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We study the evolution of binary mixtures far from equilibrium, and show that the interplay between phase
separation and hydrodynamic instability can arrest the Ostwald ripening process characteristic of nonflowing
mixtures. We describe a model binary system in a Hele-Shaw cell using a phase-field approach with explicit
dependence of both phase fraction and mass concentration. When the viscosity contrast between phases is large
(as is the case for gas and liquid phases), an imposed background flow leads to viscous fingering, phase branching,
and pinch off. This dynamic flow disorder limits phase growth and arrests thermodynamic coarsening. As a result,
the system reaches a regime of statistical steady state in which the binary mixture is permanently driven away
from equilibrium.
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I. INTRODUCTION

Spinodal decomposition is the process by which a ther-
modynamically unstable mixture separates into two phases.
The signature feature of this process is coarsening: the char-
acteristic length scale of phase separation grows algebraically
with time [1–3]. Thermodynamic coarsening—first studied
in the context of solid alloys [2,4]—can be fundamentally
altered in fluid mixtures by means of hydrodynamic effects that
lead to more complex dynamics. For instance, hydrodynamic
coalescence due to curvature-induced pressure differences can
enhance the coarsening rate [5,6]. Under uniform shear flow,
a highly anisotropic layered phase ordering appears in the
mixture [7–9]. Under turbulent flow, experiments [10,11] and
numerical simulations [12,13] have shown that coarsening
is suppressed due to vigorous stirring, a result that is also
observed when a chaotic flow is imposed [14].

These observations arise from the coupling of a phase-
ordering process (promoting coarsening) to a velocity field
with externally imposed strong disorder (suppressing coars-
ening) [14]. The paradigmatic model used to investigate this
process is the advective Cahn-Hilliard equation coupled to
the incompressible Navier-Stokes equations [12–15]. In this
case, the Navier-Stokes equations contain a capillary term
that embodies gradients in chemical potential, and thereby
a feedback from the phase-evolution equation. This term
alone, however, is insufficient to suppress coarsening—on the
contrary, the main observation is that, in an unstirred fluid,
domain growth of the phase-separating field is enhanced [12].

In this letter, we set to elucidate whether thermodynamic
coarsening can be arrested by the coupling between phase
ordering and hydrodynamics in the absence of external me-
chanical forcing. We study spinodal decomposition of a binary
fluid mixture driven by Darcy flow, such as flow in a Hele-Shaw
cell (a thin gap between two parallel plates) or porous media.
Our interest is in systems that naturally phase separate into
phases of very different viscosity (as is typical of liquids and
gases). Under these conditions, two relevant effects set in. On
one hand, there is strong feedback between phase ordering
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and fluid velocity via a phase-dependent mixture viscosity.
On the other, the well-known viscous fingering hydrodynamic
instability [16–19] induces phase branching, splitting, and
pinch off [20–22]. While many aspects of viscous fingering
have been studied—including its role on fluid mixing [23–25]
and ensuing chemical reactions [26–28]—its impact on phase
separation of a fluid mixture remains unexplored.

A complicating factor in fluid binary mixtures is that misci-
bility can change appreciably with the ambient conditions,
which often introduces compositional effects to two-phase
problems. In previous studies of spinodal decomposition
coupled to flow, fluid phase is inferred from composition, and
not independently described [6,9,12–15]. The free energy of
such mixtures is formulated as a functional of molar fractions
and their gradients and, in its simplest setting, the coarsening
dynamics is described by a Cahn-Hilliard equation [29].
Here, in contrast, we consider partially miscible systems;
components can exchange between the two phases and,
therefore, fluid concentrations evolve independently from the
phase variable. During spinodal decomposition, our mixture
phase separates into domains with different compositions,
accompanied by redistribution of composition between phases.
Describing such mixture requires having separate evolution
equations for phase and concentration, and defining a free
energy that is a function of both variables. Analogous two-field
approaches have been extensively adopted in the simulation
of solidification of binary alloys [30–33]. By adopting this
more general framework, we investigate the two-way coupling
between thermodynamics (compositional phase behavior and
phase ordering) and hydrodynamics (viscously unstable Darcy
flow), and find that the system reaches a statistical steady state
in which viscous fingering not only arrests phase growth, but
also drives the mixture away from compositional equilibrium
permanently.

II. MATHEMATICAL MODEL

Without loss of generality, we study a binary mixture
representative of a CO2–water system. The two fluids, which
we denote gas (g) and liquid (l), have different viscosi-
ties, μl � μg . When in contact, the two-component system
naturally evolves towards compositional equilibrium through
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mutual component exchange, resulting in a CO2-rich gas phase
and a water-rich liquid phase. We introduce two variables
defined pointwise in the domain: the gas volume fraction, φ,
and the CO2 molar fraction, c. Within a vapor bubble, φ = 1;
within the liquid phase, φ = 0.

