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Abstract Classical continuum mechanical theories operate

on three-dimensional Euclidian space using scalar, vector,

and tensor-valued quantities usually up to the order of four.

For their numerical treatment, it is common practice to

transform the relations into a matrix–vector format. This

transformation is usually performed using the so-called

Voigt mapping. This mapping does not preserve tensor

character leaving significant room for error as stress and

strain quantities follow from different mappings and thus

have to be treated differently in certain mathematical

operations. Despite its conceptual and notational difficul-

ties having been pointed out, the Voigt mapping remains

the foundation of most current finite element programmes.

An alternative is the so-called Kelvin mapping which has

recently gained recognition in studies of theoretical

mechanics. This article is concerned with benefits of the

Kelvin mapping in numerical modelling tools such as finite

element software. The decisive difference to the Voigt

mapping is that Kelvin’s method preserves tensor

character, and thus the numerical matrix notation directly

corresponds to the original tensor notation. Further benefits

in numerical implementations are that tensor norms are

calculated identically without distinguishing stress- or

strain-type quantities, and tensor equations can be directly

transformed into matrix equations without additional con-

siderations. The only implementational changes are related

to a scalar factor in certain finite element matrices, and

hence, harvesting the mentioned benefits comes at very

little cost.

Keywords Kelvin mapping � Voigt mapping � Finite

elements � Numerical algorithms � OpenGeoSys
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Wi Residual in iteration i

q Mass density

r; r; r Cauchy stress tensor/its Kelvin mapping/its

Voigt mapping
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ð�ÞD Deviatoric part of a tensor

ð�ÞT
, ð�ÞT

ab Transpose operator; transposition of ath and

bth base vector

b External body force

C, C, C Tangent moduli (fourth-order tensor)/its

Kelvin mapping/its Voigt mapping

E Green Lagrange strain tensor

e Linear volume strain

F Deformation gradient

F Yield function

G Plastic potential

J Volume ratio of material volume elements in

the current and the reference configuration

K Bulk modulus of linear elasticity

n Outward unit normal vector

Na, N Nodal shape function, element matrix of

nodal shape functions

PS;PD Spherical and deviatoric projection tensors

p Hydrostatic pressure

S Second Piola–Kirchhoff stress tensor

t Surface traction

u Displacement vector

Introduction

Classical continuum mechanical theories operate on three-

dimensional Euclidian space using scalar, vector, and ten-

sor-valued quantities usually up to the order of four. For

example, the generalised Hooke’s law in linear elasticity

reads in symbolic tensor notation

r ¼ C : ε ð1Þ

Equation (1) cannot be used directly in numerical software

the implementation of which is based on matrix–vector

algebra. It is hence common practice to transform Eq. (1)

and similar formulations into a matrix–vector format in

order to make use of powerful linear algebraic manipulation

tools. This transformation is usually performed using the so-

called Voigt mapping (Voigt 1966). It is introduced as a

simple replacement of fourth-order tensors having the nec-

essary symmetries by 6 � 6 matrices and symmetric second-

order tensors by 6 � 1 vectors. This mapping, however, is

performed differently for stress- and strain-type quantities.

Based on the tensor coordinate matrices in a particular basis,

the transformation is performed as follows:

rij ! r ¼ r11 r22 r33 r12 r23 r13½ �T ð2Þ

�ij ! � ¼ �11 �22 �33 2�12 2�23 2�13½ �T ð3Þ

The use of engineering shear strains cij ¼ 2�ij is appar-

ent and has been introduced to maintain the following

useful identities

r : ε ¼ rij�ij ¼ r � � ð4Þ

Furthermore, the constitutive matrix C directly contains

the entries of the stiffness tensor C. The coordinates of

fourth-order tensors are ‘‘manually’’ rearranged into 6 � 6

matrices so as to ensure that the resulting matrix–vector

operations yield results that are mathematically equivalent

to the original tensor operation, for example

r ¼ C � ð5Þ

corresponding to Eq. (1). This procedure provides signifi-

cant room for error that can in principle be avoided. As

apparent in Eqs. (2) and (3), stress and strain quantities

follow from different mappings and thus have to be treated

differently in certain mathematical operations, e.g., the

calculation of tensor norms (as will be shown in ‘‘Spectral

decompositions and the Kelvin basis’’ and ‘‘Application

examples’’ sections). The reason for the separate numerical

treatment of the same mathematical concept is that the

Voigt mapping does not preserve tensor character. The

same (mathematical) function therefore has to be imple-

mented multiple times into software when used with dif-

ferent quantities. For complex models, it becomes

increasingly, and unnecessarily, difficult to keep track of

the necessary distinctions. The Voigt mapping has

remained a standard method in some fields even today,

despite the conceptual and notational difficulties having

been pointed out (Mehrabadi and Cowin 1990). It is also

the foundation of most current finite element programmes

(Bonet and Wood 1997; Bathe 2001; Zienkiewicz et al.

