline gel matching the outer cylinder
and (ii) an active gel with slightly lower concentration of agarose
(Figure 1). The longitudinally divided inner cylinder produces
dynamic fMRI signal via rotation about its long axis. We
developed a novel fMRI-compatible pneumatic motor to drive
rotation of the inner cylinder, while the outer cylinder remains
motionless. The position of the inner cylinder is continuously
monitored with a fiber optic feedback system, and the device is
operated from the fMRI control room with a microcontroller.
Compressed air drives rotation of the inner cylinder, and

FIGURE 1 | The dynamic phantom produces tightly controlled changes in functional MRI signal, establishing a ground truth for quantifying dynamic

fidelity of scanner outputs to signal inputs. (A,B) The dynamic phantom uses concentric cylinders filled with agarose gels. The inner cylinder is coupled to an

MRI-compatible pneumatic motor and fiber optic feedback system. (C) The inner cylinder is longitudinally compartmentalized into four chambers. One of two

calibrated agarose gels with different concentrations is contained in each; the gels are in direct contact. The outer cylinder contains a single agarose gel. Because

magnetic susceptibility changes as a function of agarose concentration, precisely timed rotation of the inner cylinder between images creates a “gradient” effect, in

which different proportions of each agarose compartment pass through—and are averaged over—a region of interest. Motion across the “gradient” thus is capable of

producing smooth dynamic changes in fMRI signal (bottom panel of C). (D) The top two panels demonstrate “active” voxels within the inner cylinder of the phantom

along the gel-gel interfaces; these voxels exhibit strong input-output fidelity. The bottom two panels show that the inactive outer cylinder and inactive inner cylinder

voxels are indistinguishable. For validation of phantom performance, a simple event-related design is pictured in D. During the phantom scanning for SFS experiments,

the phantom utilized a more complex input mimicking human resting-state fluctuations (Figure 4A).
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monitoring of the phantom occurs through plastic fiber optic
cables, which run between the scanner and control room. Thus,
the dynamic phantom is comprised of two main systems: (1)
the scanned phantom, consisting of two concentric cylinders and
supports, a plastic gearbox, tubing, and fiber optic cables, and (2)
the control unit, consisting of a microcontroller, compressor, and
circuit board. The description of the design will be broken down
within these two systems and their interface.

System 1: Scanned Phantom
Phantom Housing
We used AutoCAD (AutoDesk, Inc) to design a cylinder-within-
cylinder phantom (Figure 1). The inner cylinder contains four
compartments, divided longitudinally. All custom phantom parts
were printed with a Makerbot 3D printer with non-pigmented
polylactic acid filament (Makerbot, Inc, Brooklyn, NY). The
volume of the outer cylinder was 600mL, while the volume of
the inner cylinder was 150mL.

Agarose Gels and Materials Justification
We chose agarose as a contrast medium because of its relative
ease of use, flexibility in preparation, and physical stability.
The use of agarose in phantom construction has been validated
throughout the literature, and it is shown to be homogenous with
respect to MR relaxation properties (Christoffersson et al., 1991;
Olsrud et al., 2008). The outer cylinder was filled uniformly with
2.27% agarose. The inner cylinder was filled with 2.21 and 2.27%
agarose gels (Figure 1C). No dividing materials were used, i.e.,
the gels were in direct contact. We used a “baseline” agarose
gel concentration approximately matching previous agarose
phantom development (Olsrud et al., 2008). We then calibrated
the “active” agarose gel concentration by empirically measuring
fMRI signal intensity at 3T for agarose concentrations between
1.5 and 3.0%, and chose the concentration that produced an
approximate 1% signal change in a 3T 12 channel MRI during
a simulated event-related design. Gels were degassed with a
vacuum chamber.

Interface between System I and System II
Control and Automation
To achieve automated rotation of the inner cylinder, we designed
and fabricated a fully MRI-compatible pneumatic motor system.
The motor consists of a compressor, valves, manifold, tubes, dual
fans, and a gearbox. An air compressor is placed in the control
room of the MRI center; input pressure is set to 40 pounds per
square inch at 1.9 cubic feet per minute. Plastic tubing guides
the compressed air through a splitter and into two Arduino
controlled solenoid valves (SparkFun Electronics, Boulder CO).
Compressed air leaves the two independent valves and is guided
through two tubes into the scanner bed. The compressed air
is released from the pairs of tubes via pneumatic connectors,
resulting in high velocity airflow. Depending on which valve is
open, this airflow powers one of two fans; these fans are coupled
to a gearbox and spin in opposing directions. The dual fan setup
allows the gearbox to be driven in either direction and also allows
precise braking. The rapid rotation of the fans is stepped down
and torque is increased via five 3:1 compound gears, resulting

in a step down ratio of 243:1. The gearbox ultimately interfaces
with the inner cylinder and optical interruption disk to produce
pneumatically controlled rotation. The outer cylinder does not
rotate.

Fiber Optic Feedback
We designed a fiber-optic feedback system using plastic fiber-
optic cables, an LED light source, a photodiode, and an
interrupter disc. An Arduino microcontroller powers a high-
powered 10mmLED (SparkFun Electronics, Boulder CO), which
is coupled with a 1.5mm diameter fiber optic cable (Thor Labs,
NJ). The first cable guides light from the LED source within
control room to the scanner bed through a waveguide. The fiber
optic cables are positioned opposite each other and spaced 5mm
apart, such that as the inner cylinder rotates, the interrupter
disk (3mm thickness) will intermittently block light transmission
between the two cables. The interrupter disc has 60 teeth,
corresponding to∼6◦ of rotation per interrupt. The second fiber
optic cable receives light and is fed back to a photo-diode on the
microcontroller. As the interrupter disc spins, the photo-diode
receives differential intensity readings. The microcontroller then
displays the interruption count as a live feed at each TR. We
calibrated the phantom to traverse an average of one interrupt
per image. Prior to each fMRI scan, the device performs a
self-calibrating procedure to ensure optimal position encoding
regardless of ambient light.

