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Abstract We have determined refined multidimensional

chemical shift ranges for intra-residue correlations

(13C–13C, 15N–13C, etc.) in proteins, which can be used to

gain type-assignment and/or secondary-structure informa-

tion from experimental NMR spectra. The chemical-shift

ranges are the result of a statistical analysis of the PACSY

database of[3000 proteins with 3D structures (1,200,207
13C chemical shifts and[3 million chemical shifts in total);

these data were originally derived from the Biological

Magnetic Resonance Data Bank. Using relatively simple

non-parametric statistics to find peak maxima in the dis-

tributions of helix, sheet, coil and turn chemical shifts, and

without the use of limited ‘‘hand-picked’’ data sets, we

show that *94 % of the 13C NMR data and almost all 15N

data are quite accurately referenced and assigned, with

smaller standard deviations (0.2 and 0.8 ppm, respectively)

than recognized previously. On the other hand, approxi-

mately 6 % of the 13C chemical shift data in the PACSY

database are shown to be clearly misreferenced, mostly by

ca. -2.4 ppm. The removal of the misreferenced data and

other outliers by this purging by intrinsic quality crite-

ria (PIQC) allows for reliable identification of secondary

maxima in the two-dimensional chemical-shift distribu-

tions already pre-separated by secondary structure. We

demonstrate that some of these correspond to specific

regions in the Ramachandran plot, including left-handed

helix dihedral angles, reflect unusual hydrogen bonding, or

are due to the influence of a following proline residue.

With appropriate smoothing, significantly more tightly

defined chemical shift ranges are obtained for each amino

acid type in the different secondary structures. These

chemical shift ranges, which may be defined at any sta-

tistical threshold, can be used for amino-acid type assign-

ment and secondary-structure analysis of chemical shifts

from intra-residue cross peaks by inspection or by using a

provided command-line Python script (PLUQin), which

should be useful in protein structure determination. The

refined chemical shift distributions are utilized in a simple

quality test (SQAT) that should be applied to new protein

NMR data before deposition in a databank, and they could

benefit many other chemical-shift based tools.

Keywords Protein chemical shift � Databases � Protein
secondary structure � Data mining � PIQC � PACSY �
PLUQin � SQAT

Introduction

The measurement and assignment of isotropic chemical

shifts is a ubiquitous step in studies of protein structure and

dynamics by NMR. As a result, one by-product of the

community’s efforts is an impressive collection of chemi-

cal shift assignments. A crucial resource in this effort has

been the Biological Magnetic Resonance Bank (BMRB)

(Ulrich et al. 2008), which has archived more than 3 mil-

lion protein chemical shift assignments. The correlation of
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these chemical shift data with torsion angles has proven

especially successful (Han et al. 2011; Shen and Bax 2013;

Spera and Bax 1991). In comparison, using the chemical

shift data in the database for assignment purposes is less

developed. It has mainly been used to generate simple

tables based on averages (Hazan et al. 2008; Wang and

Jardetzky 2002b); in addition, some methods using 1D

probability distributions have been developed to aid

assignment (Moseley et al. 2004). We have previously

shown that the multidimensional chemical shift distribu-

tions have interesting features that can be used to gain

additional assignment and structural information

(Fritzsching et al. 2013).

While well-structured proteins give narrow lines that are

straightforward to assign, chemical shift assignment for

disordered or large proteins is still tedious or even

intractable. The problem is especially apparent in solid-

state NMR, where lines are often relatively broad, which

can lead to ambiguities in both type and sequential

assignments (Tycko 2015). As a result, there will be many

sets of assignments equally compatible with the experi-

mental data, and the goal of the assignment procedure

should be to identify all of these sets. Tycko and coworkers

have introduced a Monte Carlo/simulated-annealing algo-

rithm (Hu et al. 2011; Tycko and Hu 2010) that attempts to

provide all possible assignment sets based on input of

grouped resonance lists and the possible type assignments.

A related approach inspired by this method uses a genetic

algorithm for the optimization (Yang et al. 2013). The

input into the algorithm consists of lists of correlated

chemical shifts with possible amino-acid type assignments

and definitions that link the lists. Without accurate

knowledge of the chemical shift ranges of the 20 canonical

amino acids, even amino-acid types with only a marginal

probability of resonating at the observed chemical shifts

need to be included in input (Fritzsching et al. 2013; Tycko

2015). Identifying chemical shift ranges so that all inputs

into the assignment algorithms can be validated at a chosen

well-defined statistical threshold was the original motiva-

tion for the current work.

To this end, we decided to improve on a previously

introduced simple program called PLUQ (Fritzsching et al.

2013) that takes the input of an intra-residue chemical shift

list to query the PACSY database and returns possible

assignments. When only two chemical shifts are inputted,

the output assignments are ranked according to the number

of times (within a chosen radius in ppm) that the pair of

chemical shifts is found in the database. When more than

two chemical shifts are entered, the database is queried

with the chemical shifts in a pairwise fashion; the assign-

ments are then ranked by the product of the number of hits

found in each residue grouping. This has shown to be quite

successful in correctly predicting the assignment (and also

the secondary structure) from a limited number of peaks.

However, it is not ideal for generating a list of all possible

assignments, because for each query one has to decide

when to stop including results. Also, there is no normal-

ization for the occurrence frequency; for example, an

assignment to Ala will almost always be ranked higher than

a trp assignment simply because there are approximately

six times more Ala than trp data in the database.

