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Abstract During mitosis, kinetochores coordinate the

attachment of centromeric DNA to the dynamic plus ends

of microtubules, which is hypothesized to pull sister

chromatids toward opposing poles of the mitotic spindle.

The outer kinetochore Ndc80 complex acts synergistically

with the Ska (spindle and kinetochore-associated) complex

to harness the energy of depolymerizing microtubules and

power chromosome movement. The Ska complex is a

hexamer consisting of two copies of the proteins Ska1,

Ska2 and Ska3, respectively. The C-terminal domain of the

spindle and kinetochore-associated protein 1 (Ska1) is the

microtubule-binding domain of the Ska complex. We

solved the solution structure of the C. elegans microtubule-

binding domain (MTBD) of the protein Ska1 using NMR

spectroscopy. Here, we report the resonance assignments of

the MTBD of C. elegans Ska1.

Keywords Ska complex � Kinetochore � Mitosis �
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Biological context

During mitosis, kinetochores assemble on a specialized

region of each chromosome termed the centromere to

coordinate the attachment to the dynamic plus ends of

microtubules (McEwen et al. 2007). The kinetochore is a

proteinaceous structure, composed of the inner kineto-

chore, which is responsible for the interaction with the

centromere, and the outer kinetochore, which establishes

the interactions to the spindle microtubules. Proteins

associated with the outer kinetochore interact with plus

ends of microtubules and harness the energy of depoly-

merizing microtubule ends to power the movement of the

chromosomes (Cheeseman and Desai 2008; Schmidt et al.

2012). The control of chromosome segregation is critical,

as the loss or addition of chromosomes (aneuploidy) has

severe consequences for daughter cells (Sheltzer et al.

2011). The spindle-assembly checkpoint (SAC) monitors

interactions between the kinetochore and spindle microtu-

bules. The SAC prevents the onset of anaphase as long as

unattached kinetochores are present (Pereira and Maiato

2012). At the onset of anaphase, cohesion between sister

chromatids is cleaved and microtubule depolymerization is

thought to pull sister chromatids toward opposing poles of

the mitotic spindle (Diaz-Martinez and Clarke 2009;

Welburn et al. 2009). The Ska (spindle and kinetochore-

associated) complex was recently identified as a compo-

nent of the outer kinetochore, where it plays an important

role in the dynamic interaction between the kinetochore

and mitotic-spindle microtubules during chromosome

segregation. The complex is a hexamer containing two

copies of its subunits Ska1, Ska2 and Ska3, respectively

(Hanisch et al. 2006; Jeyaprakash et al. 2012; Welburn

et al. 2009). The Ska complex mediates kinetochore con-

nections to dynamic microtubules by interacting with both
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the microtubule lattice and the bent protofilaments present

at the depolymerizing ends of microtubules. Importantly,

the Ska complex acts synergistically with the Ndc80

complex. Together, the outer kinetochore Ndc80 complex

and the Ska complex are responsible for the direct kine-

tochore-microtubule attachments that occur in vertebrate

cells (DeLuca and Musacchio 2012; Schmidt et al. 2012).

We have solved the three-dimensional structure of the

C-terminal domain of the C. elegans orthologue of the

Ska1 protein by NMR spectroscopy. The C-terminal

domain of Ska1 is the microtubule-binding domain

(MTBD) of the Ska complex. A cluster of positively

charged arginine residues facilitates microtubule-binding,

while Aurora B kinase phosphorylation reduces the

microtubule-binding activity of the Ska complex in vitro

(Schmidt et al. 2012). The sequences of the MTBDs of

human Ska1 (residues 132–255) and C. elegans Ska1

(residues 118–243) share 29.8 % identity and 62.1 %

similarity, respectively (Fig. 1).

We recombinantly produced the C. elegans Ska1 MTBD

(ceSka1 MTBD-7xHis) in Escherichia coli and solved the

structure of the purified protein with NMR spectroscopy

(Schmidt et al. 2012). Here, we report the NMR resonance

assignments.

Methods and experiments

A pET3aTr plasmid containing the ceSka1 MTBD-7xHis

sequence was transformed into E. coli BL21 (DE3) cells

(Stratagene). Uniformly labeled ceSka1 MTBD-7xHis was

grown at 25 �C in M9 media containing 1 g 15N–NH4Cl

and 2 g 13C-glucose per liter to an OD600 of 0.6 and

induced with 1 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG). FILV labeled proteins for 3D and 4D methyl

NOESY experiments were grown in perdeuterated M9 with

1 g 15N-NH4Cl and 2 g 2H-12C-glucose in 2H2O. We added

0.1 g 15N-phenylalanine, 75 mg ketobutyrate sodium

(13C/1H methyl labeled and deuterated (Ile methyl pre-

cursor)), 125 mg isoketovalerate sodium (13C/1H methyl

labeled and deuterated (Leu and Val methyl precursor))

one hour before induction with IPTG. The leucine and

valine methyl precursors were stereospecificly 13C labeled

and protonated at the k-2 and c-2 positions, respectively

(Gans et al. 2010; Gardner and Kay 1997).

