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Abstract The development of new technological mate-

rials has historically been a difficult and time-consuming

task. The traditional role of computation in materials

design has been to better understand existing materials.

However, an emerging paradigm for accelerated materials

discovery is to design new compounds in silico using first-

principles calculations, and then perform experiments on

the computationally designed candidates. In this paper, we

provide a review of ab initio computational materials

design, focusing on instances in which a computational

approach has been successfully applied to propose new

materials of technological interest in the laboratory. Our

examples include applications in renewable energy, elec-

tronic, magnetic and multiferroic materials, and catalysis,

demonstrating that computationally guided materials

design is a broadly applicable technique. We then discuss

some of the common features and limitations of successful

theoretical predictions across fields, examining the differ-

ent ways in which first-principles calculations can guide

the final experimental result. Finally, we present a future

outlook in which we expect that new models of computa-

tional search, such as high-throughput studies, will play a

greater role in guiding materials advancements.

Introduction

There is a great need for new methods to accelerate

materials design. Many major industries depend on mate-

rials advancements to bring improved technologies to

market. Often, these technological challenges relate to

societal problems, such as cleanly generating and using

energy, that are currently in need of materials break-

throughs within short time frames.

However, materials innovations rarely appear overnight.

Even after a new material demonstrates success in the

laboratory, it takes about twenty additional years before its

widespread adoption, largely due to the difficulties in

building production capacities and lowering manufacturing

costs from initial laboratory results [1]. It is therefore

necessary to identify promising materials early on so that

scale-up can begin as soon as possible. In addition, it is

important to better understand the strengths and weak-

nesses of potential materials candidates early in the design

process, as this helps avoid costly and time-consuming

materials optimization down the road.

In recent years, ab initio or first-principles computations

(i.e., based on solving the fundamental equations of

quantum mechanics) have become ubiquitous in materials

science, and it is nowadays hard to find a material of sci-

entific interest that has not been studied computationally.

The most popular approach to first-principles computations

is currently by far density functional theory (DFT).

Although the theoretical roots of modern DFT trace back to

Hohenberg–Kohn theorems of 1964 [2], the last two dec-

ades of DFT research have been particularly important to

materials design due to more accurate treatments of

exchange and correlation effects of electrons, more pow-

erful computational resources available to materials

researchers, more efficient numerical algorithms, and the
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introduction of several user-friendly commercial and open-

source software packages for performing DFT computa-

tions [3–5].

Using a computational approach to help design new

materials offers several benefits that are complementary to

traditional experimental-based materials discovery. One

key advantage of computations is the level of control they

offer compared to experiments. For example, it is often

trivial in calculations to simulate the effects of chemical

substitutions or lattice strain, but achieving those same

conditions experimentally could take many months of

painstaking laboratory work. In addition, characterizing a

material’s fundamental properties is often quicker with

computations compared to experiment while still retaining

excellent or acceptable accuracy. This is most apparent in

recent high-throughput DFT studies in which properties of

thousands of materials have been calculated in relatively

short time frames, opening up the possibility for an infor-

matics-based approach to materials design. These advan-

tages have now made computations an effective virtual

laboratory for designing materials in silico prior to time-

consuming and expensive laboratory work.

In this review, we highlight several examples where first-

principles calculations have directly predicted materials

with promising properties. In some of these cases, the sug-

gested compounds were previously unknown, and the com-

pound was in essence completely designed within a

computer. In all cases reviewed here, the calculated results

were subsequently verified by experimental measurements.

By focusing on such predictive studies, we have left out

many excellent studies where first-principles computations

have greatly advanced our understanding of known materi-

als; many such examples can be found in previous reviews [6,

7]. This work does not claim to be exhaustive and our goal in

selecting examples has been to clearly demonstrate the

capability of state-of-the-art calculations as a tool for rational

and accelerated materials design in a broad number of

applications, and to examine the typical challenges faced by

researchers when making ab initio predictions.

The outline of this paper is as follows. The second section

‘‘Ab initio methods’’ serves as a technical introduction to

ab initio computations and the materials properties that can

presently be computed. The third section ‘‘Compound and

crystal structure prediction’’ deals with the topic of crystal

structure prediction and its role in the discovery of new

materials. The fourth section ‘‘Case studies’’ present exam-

ples of materials design led by first-principles calculations in

the fields of energy, catalysis, and electronic and magnetic

materials. Finally, the fifth section ‘‘Status, challenges and

future of computational materials discovery and design’’

provides a perspective on the role of first-principles com-

putations in accelerating materials design and the sixth

section ‘‘Conclusion’’ provides concluding remarks.

Ab initio methods

Because this review is about ab initio computational

materials design, it behooves us to provide at least a brief

description of the current state of ab initio methodological

development. However, the literature on first-principles

methods is vast and providing a comprehensive overview is

outside the scope of this review. We will thus attempt to

only provide a sufficiently broad outline of the general

concepts pertinent to the applications discussed in sub-

sequent sections, and the interested reader is pointed to the

many excellent books [8] and reviews on ab initio methods

[9–11]. The reader with expertise in first-principles meth-

ods can easily skip this section and turn directly to the

section ‘‘Compound and crystal structure prediction’’ on

compound and crystal structure prediction or to the case

studies in section ‘‘Case studies’’.

A calculation is said to be ab initio (or from first-prin-

ciples) if it relies on the fundamental laws of quantum

physics without additional assumptions or special models.

For the prediction of many materials properties, such a

calculation generally involves studying a system of

N electrons in an external potential and finding the solution

to the many-body time-independent Schrödinger equation:

� �h2

2m
r2 þ Vðr1; . . .; rNÞ

� �
wðr1; . . .; rNÞ ¼ �wðr1; . . .; rNÞ

ð1Þ

where �h is Planck’s constant, V is the potential (external

and from the interaction between electrons), w is the many-

body wavefunction, � is the energy, and the r1; . . .; rN

represents the coordinates of the N electrons in the system.

Despite its deceptively simple analytic form, solving the

Schrödinger equation is intractable for all but the simplest

of systems, and we are thus forced to resort to various

approximations to the exact solution. For solid-state

applications (and also many molecular applications), the

most widely used framework for finding approximate

solutions to the Schrödinger equation is DFT.

DFT

DFT has its foundation in the Hohenberg–Kohn (H–K) the-

orem [2], which states that (i) all ground-state properties of a

system, including the total energy, are some functional of the

ground-state charge density; and (ii) the correct ground-state

charge density minimizes the energy functional, i.e.,

E½n� ¼ T ½n� þ U½n� þ
Z

VðrÞnðrÞd3r ð2Þ

where n is the charge density, r is the position, E is the total

energy, T is the kinetic energy, V is the potential energy
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from the external field (typically due to the positively

charged nuclei of the crystal), and U is the electron–elec-

tron interaction energy.

The H–K theorem implies that the ground-state for any

system can be determined by varying the charge density

until the global minimum in the energy functional is found.

Thus, the complex problem of solving the many-body

Schrödinger equation of N electrons with 3N spatial coor-

dinates is reduced to a simpler (though still difficult)

problem based on the charge density of 3 spatial coordi-

nates. However, while the H–K theorem guarantees in

principle a correspondence between the ground-state

charge density and energy, the true functional relating the

charge density to the energy is unknown.

The variational problem of minimizing the energy

functional is typically solved by considering the so-called

Kohn–Sham (K–S) equations [12] of an auxiliary non-

interacting system, which formulates Eq. (2) in terms of an

effective single-particle potential:

� �h2

2m
r2 þ VsðrÞ

� �
/iðrÞ ¼ �i/iðrÞ ð3Þ

where /i are the orbitals that reproduce the density of the

original many-body system ðnsðrÞ ¼
PN

i¼0 /iðrÞ2Þ. Under

the K–S ansatz, the effective single-particle potential can

be written as:

VsðrÞ ¼ VðrÞ þ
Z

e2nsðr0Þ
r� r0

d3r0 þ Vxc½nsðrÞ� ð4Þ

where ns is the charge density, the second-term denotes the

Hartree term describing the electron–electron Coulomb

repulsion, and the final term is the exchange-correlation

potential that includes all the many-particle interactions. In

practice, the exact functional for exchange and correlation

(and, in consequence, the exact Vxc) is not known and the

development of approximate functionals that permit the

calculation of certain physical quantities accurately is the

focus of much research. One of the earliest density func-

tionals, which is still in widespread use today, is the local

density approximation, or LDA, where the functional

depends only on the density at the coordinate where the

functional is evaluated. A slightly more advanced

approximation incorporates the gradient of the density as

well following the generalized gradient approximation, or

GGA [13, 14]. Both GGA and LDA functionals are fitted

on the free electron gas for which the exact exchange and

correlation functional is known.

Total energies

One of the main ‘‘outputs’’ from solving the K–S equations

for a material is its ground-state energy. This fundamental

property of a material already provides immensely useful

information for materials scientists. For example, the

ground-state energy can be used to identify the most stable

polymorph of a particular chemical composition, to cal-

culate reaction, binding, and defect energies and to assess

phase stability.

In addition, by calculating the change in energy for

small displacements about the equilibrium ion positions,

we can also compute the phonon spectra for a material.

Phonon modes are of importance, for example, in detecting

ferroelectricity or incorporating finite-temperature vibra-

tion effects into phase stability analysis. Total energy cal-

culations can also be used to estimate reaction and

diffusion barriers by calculating energy changes along a

reaction or diffusion pathway (e.g., by using the nudged

elastic band (NEB) method [15, 16]). Reaction barriers are

important in catalysis design, while diffusion pathways are

important when studying ionic or polaronic transport.

A significant problem with semi-local functionals such

as the LDA and GGA is that they contain a spurious

electron self-interaction (SI) energy. This spurious SI

energy leads to considerable errors in reactions energies for

which electrons are transferred between significantly dif-

ferent environments, such as a metal and a transition metal

oxide. Intense efforts have been focused at alleviating the

self-interaction issue. One popular approach, which does

not increase the computational burden compared to GGA

or LDA, is to use a so-called Hubbard U parameter that

will cancel part of the SI energy on the most problematic

orbitals such as localized d- or f-orbitals [17, 18]. The

DFT?U method requires the determination of an adequate

U parameter that can be computed through self-consistent

linear response theory [19] or by a fit to the experimental

formation energies [20, 21]. Alternatively to DFT?U,

researchers have been incorporating a fraction of exact

Hartree–Fock exchange through hybrid functionals as in

the Heyd–Scuseria–Ernzerhof (HSE) functional especially

suited for solid-state applications [22–25]. These hybrid

approaches are, however, more computationally expensive

than DFT?U.