2006; Wriggers 2008; Hughes 2012).

An alternative to the Voigt mapping can be found in the

so-called Kelvin mapping. It is based on an article by Lord

Kelvin (Thomson 1856) on elasticity theory where he rep-

resented stress and strain not as second-order tensors in 3D

space but as 6D vectors. An interesting historical review, a

‘‘translation’’ into modern concepts and a hypothetical

continuation of Kelvin’s article—which did not receive

much attention until more than century later—can be found

in Helbig (2013). The recently increasing interest and

recognition of the Kelvin mapping has clustered around

studies of theoretical mechanics (see ‘‘Applications in

elasticity theory—a short review’’ section). This article,

however, is concerned with a useful ‘‘side effect’’ of the

approach. The aim here is to highlight benefits of the Kelvin

mapping in numerical modelling tools such as finite element

software. Because in Kelvin’s approach, stresses and strains

are represented in a 6D vector space, Hooke’s law can be

written with the help of a second-order 6D stiffness tensor as

r ¼ C� ð6Þ

While Eqs. (5) and (6) are structurally similar, the

decisive difference is that Kelvin’s method preserves
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tensor character, and thus the numerical matrix notation

directly corresponds to the original tensor notation. This

means that implemented equations and equations derived

on paper are practically identical without individual map-

pings for stress/strain quantities, deviatoric and spherical

components, etc. This becomes increasingly valuable for

complex mechanical models and in the context of a New-

ton–Raphson solution scheme, where many derivations of

tensor-valued functions have to be performed.

In the context of our work, such models have been

implemented into the scientific open-source platform

OpenGeoSys (Kolditz et al. 2012) to simulate the

mechanical behaviour of geotechnical materials such as

salt rock (Heusermann et al. 2003; Minkley and Mühlbauer

2007) for use in subsurface energy storage (Bauer et al.

2013; Li et al. 2015; Ma et al. 2015).

The Kelvin mapping

Applications in elasticity theory—a short review

The ideas of Kelvin have been rediscovered in the context

of anisotropic elasticity, see (Mehrabadi and Cowin 1990;

Kowalczyk-Gajewska and Ostrowska-Maciejewska 2014),

and put into the context of modern tensor algebra by sev-

eral authors (Mehrabadi and Cowin 1990; Kowalczyk-

Gajewska and Ostrowska-Maciejewska 2014; Moakher

2008). Major topics of interest in which the concept has

been used are: the use of six eigenstiffnesses and orthog-

onal eigenstates for a better understanding of material

behaviour (Rychlewski 1984; Annin and Ostrosablin

2008); different aspects of a spectral decomposition of the

stiffness tensor (Theocaris and Philippidis 1991; Theocaris

2000; Bolcu et al. 2010); the investigation of material

symmetries and preferred deformation modes of aniso-

tropic media, e.g., composite materials (Mehrabadi and

Cowin 1990; Bóna et al. 2007) including the relationship to

fabric tensors (Moesen et al. 2012) and deformation-in-

duced anisotropy (Cowin 2011); the transformation of the

properties of one anisotropic medium to the closest effec-

tive medium from a differing symmetry group (Norris

2006; Diner et al. 2011; Kochetov and Slawinski 2009;

Moakher and Norris 2006); wave attenuation and elastic

constant inversion from wave traveltime data (Carcione

et al. 1998; Dellinger et al. 1998). The inversion of

Hooke’s law in the case of incompressible or slightly

compressible materials was studied by Itskov and Aksel

(2002), while the use of the spectral decomposition of the

stiffness tensor in a constitutive formulation for finite

hyperelasticity in a finite element context was described in

Dłuzewski and Rodzik (1998). For further examples of the

application of the Kelvin mapping in modern mechanics,

see the references in the works cited above, especially

Helbig (2013). In the sequel, the focus will be on benefits

of the Kelvin mapping in finite element schemes that are a

useful ‘‘side effect’’ of the concept.

Spectral decompositions and the Kelvin basis

In this section, the spectral decomposition of fourth-order

tensors is very briefly reviewed as it provides a natural

access to the Kelvin mapping in finite element

implementations.

The eigenvalue problem of a second-order tensor A can

be written as

An ¼ kn with n 6¼ 0 ð7Þ

Using I ¼ ni � ni with ni � nj ¼ dij yields the spectral

decomposition of a second-order tensor:

A ¼ AI ¼ Aðni � niÞ ¼ ðAniÞ � ni ð8Þ

¼
X3

i¼1

kðiÞnðiÞ � nðiÞ ¼ kiNi ð9Þ

with the three eigenvalues ki and the three second-order

eigenprojections Ni composed of the eigenvectors ni.

Regarding notation, an index occurring twice implies

summation following Einstein’s summation convention. If

an index is written in parentheses, e.g., (i), this convention

is suppressed.