Ideally, while making assignment hypotheses a user

would be able to define a certain statistical cut-off value

and more or less blindly include all assignment possibilities

returned on that basis. This would allow for the elimination

of many of the judgment calls in amino-acid type assign-

ment. It is then up to the optimization algorithm to remove

assignments that do not satisfy the rest of the spectroscopic

constraints. To achieve this, chemical shift ranges need to

be defined with a cut-off based on the distribution of

chemical shifts. These distributions should be relatively

free of errors and defined by as much experimental data as

possible. Furthermore, it should be possible to correlate 1H,
13C and 15N peaks not only from backbone but also from

side-chain atoms.

Unfortunately, as previously recognized (Iwadate et al.

1999; Zhang et al. 2003) despite IUPAC and BMRB rec-

ommendations there are still problems with chemical shift

referencing within protein chemical shift databases.

Chemical shift referencing for carbon-13 is especially

problematic due to the continued use of the traditional

standard TMS as a primary reference instead of the more

recently recommended DSS. The difference of approxi-

mately -2.4 ppm between neat TMS and a 1 % DSS

solution (Saito et al. 2010) is so similar to the variations in

chemical shift due to secondary structure that a referencing

error is not always obvious.

Due to these problems with chemical shift referencing as

well as typographical and assignment errors, many meth-

ods have been proposed to identify and correct errors

before submission to chemical shift archives or to prepare

data for computational tools.(Ginzinger et al. 2007, 2009;

Moseley et al. 2004; Neal et al. 2003; Shen et al. 2009;

Wang et al. 2005, 2010; Wang and Markley 2009; Wang

and Wishart 2005; Zhang et al. 2003) These methods

usually rely on previously prepared and heavily curated

chemical shift databases of only a few hundred proteins

(Han et al. 2011; Shen and Bax 2013). Some of these

programs disregard the referencing problems. For example,

the commonly used assignment validation suite (AVS) is

able to flag typographical errors and misassignments by

comparing chemical shifts to chemical shift averages and

excluding grossly ([8r) incorrect chemical shifts, but it

cannot detect a small referencing error.
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Other methods (Ginzinger et al. 2007, 2009; Wang et al.

2007; Wang and Wishart 2005; Wang and Markley 2009;

Wang and Jardetzky 2002b; Zhang et al. 2003) identify

offsets by determining the secondary structure of a given

residue (or of the whole protein on average) and calculating

the difference between its measured chemical shift and the

‘expected’ chemical shift in that secondary structure and

amino-acid type (or the expected average value). The

average difference is used as the offset. The different

approaches for identifying the secondary structure of the

residue under consideration are summarized below. For the

typical chemical shifts, most of these methods (Moseley

et al. 2004; Wang et al. 2007; Wang and Markley 2009;

Wang and Jardetzky 2002b) at some point rely on averages

of chemical shifts generated from carefully chosen but

nonetheless older and relatively small databases. Addi-

tionally, they also assume (sometimes implicitly) that dis-

tributions of the chemical shifts for each secondary

structure are Gaussian.

SHIFTCOR, the algorithm behind RefDB (Zhang et al.

2003), obtains the dihedral angles of the residue in question

from the known 3D structure of the protein and relies on

SHIFTX (Neal et al. 2003) for calculating the expected

chemical shift, using empirical chemical-shift hyper-sur-

faces (Spera and Bax 1991) produced from a limited

database of\200 proteins re-referenced ‘‘by hand’’ (Zhang

et al. 2003). PSSI (Wang and Wishart 2005) uses confor-

mation-dependent 1H chemical shifts to predict secondary

structure for C0, Ca, and Cb. For determining the ‘‘ex-

pected’’ 13C chemical shifts, secondary-structure classifi-

cations of 6100 amino acids in Wang and Jardetzky’s

(Wang and Jardetzky 2002a) database were used. PANAV

(Wang et al. 2010) appears to use a similar approach as

PSSI to find referencing errors, and identifies misassign-

ments and typographical errors by calculating the product

of the probability densities (assuming Gaussian chemical

shift distributions) for the backbone chemical shifts within

a residue; the joint probability density found for sur-

rounding residues gives a score of error likelihood. LACS

(Wang et al. 2005; Wang and Markley 2009) exploits the

empirical correlation between dCa and dCb and secondary

structure, based on data from RefDB, which appears to

derive from fewer than 400 proteins. Additionally, accurate

random coil chemical shift values had to be determined

from a database of 651 proteins (Wang et al. 2007).

CheckShift (Ginzinger et al. 2007, 2009) compares

experimental and predicted C0, Ca, Cb and N chemical

shifts using secondary-structure dependent density func-

tions. The protein’s H:C:E ratio is predicted from the

amino acid sequence using PROFphd (Rost and Sander

1994) or PSIPRED (McGuffin et al. 2000). The expected

chemical shift distributions were constructed using \250

proteins from the database for TALOS (Cornilescu et al.

1999) and classified by secondary structure using STRIDE.

The average offset that gives the best match was used to re-

reference the experimental data.

These methods do seem to work for their intended

purpose (although tests with intentionally misreferenced

data indicate residual errors of 0.2–1.4 ppm, (Ginzinger

et al. 2007) and persistent 13C offset errors in the BMRB,

see below, indicate that these re-referencing methods are

not always used); PANAV (Wang et al. 2010) in particular

is able to detect referencing as well as assignment errors,

without the need for the solved structure. RefDB (Zhang

et al. 2003) contains well-referenced chemical shifts and

the data are periodically updated. Still, the assumption of

Gaussian character, reliance on limited numbers of hand-

picked ‘‘ideal’’ chemical shifts values, and the possibility

of different referencing within one protein limits their use

when trying to discover novel features within the chemical-

shift distributions.