Electronic structure properties

Another property of significant interest is a material’s

electronic structure. Solving the Kohn–Sham equation

provides directly the charge density of a material which can

give insight into charge localization and the nature of

bonding or, in the case of spin-polarized systems, provide

the magnetic moments on different atoms.

In addition, from the Kohn–Sham orbitals, band struc-

tures can be obtained which are of interest in applications

as varied as photovoltaics, thermoelectrics, or electronics.

However, the accurate prediction of band structures using

DFT is currently a major challenge. For instance, it is well-
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known that semi-local functionals such as LDA and GGA

systematically underestimate the energy gaps between

occupied and unoccupied states in solids by 30–100 %

[26]. This underestimation has been attributed to the

inherent lack of derivative discontinuity [27] and delocal-

ization error [28].

Several approaches have been developed to address the

limitations of semi-local functionals with respect to elec-

tronic structure properties. For example, the hybrid HSE

functional, which incorporates a fraction of exact Hartree–

Fock exchange, has been demonstrated to lead to much

more accurate band gaps [24, 29]. Excited-state methods

such as GW [30, 31] and time-dependent DFT [32] can also

provide more reliable predictions of electronic structure,

and optical properties. However, most of these methods are

significantly more computationally expensive (at least an

order of magnitude or more) than LDA or GGA, and cur-

rent efforts are directed toward the development of cheaper

(but often slightly less accurate) methods such as the Tran–

Blaha potential [33], the GLLB-SC model potential [34,

35], or the D-sol method [29].

Compound and crystal structure prediction

As presented in the previous section, modern first-princi-

ples theory provides researchers with many powerful tools

to compute different properties of materials. This opens up

the possibility of computing the properties of interest of a

targeted material even before any experimental measure-

ment has been made. One can for instance easily think that

in search of a good photovoltaic material, computing the

band gap of several candidates would help to identify

compounds able to absorb light at a an adequate wave-

length. Often, researchers search for promising materials

by computing properties on previously known compounds

(or small modifications of them) obtained from the litera-

ture or from a crystal-structure database. However, there

are potentially many undiscovered inorganic compounds,

some of which might have excellent properties for specific

applications, motivating the computational search of novel

compounds and their crystal structure.

In 1988, the poor status of this crystal-structure pre-

diction problem made Nature’s editor John Maddox call it

‘‘one of the continuing scandals in the physical sciences’’

[36]. Since then, the computational prediction of new

compounds before synthesis has improved substantially

due to advances in ab initio techniques, and as we will

briefly overview in the coming paragraphs, also in crystal-

structure prediction algorithms [37–39].

The first necessary ingredient for the prediction of

compounds is the ability to evaluate computationally their

thermodynamical equilibrium phase stability. Simply put,

one needs to know if a proposed novel compound is stable

versus all competing phases. This can be performed using

total energies computed with DFT, with the careful use of

adequate functionals and methods (e.g., DFT?U) [40–42].

While advanced DFT techniques can be accurate enough to

model stability successfully [43], a large part of the chal-

lenge lies in the second ingredient for compound predic-

tions, which is the efficient selection of compound

candidates to test for stability. This selection is typically

performed following one of two approaches: optimization

or data mining-based.

Optimization approaches

Finding the most stable crystal structure (at a given com-

position) can be mapped to the mathematical problem of

finding the values of the structural degrees of freedom (i.e.,

lattice parameters and atomic positions) minimizing the

(free) energy. The search for a global minimum on the

energy landscape is, however, far from simple as the

energy function (or landscape) is very large, complex and

presents many local minima (see Fig. 1) [44].

One popular way of simplifying this problem has been

to reduce the number of degrees of freedom by working on

a fixed-crystal lattice, only allowing different decorations

of an underlying crystalline framework. For instance, we

can study any ordering on a face-centered cubic lattice at a

composition AB and possibly find a rock-salt ground-state.

This approach is usually coupled with the use of a sim-

plified hamiltonian fitted on a limited set of computations

performed on selected orderings through the cluster

expansion technique [45, 46]. Identifying new phases on a

Fig. 1 Conceptual depiction of an energy landscape [44]. The order

parameter(s) represent the degrees of freedom of the crystal. The

energy landscape has many local minima (black squares) and is very

rugged. Reprinted with permission from [44]. Copyright 2009,

American Institute of Physics
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fixed-lattice has been especially useful in alloy theory [47–

49], but close-packed oxides have also been studied

through cluster expansion [50].

However, when the underlying lattice is not known,

researchers must rely on advanced optimization techniques

such as simulated annealing or genetic algorithms to explore

the rugged energy landscape. Simulated annealing (and the

related basin hoping) [51, 52] rely on applying perturbations

to a starting configuration. These perturbations are accepted

or not depending on the change in energy, offering a way to

efficiently scan the energy landscape in search of a global

minimum. Genetic algorithms on the other hand are inspired

by the biological process of evolution and the idea of survival

of the fittest [53–57].

Optimization methods have been used to study many

different chemistries, often with empirical potentials.

However, a growing number of studies are now being

performed using first-principles computations (e.g., the Na-

N [58], W-N [59], and Fe-B [60] chemical systems). New

phases proposed by optimization approaches and recently

confirmed experimentally include a new high-pressure

phase of Boron (although using the experimentally deter-

mined cell parameters as input) [59], a new high-pressure

phase of CaCO3 [55, 61], or a new metastable polymorph

of LiBr [62, 63]. The optimization approach to structure

prediction is very appealing but suffers from very large

requirements in terms of computational budget, especially

when multicomponent systems are explored.

Data-mining approaches

As an alternative to optimization-based techniques,

researchers have been developing data mining or machine

learning techniques that learn from previous computations

or experiments and make informed guesses about likely

crystal structure candidates [64].

The pioneering work from Curturalo et al. [65] con-

sisted in using linear regression analysis to use information

from previous computations to predict the energy of not yet

computed compounds. Subsequently, Fischer et al. [66],

proposed to use data from an experimental structure data-

base to extract the chemical rules of structural stability

using correlation between crystal structures at different

compositions. Very recently, a new technique more effi-

cient in data sparse regions (e.g., quaternary compounds)

and based on the data mining of ionic substitution has been

proposed by Hautier et al. [67]. All of these data mined

techniques are always used in combination with DFT

which finally assess if the short-list of candidates proposed

through data mining techniques are indeed stable.

While less exhaustive than optimization techniques,

knowledge-driven methods have much lower computational

requirements which make them more suitable for large-

scale high-throughput searches of new materials. These

techniques have already been used to perform searches of

new materials and proposed for instance new borides [68,

69], rhodium alloys [70], or ternary oxides [71, 72].

Using data-mined techniques, it was recently predicted

that SnTiO3 (at the time unsynthesised) would be stable in

a distorted ilmenite structure [71]. A few months later,

SnTiO3 was synthesised and experimental measurements

confirmed the predicted ilmenite structure [73]. Interest-

ingly, SnTiO3 in the perovskite structure had been pre-

sented in several computational works to be of interest as a

lead-free piezoelectric [74, 75] but the ilmenite structure is

unfortunately not piezoelectric. This example is not only a

clear success for compound prediction but also illustrates

the importance of considering the phase stability of the

specific crystal structure when computationally designing

materials. More examples of data-mined compound pre-

dictions confirmed experimentally will be given in ‘‘Lith-

ium-ion batteries’’ section covering Li-ion battery design.

The use of compound prediction techniques for the

discovery of new materials of technological interest has

still been limited but we are convinced that the recent

developments in compound prediction algorithms, the

availability of new codes (e.g., genetic algorithm USPEX

and MAISE codes [76, 77]) and web interfaces (e.g., data-

mining structure prediction [78]), as well as the crystal-

structure prediction expertise building in fundamental

fields (e.g., high-pressure phases in geophysics) will lead to

many compound predictions for technological applications

in the near future.

Case studies

After this brief overview of the computational methods

available to materials designers, we will now turn to the

core of our review by presenting and discussing examples

in which computational tools were used to predict the

behavior of materials that were confirmed experimentally

subsequently. The section will be divided by applications,

starting with energy applications, going through magnetic,

multiferroic and electronic materials, and finishing with

catalysis.

Energy applications

The reasons to switch from an energy economy primarily

powered by fossil fuels to renewable resources include

reduced pollution, more stable pricing, and improved energy

independence of nations. A critical challenge present for

almost all renewable energy technologies is to find low-cost,

earth-abundant materials that also meet high performance

requirements [79, 80]. A selection of such challenges

J Mater Sci (2012) 47:7317–7340 7321

123



include: materials to efficiently capture and convert sunlight

to energy; stiff, failure resistant alloys for wind turbines;

corrosion-resistant alloys for nuclear power plant vessels;

high figure-of-merit thermoelectric materials; catalysts for

fuel cells; materials for hydrogen storage; and low-cost and

high performance battery components. Materials advances

in these areas are potentially game-changing. For example, it

has been estimated that two-thirds of gasoline use in the

United States could be eliminated if vehicles were powered

by electricity for 60 km (about 37 miles), demonstrating the

need for better energy storage materials [81].

In this section, we examine ab initio predictions of

materials relevant to energy storage, Li-ion batteries and

hydrogen, and energy production from thermoelectric

materials.

Lithium-ion batteries

The Li-ion battery is the most common type of energy

storage in consumer electronics and it is strongly consid-

ered for emerging applications. These new areas of appli-

cation include the transportation sector (electric vehicles)

and load leveling of the power grid (which is especially

important for intermittent power sources such as wind and

solar). For electric vehicles, the Li-ion battery will likely

be the dominant energy storage technology for the fore-

seeable future. While the future is still uncertain, a report

from IHS predicts that global lithium-ion battery revenue

will grow from $11.8 billion in 2010 to $53.7 billion in

2020, and that electric cars will become the largest single

market for Li-ion batteries within the next 5 years [82].

A Li-ion battery contains two electrodes, the anode and

cathode, which are Li-insertion materials. The anode is

most commonly graphitic carbon, whereas the cathode

might be one of several chemistries such as Mn- and Ni-

doped LiCoO2, spinel LiMn2O4, or olivine LiFePO4. The

anode and the cathode are separated by an electrolyte that

permits the flow of Li? ions but not electrons. The elec-

trons flow through an external circuit to perform work.