A similar problem can be posed for super-symmetric

fourth-order tensors (Itskov 2009):

A :M ¼ KM with M 6¼ 0 ð10Þ

Noting that Mi :Mj ¼ dij, the fourth-order super-symmet-

ric identity tensor Is with the property Is : A ¼ symA can

be written in terms of the tensors M (Kowalczyk-Gajewska

and Ostrowska-Maciejewska 2014):

Is ¼ I�I ¼
X6

i¼1

MðiÞ �MðiÞ ð11Þ

Using this identity yields the spectral decomposition of a

fourth-order tensor:

A ¼ A :Is ¼ ðA :MiÞ �Mi ð12Þ

¼
X6

i¼1

KðiÞMðiÞ �MðiÞ ¼ KiMi ð13Þ

with the six eigenvalues Ki and the six fourth-order

eigenprojections Mi composed of the second-order eigen-

tensors Mi.

Comparison of Eqs. (11) and (13) shows that Is has the

eigenvalue K ¼ 1 of multiplicity 6. Choosing a Cartesian

basis feig and noticing I ¼ ei � ei allows the representation
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Is ¼ I�I ¼ 1

2
ei � ej � ei � ej þ ei � ej � ej � ei
� �

ð14Þ

By using Eq. (11), one finds the six eigentensors of Is

(Itskov 2009):

M1 ¼ e1 � e1 M4 ¼ 1ffiffiffi
2

p ðe1 � e2 þ e2 � e1Þ

M2 ¼ e2 � e2 M5 ¼ 1ffiffiffi
2

p ðe2 � e3 þ e3 � e2Þ

M3 ¼ e3 � e3 M6 ¼ 1ffiffiffi
2

p ðe1 � e3 þ e3 � e1Þ

ð15Þ

These eigentensors can be viewed as the basis of the

Kelvin mapping. Instead of simply reordering tensor

coordinates, the Kelvin mapping proceeds from the intro-

duction of a new 6D basis fEIg based on the original 3D

basis feig [compare Mehrabadi and Cowin (1990) and the

appendix in Cowin and Doty (2007)] by setting

EI ¼ MIðIsÞ 8I ¼ 1; . . .; 6 ð16Þ

In other words, this basis is identical to the eigentensors

of the symmetry projection tensor Is, compare Eq. (15).

Thus, exemplary tensors with the necessary symmetries

can equivalently be written in the various bases

A ¼ Aijei � ej ¼ AIEI with AI ¼ A :EI ð17Þ

A ¼Aijklei � ej � ek � el ¼ AIJEI � EJ

with AIJ ¼ EI :A : EJ

ð18Þ

One can see that, similar to the Voigt mapping, the coor-

dinates of second and fourth-order tensors can now be

represented as 6-dimensional vectors and matrices. How-

ever, the tensor character of all quantities is still preserved.

Note further that the coordinates of the Kelvin mapping of

a fourth-order tensor A� A simply follow from the coor-

dinate matrix of the dyadic product of the Kelvin-mapped

vectors. Thus, the same notation can be employed in both

cases.

For numerical implementation, the coordinates of the

Kelvin-mapped stress and strain tensors can now be used

rij ! r ¼ r11 r22 r33

ffiffiffi
2

p
r12

ffiffiffi
2

p
r23

ffiffiffi
2

p
r13

h iT

ð19Þ

�ij ! � ¼ �11 �22 �33

ffiffiffi
2

p
�12

ffiffiffi
2

p
�23

ffiffiffi
2

p
�13

h iT

ð20Þ

which have the same structure regardless of whether they

are stresses or strains. This has important consequences, for

example, for the calculation of tensor norms.

Tensor norms

Since the Voigt mapping is a simple reorganisation from

tensor coordinates into matrix–vector entries, the tensor

character of the individual quantities is lost and tensor

norms are not maintained. On the other hand, tensor

character and hence norms are preserved for the Kelvin

mapping.

As illustrated in Table 1, in order to compute certain

tensor norms, which are often used to define stress- or

strain-dependent quantities, different functions need to be

implemented for strain- and stress-type quantities when

using the Voigt mapping (or one function called with dif-

ferent projection matrices or forefactors). For notational

clarification, the following 6 � 6 projection matrices are

defined and used in Table 1:

P
2
¼ I 0

0 2I

� �
and P 1

2

¼
I 0

0
1

2
I

0
@

1
A ð21Þ

No projection matrices equivalent to those defined in (21)

are needed when the Kelvin mapping is used; all tensor

norms can be directly computed as defined in the original

tensor notation. When using the Voigt mapping, one has to

continuously keep track of the implementational differ-

ences when performing further derivations and calcula-

tions, as the following section shows.