System II: Control Unit
Arduino Microcontroller and fMRI Communication
TR signals are sent to the Arduino via USB input from the
MRI scanner. To properly calibrate the phantom rotation and
avoid motion artifacts in regions of interest, we ran a simple
EPI acquisition (TR = 2s, TE = 30ms, 25 slices) in which the
phantom began rotation just after the start of each TR, and
examined each slice for motion artifacts. We found that motion
artifacts occurred when the phantom rotated during or before a
slice was acquired, whereas slices acquired before the phantom
rotates within a TR contained no noticeable artifact. Because
the phantom rotates in plane with the image, no material leaves
or enters the imaging slice; this feature avoids potential spin
history artifacts. Therefore, if the phantom is programmed to
begin rotation towards the end of a TR (after a sufficient number
of slices have been acquired) and to stop rotation just before the
next TR, motion artifacts are mitigated (see Figure 1 to illustrate,
and Figure 2 for a representative time-series acquired with the
dynamic phantom). Empirical testing with this design indicated
that the phantom should begin rotation 650ms prior to each TR,
and stop∼100ms before the TR. Thus, for TR= 2 s, the dynamic
phantom begins rotation at 1500ms and ends at 1900ms; for
TR = 1080ms, rotation begins at ∼600ms and ends at ∼980ms;
for TR = 802ms, rotation begins at ∼300ms, and ends at
∼700ms. This strategy produced minimal motion artifacts in
images of the center of the phantom, where inactive inner
cylinder voxels (which experience motion) and inactive outer
cylinder voxels (which experience no motion) showed no
significant differences in standard deviation (p = 0.89, rank sum
test).
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Arduino Software
The dynamic phantom is controlled with an Arduino Mega
(www.Arduino.cc). We developed all software in-house. The
phantom can operate in three distinct modes: (1) stimulus-driven
(for simulation of task-designs), (2) guided-mode (for simulation
of resting-state), and (3) static. For this experiment, the phantom
utilized guided mode, for which the user preprograms the
interruption destination for each image. This allowed for the
production of specific time-series, such as a pink-noise time-
series equivalent to those produced by resting-state fMRI.

Using the Dynamic Phantom to Test SFS
and tSNR
Acquisition Parameters
We scanned the dynamic phantom in three separate MRI
scanners. Detailed scan parameters are listed in Table 1. The
three scanners utilized in this phantom study represent the
following: (i) a 3T Siemens MRI with 32-channel head-coil
(McGovern Institute for Brain Research, Massachusetts Institute
of Technology), (ii) a 3T Siemens MRI with 64-channel head-coil
(Human Connectome Scanner—Martinos Center for Biomedical
Engineering, Massachusetts General Hospital), and (iii) a 7T
Siemens MRI with 32-channel head-coil (Martinos Center for
Biomedical Engineering, Massachusetts General Hospital). For

each scanner, we tested three sampling rates, representing
typical time-resolution for fMRI studies (TR = 2000–2010ms),
increased time-resolution acquired for the Human Connectome
Project (TR = 1010–1080ms), and ultra-fast imaging paradigms
(TR = 802–824ms). Thus, we performed a factorial study (three
scanners and three sampling rates each) with the dynamic
phantom, for a total of nine scans (Table 1), each 10min
long. For both 3T scanners, we performed standard shimming;
due to dramatically increased susceptibility artifacts at 7T, we
utilized a partial shim centered on the inner cylinder of the
phantom. Visual inspection of the resulting images, as well as
correlations between the dynamic phantom inputs and fMRI
outputs, confirmed data quality.

Statistical Analyses
While most human fMRI data undergoes significant
preprocessing, for the dynamic phantom we used raw data
after implementing only voxel-wise trend removal (linear and
quadratic) to remove scanner drift, and no further temporal
preprocessing, in order to characterize dynamic fidelity as
transparently as possible. For the region of interest (ROI)
fluctuations, we extracted the average time-series from the four
quadrants of the inner cylinder (corresponding to the four
chambers, with respect to the initial position of the phantom)
with an automated masking procedure using MATLAB software

FIGURE 2 | Elimination of motion artifacts during rotation vs. slice. The dynamic phantom rotates between 3 and 6◦ between TRs. Rotation is coupled with TR

acquisition through a microcontroller, and is tightly controlled with a brake. For illustrative purposes, we show here (A) that slices acquired before rotation are subject

to considerably less spiking than (B) slices acquired during rotation and (C) after rotation is completed. (D) We optimized our rotation/braking scheme such that

inactive inner and outer cylinder voxels contain no significant differences in standard deviation for slices of interest (rank sum test).

TABLE 1 | Acquisition parameters for the nine dynamic phantom scans.

Scan Main field Head coil TR (ms) TE (ms) SMS iPAT Flip angle (◦) Bandwidth (Hz/Px) Resolution (mm) Slice Gap (mm) Slices

1 3T 32 Ch 2000 30 3 2 75 1860 2× 2 × 2 0.2 69

2 3T 32 Ch 1080 30 4 2 60 1860 2× 2 × 2 0.2 60

3 3T 32 Ch 802 30 5 2 33 1860 2× 2 × 2 0.2 55

4 3T 64 Ch 2000 30 2 2 85 2840 2× 2 × 2 0 62

5 3T 64 Ch 1080 30 4 2 60 2840 2× 2 × 2 0 68

6 3T 64 Ch 824 30 5 2 55 2840 2× 2 × 2 0 65

7 7T 32 Ch 2010 20 2 2 33 2264 2× 2 × 1.5 0 86

8 7T 32 Ch 1010 20 4 2 55 2264 2× 2 × 1.5 0 84

9 7T 32 Ch 802 20 5 2 33 2368 2× 2 × 1.5 0 85

We tested three scanners at three TRs with the dynamic phantom. Highlighted rows indicate scans for which we collected corresponding human data, in which Scan 1 corresponds to

Acquisition A, Scan 5 corresponds to Acquisition B, and Scan 9 corresponds to Acquisition C. All sequences utilized interleaved acquisition.
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developed in-house. We repeated this for six slices positioned
in the center of the phantom (n = 24 time-series per scan). For
the nuisance fluctuations, we extracted the time-series from the
outer cylinder of the phantom, which does not activate. We then
computed quadrant-wise SFS based on the definition:

SFSdynamic phantom quadrant =

< µinner cylinder >
quadrant

< µglobal >

×

< σinner cylinder >
quadrant

< σ outer cylinder >
(2)

In the first term, the numerator consists of the mean signal (µ) of
an averaged time-series over each of the four dynamic phantom
quadrants (quadrant). For the denominator, we average over
signal for the entire phantom (global). The first term ensures that
SFS decreases for regions with signal drop out, while remaining
unit-less (as with tSNR). In the second term, the numerator
consists of the mean standard deviation (σ ) of an averaged time-
series over each of the four dynamic phantom quadrants. For
the denominator, we average over σ from a region in which
signals are not expected, but in which physiological, scanner,
and motion artifacts are still present. In this case, we use the
outer cylinder, which is static. In order to avoid biasing values
for standard deviation due to differences in the number of voxels
between inner quadrants and outer cylinder, we averaged time-
series in the outer compartment over the same number of voxels
used to average time-series in each of the inner quadrants. We
computed standard deviations for each of these inner quadrant-
sized (39 voxels) averaged time-series, and then averaged across
those standard deviations to produce the standard deviation for
the entire outer cylinder (i.e., the denominator of the second
factor). In order to more easily compare SFS with tSNR, we scale
them comparably by multiplying SFS values by 100. TSNR was
computed as the mean for the averaged time-series over each of
the four dynamic phantom quadrants, divided by its standard
deviation (after detrending). Dynamic fidelity was computed as
the correlation between inputs (dynamic phantom user-defined
function) and outputs (fMRI time-series). We then computed the
correlation between fidelity and both SFS and tSNR for each of
the 24 time-series per scan.