When a Li-ion battery is discharged, Li-ions move from

the anode to the cathode. Taking the case of graphitic

carbon for the anode and LiFePO4 for the cathode, the

anode reaction upon discharge is:

LiC6 �! Liþ þ e� þ C6 ð5Þ

and the cathode reaction is:

Liþ þ e� þ FePO4 �! LiFePO4 ð6Þ

The reverse reactions occur upon charge. Neglecting the

(significant) weight and volume of the inactive

components, the energy stored by the battery is the

product of two properties: its capacity and its operating

voltage. The electrode capacity of the battery, measured in

mAh/g or mAh/cc, is the amount of charge transferred per

unit weight or unit volume of the electrodes. In the

example above, one electron of charge is transferred per

formula unit of LiC6 and LiFePO4. One way to improve the

energy density of Li-ion batteries is to improve capacity

either by reducing the mass or volume of the electrode

materials or by transferring multiple electrons per formula

unit. A second method is to increase voltage, which is the

energy stored per unit of charge; however, voltages above

about 4.5 V can be problematic as they often lead to side

reactions with the electrolyte. The voltage can be easily

obtained using DFT from two total energy computations

(one for the charged and one for the discharged state) [83].

In addition to voltage and capacity, other critical prop-

erties for Li-ion batteries, including rate capability

(through electronic [84] and ionic [85] limitations) and

safety [86], have been successfully modeled by first-prin-

ciples computations [87–89]. In this section, we focus on

the cathode due its large contribution to the overall cost,

weight, and volume of the cell and the significant amount

of theoretical work in this area.

Voltage modification in LiCoO2 through Al-doping As

mentioned in the previous section, one method to increase

the energy density of the cathode is to increase its voltage.

A 1998 study by Ceder et al. [90] introduced a new idea to

increase the voltage of cathode materials: by reducing the

amount of transition metal in the composition, a greater

amount of charge would be transferred to the anion, lead-

ing to a lower electrostatic energy and higher voltage.

Specifically, they hypothesized that replacing some of the

transition metal M in layered LiMO2 cathodes with inac-

tive Al would lead to higher voltages.

Although previous experimental studies had shown no

effect of Al substitution in layered LiMO2 systems, Ceder

et al. systematically computed both the voltages and Al

mixing energies of LiMO2 systems. Crucially, they found

that of all the LiMO2 systems, only LiCoO2 would favor-

ably incorporate Al; transition metals other than Co would

phase-separate upon addition of Al, explaining why no

voltage change had been observed in previous investiga-

tions of Al-doping [90]. In addition, they predicted that the

voltage increase would be significant: about 0.5 V per

33 % Al-doping [90].

Based on the computations, Ceder et al. [90] targeted

Li(Co,Al)O2 solid solutions. The results indeed demon-

strated significant voltage increases of about 0.15 and

0.3 V for 25 and 50 % Al-doping, respectively (Fig. 2).

Although the measured voltage increase was about half of

what was computationally predicted, the computational

work unequivocally produced the right qualitative results

and guided the experiments to LiCoO2 as the suitable test

system for Al-doping.
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High-rate LiMn0.5Ni0.5O2 Apart from the energy density

(driven by capacity and voltage), many applications,

including transportation, require the ability to charge and

discharge the battery at a high rate. DFT investigations of

rate capability generally focus on activation barriers for Li

motion in the bulk, which are used to crudely approximate

the Li diffusion coefficient. Activation barriers for Li

motion can be evaluated using NEB calculations [15, 16].

Thus, calculations can in principle be used to design new

materials with good potential rate capability. An example

of such a study was conducted by Kang et al. [91] on the

optimization of LiMn0.5Ni0.5O2.

LiMn0.5Ni0.5O2 is a desirable cathode material because

octahedral Mn4? ions stabilize the layered structure during

cycling, whereas Ni2?/4? provides an electron acceptor at a

desirable voltage. However, LiMn0.5Ni0.5O2 synthesised by

solid-state reaction suffers from relatively poor rate capa-

bility. Kang et al. [91] investigated computationally the Li

diffusion mechanisms in this system, finding that the

activation barrier of Li was extremely sensitive to the

spacing between oxygen layers. The computational results

indicated that even small oxygen layer spacing reductions

of 0.02 Å led to large 20–30 meV reductions in the acti-

vation energy (Fig. 3).

To synthesize LiMn0.5Ni0.5O2 with larger layer spac-

ings, Kang et al. [91] noted that conventional synthesis

leads to disorder between Li and Ni. Further calculations

demonstrated that this disorder reduces layer spacing, and

thereby inhibits fast Li diffusion [91]. To achieve high

rates, Kang et al. synthesised ordered LiMn0.5Ni0.5O2

by ion exchanging Li into ordered NaMn0.5Ni0.5O2.

The ordered LiMn0.5Ni0.5O2 significantly outperforms

conventional LiMn0.5Ni0.5O2 at high-rates, in agreement

with theoretical predictions [91].

Thus, the design principle of achieving higher rate

capability by tuning layer spacing was confirmed experi-

mentally. Despite the successful demonstration of a novel

high-rate cathode material guided by DFT computation,

ordered LiMn0.5Ni0.5O2 presently suffers from poor

capacity retention upon repeated cycling, and studies to

better understand its behavior are in progress.

High-throughput studies LiMnBO3, Li9V3(P2O7)3(PO4)2,

Li3MnPO4CO3 Because many cathode properties can be

predicted by using only total energy calculations, the

search for new cathode materials can be semi-automated.

In particular, potential cathode chemistries can be screened

on voltage, volume change, stability upon Li removal/

insertion, thermal safety, and, to some extent, Li diffusiv-

ity. Such a study was conducted by Ceder and co-workers,

who screened tens of thousands of cathode materials,

including both known compounds and yet-unknown com-

pounds generated using data-mined compound prediction

algorithms (Fig. 4). Here, we highlight novel cathode

materials that were guided by this high-throughput search.

Monoclinic LiMnBO3

Borates are an interesting class of materials for cathodes

because they possess attractive voltages and fairly large

Fig. 2 Measured voltage of LixAlyCo1-yO2 cathodes as a function of

lithium content for three different levels of Al-doping [90]. The

experimental data confirms the theoretical work of the same group

predicting that Al-doping would result in higher voltages. Reprinted

by permission from MacMillan Publishers Ltd: Nature [98], copyright

1998
Fig. 3 The predicted effect of Li slab spacing on activation barriers

for Li migration in layered Li(Mn0.5Ni0.5)O2 [91]. The data indicates

that larger slab spacings will lead to lower Li-migration barriers, and

subsequently higher rate capability of Li(Mn0.5Ni0.5)O2 electrodes.

Experimental work by the same team on ion-exchanged versus

conventional Li(Mn0.5Ni0.5)O2 samples confirmed the prediction.

From [91], reprinted with permission from AAAS
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capacities due to the high charge-to-weight ratio of the

borate chemical group. LiMnBO3 is a borate that crystal-

lizes in both a low-temperature monoclinic and high-tem-

perature hexagonal form. The hexagonal form had been

investigated previously but had demonstrated very poor

capacity in experiments [93]. However, the monoclinic

form remained untested as a cathode.

High-throughput calculations over the known materials

revealed that monoclinic LiMnBO3 was a promising elec-

trode material possessing several advantages over its hex-

agonal counterpart: a more stable delithiated state, a lower

activation energy for Li migration, and a lower voltage that

might be less susceptible to side reactions with the elec-

trolyte [94]. These characteristics hinted that although

hexagonal and monoclinic LiMnBO3 have the same theo-

retical gravimetric capacity, the capacity of monoclinic

LiMnBO3 achievable in practice might exceed that of the

hexagonal form.

Based on this data, monoclinic LiMnBO3 was synthes-

ised and tested as a cathode [94, 95]. As suggested by the

calculations, the monoclinic form initially demonstrated

about three times the gravimetric capacity of the hexagonal

form (Fig. 5). In addition, monoclinic LiMnBO3 displayed

even greater capacity, about ten times that of its hexagonal

counterpart, with some optimization of the ball-milling and

carbon coating method (Fig. 5).

High-throughput computations helped reveal mono-

clinic LiMnBO3 as a strong materials candidate that was

somehow missed by experimental study alone. Thus, one of

the great advantages of large-scale computational searches

is their systematic and comprehensive nature.

Li9V3(P2O7)3(PO4)2

In addition to the previously known LiMnBO3 monoclinic

phase, the high-throughput search coupled with a data-

mined compound prediction algorithm [67] identified a

previously unknown layered diphosphate–phosphate mate-

rials, Li9V3(P2O7)3(PO4)2 as likely to be synthesizable and

displaying attractive cathode properties (i.e., an attractive

voltage, a theoretical energy density about 20 % higher than

LiFePO4, and fair safety).

Experimental reports of synthesis and promising elec-

trochemical performance from Li9V3(P2O7)3(PO4)2 came

from two groups. The high-throughput team of Ceder et al.

[96] reported on the synthesis and electrochemical prop-

erties of Li9V3(P2O7)3(PO4)2 in a patent filing. However,

Li9V3(P2O7)3(PO4)2 was also synthesised and tested inde-

pendently by Kuang et al. [97, 98]; their report was pub-

lished after Ceder et al.’s patent filing, but prior to any

computational results being published by Ceder and

Fig. 4 Flow chart for high-throughput screening of battery cathode

materials [92]. Similar to many screening workflows, the procedure is

tiered so that relatively inexpensive calculations (total energy

evaluations of the discharged and charged states) narrow down the

candidates to a smaller list. The more computationally expensive

migration barriers are calculated only for candidates passing the pre-

screening

Fig. 5 Measured electrochemical performance under galvanostatic

conditions for two different crystal structures of LiMnBO3 at C/20 rate.

Kim et al. [94] predicted that the untested monoclinic version might be

more promising than the conventional hexagonal structure. The

experimental data confirms the prediction: the hexagonal compound

(h-LiMnBO3) produces a capacity of only about 10 mAh/g whereas

unoptimized monoclinic LiMnBO3 (m-LiMnBO3) displays a capacity

that is at least three times greater. Further optimization with carbon

coating and ball-milling results in a capacity of about 100 mAh/g for

the monoclinic form (m-LiMnBO3: opt). Reproduced with permission

from [94]. Copyright 2011, The Electrochemical Society
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coworkers. Kuang et al.’s discovery of Li9V3(P2O7)3(PO4)2

therefore came independently of and around the same time

as that of Ceder et al. Both groups have demonstrated

Li9V3(P2O7)3(PO4)2 to be one of only a few known

materials capable of exchanging multiple electrons per

transition metal (through the V3? to V5? redox couple).

Although neither group has yet attained the full theoretical

capacity (around 170 mAh/g), a reversible capacity of

about 140 mAh/g was obtained by Kuang et al. [98]. Fol-

low-up calculations by Jain et al. indicate that doping

might be needed to further improve the experimentally

realized capacity [99].