Application examples

Scalar material parameters

A decomposition of the Cauchy stress tensor into spherical

and deviatoric parts yields additional physical insight by

separating the hydrostatic from the deviatoric stress state:

r ¼ �pIþ rD with p ¼ � 1

3
r : I ð22Þ

Similarly, the small strain tensor can be decomposed into

the volumetric and the deviatoric strain:

ε ¼ 1

3
eIþ εD with e ¼ ε : I ð23Þ

The fourth-order stiffness tensor is defined via the fol-

lowing relationship:

dr ¼ C : dε ð24Þ

Linear elasticity can be parameterised by the Lamé coef-

ficients k and l. With the common engineering constants

shear modulus G ¼ l and bulk modulus K ¼ kþ 2=3l; we

Table 1 Comparison of different tensor norms

Original tensor notation Kelvin mapping Voigt mapping

r : ε r � � r � �
r : r r � r r � P

2
r

ε : ε � � � � � P1
2

�
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find the elasticity modulus and the stress–strain relation-

ship with a stress-free reference state as

C ¼ 3KPS þ 2GðIs �PSÞ ð25Þ

r ¼ KeIþ 2GεD ð26Þ

where the fourth-order projection tensors have been defined

in ‘‘Appendix 1: Spherical and deviatoric projections’’ sec-

tion. A simple extension of this material model to finite

deformation measures for the use under large rotations is the

St. Venant–Kirchhoff model expressed in terms of the second

Piola–Kirchhoff stress and the Green–Lagrange strain tensor:

Cm ¼ 3KPS þ 2GðIs �PSÞ ð27Þ

S ¼ KðE : IÞIþ 2GED ð28Þ

The use of the Voigt mapping can be a pitfall in FE

implementations when switching from matrix-based to

scalar material parameters, as highlighted in Table 2.

While in the case of matrix-based material parameters

(if the matrices C and C are properly defined), the imple-

mentation follows directly the tensor notation, this only

holds true for the Kelvin mapping once scalar material

parameters are used.

Flow rules and yield functions

Consider a general yield function F or plastic potential G of

an elastoplastic material expressed in terms of the invariants

I1 ¼ r : I J2 ¼ 1

2
rD : rD J3 ¼ det rD ð29Þ

A stress integration algorithm (compare ‘‘Integration of

constitutive models—local stress update algorithm’’ sec-

tion) usually requires a plastic flow rule, such as

_εp ¼ k
oG

or
ð30Þ

in the geometrically linear case. Additionally, the yield

condition F ¼ 0 is often added as a constraint to ensure

that a calculated stress state remains on the yield surface as

states with F[ 0 are usually not admissible. Thus, for a

Newton–Raphson iteration to integrate the constitutive

model, the derivatives

oF

or
and

o2G

or2
ð31Þ

are needed, among others. Depending on the mathematical

representation of F and G, these functions can be quite

complex so it is desirable to be able to directly transform

the tensorial formulation into its numerical equivalent

without having to keep track of additional projections or

different implementations.

As a simple but illustrative example, consider the fol-

lowing expansion:

oG

or
¼ oG

I1

oI1

or
þ oG

J2

oJ2

orD
:PD þ oG

J3

oJ3

orD
:PD ð32Þ

where PD has been defined in ‘‘Appendix 1: Spherical and

deviatoric projections’’ section.

The calculation of J2 requires different routines in the

case of Voigt and Kelvin mappings as shown in ‘‘Tensor

norms’’. Moreover, this difference has to be kept in mind

when transforming the partial derivative oJ2=orD from

tensor notation to its numerical implementation. The dif-

ferences are highlighted in Table 3.

It can be seen again that the implementation of routines

that calculate J2 and its derivative follow directly from the

tensor equation in the case of the Kelvin mapping, while

the use of the projection matrix to calculate J2, in case of

the Voigt mapping also has to be taken into account when

calculating its derivative.

Notes on the implementation

To show that the benefits of the Kelvin mapping can be har-

nessed at very little cost, this section briefly illustrates imple-

mentational differences in a finite element realisation. These

changes can be incorporated into the ‘‘core’’ of the FE software,

as illustrated here. There is, however, also the possibility to use

Kelvin mapping in software without complete access to the

sources. If, for example, one wants to implement a user-defined

material (UMAT in Abaqus�, HYPELA2 in MSC Marc�), one

can simply remap the incoming quantities and transform the

results back into Voigt mapping. This can be worthwhile if the

stress integration of the constitutive model is complex enough

to warrant the additional effort.

In the sequel, both the equilibrium iteration scheme of

the global displacement-based formulation of the solid

momentum balance as well as the local stress update

Table 2 Comparison of matrix-based and scalar material parameters.