Human Scanning
Acquisition
In an effort to represent a wide variety of task-free scanning
paradigms, we analyzed three sets of human data (N = 12
subjects each) collected with the same acquisition parameters
utilized for the phantom studies, but using only the time-
resolutions previously optimized for each study (Table 1). Thus,
Acquisition A refers to the 3T MRI with 32-channel head-coil
and a TR = 2000ms; Acquisition B refers to the 3T MRI with
a 64-channel head-coil and a TR = 1080ms, and Acquisition
C represents the 7T MRI with a 32-channel head-coil with a
TR = 802ms. Acquisition A lasted 5min, while Acquisition B
(originally 6.2min) and Acquisition C (originally 10min) data
were truncated to match this duration. Anterior to posterior
phase encoding and interleaved acquisition were used in all
scans. For Acquisition A, we acquired whole-brain T1-weighted

structural volumes using a conventional MPRAGE sequence
with the following parameters: TR = 2530ms, TE = 3.39ms,
TI = 1100ms, flip angle = 7◦, voxel size = 1 × 1 × 1.3mm.
Conventional B0 field maps derived from phase differences
between gradient echo images acquired at TR= 4.22 and 6.68ms
were also acquired (TR = 584ms, flip angle = 55◦, voxel size =
2 × 2 × 2mm, slice gap = 0.2mm, 69 slices). For Acquisition
B, we also acquired whole-brain T1-weighted structural volumes
using a conventional MPRAGE sequence with TR = 2530ms,
TE= 1.15ms,TI= 1100ms, flip angle= 7◦, 1mm isotropic voxel
size. For Acquisiton C, we acquired whole-brain T1-weighted
structural volumes using a multi-echo MPRAGE (MEMPRAGE)
sequence with four echoes and the following protocol parameters:
TR = 2530ms, TE1 = 1.61ms, TE2 = 3.47ms, TE3 = 5.33ms,
TE4 = 7.19ms, TI = 1100ms, flip angle = 7◦, 1mm isotropic
voxel size. Conventional B0 field maps derived from phase
differences between gradient echo images acquired at TE = 4.60
and 5.62ms were also acquired (TR = 723ms, flip angle = 36◦,
voxel size= 1.7× 1.7× 1.5mm, 89 slices).

All human subject studies were approved by the Institutional
Review Boards of institutions at which subjects were tested
(Massachusetts Institute of Technology for Acquisition A,
Massachusetts General Hospital for Acquisitions B and C). All
subjects were healthy adults, had full capacity, and provided
informed consent.

All subjects were age matched (µA = 25.6± 3.7; µB = 23.3±
4.2; µC = 25.6 ± 3.4, p = 0.35, Kruskall-Wallis test). There
were no significant differences in motion across the three groups
(maximum absolute translation p = 0.60, maximum absolute
rotation p = 0.96, mean root mean square (RMS) motion p =

0.10, maximum RMS motion p = 0.27, Kruskall-Wallis test).
All participants were instructed to lie quietly with eyes open in
the scanner, orienting to a fixation cross, without moving for the
duration of the scan. We removed the first 10 s of data for all
datasets.

Preprocessing
We followed the standard SPM 8 pipeline for realignment,
co-registration to a structural image, and normalization to
Montreal Neurological Institute (MNI) space. Co-registered
structural images were segmented into probabilistic maps of gray
matter, white matter, and CSF using SPM’s New Segment tool.
Where noted, we utilized a 4-mm (2 voxel) FWHM Gaussian
smoothing kernel. As per standard practice for fMRI analyses,
we performed slice time correction only on Acquisition A data,
since the 2000ms sampling rate was considerably slower than
those of the other two scanners. We performed field map
correction onAcquisitions A and C (distortion correction scheme
was performed on Acquisition B immediately following image
acquisition). Scrubbing was performed to remove the influence of
motion, with scan-to-scan global signal deviation from the mean
>3 and scan-to-scan composite motion >0.5mm as thresholds
for removal (Power et al., 2012). The mean percentage of data
points removed between all three groups was 1.97%, with no
subjects having more than 9% of data scrubbed. To assess the
impact of spatial smoothing, we computed all of our measures on
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both unsmoothed and smoothed data, both of which underwent
each of the other preprocessing steps listed here.

Computation of SFS, tSNR, ALFF, ReHo
and Long-Range (mPFC-PCC) Connectivity
We used MATLAB to compute voxel-wise SFS according to:

SFSvoxel =
µdefault mode network ROI

< µglobal >
×

σdefault mode network ROI

< σcerebrospinal fluid >
(3)

In the first term, the numerator consists of the mean signal (µ)
of a time-series acquired from a voxel in the region of interest
(ROI) in the default mode network, as defined below. For the
denominator, we average over all voxel-specific signal for the
entire brain (global). The first term ensures that SFS decreases
for regions with signal drop out, while remaining unit-less (as
with tSNR). In the second term, the numerator consists of the
standard deviation (σ) of a time-series acquired from the voxel
of interest in the default mode network, as defined below. For the
denominator, we average over all voxel-specific σ from a region in
which BOLD signals are not expected, but in which physiological,
scanner, and motion artifacts are still present (nuisance). Prior
work suggests that time-series obtained from cerebrospinal fluid
(CSF) meet criteria for the nuisance denominator (Wald, 2012).
SFS for a region of interest is then computed by averaging voxel-
specific SFS values over all voxels in the region (SFSROI = <

SFSvoxel >ROI). We additionally computed voxel-wise tSNR as
the mean for each voxel’s time-series divided by its standard
deviation after detrending. In order to more easily compare SFS
with tSNR, we scale them comparably by multiplying SFS values
by 100.