After 12–15 h of induction, the cells were harvested by

centrifugation, resuspended in buffer-1 (50 mM Tris-HCl

pH 8.0, 350 mM NaCl, 10 mM imidazole), 3.5 mM b-

mercaptoethanol, 750 U Benzonase* Nuclease HC (purity

[90 %, Novagen), lysozyme (at a final concentration of

1 mg ml-1), a tablet of protease inhibitor cocktail (Com-

plete, EDTA-free Tabs-Roche) and lysed by sonication at

4 �C. Cell debris and other insoluble particles were pelleted

by centrifugation at 30,000g for 40 min, the cleared solution

with the ceSKA1 MTBD-7xHis was then applied to Ni-NTA

resin (Qiagen) and incubated for 2 h at 4 �C. The Ni-NTA

beads were subsequently washed with 10-column volumes

(CV) buffer-2 (50 mM Tris-HCl pH 8.0, 1 M NaCl, 10 mM

imidazole) and with 10 CV buffer-3 (50 mM Tris-HCl pH

8.0, 350 mM NaCl, 40 mM imidazole). We eluted ceSka1

MTBD-7xHis with 35 ml buffer-4 (50 mM Tris-HCl pH 8.0,

1 M NaCl, 250 mM imidazole) and dialyzed it in two steps

against 4 l of buffer-5 (20 mM potassium phosphate pH 6.5,

150 mM NaCl, 1.5 mM DTT). Amicon Ultra concentrators

with 10-kDa molecular weight cutoff (Millipore) were used

to concentrate the dialyzed sample. Finally, 0.01 % NaN3

and 5 % D2O were added to prepare the sample for NMR

spectroscopy.

Fig. 1 Sequence alignment of the microtubule-binding domains of

hSka1 and ceSka1. Aurora B phosphorylation sites identified in

human Ska1 are highlighted in green; conserved arginine residues

important for microtubule-binding are highlighted in magenta

(Schmidt et al. 2012). The sequence alignment was obtained with

ClustalW2

Fig. 2 Primary sequence of ceSka1-MTBD (residues 118–243).

Backbone resonances for all residues with the exception of the

prolines, Asn118, Lys161 and Leu194 (no borders) are assigned (grey

borders). The purified protein also a carried an N-terminal Met for

translation initiation and a C-terminal His-7 tag connected by a short

GSS linker region
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Fig. 3 2D 1H-15N HSQC of

ceSka1-MTBD, recorded at

600 MHz and 298 K. Backbone

peaks are annotated with their

single-letter code and their

sequence positions
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Fig. 4 2D 1H-13C methyl-

HSQC of ceSka1-MTBD,

recorded at 900 MHz and

298 K. Methyl peaks are

annotated with their three-letter

code, their sequence position

and their corresponding atom

names
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NMR spectroscopy

Spectra were recorded on a Varian/Agilent Inova 500 MHz

with a room temperature probe, on a Varian/Agilent Inova

600 MHz with a cryogenically cooled probe and Bruker

700 MHz and 900 MHz spectrometers with cryogenically

cooled probes at 298 K. Backbone and side chain resonances

were assigned with standard triple resonance experiments

(HNCA/HN(CO)CA, HNCO/HN(CA)CO, HNCACB, (H)C

(C-CO)NH-TOCSY, H(CC-CO)NH-TOCSY and HCCH-

TOCSY) (Ferentz and Wagner 2000). Aromatic side chains

were assigned using 2D HBCBCGCDHD and HBCBC

GCDCEHE experiments (Yamazaki et al. 1993). Stereospe-

cific assignment of the respectivek-2 and c-2 methyl groups for

Leu and Val residues was achieved with selective methyl

labeling (Gans et al. 2010). All spectra were processed with

NMRpipe (Delaglio et al. 1995) and analyzed with CcpNmr

(Vranken et al. 2005) and CARA (Keller 2004).

Extent of the assignments and data deposition

We assigned the backbone resonances of ceSka1-MTBD-

7xHis almost completely (96 %–excluding the highly

flexible C-terminal His7-tag and the N-terminal Met resi-

due–Figs. 2, 3) and 83 % of aliphatic carbon and proton

side chain resonances.

We used selective methyl labeling to assign Leu-Hk and

Val-Hc resonances stereospecifically (Fig. 4) (Gans et al.

2010). The aromatic side chain resonances Hk and He–

with the exception of F41-He, H43-He, Hk and W67-He–

were assigned with 2D experiments as described by

Yamazaki et al. (1993).

The chemical shifts derived from the assignments were

used to calculate dihedral angles with the TALOS? program

(Cornilescu et al. 1999), the dihedral angles were used

together with distance restraints for structure calculation of

C. elegans Ska1 MTBD (Schmidt et al. 2012). The 1H, 15N

and 13C chemical shifts were deposited in the Biological

Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu)

with the BMRB accession number 18717.
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