Note that the Voigt and Kelvin matrices, C and C, differ in some

entries by a scalar factor (see, e.g., Cowin and Doty 2007 and

‘‘Discretisation of the weak form’’ section). The relations for the Saint

Venant–Kirchhoff model are completely analogous

Original tensor notation Kelvin mapping Voigt mapping

dr ¼ C : dε dr ¼ Cd� dr ¼ Cd�

drD ¼ C : dεD drD ¼ Cd�D drD ¼ Cd�D

drD ¼ 2G dεD drD ¼ 2Gd�D drD ¼ Gd�D 6¼ 2Gd�D

Table 3 Comparison of Kelvin and Voigt mapping in relation to the

second invariant of the deviatoric stress tensor

Original tensor notation Kelvin mapping Voigt mapping

J2 ¼ 1
2
rD : rD J2 ¼ 1

2
rD � rD J2 ¼ 1

2
rD � P

2
rD

oJ2

orD ¼ rD oJ2

orD ¼ rD oJ2

orD ¼ P
2
rD
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procedures are based on a consistent linearisation in the

context of a Newton–Raphson procedure in order to effi-

ciently couple both implementation levels.

Finite deformations will be considered. In order to keep

the presentation short, basic knowledge of the associated

concepts is assumed. Without further introduction, consider

given a current configuration and a reference configuration

as mappings of a physical body into three-dimensional

space at current and initial time, t and t0, respectively. They

are characterised by the covariant bases fgig and fGIg,

respectively, as well as their corresponding contravariant

counterparts fgig and fGIg. The deformation gradient is

defined as a linear mapping between line elements from the

reference to the current configuration:

dx ¼ FdX with F ¼ oxi

oXJ
gi �GJ ð33Þ

For more details on this matter consult, e.g., Itskov (2009),

Haupt (2002).

The weak form in a material setting

The local form of the quasistatic equilibrium conditions

derived from the momentum balance considering body

forces f reads in the current configuration

div rþ qf ¼ 0 ð34Þ

and is the basis to determine the displacement field u in a

domain X. A kinematically compatible test function v is

chosen with v ¼ 0 8x 2 oXu, i.e., v vanishes on the

Dirichlet boundary oXu. Transformation of Eq. (34) into

the weak form
Z

X

r : grad v dX ¼
Z

X

qf � v dXþ
Z

oXt

�t � v dC ð35Þ

naturally yields the prescribed surface traction vector �t on

the Neumann boundary oXt as a result of partial integra-

tion, where oXu [ oXt ¼ oX and oXu \ oXt ¼ ;.

The geometrical configuration of the integration domain

in Eq. (35) is unknown and an outcome of the deformation

problem to be solved. In that sense, Cauchy stresses are not

additive, i.e., rtþDt 6¼ rt þ Dr. Thus, Eq. (35) needs to be

transformed to a suitable reference configuration on which

second Piola–Kirchhoff stresses will be defined that in turn

can be decomposed additively. The two most common

choices for this reference configuration are the initial (un-

deformed) configuration at time t ¼ 0 leading to a Total

Lagrangian (TL) formulation and the configuration deter-

mined in the previous iteration leading to the Updated

Lagrangian (UL) formulation (Bathe 2001; Zienkiewicz

et al. 2006). Here, a TL formulation is chosen. Similar

considerations apply to the UL formulation.

The weak form of Eq. (35) pulled back into the refer-

ence configuration reads (compare ‘‘Appendix 2: Notes on

the pullback of the weak form’’ section)Z

X0

S : EðU;VÞ dX0 ¼
Z

X0

q0F � V dX0 þ
Z

oX0
T

�T � V dC0

ð36Þ

Linearisation of the weak form

Equation (36) is to be solved for a time incrementDt to obtain

the solution at the next time step t þ Dt based on the known

solution at the previous time step at time t. In other words, the

displacement solution sought can be expressed as

UtþDt ¼ Ut þ DUDt ð37Þ

Due to nonlinearities, each increment has to be solved

iteratively. Here, a Newton–Raphson iteration procedure

will be introduced using the iteration counter i. Thus, the

displacement increment is iteratively determined via

Uiþ1 ¼ Ui þ DUiþ1 ¼ Ut þ
Xiþ1

k¼1

DUk ð38Þ

along with stresses and strains. For that purpose, a lin-

earisation of Eq. (36) is performed around the current state

given by the ith global Newton–Raphson iteration. For

more details, we refer the reader to Bathe (2001), Zien-

kiewicz et al. (2006), Bucher et al. (2001). In a Total

Lagrangian setting, linearisation of Eq. (36) yields under

the assumption of conservative loadsZ

X0

Si : �EðDUiþ1;VÞþEðUi;VÞ : dS

dE

����
i

:EðUi;DUiþ1Þ
� 	

dX0

¼
Z

X0

q0F
tþDt �VdX0 þ

Z

oX0
T

�TtþDt �VdC0

�
Z

X0

Si :EðV;UiÞdX0 ð39Þ

EðUi;VÞ ¼ sym FiT GradV
� �

ð40Þ

EðUi;DUÞ ¼ sym FiT GradDU
� �

ð41Þ

�EðDUiþ1;VÞ ¼ sym ðGradDUiþ1ÞT
GradV

h i
ð42Þ

Equation (39) introduced the constitutive tangent modulus

in material description

Cm ¼ dS

dE
ð43Þ

Depending on the numerical scheme used (e.g., Total Lagrange,

Updated Lagrange, or geometrically linear), different stress

measures, strain measures, and associated tangent moduli need

to be considered. The choice regarding Voigt or Kelvin mapping

remains open for all formulations.
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Discretisation of the weak form

In the sequel, a switch to a matrix–vector notation repre-

sentative of the finite element implementation will be per-

formed. Where necessary, the matrices obtained using the

standard Voigt mapping are compared to the ones obtained

by Kelvin mapping. Where no distinction is mentioned, the

implementation is unaffected by this choice.