Although further experimental work is needed on this

compound, it already represents a rare example in which an

entirely new phase of technological interest in an uncom-

mon crystal structure and stoichiometry was discovered

computationally and subsequently made in the laboratory.

Sidorenkites: Li3Fe(CO3)(PO4), Li3Mn(CO3)(PO4)

Cathode materials including polyanionic groups such as

PO4
3-, SiO4

4-, or BO3
3- are of great interest in the battery

community but materials with a combination of those

groups have been less explored. Similarly to Li9V3(P2O7)3

(PO4)2, the high-throughput battery screening project

identified a completely new class of mixed polyanion

compounds: the lithium metal carbonophosphates Li3M

(CO3)(PO4) in the crystal structure of the rare mineral

sidorenkite [100, 101]. These compounds are of interest for

cathode materials due to their low volume change during

delithiation (which is beneficial for cyclability) and a

potential for high capacity due to the large lithium content

([200 mAh/g).

Of the potential Li3M(CO3)(PO4) compounds, the most

interesting candidate was predicted to be Li3Mn(-

CO3)(PO4) which is computed to activate the Mn2?/Mn4?

redox couples in an adequate voltage range (between 3 and

4.5 V) and has a large theoretical specific energy of about

800 Wh/kg (versus about 600 Wh/kg for the current

polyanionic compound LiFePO4). A comprehensive phase

stability analysis on all AxM(YO3)(XO4) compounds in the

sidorenkite structure (with A = Li or Na, M a redox active

metal, Y = C or B, and X = P, Si, As, or S) indicated that

the carbonophosphates were indeed the most stable

chemistries but that all Li3M(CO3)(PO4) compounds are

somewhat unstable and might be difficult to synthesize

directly. On the other hand, many Na compounds are stable

(a)

(b)

(c)

(d)

Fig. 6 a and b Computed stability for different combinations of

active element and polyanion mixtures in the sidorenkite structure

[100]. The energy above the hull is an indicator of instability: lower

energies above the hull indicate a smaller driving force for

decomposition (greater stability). The ‘‘/’’ indicate non-computed

combinations. The computational study identified the CO3–PO4

mixtures to be the most stable and suggested that the compound

might be synthesised by first forming the Na phase and performing a

Na–Li ion-exchange. c Cycling data for Li3Fe(CO3)(PO4) at a C/5

rate, indicating the good cycling performances for the sidorenkite

structure [92]. d The voltage versus capacity curve for the

Li3Mn(CO3)(PO4) compound with residual sodium at a C/100 rate,

after synthesis and with an additional ball-milling step [92]. Figure

a and b from [100]. Reproduced by permission of the Royal Society

of Chemistry (RSC)

c
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according to computations, suggesting synthesis route was

proposed in which Li-Na ion-exchange could be performed

on the stable Na analog (Fig. 6a, b) [100].

Based on the theoretical study, Chen et al. subsequently

synthesised the Li3M(CO3)(PO4) (M = Mn, Fe, Co, Ni)

materials using hydrothermal synthesis of the Na phase

followed by Na–Li ion-exchange [92]. Experiments on the

iron version, Li3Fe(CO3)(PO4), demonstrated that only half

of the expected capacity could be extracted, in line with

theoretical predictions that the second voltage step of

Li3Fe(CO3)(PO4) occurs at high voltages that would be

hard to access with conventional electrolytes. However,

Li3Fe(CO3)(PO4) demonstrated very good cyclability,

indicating that the sidorenkite structure can indeed sustain

multiple Li-intercalation cycles (see Fig. 6c). The more

promising Mn analog thus far has not achieved the full

theoretical capacity, which might result from residual Na

after the ion-exchange, but has shown activity in the

voltage range predicted computationally (Fig. 6d) [92].

This example illustrates how entirely new chemistries of

technological interest can be identified through computations.

Indeed, carbonophosphates are rare minerals that had no

known technological application before their computational

identification. It also shows that computations can effectively

drive synthesis by providing likely synthesis routes (here a

Na–Li ion-exchange) based on stability analysis.

Hydrogen storage

Hydrogen is a potential medium for storing and trans-

porting energy. Hydrogen can be cleanly generated, either

through electrolyzers or through water-splitting solar cells,

and its energy content can be released pollution-free

through fuel cells. There are many interesting materials

problems in obtaining efficient photocatalysts to carry out

water-splitting for hydrogen generation as well in finding

catalysts for use in hydrogen fuel cells, both of which will

drive down the cost of using hydrogen as an energy carrier

(see ‘‘Catalysts for production and activation of H2’’ sec-

tion). However, we focus in this section on the problem of

densely and reversibly storing hydrogen as a fuel.

The most direct forms for hydrogen storage are as a

compressed gas, which suffers from low energy density, or

as a liquid, which sacrifices 30–40 % of the energy stored

during the liquefaction process [102]. Therefore, much

research is being directed toward discovering solid metal

hydrides that have a high percentage of hydrogen by

weight or volume, have favorable thermodynamics for

hydrogen release/absorption at about 100 �C, and can

absorb and release hydrogen at high rates. At present, most

DFT research has concentrated on the first two questions

by clarifying the reaction pathways by which hydrogen is

released in a material (thus determining percent of usable

hydrogen) and by computing the thermodynamic (free)

energy of the reactions. An overview of first-principles

approaches to addressing hydrogen storage can be found in

several excellent reviews [103, 104].

LiNH2–MgH2 (1:1) as a hydrogen storage material

Trends in thermodynamic hydrogenation and dehydroge-

nation energies can be reliably obtained using zero K total

energy calculations. The straightforward nature of these

calculations make it possible to conduct large-scale com-

putational studies that test the thermodynamic feasibility of

hundreds of potential hydrogen storage materials. One such

study was conducted by Alapati et al. [105] on over 100

dehydrogenation reactions. These reactions generally

involved one or multiple ternary metal hydrides reacting to

form hydrogen gas and non-hydrogenated binaries such as

metal borides, silicides, or nitrides.

Alapati et al. [105] reasoned that, given typical entro-

pies of hydride reactions, the reaction enthalpy of dehy-

drogenation should target the range of about 30–60

kJ/mol—H2. Neglecting kinetic considerations, a reaction

enthalpy in this range would allow for both uptake and

release of hydrogen near the target temperature range

between 50 and 150 �C. Using this simple metric, Alapati

et al. computed the energies of over 100 dehydrogenation

reactions involving 49 unique compounds taken from

experimental databases (see Fig. 7).

From the computed reactions, the researchers deter-

mined five new reactions that were not previously reported in

Fig. 7 Reaction enthalpies and capacities for 129 hydrogen storage

reactions predicted by Alapati et al. [105]. The region of interest

indicates reactions that possess both a high-hydrogen storage potential

and a favorable reaction enthalpy. The data suggests several new

potential hydrogen storage reactions, including LiNH2:MgH2 mixed

in a (1:1) ratio which was subsequently confirmed experimentally

[106]. Reprinted with permission from [105]. Copyright 2006,

American Chemical Society

7326 J Mater Sci (2012) 47:7317–7340

123



the experimental literature [105]. Thus, the computational

study narrowed the initial search space by a factor of over

twenty and reduced the candidate reactions to a number that

could reasonably be tested by experiments. One of the five

reactions suggested was a simple 1:1 reaction of LiNH2 with

MgH2 that theoretically releases 8.19 wt% H:

LiNH2 þMgH2 �! LiMgNþ 2H2 ð7Þ

The enthalpy of this reaction was computed to be about

30 kJ/mol—H2 [105]. It is worth noting that mixtures of

LiNH2 and MgH2 were previously tested for hydrogen

storage [107], but in a 2:1 ratio rather than the 1:1 ratio

proposed computationally. This 2:1 ratio has a lower

theoretical capacity of about 5.4 wt% H, and experiments

by Luo [107] on this ratio had yielded about 4.5 wt% H

with a decomposition energy of 34 kJ/mol.

Experimental confirmation of Alapati et al.’s prediction

came shortly afterward from Lu et al. [106], who obtained

a capacity of 8.1 wt% of H from LiNH2:MgH2 (1:1). The

enthalpy of reaction was measured to be 33.5 kJ/mol—H2,

close to the 30 kJ/mol theoretical prediction [105]. How-

ever, Lu et al. [106] found that activating the reverse

reaction required a catalyst, and likely did not yield back

the starting products.

In contrast to these experimental results, studies by both

Osborn et al. [108] and Liu et al. [109] found that

LiNH2:MgH2 (1:1) underwent different reaction pathways

than suggested by the computations, and correspondingly

found different storage capacities. The discrepancy between

these measurements was addressed by Lu et al. [110], who

suggested that low energy ball-milling would yield the

reversible 8.1 wt% H capacity that they originally reported

[106], whereas high-energy ball-milling would yield other

reactions. The choice of ball-milling method was therefore

crucial to the final performance of the material.

The case of LiNH2:MgH2 (1:1) illustrates the power of

relatively straightforward theory, automated over many

compounds, to provide guidance into further experiments.

Although the LiNH2:MgH2 system was already studied

experimentally, the comprehensive nature of large-scale

calculation revealed a new and promising mixing ratio that

had until then eluded experimental consideration. As it is

often the case, however, the computational discovery had

to be followed up by optimization of the factors not taken

into account in the modeling such as the sample prepara-

tion (i.e., low energy vs high-energy ball-milling) and the

kinetics of the system.

Thermoelectrics

Thermoelectrics are materials that generate voltage from a

temperature differential (the Seebeck effect). They can also

be operated in reverse to drive a temperature difference,

most often for cooling (the Peltier effect). For power

generation, well-established applications have primarily

been for space missions, whereas emerging applications

include co-generation of power with solar cells, waste heat

recovery from trucks, small and self-powered electronics,

and large-scale waste heat recovery from power plants

[111]. Thermoelectric cooling has found many niche con-

sumer applications, such cooling of beverages, vehicle

seats, and microprocessors.

The primary measure of performance for a thermoelectric

material is its figure-of-merit ZT which is defined as:

ZT � a2rT

j
ð8Þ

where T represents temperature, r represents electronic

conductivity, and j represents thermal conductivity. The

thermopower a (often called the Seebeck coefficient) is the

voltage produced by a given temperature difference.

The figure-of-merit ZT, along with the ratio between the

temperature of the hot and cold sides, determines the per-

centage of the Carnot efficiency a thermoelectric can attain.