For SFS, standard deviations of the cerebrospinal fluid
voxels (nuisance fluctuations) were computed using an eroded
probabilistic map of CSF (SPM8 segmented map of CSF
thresholded at 70%), to ensure minimal contributions from
neural sources. To avoid distorting time-series dynamics by
averaging them, standard deviations were computed for each
voxel in the nuisance ROI, with voxel-based values averaged
for the ROI. Mean global signal included the entire brain
(conjunction of gray matter, white matter, and cerebrospinal
fluid, thresholded at 70%). Mean values and standard deviations
for each voxel were acquired before confound correction, but
after SPM8 preprocessing and scrubbing.

Prior to functional connectivity analyses, we performed
further regression of nuisance variables (confound-correction).
This included detrending, regression of mean CSF and white
matter signals (white matter map thresholded at 70%), and
regression of six motion parameters from the realignment step.
Finally, we performed temporal band-pass filtering in the 0.01–
0.1Hz range using 5th order Butterworth filter.

Both amplitude of low frequency fluctuations (ALFF) and local
synchronization of neighboring voxels (regional homogeneity or
ReHo: 27-voxel KCC-ReHo) were computed from confound-
corrected data, using the REST toolbox (Song et al., 2011).
Resulting subject-specific voxel-wise ReHo and ALFF maps were
standardized by dividing each voxel’s value by the mean value of
the whole brain.

To test whether SFS or tSNR were predictive of these
established resting-state measures, we computed within-subject
correlations between (i) SFS and ALFF, (ii) SFS and ReHo, (iii)
tSNR and ALFF, and (iv) tSNR and ReHo for voxels belonging to
the well-established default mode network (DMN) regions:medial
prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and
left and right lateral parietal cortices (LLP and RLP). These
regions were defined as 10-mm radius spheres centered on
previously established coordinates (Fox et al., 2005), intersected
with an SPM8 brain mask to ensure only brain voxels were
included (Fox et al., 2005). For the extraction of ROI-based SFS
and tSNR values, we used the four aforementioned DMN masks,
as well as a probabilistic gray matter mask from SPM8 (P >

50%). We obtained subcortical ROI masks from bilateral regions
included in FSLHarvard-Oxford subcortical atlas (thresholded at
50%).

As a measure of long-range mPFC-PCC connectivity strength
we used Fisher-z transformed correlations coefficients between
mean time-series extracted for mPFC and PCC. To test whether
SFS or tSNR were predictive of the mPFC-PCC connection
strength, we computed between-subject correlations (N = 36)
between the minimum SFS or tSNR for each mPFC-PCC pair
and connectivity strength. The decision to use the SFS or tSNR
value for the system as a whole based upon the minimum value is
intuitively based upon the intuition that for networks that include
two or more nodes, signal for the network as a whole can only be
as strong as that of its weakest node. However, this intuition is
not completely accurate; it is only a better solution than the next
easiest option, which is to take the mean.

Estimating the Impact of Noise on
Correlations
While some types of analyses (ReHo) are calculated from a single
node, for other types of analyses (e.g., long-range connectivity,
dynamic causal modeling) it may be desirable to optimize over
the system/circuit as a whole. In order to do so, it is necessary to
calculate the “mutual” tSNR or SFS of a multiple-node system,
for which each node may have different values. While one
option would be to calculate the tSNR or SFS for each node,
and then average between them, it turns out that this approach
underestimates the impact of noise on the statistics.

To address the general question of how noise affects the
Pearson correlation coefficient r(x,y), we start with its definition:

r(x, y) =
1

n− 1

n
∑

i=1

(

xi − x̄

sx

) (

yi − ȳ

sy

)

(4)

Thus:

x̄ =
1

n

n
∑

i=1

xi and sx =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x̄)2, (5)

and analogously for ȳ and sy.
Let us assume that both datasets x and y consist of correlated

data and uncorrelated noise. We can therefore write:

xi = xCi + xNi (6)
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If we define SNRx as xCi/xNi then,

xi = xCi

(

1+
1

SNRx

)

(7)

At the same time sx calculates in the following way, assuming that
xC and xN are uncorrelated:

s2x = s2Cx + s2Nx = s2Cx +
s2Cx
SNR2x

= s2Cx

(

1+
1

SNR2x

)

(8)

Therefore, if r(xC, yC) = rC, and we substitute xi − x = (xCi +
xNi − xCi− xNi) (and equivalently for the y part) in the definition
of r above, then:

r(x, y) =
rCsCxsCy

sxsy
=

rC
√

1+ 1
SNR2x

√

1+ 1
SNR2y

(9)

We can illustrate the practical impact of noise on measured
correlations between time-series by assuming the existence of
two signals with perfect correlation (rC = 1), each of which is
subjected to different levels of noise (provided by tSNR values
that match the variation within the literature: 4.42–280; Welvaert
and Rosseel, 2013). As shown by Equations (4–9), if Node 1 has
SNR of 4.42, and Node 2 has SNR of 280, the r-value will actually
decrease from 1 to 0.975. On the other hand, averaging the
two tSNR values provides an adjusted r-value of ∼1 (0.999951).
Obviously, our approach in taking the lowest of the tSNR values
for all nodes is also inaccurate, overestimating the impact of the
noise to r = 0.951. However, for the purpose of optimization, it
makes more sense to err on the side of being conservative, and
thus we take the lower value (overestimating the impact of noise)
rather than the average (underestimating the impact of noise).

Unsurprisingly, even without considering the compensatory
fitting and averaging steps typically employed in contrast-based
analyses, correlations are more sensitive to distortions of the
frequency spectrum than are traditional contrast-based analyses.
The purpose of dynamic fidelity, and therefore also of SFS, is to
preserve the frequency spectrum. In order to do so, we require
that time-series be linearly amplified. Let us assume that the
measured BOLD signal has undergone amplification and also

assume that this amplification is linear over some range of T2*s
but that it is non-linear over the edges of the linear range
(a sigmoidal shape for example). Since the T2*s vary over the
brain regions of interest some voxels will be amplified linearly
and some will not. Even if there were a perfect correlation
between two brain regions, such a distortion would reduce the
correlation, whereas for task-based designs this distortion would
not be as much of a problem since only the difference between
contrasts is important. To illustrate this, we can use a pink-
noise power law time-series modeled upon our resting-state data
(Figure 3A). We then transform the data using a sigmoidal curve
to simulate a non-ideal amplifier as shown in Figure 3B. The
resulting transformation (Figure 3C) lowers the correlation with
the original time-series, from r = 1 to r = 0.76.