Additionally, most consistently referenced databases do

not incorporate chemical shift information for the side-

chains, even though these reflect referencing errors more

clearly than the backbone shifts with their large confor-

mation-induced variability. To our knowledge, the only

exception is the database for SHIFTX2 (Han et al. 2011),

which was, however, limited to \200 proteins. The

PACSY (Lee et al. 2012) database, although not consis-

tently referenced, contains the majority of chemical shift

data in the BMRB from proteins with determined struc-

tures. PACSY is easily interrogated thanks to its relational

design, but has not been purged of misreferenced data.

In this paper, we first continue the development of

curation methods for chemical shift data. Our approach,

purging by intrinsic quality criteria (PIQC), uses an

unreferenced chemical-shift database for proteins with

known 3D structures. It has a higher resolution than pre-

vious methods, due to the larger number of data used, and

indicates that most protein chemical shift referencing is

actually more accurate than previously appreciated. At the

same time, it exposes, again more clearly than previous

studies, that a significant fraction (*6 %) of 13C spectra

are misreferenced by more than -1.2 ppm. We supply

generated chemical-shift statistics for all proteins in the

PACSY database (i.e. for almost all BMRB proteins with

solved structures). Second, we use the refined database to

construct multidimensional chemical shift ranges. Some of

the previously seen ‘‘lobes’’ in the 2D chemical shift dis-

tributions are exposed as artifacts of referencing errors,

while others are shown to be real and indicative of specific

torsion angles or neighboring residues. Finally, applica-

tions of the chemical shift probability density functions are

demonstrated, for instance to validate type assignments. To

perform this validation programmatically, a command-line

Python script (PLUQin) is introduced.
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Methods

A CSV-formatted version (updated June 28, 2015) of the

PACSY database was downloaded and built into a MySQL

database using an appropriate Python script with the

MySQLdb module. It contained 1,200,207 13C, 333,133
15N, and[1400,000 1H chemical shifts from[3000 pro-

teins with 3D structures. Chemical-shift referencing checks

were only performed when more than 15 chemical shifts

assigned to a given isotope (1H, 13C, or 15N) were available

for the protein. All analyses of the PACSY database,

delineations of chemical shift ranges, and subsequent

analyses of experimental data were performed using

Python. Elements of non-standard Python that were used

include: MySQLdb, NumPy (van der Walt et al. 2011),

scikit-learn (Pedregosa et al. 2011), Shapely, Matplotlib

(Hunter 2007), BMRB Star Parser and NMRglue (Helmus

and Jaroniec 2013); these libraries are available on-line.

Our library of Python code contains functionality for

generating PACSY database queries, processing the

returned data, and analyzing chemical shift and torsion

angle data.

The constructed chemical shift regions are manipulated

and stored as many-sided polygons. The regions can be

efficiently and conveniently stored and interrogated using

open source geographic information system tools (Open

Source Geospatial Foundation 2003), originally developed

for mapping applications. Experimental chemical shifts are

evaluated against the regions using an efficient point-in-

polygon algorithm provided by Shapely. The derived

probability density functions are stored as arrays in the

HDF5 file format. The PLUQin script for identifying pos-

sible type (and secondary-structure) assignments can be

found at ksrlab.org/pluqin-sqat.

Results and discussion

Refining chemical shift data

For the purpose of defining chemical shift ranges, small

errors in chemical shift referencing or even occasional

incorrect assignments have little effect. Even occasional

large errors do not significantly affect the final chemical

shift ranges if appropriate smoothing parameters are cho-

sen. However, systematic offsets on the order of the width

of the chemical shift distribution can be detrimental. The

2.4 ppm difference because of misreferencing to TMS

instead of DSS is in this category. To eliminate chemical

shifts with this type of referencing error from the chemical

shift database analysis, it is desirable to determine a relative

offset for the resonances in each protein in the BMRB

database.

The first step of our PIQC method relies on finding the

most likely chemical shift value for every atom type.

Many attempts have been made to determine these ide-

alized chemical-shift values for amino acids in proteins.

Most of the previous methods have relied on generating a

‘‘high quality’’ data set, for which the arithmetic mean is

found and used as the representative value (Zhang et al.

2003), or almost equivalently a Gaussian distribution is

assumed (Wang et al. 2007). A priori selection of high

quality data sets is difficult and limits the number of

proteins used, which will result in poorer statistics. To

circumvent having to rely on a hand-picked data set or

use only a small subset of the chemical shift data, three

assumptions were made in our work: (1) the largest

influence of chemical shift for each atom type is the

residue type and the residue’s a-helix (H), coil (C), turn

(T), or b-sheet (E) secondary-structure classification. (2)

Within each classification, the ideal chemical shift is the

chemical shift that is most frequently observed (i.e. the

mode of the distribution). As long as misreferenced data

account for [30 % of the total, they do not affect this

ideal chemical shift significantly. (3) The protein struc-

tures in the PDB are correct regardless of potential

chemical shift misreferencing. It should be noted that in

our final referenced database the misreferenced proteins

are removed so that their potentially distorted structures

do not affect the final results. In this framework, all other

factors influencing chemical shift are considered as per-

turbations resulting in broadening of the distributions

without significantly shifting the maximum. The narrow

offset distributions (r\ 0.25 ppm) obtained for 13C and
1H data justify these assumptions.