Researchers in the field generally seek materials with

ZT [1 and ideally in the range of 2–3. A material with a

ZT of 2–3 corresponds to an overall efficiency of about 25–

30 % if the hot side is kept at 500 �C with the cold side at

room temperature. While even greater ZT would be ben-

eficial, there are diminishing returns with increasing ZT.

To produce a figure-of-merit[1, the thermopower a must

be greater than about 150 lV
K (assuming fairly optimistic

values for the other parameters) [112]. High thermopower is

a necessary but insufficient condition for good performance.

The other necessary condition is to have a high ratio between

electronic and thermal conductivities, r
j (Eq. 8). The thermal

conductivity is generally expressed as separate electronic

and lattice contributions, j = je ? jl. Achieving a high

ratio between the electronic contributions r and je is difficult

because these quantities tend to be proportional to one

another (for example, through the Wiedemann–Franz law in

metals). Much research therefore focuses on minimizing the

phonon contributions to the thermal conductivity, jl. This

idea is succinctly summarized through the acronym PGEC

(phonon glass and electron crystal), and realized through

both nanostructured materials and bulk materials with ‘‘rat-

tler’’ ions inside voids such as skutterudites and clathrates

[113]. While a few design principles are available to achieve

PGEC, it remains difficult to find materials with high ZT.

Today’s commercial thermoelectrics are generally bulk

materials such as alloys of Bi2Te3, PbTe, and SiGe.

LiZnSb as a new thermoelectric A direct approach to

predicting the thermoelectric figure-of-merit would involve

calculating the thermopower a along with the electronic
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conductivity r and the thermal conductivities je and jl (Eq.

8). However, it is challenging with present methods to

compute all of these properties accurately even for a single

material, let alone a diverse set of materials. Madsen

simplified the problem by focusing on Sb-based alloys,

using the Wiedemann–Franz relation to remove je as a free

variable, and setting jl to a reasonable constant [114]. The

expression for figure-of-merit is thus simplified to:

ZT ¼ a2

L0 þ jl

rT

ð9Þ

where L0 is the Lorentz number and jl is set to a constant.

Equation (9) leaves only the (still challenging!) problem of

computing the thermopower a and electronic conductivity

r for a library of Sb compounds. These latter quantities

were computed using a rigid band approach based on the

Boltzmann equation along with an approximation for the

electron relaxation time based on common Sb alloys.

Under this approximation, the only computations needed to

estimate the figure-of-merit were the band structures of the

interesting Sb-based compounds.

As a search space, Madsen pre-screened 1670 Sb-based

compounds from the Inorganic Crystal Structure Database

(ICSD) [115, 116] to a list of 570 compounds based on

chemical arguments as well as to avoid limitations of DFT

in predicting properties of lanthanides and disordered

compounds. One validation of the approach was that it

found back chemical classes already known to be inter-

esting such as the skutterudites. In addition, the search

predicted that a known but untested compound, LiZnSb,

could produce a high figure-of-merit between 1.35 and

2.36 at 600 K. Crucially, the results indicated that n- and

p-types LiZnSb would behave very differently, with only

n-type LiZnSb producing a high figure-of-merit.

The challenge to synthesize n-type LiZnSb was under-

taken by Toberer et al. [117], who were able to synthesize

LiZnSb but could only form the p-type material. Toberer

et al. confirmed that Madsen’s predicted thermopower of

p-type LiZnSb at 500 K matched the experimental data to

within a few percent (Fig. 8). The good match between

computation and experiment on p-type LiZnSb lend credi-

bility that n-type LiZnSb, if synthesizable, could yield the

very high-predicted figure-of-merits. However, dopability

was not addressed in Madsen’s study [114], and it is pos-

sible that n-type LiZnSb would be extremely difficult to

synthesize. The study has therefore demonstrated that its

search strategy can pick out materials known to be inter-

esting from a larger list and successfully predicted the

thermoelectric properties of p-type LiZnSb prior to exper-

imental measurements. In the future, an ab initio indicator

of dopability through defect computations [118, 119] might

improve the chances to find a viable new thermoelectric.

High thermopower in FeSb2 A niche application for

thermoelectrics is cryogenic cooling. An interesting class

of compounds for this application is Kondo insulators.

Kondo insulators are metallic at room temperature because

the Fermi energy lies within the conduction band. How-

ever, at low temperatures, a metal-to-insulator transition

occurs because the conduction band hybridizes with

localized d- or f-states near the Fermi energy. The

hybridization opens up a small gap leading to insulating

behavior. In the vicinity of this transition temperature,

there are large variations in the density of states close to the

Fermi energy, leading to a high thermopower a.

It would be difficult to quantitatively predict Kondo

insulators from DFT calculations because the Kondo effect

depends on strong correlations, which are difficult for

present-day DFT exchange-correlation functionals to quan-

titatively reproduce. Instead, Madsen et al. relied only on

qualitative correlations in the calculated density of states

(DOS) between FeSb2, at that point unknown to be a

Kondo insulator, and FeSi, a known Kondo insulator, to

suggest that FeSb2 might display a high thermopower due

to the Kondo effect [120] (it should be noted that around

the same time, the experimental work of Petrovic et al.

similarly suggested FeSb2 might be described as a Kondo

insulator [121]). The similar DOS of FeSi and FeSb2 was

an unintuitive result because FeSb2 and FeSi crystallize in

different structures (marcansite versus a distorted rocksalt,

respectively). The common fingerprint in both compounds

was a high and steep DOS near the Fermi energy.

Fig. 8 Thermopower a versus doping level for p-type LiZnSb. The

circles represent experimental data measured by Toberer et al. [117]

at 500 K, and the solid line represents a fit to the experiment using a

single-parabolic band model. The thermopower predicted by Madsen

et. al using first-principles calculations is shown as dotted and dashed-

dotted lines [114]. The agreement between prediction and experiment

indicates that it might be possible to screen for materials possessing a

high thermopower through computation. Reprinted with permission

from [117]. Copyright 2009, American Institute of Physics
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Based on the theoretical observation, Bentien et al.

measured the low-temperature thermopower of FeSb2,

finding a peak at �500 lV
K

at 25 K [122]. This high value

was later surpassed by the same authors and Steglich, who

measured a colossal thermopower of about �45000 lV
K

at

10 K and a record-setting power factor ða2

q Þ of about

2300 lW
K2 [123]. Unfortunately, despite the high thermo-

power, the actual figure-of-merit of FeSb2 was measured to

be very poor (0.005 at 12 K) due to a high-lattice thermal

conductivity [123]. However, it is nonetheless interesting

that even qualitative observations of DFT band structure

calculations have the potential to guide record-breaking

experimental measurements.

Electronic, magnetic, and ferroelectric materials

Materials with specific magnetic, ferroelectric, or elec-

tronic properties are essential in many applications such as

sensors, integrated circuits, and information storage. Many

of the properties of interest in these fields (e.g., band

structures or magnetic moments) can be accessed directly

through ab initio techniques, leading to several examples of

computationally driven materials design.

Magnetic materials

Most of the current non-volatile information storage devi-

ces (e.g., hard disks) are based on magnetism and depend

on ferromagnets (i.e., materials in which an applied mag-

netic field can induce a permanent magnetization). Simply

put, binary information is stored by inducing or removing

permanent magnetization in a ferromagnetic film through

the application of a magnetic field [124, 125].

Magnetic ordering in multicomponent borides and

nitrides For magnetic storage applications, it is impor-

tant to be able to predict the exact nature of spin ordering in

an inorganic compound: ferromagnetic (FM) with spins

pointing in the same direction or anti-ferromagnetic (AFM)

with spins pointing in opposite directions.

Dronskowski et al. [126] showed in a series of papers

that the magnetic ordering of borides and nitrides could be

predicted through DFT computations, enabling a chemical

tuning of their magnetic behavior. Focusing on the series of

A2MRh5B2 compounds in the Ti3Co5B2 crystal structure,

they demonstrated that DFT computations could predict

whether the magnetic ordering of a material would be

AFM or FM. Starting with a known AFM compound,

Mg2MnRh5B2, they computed that combined substitutions

of Sc for Mg and Fe for Mn will result in a FM compound.

The synthesis and characterization of the Sc2FeRh5B2

compound confirmed the prediction. Similarly, the study

presented two quinternaries based on the same crystalline

framework Sc2FeRu3Rh2B2 and Sc2MnRu3Rh2B2 that they

computed to be AFM and confirmed experimentally

afterward [126].

The same group turned to the study of the Fe4N-based

phases due to their interest as high-density recording

materials. Fe4N exhibits a large permanent magnetization,

a low coercitivity (i.e., only a low-magnetic field is

required to switch off the permanent magnetization) and

chemical inertness. They investigated the MFe3N com-

pounds (with M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt)

formed by the substitution of one Fe site on the Fe4N

structure. First, the stability of the different phases versus

decomposition to other products (i.e., M, Fe, and FeN) was

studied. The theoretical results agreed very well with pre-

vious experimental knowledge, predicting negative

enthalpies of formation for all known MFe3N compounds

(i.e., M = Ni, Pd, Pt, Fe) and also led to predicting that the

(previously unknown) rhodium-based compound should be

stable and ferromagnetic [127]. Synthesis and magnetic

characterization confirmed the existence and ferromagnetic

nature of the previously unknown Rh-based compound

[128]. The experimental value for the magnetic saturation

per formula unit is 8.3 lB and in good agreement with the

predicted 9.2 lB. Moreover, later experimental work on

purer samples demonstrated that the site occupancy (in the

Fe4N structure) favored according to DFT was indeed

observed experimentally [129].

While not directly opening up to immediate applica-

tions, both of these examples show that the magnetic

nature of compounds can be predicted and somehow

chemically tuned even before synthesis. It also represents

a case in which an entirely new phase (RhFe3N) was

predicted through ab initio stability analysis and con-

firmed experimentally.

Large magnetic anisotropy in FeCo alloys In another

study involving magnetism, Burkert and co-workers com-

putationally designed an alloy with two desired properties:

high magnetic-anisotropy and -saturation. As the recording

density of hard disks is increasing, the magnetic energy per

grain (KuV, where Ku is the magnetic anisotropy and V is

the volume of the grain) is getting small enough that

thermal fluctuations could erase recorded information.

Finding materials with high magnetic anisotropy can mit-

igate this detrimental effect. However, the required field to

write on the magnetic storage device (Hw) increases with

the magnetic anisotropy:

Hw �
Ku

Ms

ð10Þ

with Ms representing the magnetic saturation (i.e., the

maximum permanent magnetization achievable). This
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leads to the additional requirement of high-magnetic sat-

uration to keep the writing field low enough.