We adopt a phase-field modeling approach, which has
proved effective at describing immiscible two-phase flow in
confined geometries such as Hele-Shaw [22,34–41] or porous
media [42]. Our model describes incompressible, isothermal,
two-phase flow with two-component transport in a Hele-Shaw
cell. The gap-averaged dimensionless governing equations are

∇ · u = 0, u = − 1

μ(φ)
∇P, (1)

∂φ

∂t
+ ∇ · (uφ) + 1

Ca
λ

δF

δφ
= 0, (2)

∂c

∂t
+ ∇ · (uc) − 1

Pe
∇ ·

[
λ∇

(
δF

δc

)]
= 0. (3)

Equations (1) are the continuity equation for an incom-
pressible mixture, where u is the mixture velocity described by
Darcy’s law, P is a kinematic pressure, and μ is the mixture vis-
cosity, assumed to follow an exponential dependence on phase
fraction, μ = μg exp(R(1 − φ)), where R = log(μl/μg) is the
viscosity contrast.

Under the context of phase-field modeling, we under-
stand φ also as a phase variable that interpolates smoothly
between the two bulk phases over a well-resolved, diffuse
interface. Time evolution of φ simulates gas dissolution
and exsolution [Eq. (2)]. In the presence of flow, it is
a relaxation process towards a minimum of a free-energy
functional, F (φ,c,∇φ,∇c) [43]. The direction of steepest
energy descent, obtained by taking the variational derivative
of F with respect to φ, δF/δφ = ∂F/∂φ − ∇ · [∂F/∂(∇φ)],
drives phase transformation under Allen-Cahn dynamics [44].
In Eq. (2), Ca = (ucb)/(λcε

2
φT /b2) plays the role of a capillary

number—the ratio between time scales associated with phase
change and advection—where uc is the characteristic flow
velocity, λc the characteristic mobility, T the temperature,
b the gap thickness, ε2

φT /b is the interfacial tension, and
λ = 0.01 + c(1 − c) is the regularized dimensionless mobility.
The evolution of c is described by a nonlinear advection-
diffusion equation Eq. (3), where the component diffusion
is driven by gradients in chemical potential, � ≡ δF/δc =
∂F/∂c − ∇ · [∂F/∂(∇c)]. In Eq. (3), Pe = (ucb)/(λcωmixT )
plays the role of a Péclet number—the ratio between rate of
advection and diffusion—where ωmixT is the energy (per unit
volume) associated with mixing.

The free-energy functional, F , plays a central role in the
thermodynamic behavior of our binary mixture. Following the
classical Cahn-Hilliard formulation for a binary system [29],
our F subsumes interfacial and bulk energy contributions:

F (φ,c,∇φ,∇c) =
∫

V

{
1

2
(∇φ)2 + ε

1

2
(∇c)2 + 1

Ch
W (φ)

+ 1

Ma
[fl(c)(1 − g(φ)) + fg(c)g(φ)]

}
dV.

(4)
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FIG. 1. (Top) The common tangent construction (blue line) on the
bulk free energy of pure phases yields the equilibrium concentrations
(green circles) within gas and liquid. For parameters αl = 1, βl =
500, αg = 200, βg = 2 × 10−4, the equilibrium compositions are
c

eq
l ≈ 0.304 and ceq

g ≈ 0.828. (Bottom) Zoomed-in snapshots of c

illustrate the process of spinodal decomposition of a domain that
is initially filled with supersaturated liquid (t = 0). The progression
shows vapor bubbles (high c, red) that nucleate and coarsen out of
the liquid phase (low c, pink).

The first two terms in Eq. (4) capture the interfacial energy
associated with phase and compositional boundaries. The
characteristic interfacial energy per unit volume associated
with φ and c are ε2

φT and ε2
c T , respectively. We introduce

ε = ε2
c /ε

2
φ as the ratio between the two energy scales. The

third term is the part of the bulk free energy responsible
for phase separation, where W (φ) = 1

4φ2(1 − φ)2 adopts the
shape of a double well, determining the two stable states of
W : φ = 0 or φ = 1. The parameter Ch = (ε2

φ/b)/ω is the
Cahn number, where ωT is the energy (per unit volume)
associated with the double-well energy. The last term, known
as the bulk mixing energy, is the part of the bulk free energy
responsible for partially miscible behavior; it scales with
the inverse of Ma = (ε2

φ/b)/ωmix, which plays the role of
a solutal Marangoni number. We adopt a form for mixing
energy that is commonly used in the field of binary alloy
solidification [30], where the energy is an interpolation in
φ between liquid and gas excess energies (fl and fg),
which are functions of c only. The interpolation function
g(φ) = −φ2(2φ − 3) satisfies that the system approaches
the stable states φ = {0,1} with zero slope, which ensures
positivity of the phase variable [30]. The excess free energy of
each phase are due to compositional effects; here we adopt
the Wilson model [45]: fl(c) = c log c + (1 − c) log(1 −
c) − c log[c + αl(1 − c)] − (1 − c) log(1 − c + βlc) for the
liquid, and fg(c) = c log c + (1 − c) log(1 − c) − c log[c +
αg(1 − c)] − (1 − c) log(1 − c + βgc) for the gas. The equi-
librium concentrations within each phase are then obtained by
the common tangent construction of fl and fg [3,46] (Fig. 1,
top).