The domain of interest is split into standard finite elements

characterised by a set of nodal shape functions NaðXÞ. The

sought solution vector U in a point is approximated by

U 	 ~U ¼ NÛ with

N ¼
N1 . . . Nnn 0 � � � 0 0 � � � 0

0 � � � 0 N1 . . . Nnn 0 � � � 0

0 � � � 0 0 � � � 0 N1 . . . Nnn

0
@

1
A ð44Þ

where Û ¼ bU1
1 � � � bU

nn

1
bU1

2 � � � bU
nn

2
bU1

3 � � � bU
nn

3

h iT

is the

nodal displacement vector and N is the element matrix of

shape functions, and nn is the number of nodes. In the

isoparametric concept employed here, the position vector X

and the test function V are approximated likewise.

The displacement gradient’s coordinates are arranged

into a nine-dimensional vector

rU ¼ bU1;1 � � � bU1;3
bU2;1 � � � bU2;3

bU3;1 � � � bU3;3

h iT

ð45Þ

calculated based on the gradient matrix G:

rU ¼ GÛ with G ¼

N1
;1 . . . Nnn

;1 0 � � � 0 0 � � � 0

N1
;2 . . . Nnn

;2 0 � � � 0 0 � � � 0

N1
;3 . . . Nnn

;3 0 � � � 0 0 � � � 0

0 � � � 0 N1
;1 . . . Nnn

;1 0 � � � 0

0 � � � 0 N1
;2 . . . Nnn

;2 0 � � � 0

0 � � � 0 N1
;3 . . . Nnn

;3 0 � � � 0

0 � � � 0 0 � � � 0 N1
;1 . . . Nnn

;1

0 � � � 0 0 � � � 0 N1
;2 . . . Nnn

;2

0 � � � 0 0 � � � 0 N1
;3 . . . Nnn

;3

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ð46Þ

The symmetric part of the displacement gradient cor-

responds to the linear part of the Green–Lagrange

strain

sym GradU ¼ 1

2
GradUþ ðGradUÞT

h i
¼: Elin ð47Þ

Its mapping yields the linear B0-matrix familiar from small

strain finite element implementations:

Elin ¼ B0Û with

B0 ¼

N1
;1 . . . Nnn

;1 0 � � � 0 0 � � � 0

0 � � � 0 N1
;2. . . N

nn

;2 0 � � � 0

0 � � � 0 0 � � � 0 N1
;3 . . . Nnn

;3

a N1
;2 . . . Nnn

;2

h i
a N1

;1 . . . Nnn

;1

h i
0 � � � 0

0 � � � 0 a N1
;3 . . . Nnn

;3

h i
a N1

;2 . . . Nnn

;2

h i

a N1
;3 . . . Nnn

;3

h i
0 � � � 0 a N1

;1 . . . Nnn

;1

h i

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

ð48Þ

In the case of Voigt mapping, a ¼ 1 yields the familiar

form. If Kelvin mapping is used, the linear B0-matrix is

obtained by setting a ¼ 1=
ffiffiffi
2

p
. In a small strain formula-

tion, changing the value of a in Eq. (48) remains the only

change to be made (excluding input–output functions for

pre- and postprocessing).