Secondary structure classification

Conveniently, the PACSY database contains secondary-

structure classifications for each residue that were gen-

erated using STRIDE (Heinig and Frishman 2004), based

on the three-dimensional structure of the protein. To

determine secondary structure, the lowest-numbered

structure was used, since by convention it has the lowest

energy. The chemical shifts of the C0, Ca, Cb, H, Ha, NH
and N sites were analyzed independently in the four

secondary structure classifications helix (H), coil (C),

sheet (E), and turn (T), while the remaining side chain

chemical shifts were analyzed without secondary-structure

classification. The original STRIDE classifications also

include p-helix (I), 310-helix (G), and isolated b-bridge (B

or b). These were incorporated into the other structural

categories as follows: helix includes H, G, I; and sheet

includes E, B, b. In the presentations of the multidimen-

sional chemical-shift regions, coil and turn were grouped

together for simplicity.
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Determination of distribution modes

Instead of the arithmetic mean of each distribution, PIQC

uses the mode (position of the maximum) as the repre-

sentative value. Finding the mode of discrete data is

equivalent to locating the value of x that maximizes the

probability distribution function (PDF) px(x) (Romano

1988). Kernel density estimation, a non-parametric

method, with a Gaussian kernel was used to estimate PDFs

from the discrete data. The bandwidth (sometimes referred

to as a smoothing parameter) of the Gaussian kernel has a

large effect on the quality of the final PDF. For robustness,

the bandwidth was chosen using a grid-search and tenfold

cross-validation routine (Hastie et al. 2009). Figure 1

shows three examples of how the ideal chemical shift

values were determined from distributions of chemical

shifts of a specific amino-acid type in a specific confor-

mation. The chemical shift mode dm,A in each distribution

pd of chemical shift d with the atom type condition A

(which includes the amino-acid residue type, atom type

[i.e. Ca, HN, etc.] and secondary structure) is given by

dm;A ¼ argmax½pdðdjAÞ�

Due to the large number of chemical shift values in each

distribution, obtained from the data for tens of thousands of

amino-acid residues in PACSY, the generated PDFs are

accurate representations of the underlying distributions, see

Fig. 1. The pd functions show ‘shoulders’ at lower ppm

values, which we will show to be at least partially due to

misreferenced data of certain proteins. Due to the asym-

metry in the experimental distribution, the mean is not

equal to the mode. While the arithmetic or any other mean

would be affected by these compromised data, this is not

the case for the maximum position or mode used in our

analysis, as long as any secondary components are small.

For each of the 20 canonical amino acids, the four dif-

ferent secondary-structure types were used to separate C0,
Ca, and Cb chemical shift distributions, while each of the

other side-chain atoms was a single category. In total, 282

of such distributions were analyzed for 13C. To aid com-

parison of the values obtained, the chemical shift modes for

carbon sites in the 20 common amino-acid types in helix,

sheet, coil, and turn are listed in Table S1. Chemical shift

ranges were obtained using a quantile-based algorithm for

bagplots (Rousseeuw et al. 1999). Briefly, to find the range

of x at a given confidence fraction C (e.g. 0.95), n equally

spaced points x were used to sample the probability density

function px. The ceil((1-C)n) values with the lowest

probability densities ði:e:pxðfxi; xiþ1; . . .; xnÞgjAÞÞ were

removed. The minimum and maximum remaining x posi-

tions were defined as the limits of the range.

The expected chemical shifts determined from modes

correlate well with the results found using the RefDB

approach for the available Ca and Cb chemical shifts, as

seen in the correlation plot shown in Fig. S1. The average

difference between the modes and the RefDB values is

0.05 ± 0.4 ppm and the distribution looks Gaussian, see

Fig. S2. It is an advantage of the new method that it also

works for side-chain carbons and is able to provide accu-

rate chemical shift ranges with few assumptions. Further-

more, the mode-based analysis of PIQC has no reliance on

previously determined values, and the PACSY data did not

need to be culled before PIQC analysis. In the future, as

more data is added to the database, the precision of the

expected values and reliability of the ranges determined by

PIQC will continue to increase.

Fig. 1 Typical 13C chemical shift histograms for a specific site of a

given amino acid type in one of the three secondary-structure types

(in green). The generated probability distribution function (PDF) is

shown in blue (y-scale in ppm-1). The dashed red line indicates the

position of the maximum of the PDF, which is the most probable

chemical shift for a given classification. a Tyr-C0-Helix (N = 1936).

b Ser-Ca-Helix (N = 4531). c Lys-Cc-All (N = 18,203). The

distributions are clearly not monomodal. For each selection, pd djAð Þ
is shown from dm;A � 8 ppm to dm;A þ 8 ppm. This analysis was

performed for 288 13C chemical shift distributions

J Biomol NMR (2016) 64:115–130 119

123



The precision in the determination of the ideal chemical

shifts should improve with the amount of data utilized: if a

distribution as in Fig. 1a is less noisy, its center can be

determined more precisely. Quantitatively, the uncer-

tainty rM of the position of the center (mean) of a normal

distribution is the standard deviation (SD) r of the distri-

bution, divided by the square root of the number N of data

points in the distribution, rM ¼ r=
ffiffiffiffi

N
p

. With an average of

80 13C amino-acid residues in a protein (only considering

proteins with 13C data) in the BMRB, each of the 60 types

of Ca carbons will occur about 80/60 = 1.3 times. The

data in Fig. 1 suggest a typical SD of r = 3 ppm, due, for

instance, to chemical-shift effects of neighboring residues.

Using a typical curated database of 80 proteins,

N = 1.3 9 80 = 104 and the uncertainty in the ideal Ca

chemical shift is rM ¼ r=
ffiffiffiffi

N
p

¼ 0:3 ppm, while 2000

proteins in our analysis give a much better rM = 0.06 -

ppm. Since PIQC uses data from several thousands of

proteins, it is superior to previous analyses based on a

smaller number of proteins. A large fraction of the

±0.4 ppm deviation between our ideal Ca chemical shifts

and those of RefDB, see Fig. S2, should be attributed to

this factor, and this analysis suggests that our values are

more accurate by 0.25 ppm, due to the larger number of

proteins evaluated.