III. RESULTS AND DISCUSSION

We conduct high-resolution numerical simulations of this
compositional phase-field model. We solve Eqs. (1)–(3)
sequentially: first obtaining the velocity using the stream-
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FIG. 2. Snapshots of c (top) and φ (bottom) illustrating the
Ostwald ripening process in a system with a small and a large vapor
bubble, in a liquid bath that is initially at local equilibrium.

function–vorticity formulation [47,48]; then updating c and
φ using a Fourier pseudospectral discretization and using a
biharmonic-modified time stepping [49]. Our simulations are
on a biperiodic square domain of size 160 × 160 and parameter
values Ca = 2, Pe = 128, Ch = 1/400, Ma = 1/40, and ε = 8
(and parameters of the Wilson model given in Fig. 1, top).
The domain is initially filled with liquid phase that is super-
saturated: φ(x,y,t = 0) = 0, c(x,y,t = 0) = 0.36 ± 0.1. We
perturb the initial concentration field with random uncorrelated
noise to promote nucleation of gas bubbles. The supersaturated
liquid is thermodynamically unstable and undergoes spinodal
decomposition almost immediately, where the domain phase
separates into vapor bubbles surrounded by liquid (Fig. 1,
bottom).

Ostwald ripening is an out-of-equilibrium process in which
large phase domains grow at the expense of smaller ones,
by virtue of minimizing interfacial energy [2,4]. To illustrate
the ability of our model to reproduce this well-known phe-
nomenon, we simulate two vapor bubbles of different sizes in
a liquid bath, and initialize the system to be at compositional
equilibrium locally within each phase: cl = c

eq
l , cg = c

eq
g

(Fig. 2). Despite the initial local-equilibrium configuration, the
smaller bubble dissolves into the liquid phase, leaving a patch
of excess concentration that diffuses into the larger bubble,
expanding its size (the larger bubble, in turn, develops a rim of
undersaturated liquid around it). Over the entire process, the
total gas volume fraction in the domain is unchanged.

It is well known that, as a result of Ostwald ripening, an
initially nucleated domain will coarsen continuously (Fig. 3,
top; see Video 1 [50]) until it consists of a single large
bubble (not shown here), thereby minimizing the system’s
interfacial energy and chemical potential gradients. Here, we
define r as the square root of the area of an individual vapor
bubble. We obtain information on individual bubbles through
image segmentation of the φ field and compute 〈r〉 as the
average length scale associated with a given domain image.
We find a power-law scaling of the coarsening dynamics:
〈r〉 ∼ t1/3 [Fig. 4(a)], indicative of diffusive-growth regime.
The bubble-size distribution, f (r), is time independent when
scaled by 〈r〉 [Fig. 4(b)]. Both observations are in agreement
with the Lifshitz-Slyozov–Wagner theory [51–54] of Ostwald
ripening in two dimensions. We have confirmed with addi-
tional simulations (not shown here) that the power-law scaling
holds for other values around Ma = 1/40, when the system

t = 150t = 40 t = 350 t = 500

FIG. 3. Snapshots of c at t = 40,150,350, and 500, under no flow
(top) and with periodic left-to-right flow imposed at t > 40 (bottom).
See Video 1 [50].

is still dominated by interfacial dynamics. In the limit of
Ma → 0, the mixture behaves as fully miscible, and the LSW
theory does not apply.