Motivated by these design rules, the researchers com-

puted through DFT the Ku and Ms parameters for the body

centered tetragonal Fe1-xCox alloy as a function of the Co

concentration (x) and the lattice parameters (c/a ratio)

[130]. Figure 9 shows the results of this investigation and

points out that a maximum of Ku is computed to be

achievable at c/a around 1.2 and a Co concentration of

60 %. The magnetic saturation, while not maximum, is still

reasonably large at 2 lB/atom (compared to other materials

candidates, e.g., FePt) in the optimal conditions for

anisotropy. To obtain this optimal c/a ratio, the material

would need to be kept under strain, for instance through

epitaxy.

Several follow-up experiments on different substrates

(Rh, Pt, and Pt–Fe1-xCox superlattices) confirmed the

exceptionally high-magnetic anisotropy combined with

good magnetic saturation [106, 131, 132]. The value of

optimal c/a ratio and cobalt concentration are quantita-

tively remarkably close to the predictions, as well as the

measured magnetic saturation (e.g., 2.4 lB/atom exp. vs

2.1 lB/atom computationally [132]). On the other hand, the

magnetic anisotropy, while very large and indeed two

orders of magnitude higher than in the unstrained alloy

[131], was measured around 100–200 leV/atom while

computed to be 700–800 leV/atom in bulk or 380

leV/atom in a model Pt superlattice. Recently, subsequent

computations showed that the reason for this discrepancy

does not lie in DFT but probably in the virtual crystal

approximation (VCA) model that poorly approximates the

disordered nature of the experimentally grown thin films

[133].

Here, it is the precise control provided by computational

studies which was extremely valuable. A purely experi-

mental study of the magnetic properties of those alloys

under different strain and Co content would have been

extremely time-consuming and cumbersome.

Large tunneling magneto-resistance in Fe/MgO/Fe junc-

tions Another magnetic effect of great interest from an

application point of view is tunneling magneto-resistance

(TMR). When two magnetic materials are separated by a

very thin insulating layer (typically a few nanometers) in a

thin film sandwich structure, the electrons can tunnel

through the insulating layer; the tendency to tunnel will

depend on the relative electron spin alignment in the two

magnetic layers. The tunneling will be facilitated when the

spins are pointing in the same direction and more difficult

when spins are anti-aligned. As the electron spin popula-

tion in each magnetic layer can be independently controlled

by external fields, the resistance of the structure, which is

related to the tendency for electrons to tunnel, can be tuned

magnetically. This opens the way to a control of the

resistance of a device through transversal magnetic fields

which is of great interest application-wise.

The TMR effect is often reported by the magnitude of

the TMR coefficient, which describes the change in resis-

tivity between the situation when the spins are in the same

and opposite directions. The first measurements of the

TMR effect showed a small TMR coefficient (on the order

of 10–20 % at 4.2 K for a Pb/Ge/Pb structure [134]). In

practice, the TMR effect could be much larger and two

independent computational papers predicted that structure

based on Fe/MgO/Fe should exhibit the needed high TMR

effect (up to 1000 % in one of the studies) [135, 136].

One of the first measurements of thin film structures

similar to the predictions (Fe/MgO/FeCo) found a TMR

coefficient of 27 % at room temperature (and 60 % at

30 K) [137]. A few years later, Yusa et al. and Parkin et al.

measured high TMR at room temperature on Fe/MgO/Fe

structures (up to 200 %) as shown in Fig. 10 [138, 139]. In

addition, the paper from Yusa confirmed the proposed

theoretical mechanism based on a coherent tunneling

mechanism. The difference between these two results and

Fig. 9 Computed magnetic anisotropy (Ku) and saturation (ls) for

Fe1-xCox as function of the concentration of Co (x) and the c/a ratio

of the tetragonal crystal structure [130]. This graph was used to

identify a region of c/a and x where the magnetic anisotropy is

especially high. Reprinted figure with permission from [130].

Copyright 2004 by the American Physical Society
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previous ones on MgO-based junctions is likely to come

from the quality of the grown films.

This example of ab initio prediction is very close to

current applications as films using this large TMR effect

are already used in hard disk heads nowadays as well as in

new magnetic random access memory (MRAM) chips

providing non-volatile, fast and energy efficient informa-

tion storage. It illustrates how computations can sometimes

demonstrate the theoretical potential of a material or device

that has not been achieved yet due to process limitations.

Magnetoelectric multiferroics

Another important field of research in functional materials

relates to magnetoelectric multiferroics. These materials

combine ferromagnetism (persistent magnetization induced

by a magnetic field) with ferroelectricity (i.e., persistent

electric polarization induced by an electric field). Materials

combining those two properties are of interest in future

device applications, especially for their possible coupling

between magnetic and electric effects. For instance, a

magnetoelectric material could have its magnetization

controlled by an electric field and therefore lead to data

storage mechanisms where the reading process is magnetic

while the writing is electric, which is advantageous tech-

nologically [140, 141]. Magnetoelectric materials are,

however, quite rare because ferromagnetism requires spe-

cies with partially filled d-orbitals (e.g., Mn3?, Fe3?, or

Ni2?), while the most common form of ferroelectricity

relies on the presence of species with empty d-orbitals

(e.g., Ti4?) often on B sites of a perovskite structure.

BiMnO3 as a magnetoelectric multiferroics There exists,

however, another mechanism for ferroelectricity requiring

the displacement of species with active lone pairs (e.g.,

Pb2? or Bi3?) opening the potential to be combined with

magnetic elements to form magnetoelectric multifferroics

[142, 143]. In search of such a magneto-electric material,

Hill and Rabe [144] computationally predicted that a

known ferromagnetic material BiMnO3 forming in the

perovskite structure (see Fig. 11a) should also exhibit fer-

roelectricity. The computational study of the phonon

modes indicated that one of the unstable modes indeed

produced an opposite displacement of Bi and O atoms (see

Fig. 11b) and led to ferroelectric behavior.

A few years later, the prediction of ferroelectricity in

BiMnO3 was confirmed experimentally [145]. Ferromag-

netic behavior was measured (as previously known) with a

Curie temperature of 105 K (see Fig. 11c), and a polari-

zation-electric field hysteresis (see Fig. 11d), which is a

signature of ferroelectricity, was observed down to 80 K,

indicating that BiMnO3 is, at low temperature, a magne-

toelectric multiferroic. Further experimental studies con-

firmed these first measurements on purer samples [146].

While an early and convincing success of computational

materials design, BiMnO3 turned out to not have a strong

enough coupling between ferroelectricity and magnetism to

be of interest technologically and the quest for magneto-

electric multiferroics with strong coupling is still open and

significantly driven by ab initio techniques [147].

Ba0.5Eu0.5TiO3 as a multiferroics for the permanent elec-

tron dipole measurement The computational design of

multiferroic materials is even impacting the field of theo-

retical physics as shown by the recent development of

devices for the detection of the electron permanent dipole,

the existence of which is of great importance in funda-

mental physics. One way of measuring the electron per-

manent electric dipole would be to apply an electric field

on a population of electrons in a material, thereby splitting

the population into two groups: one with the electric

moment parallel to the field and another with the electric

Fig. 10 High-resolution transmission electronic microscope picture

of a Fe/MgO/Fe junction (the circles indicate disclocations) and TMR

coefficient measurements in function of the MgO layer thickness

[138]. The experimental measurement confirmed the very high TMR

coefficient suggested by computations. Reprinted by permission from

MacMillan Publishers Ltd: Nature Materials [138], copyright 2004
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moment anti-parallel. As physical laws impose that the spin

needs to be parallel or anti-parallel to the dipole, there

needs to be a net magnetization due to the electron popu-

lation splitting. Measuring the change in magnetization

during the reversing of the electric field could be used to

deduce the electron permanent dipole.

The materials requirements to perform such an experi-

ment are extremely severe [148]. The material needs to be

ferroelectric with a large and easily switchable electric

polarization at low temperature, have a high concentration

of heavy ions with local magnetic moments remaining

paramagnetic at low temperature (i.e., no magnetic long-

range ordering), and exhibit a strong perturbation of the

local environment of the magnetic ions during the ferro-

electric switching. While obtaining a magnetoelectric

material can be achieved at low temperature as shown in

the example of BiMnO3, one of the major challenges is to

find a material that will not have any magnetic ordering at

low temperature while conserving a high concentration of

magnetic ions.

Ruschanskii et al. [148] proposed an alloy of BaTiO3

and EuTiO3 (both stable in a perovskite structure) as a

material candidate at the Ba0.5Eu0.5TiO3 composition.

They computed that the material would exhibit ferroelec-

tricity (through Ti4?) while the magnetic Eu atoms would

move significantly during the Ti off-centering in the octa-

hedron as required. Moreover, they showed, by computing

the energetics of different Ba and Eu orderings, that the Eu

atoms should not interact at a long-range because of the

dilution effect of the barium atoms. The synthesis and

characterization of the material confirmed the computa-

tional findings [148].

The sensitivity obtained for this new material is already

an order of magnitude better than previous solid-state-

based measurement devices and optimization is under way.

This example is typical of how computations can help

solve the multi-parameter optimization problem often

faced by materials scientists.

Electronic materials

First-principles computations readily provide band struc-

tures of solids. While DFT band structures have tremen-

dously aided the understanding of many solids, there are

fundamental limitations with standard DFT methods (in the

GGA and LDA approximations) when quantitatively

modeling the electronic structure of materials and espe-

cially their band gaps (see ‘‘Ab initio methods’’). As the

two following examples of carbon and boron nitride

nanotubes illustrate, useful predictions can however be

made when DFT is used with full knowledge of its limits

Fig. 11 a The perovskite structure of BiMnO3. Oxygen atoms are

gray, Mn is black, and Bi is white [144]. b The Eigenvectors for one

of the unstable gamma point phonon modes obtained through first-

principles computations [144]. The opposite displacement of Bi and O

create the possibility for ferroelectricity. c Measurements of the

magnetic saturation at low temperature and d polarization versus

electric field at 87 and 200 K [145]. Those measurements demonstrate

the coexistence of ferromagnetism and ferroelectricity at low

temperature. Reprinted Figure a and b with permission from [144].

Copyright 1999 by the American Physical Society. Figure c and d are

reprinted from [145], copyright 2002, with permission from Elsevier
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and good quantitative agreement can even be reached when

more advanced techniques such as GW are used.