Determining protein-level chemical shift offsets

At this point, it would be convenient to simply flag all of

the chemical shifts that deviate from the mode by more

than a given offset. However, the second component is too

poorly resolved (see Fig. 1) to allow for a clean separation

here. In addition, there are several different ways to explain

the multicomponent distribution other than a simple ref-

erencing error offset. For instance, one could attribute it to

imperfect secondary-structure characterization.

A 13C chemical shift referencing error will, however,

equally affect every 13C chemical shift of the protein under

consideration. It therefore contributes to every deviation

DdA of the chemical shift dA from the corresponding ideal

value dm,A, of that atom type A:

DdA ¼ dA � dm;A:

Wang andWishart (2005) denoted this quantity by-Ddoffset

since they used Dd for conformational shift (i.e., deviation

from random coil); note that our definition of DdA has the

opposite sign. Calculation of DdA for each atom of a given

protein (labeled by its BMRB ID#) allows for the creation of

a distribution pDd of the differences between reported and

ideal values for that protein. [Note that here, as is typical in

the generation of probability distributions, the index A dis-

tinguishing different incidences of Dd disappears when Dd

becomes the argument of the probability distribution, just as

for j = 1,…, N position measurements xj used to produce a

probability distribution px(x)].

The distributions for two proteins are shown in Fig. 2.

While the distribution in Fig. 2a is centered close to zero,

as should be expected, the example in Fig. 2b has a mode

close to the known offset of about -2.4 ppm between neat

TMS and DSS. These distributions clearly have a more

unimodal character than those in Fig. 1, which indicates

that the chemical-shift deviations for a given protein are

produced by apparently random effects, while the asym-

metries in Fig. 1 are due to systematic referencing errors.

The mode (position of the maximum) of each pDdðDdjID#Þ
distribution is considered as the chemical shift offset

Ddm,ID# for the protein ID#,

Ddm;ID# ¼ argmax½pDdðDdjID#Þ�

This method was used to analyze the [1.2 million 13C

chemical shifts of [3000 proteins (all with solved 3D

structures) currently in the PACSY database. A table with

Fig. 2 Representative 13C chemical shift distributions pDd of the

chemical-shift deviation DdA = dA-dm,A for each classification A, for
all resonances in a single protein. The histogram is depicted in green

and the probability distribution function (PDF) in blue. All distribu-

tions are expected to be centered on 0 ppm, marked with a dashed red

line. The maximum of the PDF represents the most likely offset

Ddm,ID#. a BMRB ID: 4070 and b BMRB ID: 11147. This analysis

was performed for each of the 3060 proteins with 13C data in PACSY
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the offset of each protein will be updated periodically and

made available at ksrlab.org/pluqin-sqat.

Limited precision of the ideal chemical shifts could

affect the width of the distributions pDd for each protein as

shown in Fig. 2, but given typical standard deviations of

1 ppm in these distributions, it appears that the\0.2 ppm

effect is relatively small.

Identification of problematic chemical shift data

The chemical-shift offsetsDdm,ID# of all proteinswere used to
create a distribution pDdm(Ddm) (where again the incidence

index, presently ID#, has disappeared). The resulting pDdm
distribution is shown in Fig. 3. It is at least bimodal. The peak

centered on 0 ppm and of SD r & 0.2 ppm results from

proteins where the 13C chemical shifts were correctly refer-

enced toDSS. The SDof themain peak can be estimated even

in the presence of outliers by calculating the median absolute

deviation from the mode (MAD) and multiplying by 1.483;

(Hampel 1974) with MAD = 0.112 ppm for our peak, this

yields r & 1.483 9 0.112 ppm = 0.17 ppm. This SD,

which is an upper limit to the root-mean-square referencing

error in these proteins, is remarkably small. The second peak

near -2.4 ppm very likely results from misreferencing to

TMS. Approximately 7 % of the proteins (6 % of chemical

shifts) in PACSY fall into this category. For the distribution

as a whole, the avgðDdm;ID#Þ ¼ �0:2� 0:7 ppm when only

Ddm;ID# within 4 ppm of the mode are considered. For

�4 ppm�Ddm;ID# � � 1:1 ppm and 1:1 ppm� Ddm;ID#
� 4 ppm the avgðDdm;ID#Þ ¼ �2:2� 1:0 ppm:

A PSSI analysis by Wishart et al. (Wang and Wishart

2005) showed the same type of bimodal distribution as in

Fig. 3, but with significantly lower resolution, probably

due to the *20-times smaller amount of data used, as a

result of the limited number of carbon sites and proteins

evaluated. The additional component near -2.4 ppm in ref.

Wang and Wishart (2005) appeared more like a foot than a

resolved second peak. Since the center of their distribution

is shifted off the main maximum by*0.5 ppm, most of the

outlying intensity was shown within -2 ppm from the

center, which obscured the connection to the -2.4 ppm

referencing error. The left, main peak was so broad that the

authors of ref. (Wang and Wishart 2005) decided to discard

data with deviations by more than -0.5 ppm from the

overall average, while our analysis shows these data to be

perfectly normal.

In reference Wang and Wishart (2005), the distributions

were produced separately for Ca, Cb and C0, using data

from only 450 proteins and with 0.5 ppm wide histogram

bars. Correspondingly, Fig. S5a shows the distribution

obtained only from Ca data, which is broader than in Fig. 3

by �
ffiffiffi

5
p

due to the *5-times smaller number of data

points used. Next Fig. S5b displays this distribution for

only 450 proteins; it has the same width as in part a but

exhibits more noise. Finally, Fig. S5c shows the distribu-

tion of part b with 0.5 ppm wide histogram bars.