Given the ability of our model to simulate thermodynamic
coarsening, we now turn our attention to the impact of
hydrodynamics on the coarsening process. To investigate
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FIG. 4. (a) 〈r〉3 vs t for simulations without flow (dashed red line)
and with background flow after t = 40 (solid black line), emphasizing
arrest of thermodynamic coarsening in the presence of flow. Inset:
〈r〉 vs t in log-log scale, emphasizing algebraic growth of spinodal
decomposition (〈r〉 ∼ t1/3) in the absence of flow. (b)–(c) Normalized
distribution of r/〈r〉 at sampling times for simulations without flow
(b) and with flow introduced at t = 40 (c). (d) 〈r〉 vs Ca for different
Pe. (e) 〈r〉 rescaled with Pe−0.078 vs Ca. Inset: 〈r〉 vs Pe for different
Ca.
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this effect, we perform a simulation that is identical to
the one just described, but introducing periodic left-to-right
background flow with unit velocity at t > 40 (Fig. 3, bottom;
see Video [50]). The unfavorable viscosity contrast between
liquid and gas (μl/μg = 20.9) leads to viscous fingering, a
hydrodynamic instability when a low-viscosity fluid displaces
a high-viscosity fluid [16–19]. This leads to phase branching
and tip splitting [20,21], which in our case destabilize the lead-
ing edge of gas bubbles and induce pinch-off events [22,39].
As a result, vapor bubbles undergo persistent breakup and
coalescence. The dynamic disorder in the phase field feeds
back to the flow field through a phase-dependent viscosity
Eq. (1), leading to the intrinsic emergence of a dynamic and
highly heterogeneous flow field. By virtue of this interplay,
coarsening is arrested immediately, and the system enters a
statistical steady state characterized by a relatively constant
arrest length scale [Fig. 4(a)] and a time-independent bubble-
size distribution f (r); the new distribution is more skewed,
featuring a dominant presence of smaller-than-average bubbles
[Fig. 4(c)]. We have confirmed with additional simulations
(not shown here) that the emergence of an arrest length scale
is not observed in a fully miscible system under similar flow
dynamics [23], and that the effect of Korteweg stress [55,56]
alone is insufficient to retain an arrest length scale in fully
miscible mixtures.

We study the dependence of the emerging characteristic
arrest length scale 〈r〉 (time-averaged 〈r〉 during the statistical
steady state) on Ca and Pe. The fundamental observation is
the strong power-law decay of 〈r〉 with Ca, and a weaker
decay with Pe [Fig. 4(d)]. Filtering the dependence ∼Pe−0.078

[Fig. 4(e), inset] allows us to robustly collapse the data as
a function of Ca, 〈r〉 ∼ Ca−0.443 [Fig. 4(e)]. This power-law
behavior indicates that in the regime dominated by interfacial
dynamics (Ca > 1), the dependence of the emerging length
scale on Ca is congruent with the one predicted by linear
stability analysis of classical immiscible viscous fingering,
∼Ca−0.5 [19]. We postulate that the discrepancy in the ob-
served exponents is due to thermodynamic coarsening effects.

The interplay between the hydrodynamic instability (vis-
cous fingering) and thermodynamic coarsening (Ostwald
ripening) in partially miscible mixtures turns out to have
surprising macroscopic consequences. Let 〈cl〉 = ∫∫

c(1 −
φ)dxdy/

∫∫
(1 − φ)dxdy be the domain-averaged liquid

phase concentration and compare 〈cl〉 vs. t for both simulations
(Fig. 5). In the absence of background flow, 〈cl〉 approaches
the theoretical saturation of c

eq
l ≈ 0.304 from the initial

supersaturation level of 〈cl〉 = 0.36. The ultimate steady state,
where 〈cl〉 = c

eq
l , is only reached when Ostwald ripening
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0.31
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0.33

0.34
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cl

  no flow with flow equil. liquid saturation

t = 104 t = 108 t = 116 t = 117

FIG. 5. Evolution of the averaged liquid-phase concentration
〈cl〉 for systems without background flow (red solid line) and with
background flow after t = 40 (black solid line). The gray dashed line
indicates equilibrium liquid-phase concentration from the common
tangent construction [Fig. 1 (top)]. Insets: zoomed-in snapshots of c.
The circle highlights pinch off of a small bubble that quickly dissolves
into the liquid. The color map range is (0.3,0.35) to emphasize
concentration variations around the c

eq
l ; see Video 2 [50].

culminates the coarsening process in a single vapor bubble (not
shown here). Under background flow, in contrast, the approach
towards compositional equilibrium is interrupted as soon as
flow is introduced, and 〈cl〉 fluctuates about a steady-state value
that, surprisingly, is above the local-equilibrium concentration:
〈cl〉 ≈ 0.312 > c

eq
l .

We propose the following mechanism to explain the
observed supersaturation in the liquid (Fig. 5, insets; see Video
2 [50]). The viscous instability leads to recurrent pinch off of
small bubbles from large patches of vapor. A newly formed
small bubble is quickly consumed by surrounding larger
bubbles due to Ostwald ripening. This is achieved, as shown
in Fig. 2, by small bubbles first dissolving into the liquid.
The mass transfer into large bubbles is limited by diffusion,
implying that if the rate of bubble shedding is large compared
with the rate of diffusive mass transfer through the liquid,
this disparity will result in an excess dissolved concentration.
Therefore, the interplay between hydrodynamic instability and
thermodynamic coarsening results in a liquid phase that is, on
average, always supersaturated. In other words, the emergence
of flow disorder from viscous fingering drives the mixture out
of compositional equilibrium permanently.
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