The typical rule of thumb for optimizing fMRI is to setTE such
that the signal amplifies at the center of the linear range. This is
consistent with our aims, since Figures 3A,C demonstrates that
scanning in the nonlinear ends of the range will distort the time-
series dynamics. Optimizing for SFS puts one at the center of
the linear range (Figure 3B), where responses are maximized.
However, optimizing over tSNR will always place one in the
upper nonlinear location (Figure 3B), since it is the point at
which the amplitude is highest and fluctuations are minimized.

RESULTS

Our dynamic phantom exploits the fact that the magnetic
susceptibility of agarose gel is concentration-dependent; thus,
varying the concentration of agarose gel present within a voxel
over time produces changes in T2* that we experimentally tuned
to amplitudes (∼1%) typically observed with BOLD (Olsrud
et al., 2008). The dynamic phantom is constructed from two
concentric cylinders coupled with a pneumatic motor and fiber
optic feedback system (Figure 1A). The outer cylinder contains
a “baseline” agarose gel (2.27% w/w), while the inner cylinder
is longitudinally divided with both (i) a baseline gel matching
the outer cylinder and (ii) an “active” gel with slightly lower
concentration of agarose (2.21% w/w), which produces slightly
greater fMRI signal than the baseline gel. The longitudinally
divided inner cylinder rotates about its long axis via a novel

FIGURE 3 | Nonlinear amplifier distorts power spectra and reduces detection of correlation. (A) Simulated data set whose power spectrum obeys a power

law with mean zero. (B) Characteristic function of the non-linear amplifier. To generate this curve we used a scaled version of the logistic function 1/(1+ exp(− 2x)). If

the mean of the data is around 0, this amplifier is perfectly linear, but when the mean shifts beyond the linear range, this amplifier will distort the data as shown in (C)

Data set in (A) has undergone non-linear amplification by shifting the mean up by three and transforming the data using the characteristic function in (B). These two

data sets (original and transformed) maintain the power law but their Pearson correlation is reduced from r = 1 to r = 0.76.
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MRI-compatible pneumatic motor to drive rotation of the inner
cylinder (Figures 1A,B). By averaging time-series across a region
of interest (ROI) that, over time, includes different proportions
of the two concentrations, we were able to reproduce the
effect of a concentration gradient in producing smooth fMRI
time-series (Figure 1C). The dynamic phantom receives image
acquisition signals from the MRI, and rotates only between
image acquisitions to avoid motion artifacts. As the dynamic
phantom rotates, position is monitored continuously through a
fiber-optic feedback system. As the fMRI acquires each image,
the dynamic phantom reads out its position, which serves as a 1:1
“input” for input-output mapping. The dynamic phantom can be
programmed to produce fMRI signals that follow any dynamic
input, including those expected for task-generated event-related
and block designs, as well as the resting-state (e.g., pink-noise)
fluctuations used to obtain the results below. As shown in
Figure 1D, the dynamic phantom produces tightly controlled
changes in fMRI signal without motion artifacts, and therefore
can provide a ground-truth upon which to establish the degree to
which SFS and tSNR reflect fMRI’s dynamic fidelity to the original
BOLD signal.

Dynamic Phantom Assessment of SFS vs.
tSNR in Predicting Dynamic Integrity
We programmed the dynamic phantom to mimic resting-
state oscillations observed in human fMRI (Van Den Heuvel
et al., 2008) (Figure 4A), and scanned the dynamic phantom
under three different sets of acquisition parameters. Acquisition
A represents what would normally be considered to be the
standard for typical resting-state studies, using a 3T scanner
with 32-channel head coil and 2000ms temporal-resolution (TR).
Acquisition B uses a set of parameters that were specifically
designed for resting-state connectivity analyses as part of the
Human Connectome Project. These include a 3T scanner that
increases the temporal-resolution to 1080ms in order to achieve
greater sensitivity to fluctuation dynamics; to compensate for
signal loss associated with accelerated scanning, Acquisition B
uses a custom-built 64-channel head coil. Acquisition C pushes
even further than Acquisition B in optimizing over temporal
resolution (802ms). Acquisition C retains the 32-channel head
coil, but compensates for signal loss associated with accelerated
scanning by increasing the field strength to 7T. In each scanner,
we scanned the dynamic phantom for 10min under each
acquisition paradigm optimized for human studies, as well as
at two other TRs comparable to those previously optimized
for the other two scanners. Thus, in total we performed nine
scans (three scanners × three TRs each) with the dynamic
phantom; scanners and scan parameters used for each session
are provided in Table 1. For human data, we also acquired T1-
weighted structural images and B0 field maps for correction of
EPI data.

We then computed dynamic fidelity, SFS, and tSNR on raw
data acquired from the dynamic phantom. Standard deviations
were computed after voxel-wise removal of linear and quadratic
trends. The dynamic phantom is longitudinally divided into four
chambers, and rotates about the long axis orthogonally to the

FIGURE 4 | Dynamic phantom results show dynamic fidelity positively

correlates with signal fluctuation sensitivity (SFS) and negatively

correlates with classical temporal signal to noise ratio (tSNR). (A) To

accurately mimic human resting-state fluctuations in the dynamic phantom, we

utilized a complex pink-noise waveform as shown by the dotted line. The

10-min input function originated from our previous neuroimaging data and was

subsequently programmed into the phantom. The dynamic phantom inputs

are derived from position tracking during rotation. A representative output fMRI

signal is superimposed (fMRI Output axis), as acquired under Acquisition B: 3T

magnet, 64 Channel head-coil, at TR = 1080ms (see Table 1). This waveform

input was used for all nine phantom fMRI scans. (B) Input-output fidelity was

positively correlated with SFS (median r = 0.67, see Table 2) and negatively

correlated with tSNR (median r = –0.63, see Table 2). Groups presented here

match the scanning parameters presented in the subsequent human data:

acquisition A is a 3 Tesla magnet with a 32-channel headcoil (TR = 2000ms),

acquisition B is a 3 Tesla magnet with a 64-channel headcoil (TR = 1080ms),

and acquisition C is a 7 Tesla magnet with a 32-channel head coil (TR =

802ms). Table 1 provides detailed acquisition parameters for each scan, while

Table 2 provides detailed results from all nine dynamic phantom scans.

main field. For our region of interest, we extracted the average
time-series from each the four quadrants of the inner cylinder
with an automated masking procedure, and repeated this for
six slices positioned in the center of the dynamic phantom
(n = 24 time-series per scan). Dynamic fidelity was defined as
the correlation between user-defined dynamic inputs, provided
by the phantom rotation, and dynamic outputs acquired from
the scanner in the region of interest. To compute the nuisance
term within SFS (analogous to CSF in humans), we extracted
fluctuations acquired from the outer cylinder in these six slices,
which includes only inactive voxels.