The resolution in Fig. 3 is much improved compared to

that of a single protein as in Fig. 2: The distribution of N
13C chemical shifts of a protein, with a SD r, as before

gives a SD of the mean of rmean ¼ r=
ffiffiffiffi

N
p

. With

r * 2 ppm and N * 400 in Fig. 2, we predict

rmean = 0.1 ppm, quite comparable with the SD of

0.2 ppm of the main peak in Fig. 3. Since it combines data

from 282 atom types, the distribution in Fig. 3 is also ca.
ffiffiffiffiffiffiffiffi

282
p

= 17 times narrower than the distributions in Fig. 1

for a single atom type, where the misreferenced data pro-

duced only an unresolved shoulder.

Selection of high-quality chemical shift data

Figure 4 shows a plot correlating the chemical-shift offset

Ddm,ID# with the SD from the mean of the pDd distribution

(as in Fig. 2) for each protein. Most proteins that were

misreferenced are seen to have a similar SD as the correctly

DSS-referenced proteins, which indicates that the different

average chemical shifts cannot be attributed to a fraction of

sites with unusual conformations and chemical shifts. The

large standard deviations [5 ppm for some proteins in

Fig. 4 may be due to paramagnetic shifts.

Fig. 3 The distribution of the offsets Ddm for all 3060 proteins with
13C chemical shifts in the PACSY database, based on 1,200,207

chemical-shift values. There are two main local maxima: the expected

maximum at 0 ppm, with a SD of 0.2 ppm, and a maximum at

-2.4 ppm that probably results from erroneous TMS referencing; the

chemical-shift positions are marked with dashed-dotted vertical black

lines. Orange dashed vertical lines at ±1 ppm enclose the part of the

distribution that was retained. Approximately 7 % of the proteins in

the database appear to be incorrectly referenced, corresponding to

6 % of the chemical-shift data
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Offset or referencing errors cannot be corrected to better

than the 0.2 ppm SD of the main peak in Fig. 3. Therefore,

it is best to remove improperly referenced data; our

approach can tolerate this slight reduction in the amount of

data since it takes advantage of data from the large number

([3000) of proteins in the PACSY database.

A new PACSY-like database was generated by excluding

all information from proteins with a deviation Ddm[ 1.0 -

ppm or with r[ 4 ppm, (i.e. those outside the orange

dashed lines in Fig. 3 and the dashed box in Fig. 4). The

±1 ppm Ddm criterion is near the 6r value of the correctly

referenced, dominant sub-distribution centered on 0 ppm in

Fig. 3. The-1 ppm cut-off value ensures that most datasets

from the sub-distribution offset by -2.4 are removed.

Overall, the fraction of chemical shift data removed was

14 %. The chemical shift statistics for each protein were

tabulated and the data incorporated into additional PACSY-

like SQL tables. The data tableswill be shared, alongwith the

Python analysis code that generated it.

Monomodal 1H and 15N NMR data

PIQC was also applied to 1H and 15N (except side-chain
15N) data. The number of pd distributions analyzed was

88 for 15N and 213 for 1H. The plots of pDdm for 1H and
15N chemical shifts show monomodal, nearly Gaussian

distributions with a width of r = 0.08 and 0.8 ppm,

respectively (see Fig. S3). Only 0.8 % of the 3139 15N

data deviate by[4 ppm (5r). These fairly narrow distri-

butions appear to be in disagreement with claims (Gin-

zinger et al. 2007; Wang and Markley 2009; Zhang et al.

2003) of significant 1H and 15N NMR referencing errors.

Based on LACS analysis, it was reported that 35 % of
15N chemical shifts are misreferenced by [0.7 ppm, but

only 25 % of 13C by [0.5 ppm (Wang et al. 2005). We

do find that 25 % of 15N chemical shifts deviate by

[0.7 ppm from the expected values but our analysis also

shows that this is not a significant offset; it is only

approximately 1r, and in any random distribution, a

significant fraction of values of[1r will be found. Given

that the number of chemical shift data is about 3.2 times

smaller for 15N than for the main peak in the 13C distri-

bution, the 15N SD should be divided by
ffiffiffiffiffiffiffi

3:2
p

before

comparison with that of 13C. On that basis, the two values

(0.5 vs. 0.2 ppm) are more similar. Overall, our analysis

suggests that traditional approaches (Wang et al. 2005;

Wang and Wishart 2005; Zhang et al. 2003) will over-

correct some data that actually have accurate offsets.

Fig. 4 Chemical shift offset, Ddm, versus the SD of pDd, for 3060

proteins in the PACSY database. Each circle represents all the 13C

chemical shifts of a single protein. The position on the x-axis gives

the same information as in Fig. 3, the chemical shift offset Ddm for

each protein ID#. The y-axis represents the SD of the pDd distribution

as shown in Fig. 2. The color and size of the circles represents the

number of chemical shifts (see color scale at the top of the figure).

Again two local maxima are observed in the distribution. The

standard deviations of the proteins with -2.4 ppm offset are

comparable to those at the expected 0 ppm offset. A histogram of

the standard deviations is shown on the right. All proteins within

±1.0 ppm from the 0 ppm offset and with a SD\ 4 ppm were used

as the purged PACSY dataset. They account for 86 % of all proteins

in the database. The same type of plots for hydrogen and nitrogen,

where no secondary maxima are observed, are provided in the

supporting information (Fig. S1)
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Multidimensional chemical shift regions

After the removal of the questionable data, we re-analyzed

(Fritzsching et al. 2013) correlated chemical shifts in 2D

spectra. The problem of finding 2D chemical shift

range(s) for a given confidence level is equivalent to

identifying the smallest-area polygon(s) that will incorpo-

rate a given fraction (e.g. 95 %) of all peaks or discrete

data points. Multidimensional PDFs were constructed for

each distribution, using a Gaussian kernel, i.e. replacing

each measured data point with a Gaussian. The bandwidth

of the Gaussian kernel was optimized using a grid-search

and threefold cross-validation procedure. To find the

intensity of the PDF at which to contour, i.e. to define the

polygon, a density quantile/percentile algorithm (Rous-

seeuw et al. 1999) was used. Examples of defined regions

of Ala Cb–Ca correlations for each secondary-structure

classification are shown in Fig. 5 at a 95 % confidence

level.