The electronic structure of carbon nanotubes The elec-

tronic properties of carbon nanotubes (CNT) have been of

great interest for the scientific community. However, it is

quite challenging to directly measure electronic properties of

individual nanotubes and computations provide a much

easier access to the study of CNTs electronic properties. In

pioneering studies dating back to 1992, Mintmire et al. and

Saito et al. [149, 150] used both DFT and tight-binding

models to predict how chirality (i.e., the way the graphene

sheet is folded to form the nanotube) and tube diameter

influence its electronic structure. These computational pre-

dictions were confirmed a few years later through careful

scanning tunneling microscopy (STM) experiments [151].

The electronic structure of boron nitride nanotubes

Owing to the similarity of boron and nitrogen to carbon, a

theoretical paper by Rubio et al. proposed the existence of

Boron Nitride nanotubes (BNNT) and computed their

electronic structures within DFT [152]. A follow-up com-

putational study showed that to the contrary of CNTs,

BNNTs should always be semiconducting and their band

gaps should not depend on their chirality and diameter

[153]. Soon after, the synthesis of BNNTs was demon-

strated [154], and a series of measurements on single and

multi-wall nanotubes confirmed the absence of correlations

between chirality, diameter and band gaps [155–157]. The

reported experimental (from multi-walls up to single walls

nanotubes) band gap values from 4.5 to 5.8 eV are in good

agreement with the computed GW value of 5.5 eV.

BNNTs have also been predicted to exhibit a large and

measurable effect of a transversal electric field on the band

gap of the nanotube [158]. This effect is called the giant

Stark effect in reference to the Stark effect involving the

splitting of energy levels of atoms or molecules in an

electric field. This effect was predicted to be much larger

for BNNTs than CNNTs, and is of interest in nanoelec-

tronics because tuning the electronic properties of a

nanotube with a transversal electric field could lead to

interesting devices. The presence of a giant Stark effect in

BNNTs was confirmed experimentally after its prediction

[159].

Both these examples show the added value of first-

principles predictions in fields such as nanotechnology

where measurements can be extremely challenging and

time-consuming.

Catalysis

Catalysts are an integral component in the production of

most industrially important chemicals and in many areas

of environment science. It is therefore no surprise that

computational materials science techniques have been

brought to bear on various aspects of surface science and

catalysis, providing many qualitative and quantitative

insights into experimental observations. In this section, we

will focus only on examples where computational investi-

gations have led directly to new materials. We will not

discuss the significant body of computational research that

have provided insights into existing catalytic phenomenon

without leading directly to new materials, and will instead

point the reader to other excellent reviews on this subject

[160, 161].

Catalysts are generally classified as homogeneous cata-

lysts (where the catalyst is in the same phase as the reac-

tants) or heterogeneous catalysts (where the catalyst is in a

different phase from the reactants). Given that homoge-

neous catalysis typically takes place in solution, most

examples of computational catalyst design are for solid-

state heterogeneous catalysts, which are more amenable to

treatment with current first-principles methods.

A fundamental concept in catalyst design is the Sabatier

principle, which states that the interaction between a cat-

alyst and the reactants should be neither too strong nor too

weak [162]. If the interaction is too weak, the reactants will

fail to bind to the catalyst and no reaction will take place.

On the other hand, if the interaction is too strong, the

catalyst gets blocked by reactants or products that fail to

dissociate. This principle leads to the now-ubiquitous

‘‘volcano’’ plot, where the reaction rate plotted against a

property such as the heat of adsorption or binding energy of

the reactant by the catalyst shows a maximum at an

intermediate value for the binding energy. An example is

shown in Fig. 12. The heat of adsorption or binding energy

is a property that can be readily computed via DFT com-

putations, and indeed, many early works in computational

catalyst design were primarily focused on computing

trends in binding energies of reactant molecules on various

transition metal surfaces.

However, catalyst design, like most materials design

problems, requires multi-property optimization. Besides

having a reactant binding energy in the right range, a

commercially viable catalyst must also satisfy fundamental

criteria of selectivity, reasonable cost, ability to operate in

the presence of potential poisons, and stability in the

reaction media, among others. In recent years, more

sophisticated approaches have been developed to compu-

tationally evaluate a large number of potential catalysts

across multiple criteria.

We have divided our review on computational catalyst

design into two broad categories: (i) catalysts for industrial

chemical production and (ii) catalysts relating to the pro-

duction and activation of hydrogen, which are key to

enabling a hydrogen economy.
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Catalysts for production of industrial chemicals

Selective hydrogenation of acetylene through Ni–Zn

alloys Ethylene (C2H4) is the most produced organic

compound in the world. It is used in the production of

polyethylene, the world’s most widely used plastic, and is a

precursor to the manufacture of many important chemicals

and polymers via oxidation, halogenation, and other

reactions.

In order for ethylene to be used in the production of

polymers, it must contain less than a few ppm of acetylene

(C2H2). To achieve this, hydrogenation of acetylene

ðC2H2 þ H2 ! C2H4Þ is carried out commercially to

selectively remove acetylene from ethylene. The most

common industrially used catalyst is Pd modified by Ag,

which is expensive.

Using DFT calculations, Studt et al. [164] identified

Ni–Zn catalysts as cheap replacements for Pd. A selective

catalyst for the hydrogenation of acetylene should have an

activation barrier of ethylene that is greater than the barrier

of desorption of ethylene, while still insuring a sufficiently

exothermic acetylene adsorption. Studt et al. identified a

scaling relation between the heats of adsorption for ethyl-

ene and acetylene and the adsorption energies of methyl

molecules on a number of transition metal surfaces, from

which they predicted NiZn and NiZn3 to have good

selectivity for acetylene hydrogenation. They also syn-

thesised a series of Ni–Zn alloy catalysts on MgAl2O4

spinel supports with Zn content between 45 and 75 %. The

experiments showed that the Ni–Zn catalyst with the

highest Zn content has a selectivity better than that of even

the traditional Pd–Ag catalyst, at a fraction of the materials

cost.

Catalysts for production and activation of H2

The hydrogen economy is a proposed system of delivering

energy via hydrogen gas. Proponents of the hydrogen

economy argue that hydrogen is an environmentally clea-

ner source of energy, without the release of pollutants or

carbon dioxide at the point of end use as in the current

hydrocarbon economy. The hydrogen economy aside,

hydrogen gas itself is also an important industrial chemical,

with the two largest uses being fossil fuel processing (e.g.,

hydrocracking) and production of ammonia. For these

reasons, finding better catalysts for H2 production and

activation has been an area of active research, but it is only

in the last ten years or so that computational design of such

catalysts have come to the fore.

Ni–Au catalyst for steam reforming One of the earliest

examples of computational catalyst design is in the area of

steam reforming. Steam reforming is the most economical

way of producing hydrogen and is used in the commercial

bulk production of H2. In steam reforming, hydrocarbons

such as methane are converted to CO and H2 (CH4þ
H2O! COþ 3 H2), typically over nickel catalysts.

Fig. 13 Calculated adsorption energy of a C atom on a Ni(111) surface

as a function of position along the surface. Top curve The same energy

function is shown when one of the surface Ni atoms has been exchanged

for a Au atom. The insets show the geometry in each of the two cases

[165]. The presence of Au significantly lowers the adsorption energy for

C. From [165], reprinted with permission from AAAS

Fig. 12 Volcano plot for the relation between catalytic activity and

heat of formation of the formates on various metal surfaces [163].

Peak catalytic activity is observed at an intermediate heat of

formation (Sabatier Principle)
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However, nickel catalysts also catalyze the formation of

graphite, which inhibits the activity of the catalyst.

In 1998, Besenbacher et al. [165] demonstrated using

DFT calculations that doping a Ni catalyst with Au on the

surface led to significantly lower binding energies for

graphite on the surface, with only a marginal impact on

methane dissociation. They calculated the adsorption

energy of a C atom on a Ni(111) surface as a function of

position along the surface (see Fig. 13), and found that the

sites neighboring a gold atom have significantly lower C

adsorption energies. Hence, even though Au alloying has

been known to lead to lower CH4 activity [166], the effect

on C adsorption is far greater, making for a less reactive,

but more robust, steam-reforming catalyst than pure Ni.

Besenbacher et al. [165] subsequently verified these pre-

dictions via experimental synthesis, characterization and

tests of a high-surface area gold–nickel catalyst.

Preferential oxidation of CO on bimetallic core–shell

nanoparticles Computational catalyst design has also

been applied to other limitations in the production of clean

H2 for proton exchange membrane fuel cells (PEMFCs).

The reformate from industrial production of H2 contains

significant amounts of CO, which poisons the surface of the

anode catalyst used in fuel cells. Typically, CO is removed

from the reformate using a two-stage process: (1) water-gas

shift (WGS) reaction and (2) preferential oxidation

(PROX) of CO. The latter reduces the CO content of

reformate down to the ppm levels needed for stable oper-

ation of PEMFCs.

Recently, Nilekar et al. [167] reported the first-princi-

ples-guided design, synthesis, and characterization of core–

shell nanoparticle (NP) catalysts made of a transition metal

core covered with a &1–2 monolayer-thick shell of Pt

atoms for preferential CO oxidation in hydrogen-rich

environments (PROX). Nilekar et al. used DFT calcula-

tions to determine the binding energy of CO on M@Pt

surfaces, which is directly related to the difficulty of

removing CO from the surface through either oxidation or

desorption, and showed that improvements in PROX

activity of Pt monolayers on various supporting metals are

directly related to weakening of the CO binding energy.

Ru@Pt was found to have the lowest binding energy for

CO among the M@Pt surfaces investigated, and hence had

the most facile removal of CO. Nilekar et al. also per-

formed experiments to validate the first-principles results,

and confirmed that Ru@Pt core–shell NPs show the highest

PROX reactivity among the M@Pt NPs investigated and

are also more active than their constituent pure metal NPs

as well as conventional nano alloys.

H2 activation with Ti-doped Al One of the key com-

mercial barriers to adoption of hydrogen-based energy is

that the catalysts are typically based on expensive noble

metals (e.g., Pt, Pd, Rh). In two papers [168, 169], Chau-

dhuri and Chopra et al. demonstrated that aluminum doped

with very small amounts of Ti can activate molecular H2 at

temperatures as low as 90 K. In the earlier work, Chau-

dhuri et al. showed using first-principles techniques that a

particular local arrangement of Ti atoms is responsible for

catalyzing the chemisorption of molecular hydrogen on Ti–

Al surfaces. The subsequent work by Chopra et al. pub-

lished 6 years later extended the earlier first-principles

calculations. By using CO as a probe molecule to identify

the atomic arrangement of the catalytically active sites

containing Ti on the Al(111) surfaces, Chopra et al. pro-

vided direct experimental evidence of that Ti-doped Al can

perform the first step of molecular hydrogen activation

under nearly barrierless condition .