Dynamic fidelity directly correlated with SFS for each of the
nine scans (Figure 4B; Table 2; median r = 0.67) and inversely
correlated with tSNR for each of the nine scans (Figure 4B;
Table 2; median r = −0.63). Thus, when the scanner was
most sensitive in capturing dynamic inputs, SFS was maximized
while tSNR was minimized, and vice-versa. Researchers typically
optimize acquisition parameters for fMRI connectivity studies by
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TABLE 2 | Dynamic fidelity in all nine dynamic phantom scans was positively correlated with SFS and negatively correlated with tSNR.

TR (ms) 3T, 32 Ch 3T, 64 Ch 7T, 32 Ch

CORRELATION WITH DYNAMIC FIDELITY

∼2000 0.51 (p = 0.010) 0.69 (p = 2.1× 10−4) 0.54 (p = 6.6× 10−3)

SFS ∼1080 0.71 (p = 1.1× 10−4) 0.76 (p = 1.8× 10−5) 0.69 (p = 1.9× 10−4)

∼802 0.67 (p = 3.7× 10−4) 0.49 (p = 0.014) 0.63 (p = 9.0× 10−4)

∼2000 −0.67 (p = 3.2× 10−4) −0.64 (p = 7.0× 10−4) −0.44 (p = 0.030)

tSNR ∼1080 −0.87 (p = 4.6× 10−8) −0.72 (p = 8.3× 10−5) −0.58 (p = 3.0× 10−3)

∼802 −0.63 (p = 1.1× 10−3) −0.27* (p = 0.20) −0.54 (p = 6.2× 10−3)

*n.s

trying to maximize tSNR. Yet doing so would appear to produce
the greatest amount of distortion for the BOLD fluctuations
upon which connectivity results are based. Thus, we tested
the implications of our dynamic phantom results for human
connectivity studies.

Human Subjects Assessment of SFS vs.
tSNR in Detecting Resting-State
Connectivity
We calculated SFS and tSNR in human neuroimaging data
acquired using Acquisitions A, B, and C (restricting our
analyses to the TR originally, and independently, optimized
for each scanner), and assessed the utility of each in
predicting detection sensitivity to resting-state network features.
Human data were preprocessed according to standard methods,
including the SPM8 preprocessing pipeline; to gauge the
impact of spatial smoothing, we calculated all values both
with and without this step. After preprocessing, we used
MATLAB to compute SFS and tSNR as per Equation (1). For
resting-state connectivity, we computed three commonly used
measures. The first was the between-voxel measure of local
connectivity, regional homogeneity (ReHo; Zang et al., 2004).
The second was the within-voxel amplitude of low-frequency
fluctuations (ALFF; Zang et al., 2007), which is thought to
underlie resting-state connectivity (Biswal et al., 1995). The
third was long-range connectivity between two nodes of the
default model network (Raichle, 2015): the medial prefrontal
cortex and the posterior cingulate cortex (mPFC-PCC). DMN
regions were defined as 10mm radius spheres centered upon
previously established coordinates (Fox et al., 2005). Long-range
connectivity forms the basis for graph theoretic/complex network
analyses (Bullmore and Sporns, 2009) used within the fMRI
field.

To test the degree to which SFS and tSNR were sensitive to
well-established resting-state features, we computed correlations
between SFS and ReHo, ALFF, and long-range connectivity; as
well as tSNR and ReHo, ALFF, and long-range connectivity.
ReHo and ALFF were computed for voxels within the
well-established default mode network, comprised of the medial
prefrontal cortex, posterior cingulate cortex, and bilateral parietal
cortices (Figure 5A). Long-range connectivity focused upon
the two-node MPFC-PCC connection, which we found to be
reliable across subjects within our dataset (33 out of 36 subjects

showed significant positive correlation between mean time-
series from these two regions). For networks that include two
or more nodes, we used the minimum SFS or tSNR for each
mPFC-PCC pair (as justified in the Materials and Methods
Section).

We first tested whether SFS and tSNR would predict local

connectivity (ReHo) at a single-subject level.Without smoothing,

region-specific correlations within the default mode network

showed robust positive relationships between SFS and ReHo

(median r = 0.53: 96% p < 0.05, 95% p < 0.01, 94% p < 0.001;

by acquisition set: rA = 0.54, rB = 0.51, rC = 0.54; see Figure 5B

for median across subjects and default mode network regions).

In contrast, the correlation between tSNR and ReHo was either

non-significant or significant but negative within most subjects’

default mode network regions (median r =−0.24: 80% p < 0.05,

76% p < 0.01, 68% p < 0.001—even using the most liberal

threshold of p < 0.05, only 11% of all correlations were positive

between tSNR and ReHo; by acquisition set: rA = −0.42, rB =

−0.20, rC = −0.06; see Figure 5C for median across subjects

and default mode network regions). Smoothing only magnified

this effect. After smoothing, SFS positively correlated with ReHo

(median r = 0.68: 98% p < 0.05, 98% p < 0.01, 98% p <

0.001; by acquisition set: rA = 0.69, rB = 0.72, rC = 0.55) and

tSNR negatively correlated with ReHo (median r = −0.62: 97%

p < 0.05, 97% p < 0.01, 97% p < 0.001; by acquisition set:

rA = −0.72, rB = −0.60, rC = −0.57). The same relationship

was preserved when looking at the entire group (N = 36). The

correlation between SFS and ReHo was r = 0.39, p = 0.02

(removing two outliers two SD ± the mean: r = 0.52, p =

0.002), while the correlation between tSNR and ReHo was r =

−0.04, p = 0.83 (removing the same two outliers: r = −0.03,

p = 0.88).
While ReHo is a measure of between-voxel local connectivity,

ALFF is a single-voxel measure that estimates the total power
of the low frequency component of an fMRI signal. Thus, we
expected the relationship between ALFF and SFS (both single
voxel measures) to be even more robust than the relationship
between SFS and ReHo. Indeed, SFS strongly correlated with
ALFF (median r = 0.82, all p’s < 0.001; by acquisition set:
rA = 0.90, rB = 0.71, rC = 0.77), whereas tSNR was negatively
correlated with ALFF (median r = −0.70, all p’s < 0.001;
by acquisition set: rA = −0.82, rB = −0.65, rC = −0.58).
Again, smoothing magnified this effect for both SFS (median
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FIGURE 5 | Local and long-range functional connectivity across the default mode network positively correlates with SFS and negatively correlates

with tSNR. (A) We calculated SFS regional homogeneity (ReHo, a commonly used measure of neural synchrony in fMRI) for each individual subject across the medial

prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and right and left lateral parietal lobes (RLP and LLP). (B,C) Within-subject detection sensitivity for ReHo

positively correlates with SFS and negatively correlates with tSNR (scatter plots shown for a single representative subject; group r for N = 36). (D) We see that the

same pattern occurs for long-range connectivity between default mode network regions medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC)

between subjects. As spatial smoothing artificially increases ReHo by producing correlations between contiguous voxels, shown data are unsmoothed.