Removal of spurious data from 2D correlations

Figure 5 demonstrates how the elimination of the 14 % of

misreferenced or large rDd data removes spurious sec-

ondary maxima, or ‘‘lobes’’, from the chemical shift data

and makes real lobes in the distributions recognizable. The

distributions before cleanup are shown on the left, those

after removal of misreferenced data and outliers in the right

column. For the helix data, top row, the removal of a lobe

shifted by *-2.4 ppm in both dimensions is especially

clear, since the true maximum in the distribution is par-

ticularly pronounced. For the other two secondary struc-

tures, the corresponding artifact towards the upper right is

more diffuse, but in all cases, the chemical-shift distribu-

tions are significantly tighter after cleanup.

Non-Gaussian chemical shift distributions

The removal of misreferenced chemical shifts by PIQC

allows for close examination of the distributions. In the high-

quality data in the right column of Fig. 5, distinct lobes can

now be reliably discerned for each of the secondary structure

categories. For helix and sheet, lobes near (52.5, 19.3 ppm)

appear to coincidewith themaximumof the coil distribution.

This could prompt a reassessment of the secondary structure

associated with these outlying peaks. Conversely, in the coil

distribution, in addition to the pronounced maximum lower

intensity extends to the maxima of helix and sheet distribu-

tions. This should not be unexpected since dihedral angles

matching those in helix and sheet can be compatible with a

random coil conformation.

Most interestingly, the cleaned-up coil distribution,

Fig. 5d, shows a clear secondary maximum near (50.5,

18.1 ppm), which does not coincide with maxima for other

secondary structures. Similar multimodal distributions

(with additional maxima or ‘lobes’) are found in several

(Ca, Cb)-coil distributions, see Figs. 6 and 7, as well as

some (Ca, N)-sheet chemical shifts, see Fig. 8. Further

investigations of the structural features that set some of

these lobes apart are described in the following. In our

previous study (Fritzsching et al. 2013) we had abandoned

such selective analyses after the analysis of the spurious

secondary peak in Fig. 5a showed no difference in the

torsion-angle distribution.

Special structural features of some secondary

maxima

Ramachandran diagrams of the distributions of torsion

angles associated with various distinctive spectral regions

marked by rectangles in the Ala coil Ca–Cb distribution of

Fig. 6a are displayed in Fig. 6b–e. Compared with the

conformations associated with the main maximum for Ala

in coil conformations, some of the secondary spectral

maxima are associated with clearly different torsion angle

distributions. For instance, the region near the a-helix
maximum shows predominantly torsion angles corre-

sponding to a-helical conformations. We attribute these to

isolated residues with such torsion angles in a non-helical

coil environment.

The secondary maximum near (50.5, 18.1 ppm) shows a

slight preference for polyproline conformations, see

Fig. 6c. Nevertheless, its most distinctive feature is

revealed by an analysis of the neighboring amino-acid

types. Figure 6f shows that 75 % of these alanines are

followed by proline, and no alanine followed by proline

resonates near the coil maximum. A similar result is

obtained for the corresponding peak in the distribution for

Lys in coil conformations, see Fig. 7. Here, 2/3 of the

following residues are Pro.

The Lys data in Fig. 7a show an additional distinctive

lobe near (57.4, 29 ppm). Our analysis reveals, see Fig. 7e,

that it corresponds nearly exclusively to torsion angles in

the left-handed helix region. Again, it seems likely that

some coil residues take these sterically allowed positive

torsion angles without actually being part of a helix. Note

also in Fig. 7d the nearly exclusively helix-like dihedral

angles of Lys coil residues near the maximum of the helix

distribution.

Two distinct local maxima are observed in the N–Ca
sheet correlations for Asp, see Fig. 8a. All of the signals

arise from residues near the ends of b-sheets, which is a

preferred location for Asp and Asn. They appear to be

distinguished by their torsion angles and hydrogen

bonding as indicated in Fig. 8b, c. While the 15N, 13C
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chemical shifts at (125, 54) ppm correspond mostly to

the canonical hydrogen-bonding geometry, the chemical

shifts near (121, 55.5) ppm are from structures that either

lack backbone-N hydrogen bonding or where the bonding

partner residue is not classified as sheet. The average of

the corresponding dihedral angle distributions (/, w)
calculated using circular (or directional) statistics (Berens

2009) are (-101� ± 28�, 126� ± 31�) and (-99� ± 39�,
136� ± 34�) [circular average ± circular SD] for the

(127, 53) and the (122, 55.5) ppm distribution,

respectively.

Chemical shift maps

The 2D chemical shift ranges for different correlations can

be combined to generate maps that are useful for direct

comparisons with spectra. As an example, the map of one-

and two-bond 13C–13C correlations in Leu is presented in

Fig. 9. The corresponding maps for all 20 common amino

acids are shown in the SI. They generally show helix best

resolved, in particular in the C0–Ca correlation. Sheet

conformations have the least overlap from coil in Ala, Thr,

and Ser Ca- Cb, and in Gly C0-Ca correlations.