BiPt as a new hydrogen evolution reaction catalyst

Besides the industrial processes of steam reforming,

hydrogen can also be produced via water-splitting, and the

key reaction in the process is known as the hydrogen

evolution or HER (Eq. 11).

2Hþ þ 2e! H2 ð11Þ

In two seminal works published in 2007 [170, 171],

Greeley et al. outlined a scheme for the screening of

heterogeneous catalysts using DFT, with a particularly

successful demonstration of its application to HER catalyst

design. Their screening approach involves not only an

evaluation of the surface activity for the reaction, but also

includes several assessments for stability in real

electrochemical environments. The evaluation of surface

activity is based on the well-established atomic-scale

descriptor for catalytic activity, i.e., a plot of the HER

catalytic activity of a metal against hydrogen-metal bond

strength show a volcano relationship. Greeley et al. also

developed four tests of the stability of the catalyst in real-

world environment: (i) free-energy change associated with

surface segregation events; (ii) free-energy change

associated with intrasurface transformations such as

island formation and surface de-alloying; (iii) free energy

of oxygen adsorption, beginning with splitting of liquid

water (related to surface poisoning and oxide formation);

and (iv) free energies of dissolution as a measure of

corrosion resistance.

By applying the above screening approach to 256 pure

metals and surface alloys (see Fig. 14), Greeley et al.

identified several surface alloys as potentially interesting

for the HER. From Fig. 14, it is evident that many alloys

are predicted to have free energies of hydrogen-adsorption

ðDGHÞ similar to pure Pt, suggesting they would have a

high-predicted HER activity. However, only a small frac-

tion of these alloys are predicted to be both active and
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stable in acidic HER environments, demonstrating the

importance of stability considerations in finding realistic

catalysts. In the study, Greeley et al. selected the BiPt alloy

for further investigation as it is one of the alloys that shows

both high HER activity and good stability. The fact that

BiPt is predicted to have high activity is surprising given

that Bi itself is known to be a poor electrocatalyst for the

HER. Nonetheless, subsequent synthesis of this BiPt sur-

face alloy showed that it does indeed have comparable

activity with pure Pt, validating the effectiveness of the

screening approach. This result is a particularly effective

demonstration of the power of computational materials

design, which enabled the discovery of a catalyst (BiPt)

that might otherwise not have been found based on con-

ventional chemical intuition.

Status, challenges, and future of computational

materials discovery and design

During the last few decades, first-principles computations

have been used extensively to understand and rationalize

the properties of materials, offering essential insight into

materials behavior at the atomistic level. Nowadays, as

envisioned by a few pioneers [172–174], the field is turning

more and more toward performing bolder predictions,

driving experimental studies with a real potential to

accelerate new materials design. In this review, we focused

on a few case studies where computational predictions

were made and confirmed experimentally afterwards and

illustrated the status of in silico materials design, showing

the successes but also the limitations and future challenges

in the field.

At first, computational materials design might be

thought of as a process involving the computations of all

properties governing a material’s behavior. However, in

practice, this is far from being the case as the final behavior

of a material also depends on factors that are difficult to

compute. For instance, the quality of a hydrogen storage

material such as LiNH2–MgH2 (1:1) was found to not

depend only on the easily computable thermodynamics of

the system but also on process route such as the ball-

milling procedure.

The dependence of a material’s overall behavior on

properties that are not easily computable is sometimes

considered as a major limitation to computational material

design, and many efforts are currently directed toward

improving the computational techniques and the funda-

mental understanding of many physical phenomena to

increase the range of computable properties. However, in

practice, there is no need to ‘‘compute everything’’, and the

computational approach can provide enough necessary but

not sufficient conditions to perform an important screening

before in-depth experimental work is performed. For

example, even though important properties for battery

materials such as cyclability are difficult to directly predict,

a Li-ion battery cathode material without an adequate

computed voltage, thermodynamic stability, and Li-ion

diffusion can be excluded from consideration application-

wise. The power of computational predictions rely here in

its potential for narrowing down the list of often time-

expensive experiments to perform.

Interestingly, while computationally driven materials

discovery is often thought of as a very quantitative

approach, it sometimes also relies on qualitative observa-

tions. For instance, it is possible to make predictions sim-

ply by looking at specific features in the electronic

structure, as illustrated by example of the high-thermo-

power FeSb2. Besides qualitative results, ab initio com-

putations often rely on their ability to effectively rank

materials properties. For instance, even though a calculated

adsorption energy on a catalyst might not be quantitatively

accurate, what often matters for experimental guidance is

to know the top candidates within a set of potential mate-

rials. For some properties, fully quantitative results can be

obtained. Examples from our review include voltage in the

Li-ion battery examples, reaction energy for the LiNH2–

MgH2 hydrogen storage material, magnetic moments in the

nitrides, borides, and FeCo alloy cases, and band gaps in

the example of boron nitride nanotubes. However, one

should always keep in mind the inherent accuracy of the

Fig. 14 Computational high-throughput screening for DGH on 256

pure metals and surface alloys [170]. The rows indicate the pure metal

substrates, and the columns indicate the solute embedded in the

surface layer of the substrate. The solute coverage and adsorbed

hydrogen coverage are 1/3ML in all cases. The diagonal of the plot

corresponds to the hydrogen-adsorption free energy on the pure metal

surfaces. It can be observed that many alloys have an energy of H2

adsorption similar to pure Pt and hence are predicted to have high-

predicted HER activity. Reprinted by permission from MacMillan

Publishers Ltd: Nature Materials [170], copyright 2006
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method that has been used. Sometimes, it is difficult to

estimate the accuracy of a particular DFT property com-

putation over broad chemical spaces that encompass many

types of materials, and the establishment of unbiased sta-

tistical comparisons between computed and experimental

values will become more and more important as the field is

getting more predictive.

It is still rare to predict an entirely new phase of matter

with interesting technological properties, and our case

study list included only a few entirely novel compounds.

However, we believe that the recent developments in

compound and crystal-structure prediction will make the

computational discovery of entirely novel phase more

common in the future. Even when computations identify

phases likely to be stable, the exact way of synthesizing the

novel inorganic compound is still often a trial-and-error

process depending a lot on the solid-state chemist experi-

ence and skills. In some cases computations can provide

some guidance toward possible synthesis routes, as illus-

trated by the Na–Li ion-exchange route for synthesizing

Li3M(CO3)(PO4), but a better theoretical understanding of

the factors controlling inorganic solid synthesis would

dramatically help the materials discovery process.

Even when studying known phases of matter, compu-

tations can be extremely valuable in helping to identify

compounds with rare properties (e.g., the magnetoelec-

tricity in BiMnO3) or push to the reinvestigation of a

compound that in retrospect is obviously interesting but

got lost in the experimental process (e.g., monoclinic

LiMnBO3 cathode). The history of materials science is full

of compounds that were known but had unknown unusual

properties, such as the MgB2 superconductor [175], and

computations will be a future catalyst for the identification

of those hidden gems. Computational studies also often

provide insight into the type of perturbation required to

improve a known system (e.g., aluminum doping in

LiCoO2 will increase the voltage or Au alloying in Ni will

lower carbon poisoning of steam-reforming catalysts).

Finally, by providing theoretical limits to a specific prop-

erty, the computational approach can also help identify the

potential of new material not achieved yet due for instance

to process limitations, and rationally point out situations in

which efforts in process optimization might be rewarding.

For instance, the theoretical prediction of large TMR effect

in Fe/MgO/Fe was probably one of the driving force for

process optimization of these structures.

Our review focused on computational predictions that

have been confirmed experimentally, but first-principles

computations are also extremely valuable in identifying

‘‘negative results’’ and indicating the inherent limit to

certain approaches and chemistries. For instance, Greeley

et al. applied a high-throughput screening approach for

finding binary alloys with good oxygen reduction reaction

(ORR) capability [176]. The approach was similar to the

one we reported on hydrogen reduction catalysts that

identified BiPt, but they found here that while many alloys

have high-predicted activity for the ORR, almost all are

predicted to be unstable at the high potentials associated

with the ORR. Though this study did not identify a specific

material of interest, it has helped exclude a large space of

materials and redirected efforts for ORR catalysts to focus

on other promising approaches. Similarly, a large-scale

computational study of phosphates as cathode material not

only identified novel compounds such as Li9V3(-

P2O7)3(PO4)2, but also showed some of the limits inherent

to the phosphate chemistry in terms of volumetric energy

density, voltage range, and safety [177].

As ab initio software is getting more user friendly and

computational resources available to research groups are

increasing, we are experiencing an emerging approach

consisting of high-throughput computational studies. In

this approach, properties are computed for thousands of

potential materials candidates, scanning the chemical space

with a speed difficult to achieve experimentally [41, 178,

179]. This review already presented many examples of

materials discovered through high-throughput computing

(e.g., LiZnSb in thermoelectrics, BiPt in catalysis, a few

new cathode materials in Li-ion batteries and a specific

mixture of LiNH2–MgH2 in hydrogen storage). High-

throughput computing studies have already been performed

in numerous fields such as catalysis [170], hydrogen stor-

age [180], Li-ion batteries [181, 182], organic photovol-

taics [183], thermoelectrics [114, 184], scintillators [185,

186], or photocatalysts [187]. In parallel, this large amount

of computed properties is getting compiled in databases

publicly available through web interfaces as the Materials

Project and others [188–190]. By providing access to

computed databases to the whole scientific community,

experimentalists and theorists alike, we are convinced

those public databases will facilitate future computation-

ally driven materials discovery.

Conclusion

In this review, we surveyed a number of applications for

which first-principles techniques have guided successful

experimental results. For many of the examples, calcula-

tions motivated reinvestigation of known compounds that

might have otherwise remained overlooked for technolog-

ical applications. In others, a new material was essentially

predicted and designed completely in silico. These pio-

neering studies demonstrate that ab initio calculations are

now capable of not only characterizing known compounds

but in many cases driving experimental studies toward

materials of technological interest.
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As this review illustrated, many of the tools already

available are capable of driving materials design. However,

the field of first-principles computations is rapidly evolv-

ing, and expected future advancements include more

accurate treatments of exchange/correlation and excited-

state properties, improved numerical algorithms for per-

forming DFT calculations and structure prediction, cheaper

and more powerful computational resources, frameworks

for high-throughput calculation, and comprehensive public

databases of calculated materials properties.

We are confident that currently available as well as

future methodologies will lead to many more technological

materials having their origin in computational predictions.
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