Nonlinear deformation measures of the form given in

Eqs. (40) and (41) can be expressed as

EðU;AÞ ¼ sym FT GradA
� �

¼ sym GradAþ ðGradUÞT
GradA

h i
ð49Þ

and discretised using the nonlinear B-matrix as follows

EðU;AÞ ¼ BÂ ¼ ðB0 þ BNÞÂ with ð50Þ

BN ¼

U1;1 N1
;1 . . . Nnn

;1

h i
U2;1 N1

;1 . . . Nnn

;1

h i

U1;2 N1
;2 . . . Nnn

;2

h i
U2;2 N1

;2 . . . Nnn

;2

h i

U1;3 N1
;3 . . . Nnn

;3

h i
U2;3 N1

;3 . . . Nnn

;3

h i

a U1;2N
1
;1 þ U1;1N

1
;2. . .U1;2N

nn

;1 þ U1;1N
nn

;2

h i
a U2;2N

1
;1 þ U2;1N

1
;2. . .U2;2N

nn

;1 þ U2;1N
nn

;2

h i

a U1;3N
1
;2 þ U1;2N

1
;3. . .U1;3N

nn

;2 þ U1;2N
nn

;3

h i
a U2;3N

1
;2 þ U2;2N

1
;3. . .U2;3N

nn

;2 þ U2;2N
nn

;3

h i

a U1;3N
1
;1 þ U1;1N

1
;3. . .U1;3N

nn

;1 þ U1;1N
nn

;3

h i
a U2;3N

1
;1 þ U2;1N

1
;3. . .U2;3N

nn

;1 þ U2;1N
nn

;3

h i

U3;1 N1
;1 . . . Nnn

;1

h i

U3;2 N1
;2 . . . Nnn

;2

h i

U3;3 N1
;3 . . . Nnn

;3

h i

a U3;2N
1
;1 þ U3;1N

1
;2. . .U3;2N

nn

;1 þ U3;1N
nn

;2

h i

a U3;3N
1
;2 þ U3;2N

1
;3. . .U3;3N

nn

;2 þ U3;2N
nn

;3

h i

a U3;3N
1
;1 þ U3;1N

1
;3. . .U3;3N

nn

;1 þ U3;1N
nn

;3

h i

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð51Þ
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where BN is the nonlinear part of the B-matrix. Identically

to Eq. (48), a ¼ 1 for Voigt mapping and a ¼ 1=
ffiffiffi
2

p
for

Kelvin mapping.

With the above definition, the linearised weak form in

Eq. (39) can be discretised. Using the arbitrariness of the

nodal values of the test function V̂, one can write
Z

X0

GT �SiGþ BiTCiBi
� �

dX0 DÛiþ1

¼
Z

X0

q0N
TFtþDt dX0 þ

Z

oX0
T

NT �TtþDt dC0 �
Z

X0

BiTSi dX0

ð52Þ

where �S is defined in 8. The integral on the left-hand side

defines the stiffness matrix K, the right-hand side defines

the residual vector w such that the linearised system reads

KiDÛiþ1 ¼ wi ð53Þ

The contributions of all elements are assembled into the

global problem which is then solved for the vector of

unknown displacement increments DÛiþ1.

It remains to be noted that in the case of Kelvin mapping

C ¼

C1111 C1122 C1133

ffiffiffi
2

p
C1112

ffiffiffi
2

p
C1123

ffiffiffi
2

p
C1113

C2211 C2222 C2233

ffiffiffi
2

p
C2212

ffiffiffi
2

p
C2223

ffiffiffi
2

p
C2213

C3311 C3322 C3333

ffiffiffi
2

p
C3312

ffiffiffi
2

p
C3323

ffiffiffi
2

p
C3313ffiffiffi

2
p

C1211

ffiffiffi
2

p
C1222

ffiffiffi
2

p
C1233 2C1212 2C1223 2C1213ffiffiffi

2
p

C2311

ffiffiffi
2

p
C2322

ffiffiffi
2

p
C2333 2C2312 2C2323 2C2313ffiffiffi

2
p

C1311

ffiffiffi
2

p
C1322

ffiffiffi
2

p
C1333 2C1312 2C1323 2C1313

0
BBBBBBBB@

1
CCCCCCCCA

ð54Þ

while in the case of Voigt mapping, C directly contains the

entries Cijkl without any factors. The manipulation need not

be performed manually in cases where the local stress

update as described in the next section is consistently

performed with Kelvin-mapped quantities.

Integration of constitutive models—local stress

update algorithm

The equations necessary to integrate the stress increment

usually lead to a differential–algebraic equation system

(Hartmann et al. 1997; Bucher et al. 2001) of the form

0 ¼ rðz; �iÞ ð55Þ

where r represents the residual vector describing the evo-

lution equations for stresses and internal variables, as well

as constraints (e.g., the consistency condition in elasto-

plasticity). Note, that in the local iterations to solve the

above equation system, �i from the global iteration is

considered fixed and that a suitable time discretisation is

assumed to have been performed already in the formulation

of the residual vector. The state vector z contains the stress

vector as well as all kinds of inelastic internal state

variables:

z ¼ ðrT; jT
k ; jkÞ

T ð56Þ

Different methods exist to integrate inelastic constitutive

models (Zienkiewicz and Cormeau 1974; Doghri 1995; de

Borst and Heeres 2002; Safaei et al. 2015). Here, we

consider a fully implicit backward Euler scheme relying in

a local Newton–Raphson iteration. A Taylor series

expansion of the differential–algebraic system yields the

iteration procedure for the local stress integration

�rj ¼ or

oz

����
j

Dzjþ1 ð57Þ

Once the iteration has converged, the use of the total dif-

ferential of r directly yields the consistent tangent matrix

for the global iteration:

dr

d�tþDt
¼ or

o�tþDt
þ or

oz

����
tþDt

� �
dz

d�tþDt
¼ 0 ð58Þ

The first entry of the solution dz=d�tþDt to the resulting

linear system

or

oz

����
tþDt

� �
dz

d�tþDt
¼ � or

o�tþDt
ð59Þ

is the sought tangent matrix Ci. This approach is not only

beneficial for achieving the best possible convergence of

the global problem due to an algorithmically consistent

linearisation (Simo and Hughes 1998), but also yields Ci

consistent with Eq. (52) for both the Voigt and the Kelvin

mapping without any further modifications.