r = 0.93, all p’s << 0.001; by acquisition set: rA = 0.94,
rB = 0.92, rC = 0.93), and tSNR (median r = −0.84, all p’s
<< 0.001; by acquisition set: rA = −0.86, rB = −0.83, rC
= −0.84). Again, the same relationship was preserved when
looking at the entire group (N = 36). The correlation between
SFS and ALFF was r = 0.74, p = 0.03 × 10−7, while the
correlation between tSNR and ALFF was r = −0.19, p =

0.26.

As a measure of long-range connectivity, we tested SFS and

tSNR against the default mode network’s MPFC-PCC connection

(Fisher-z normalized) across our three datasets (N = 36).

Consistent with the other connectivity measures, SFS positively

correlated with MPFC-PCC connectivity (rA,B,C = 0.61, p =

8.65 × 10−5) and tSNR negatively correlated with MPFC-PCC

connectivity (rA,B,C = −0.73, p = 4.46 × 10−7) (Figure 5D). As

with previous measures, smoothing did not qualitatively change

the results for either SFS (rA,B,C = 0.40, p = 0.015) or tSNR

(rA,B,C =−0.70, p = 1.67× 10−6).

SFS and tSNR Values between Acquisition
Sets
The purpose of sensitivity metrics, for any measurement, is to
provide accurate feedback by which parameters can be tuned to
optimize performance, as well as to aid in the interpretation and
artifact-correction of results. Our three representative acquisition
strategies illustrate clearly the practical importance of using SFS
rather than tSNR when optimizing fMRI studies for task-free
analyses, and therefore dynamic fidelity. We compared SFS and
tSNR values between acquisition paradigms for the default mode
network, subcortical regions critical to the emotion and reward
circuits, and global gray matter. Because human studies normally
utilize smoothing, and because our previous analyses (above)
showed comparable results for smoothed and unsmoothed
results, Figure 6 results include only 4-mm smoothed data.
To directly compare SFS and tSNR values between acquisition
sets, we extracted average values from the four regions of the
default mode network and three subcortical regions (amygdala,
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FIGURE 6 | SFS distributions across the brain illustrate qualitative

differences in sensitivity between acquisition strategies. As before,

acquisition A is a 3 Tesla magnet with a 32-channel head coil (TR = 2000ms),

acquisition B is a 3 Tesla magnet with a 64-channel head coil (TR = 1080ms),

and acquisition C is a 7 Tesla magnet with a 32-channel head coil (TR =

802ms). (A,B) Full brain SFS maps for each acquisition demonstrate that

cortical (especially prefrontal and parietal/visual) SFSs are robust across all

acquisitions. Acquisition B shows more uniform cortical SFS than A or C, while

acquisition C shows greater subcortical SFS than A or C. (C) SFS values

across acquisition strategies averaged within several regions, including the

default mode network, subcortical regions, and gray matter. In general, SFS

was maximized in cortical regions for acquisition B and subcortical regions for

acquisition C. (D) Acquisition A demonstrated the highest tSNR for all regions,

followed by acquisition C and acquisition B. Values were derived from

preprocessed and smoothed resting-state data (n = 12 per group, 5min of

data). *p < 0.05, **p < 0.01, ***p < 0.001 (Wilcoxson rank sum test).

caudate, hippocampus), as well as average subcortical and
average gray matter. Each subcortical region was defined from
FSL Harvard-Oxford Subcortical Atlas and average subcortical
includes bilateral accumbens, amygdala, caudate, hippocampus,

pallidum, putamen, and thalamus. The gray matter mask was
defined as SPM’s probabilistic gray matter map thresholded at
P > 0.5.

As shown in Figures 6A–D, SFS identifies advantages for
dynamic fidelity in increasing temporal resolution, as well
as the costs and benefits associated with increasing the
number of head-coil channels vs. field strength in order to
recover signal loss from accelerated acquisition. In general,
the ultra-dense head-coil strategy employed by Acquisition B
optimizes dynamic fidelity in cortical regions, whereas the
ultra-high-field strategy employed by Acquisition C optimizes
dynamic fidelity in subcortical regions. TSNR provides a very
different story: showing the greatest stability in Acquisition
A, diminished performance in Acquisition B, and the worst
performance in Acquisition C. Which strategy is ideal, for any
particular study, therefore depends critically upon the scientific
questions to be asked: not only with respect to the regions
of interest implicated, but also the types of analyses to be
performed.

DISCUSSION

Functional neuroimaging has ushered in a new era of brain
research, in which task-free fluctuations play an increasingly
large role. As such, we need to reconsider whether fMRI
optimization paradigms that rely solely on maximizing stability
might actually be leading us astray, by failing to functionally
dissociate fluctuations underlying signal vs. those underlying
noise. Here we propose a new measure—SFS—that distinguishes
between neurobiologically-relevant fluctuations of interest, and
nuisance fluctuations due to physiological or scanner artifact.
We demonstrate that SFS positively—and tSNR negatively—
correlates with dynamic fidelity in a dynamic phantom, as well
as with the detection power of local and long-range functional
networks in humans, across three sets of representative
acquisition parameters independently optimized for human
fMRI studies.