Discussion

While the Voigt mapping is a perfectly viable option and is

the basis of many consistent finite element implementations,

the different treatment of the tensor–mathematical quantities

and their matrix-mapped counterparts creates a lot of room

for error and necessitates double implementations of the

same mathematical concept for different types of quantities.

In contrast, all the complications associated with the Voigt

mapping can be avoided using the Kelvin mapping and

come at little, if any, additional cost when using traditional

finite element analysis software. Recently, B-matrix free

implementations have been proposed Planas et al. (2012)

into which some of the considerations outlined above can be

included as well. The motivation for the treatment outlined

in Planas et al. (2012) was related to difficulties caused by

the Voigt mapping, many of which can be avoided with

Kelvin’s approach as well due to the formalised mapping

indicated in Eqs. (17) and (18). Note further that the present
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approach equally does not require an explicit calculation of

the D/C-matrix, as it naturally follows from the integration

of the material model outlined in ‘‘Integration of constitutive

models—local stress update algorithm’’ section.

In summary,

– Tensor norms are calculated identically without distin-

guishing stress- or strain-type quantities.

– Tensor equations can be directly transformed into

matrix equations without additional considerations.

– The only implementational changes are related to a scalar

factor in the B-matrices for both large and small strain

formulations and modified input and output functions for

the use of the usual pre- and postprocessing tools.
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Appendix 1: Spherical and deviatoric projections

Any second-order tensor A can be additively decomposed

into a spherical and a deviatoric part:

A ¼ AS þ AD with AS ¼ 1

3
ðA : IÞI ð60Þ

where I ¼ gk � gk is the metric tensor formed by the contra-

and covariant basis vectors, respectively. The mapping can

also be written in terms of fourth-order tensors:

AD ¼ PD : A and AS ¼ PS : A ð61Þ

with the fourth-order tensors

PS ¼ 1

3
I� I ð62Þ

PD ¼ ðI� IÞT
23

� 1

3
I� I ¼ I�PS ð63Þ

Note in passing that the deviatoric representation of a

quantity a can be calculated with the projection

aD ¼ PDa with PD ¼

2

3
� 1

3
� 1

3
0 0 0

�1

3

2

3
� 1

3
0 0 0

�1

3
� 1

3

2

3
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

ð64Þ

which is independent of the mapping used, i.e., PD ¼ PD

and thus aD ¼ PDa.

Appendix 2: Notes on the pullback of the weak
form

The left-hand side of Eq. (35) is pulled back into the ref-

erence configuration by using dX ¼ JdX0 where J ¼ detF

is the volume ratio. The pullback proceeds as follows:

Z

X

r : grad v dX ¼
Z

X0

Jr : sym grad v dX0

¼
Z

X0

Jr : F�T 1

2
ðGrad vÞTFþ FT Grad v
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼Eðv;uÞ

F�1 dX0

ð65Þ

¼
Z

X0

JF�1rF�T : Eðu; vÞ dX0 ¼
Z

X0

S : Eðu; vÞ dX0 ð66Þ

where the second Piola–Kirchhoff stress S appears. The

volume integral on the right-hand side of Eq. (35) is

transformed similarly noticing that q0 ¼ Jq and that a

vector can be expressed in both the reference and the

current configuration by the use of shifters:

a ¼ aigi ¼ aigKi GK ¼ aKGK , where the coordinates of the

shifter are gKi ¼ gi �GK . The surface traction t ¼ rn
acting on the current (deforming) Neumann boundary

with (deformation dependent) area elements dC can be

transformed to the reference configuration with (con-

stant) area elements dC0 with the help of Nanson’s

formula:

rndCtþDt ¼ rJF�TNdC0 ¼ PNdC0 ¼ �TdC0 ð67Þ

Therefore, the pulled-back version of the linear momentum

balance reads

Z

X0

S : EðU;VÞ dX0 ¼
Z

X0

q0F � V dX0 þ
Z

oX0
T

�T � V dC0

ð68Þ

where the vectors v, u; and f have been capitalised due to

the fact that the basis of the reference configuration is

chosen throughout.

Appendix 3: Additional definitions

The stress matrix is defined as
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�S ¼

S11 S12 S13

S12 S22 S23 0 0
S13 S23 S33

S11 S12 S13

0 S12 S22 S23 0
S13 S23 S33

S11 S12 S13

0 0 S12 S22 S23

S13 S23 S33

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð69Þ
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