Our design of the dynamic phantom was motivated by the
need to rigorously test the fidelity of fMRI time-series to its
known dynamic inputs, which would be otherwise impossible
using either a static phantom or human data. While we
could have simulated input-output fidelity in the presence of
physiological and scanner noise, models can be susceptible to
bias and often over-simplify the complexities of fMRI noise
(Renvall and Hari, 2009; Erhardt et al., 2012). The empirical
approach defined here captures actual scanner noise, and thus
is more accurate in evaluating the utility of SFS to human
neuroimaging. One of the most challenging aspects of our
phantom’s design from an engineering standpoint was the need
to avoid motion artifacts for a machine with rotating elements.
While the phantom’s inner cylinder is programmed to move
only between the scanner’s intermittent radio frequency pulses,
residual motion artifact would have a devastating impact on
SFS values, because it would preferentially affect σROI from
the inner (rotating) compartment, while bypassing σnuisance
from the outer (static) compartment. The fact that the slices
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from which we acquired data did not show characteristic
motion artifact (clearly visible during slices that, for testing,
were deliberately acquired during motion), that SFS values
for the phantom correlated with dynamic fidelity (as shown
in Figure 2, motion artifact corrupts fidelity), and that the
relationships observed for dynamic fidelity were supported by
human connectivity data, provides assurance with respect to
the integrity of the phantom’s design. Future validation of SFS
would benefit from a biological ground truth for measurement
of dynamic fidelity, using simultaneous inputs recorded
from local field potentials and their associated hemodynamic
responses, combined with outputs obtained from fMRI
time-series.

For dynamic analyses, the structure of the SFS equation
reflects the equally important need to optimize over signal
amplitude (provided by the mean) and signal change (provided
by the standard deviation). In our datasets, we found that the
relationship between SFS vs. tSNR and long-range connectivity
was driven primarily by the standard deviation component
of each equation (including only the standard deviation ratio
component of the SFS equation, correlations were rA,B,C = 0.68,
p = 4.34×10−6 forN = 36; unsmoothed), while the mean signal
component (including only the mean amplitude of signal or the
ratio of the mean amplitude to global amplitude) showed no
statistical relationship to long-range connectivity strength (rA,B,C

4 = −0.18, p = 0.31; rA,B,C = 0.02, p = 0.90). However, our
fMRI data had minimal signal drop out in regions of interest,
which is not always the case. While the mean amplitude of the
signal did not play a role in evaluating our data set, nevertheless
this term of the SFS equation should be retained in order to
avoid assigning high SFS to areas of the brain that show signal
loss.

In developing SFS for humans, one important decision is
the optimal location for the acquisition of nuisance fluctuations.
We chose cerebrospinal fluid, rather than surrounding air,
white matter, or whole brain, because time-series from the
cerebrospinal fluid contain the greatest proportion of nuisance
variance of the three brain compartments (Wald, 2012),
including motion, scanner variance, and some physiological
effects. Moreover, unlike white matter (Gawryluk et al., 2014)
and the global signal, the eroded CSF masks used here are
unlikely to contain neurobiologically-relevant fluctuations of
interest.

In extending our phantom results to the brain, we faced the
problem of what to look for as a measure of validation, since
we lacked the phantom’s advantage of known inputs. Thus, we
used highly conservative and well-replicated connections in
order to evaluate detection sensitivity for resting-state data: a
measure of local-connectivity (regional homogeneity – ReHo
Zang et al., 2004), a single voxel measure of resting-state signals
(amplitude of low frequency fluctuations – ALFF Zang et al.,
2007), and the long-range connection between two nodes within
the default mode network (medial prefrontal cortex and posterior
cingulate cortex; Raichle, 2015). Both ALFF and ReHo have been
widely used to study resting-state brain activity, with clinical
applications to Parkinson’s disease (Wu et al., 2009), Alzheimer’s
disease (Liu et al., 2008), and psychiatric illnesses (Han et al.,

2011). Likewise, identification of the default mode network
via long-range connectivity represents a fundamental finding
in neuroscience (Raichle, 2015), with direct implications for
neurodevelopment and aging. Although the correlations for SFS
and tSNR were both significant but of opposite sign, it is critical
to note that they are not trivially inverses of one another. From
a theoretical perspective, SFS and tSNR differ fundamentally in
their dissociation of fluctuations of interest vs. those of nuisance.
From a practical perspective, Figure 6 demonstrates that the two
measures provide qualitatively different mapping of optimization
over the brain. Thus, we demonstrate that, by optimizing for
dynamic fidelity rather than the current standard of dynamic
stability, SFS can have direct practical applications for markedly
increasing detection sensitivity of clinical neuroimaging
results.

Although we have emphasized the application of SFS to
correlational analyses due to their increasing prevalence within
the field, it is important to note that other types of task-
free analyses will also be much better served by optimization
to SFS than tSNR. This category of analyses includes those
based upon power spectra and complexity (e.g., ALFF, power
spectrum scale invariance, entropic analyses, spectral dynamic
causal modeling), which also are more highly sensitive to
subtle dynamic features of the time-series than are traditional
contrast-based analyses1 . Consistent with these approaches, one
additional area for future exploration is whether the principles
underlying SFS can be applied not only for optimization, but
also to identify neural activity for task-free paradigms. The
ability to dissociate signal fluctuations from noise fluctuations
may be fruitful when the aim is to map the strength
and location of task-free brain responses, rather than their
connectivity.

Finally, while we have focused here on presenting limitations
of CNR and tSNR, we wish to emphasize that both may still be
useful and accurate measures in answering particular questions.
Temporal SNR is a measure of signal stability that is proportional
to field strength, voxel size, and sampling rate (Kruger et al.,
2001; Triantafyllou et al., 2005); thus, in static phantoms, tSNR
can be used to quantify and minimize scanner-related noise. If
the primary aim of a study is to show contrast between two
conditions then CNR, and not SFS, is correct. For task-free
analyses, however, CNR is not directly measurable; thus, classical
tSNR is normally cited as a surrogate (Van Dijk et al., 2012;
Smith et al., 2013). It is in this case that using tSNR as guide will
minimize, rather than maximize, detection sensitivity. As with so
many zero-sum decisions in fMRI acquisition, it is important to
realize that we optimize over one parameter at the expense of the
other. Therefore, just as tuning of acquisition parameters benefits
enormously from knowing a priori the region of interest to be

1To illustrate the impact of signal fidelity on spectral methods, we calculated the

power spectrum scale invariance (after detrending, with a full frequency range

from 0 to the Nyquist limit of 0.5*1/TR) for time-series acquired with the dynamic

phantom. As with connectivity analyses, SFS—but not tSNR—correlated with

accuracy: the percentage difference (i.e., “error”), between “true” power-law slope β

for the phantom and the “measured” β values acquired from fMRI, decreased with

higher SFS (r =−0.67; p < 0.05 for 9/9 scans) and increased with tSNR (r = 0.66;

p < 0.05 for 8/9 scans).
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targeted, knowing a priori the type of analysis to be performed
will permit researchers to decide whether to optimize for stability
(tSNR) or for dynamics (SFS).
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