Fig. 5 Comparison of two-

dimensional chemical shift

distributions and associated

95 % containment regions of

Ala Cb–Ca correlations for

different secondary-structure

classifications before (left

column) and after (right

column) removal of

misreferenced data and outliers

from the PACSY database. a,
b Helix; c, d coil and turn; and

e, f sheet. The color scale is

logarithmic
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Impact on other chemical-shift based tools

Our highly precise ideal (or expected) chemical shift values

characteristic of helix, coil, and sheet could improve the

accuracy of many existing chemical-shift assignment and

re-referencing programs, including PSSI and PANAV

(Wang et al. 2010; Wang and Wishart 2005). For some of

these tools, performance should increase by simply

replacing the older expected values with the more precise

values found in this analysis (see Tables S1–S3). Hope-

fully, this will allow for an improvement in misassignment

identification and re-referencing results without the need

for reinventing the existing tools. Programs such as AVS

and PANAV (Moseley et al. 2004; Wang et al. 2010) that

use distributions of chemical shifts to provide assignment

probabilities would benefit from using the non-Gaussian

distributions determined in our analysis. The large amount

of data and the use of carefully chosen smoothing param-

eters yields accurate chemical shift ranges even at high

confidence values, whereas the use of Gaussian-based

statistics (Moseley et al. 2004; Wang et al. 2010) results in

less accurate chemical shift ranges due to the truncation of

shoulders or tails in the chemical shift distributions.

The relations between reliable chemical-shift data and

dihedral angles from our large-scale analysis might also be

useful for improving chemical-shift hypersurfaces as used

in TALOS and SPARTA-like algorithms (Shen and Bax

2010, 2013). Some secondary structures with distinct

Fig. 6 a Ala-(Ca, Cb)-coil chemical shift distribution. The color

scale is logarithmic. b–e The distributions of dihedral angles in

Ramachandran plots for various chemical shift regions indicated in

(a): b Region around (51.1, 20.2) ppm, toward the sheet region.

c Region around (50.4, 18.2) ppm, toward the upper right. d Region

around (52.6, 19.2) ppm, around the coil maximum. e Region around

(54.2, 18.7) ppm, toward the helical region. The dashed black lines

mark the 98 % confidence regions for 500 high-resolution protein

structures (Lovell et al. 2003). f Fractions of amino acid types directly

preceding (top) and following (bottom) Ala in the chemical shift

region near (50.4, 18.2) ppm (‘‘Poly-Pro’’), shown as filled bars. The

corresponding fractions of neighboring residues of alanines at the

maximum of the coil distribution are shown as striped bars for

reference. The arrow in (f) highlights the very low fraction of Ala

with typical coil chemical shifts and a neighboring Pro
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chemical-shift correlations are present only in very few

proteins; for instance, there are\300 examples (out of[1

million chemical shifts) of the Lys ‘‘left-handed helix’’

correlation shown in Fig. 7. This suggests that machine-

learning algorithms for predicting or interpreting chemical

shifts that utilize a relatively small number of proteins may

never be trained with these correlations.

Modes versus averages

The distributions in Fig. 1 are clearly asymmetric due to

some data with referencing errors and therefore require an

analysis in terms of their modes. On the other hand, the pDd
in Fig. 2 are mostly unimodal regardless of the referencing

error, and therefore using the average Dda;ID# of

PDdðDdjID#Þ instead of the mode gives similar results for

most proteins (for 13C: avgðDdm;ID# � Dda;ID#Þ ¼
�0:02� 0:17 ppm for the proteins inside the dashed box in

Fig. 4). However, when all proteins are included, the SD of

the difference between mode and average for 13C increases

to ±1.4 ppm. While some deviations can arise from para-

magnetic effects, cases where Ddm;ID# and Dda;ID# are very

different usually indicate typographical errors or incorrect

assignments. When the errors are few (as is often the case)

Ddm;ID# is a better estimate of the referencing offset than is

Fig. 7 a Lys-(Ca, Cb)-coil chemical shift distribution. The color

scale is logarithmic. The closed blue line contains 95 % of coil

residues. Corresponding 95 % contours of helix and sheet are shown

as dashed lines. b–e Distributions of dihedral angles in Ramachan-

dran plots for various chemical shift regions indicated in (a). b Region

around (56.3, 33.0) ppm, toward the coil maximum. c Region around

(54.2, 32.5) ppm, toward the upper right. d Region around (54.2,

32.7) ppm, toward the helix maximum. e Region around (57.4, 29.1)

ppm, toward the center right. f Fractions of amino acid types directly

preceding (top) and following (bottom) Lys in the chemical shift

region near (54.2, 32.5) ppm (‘‘Poly-Pro’’), shown as filled bars. The

corresponding fractions of neighboring residues of Lys at the

maximum of the coil distribution are shown as striped bars for

reference. g Same as f for the left-handed helix chemical shift region
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Dda;ID#. As an example, compare Ddm;18910 ¼ 0:2 ppm

with Dda;18910 ¼ 46:8 ppm for 13C: The large average Dda
comes from the assignment of 16 Y Cd atoms to chemical

shifts[730 ppm; these outliers are far too few to shift the

mode Ddm. While this kind of error can be quite easily

identified, there are others that are more difficult to clas-

sify. As an example, for the 13C data of protein BMRB ID:

4150, the mode of Ddm;4150 ¼ 39:9 ppm differs strongly

from the average, Dda;4150 ¼ 13:9 ppm, and the values

deviate so far from 0 that both must be incorrect. These

unusual problems are rare enough that their effect on the

distribution is not generally significant for our determina-

tion of chemical shift ranges. Further examination of

pDdðDdj4150Þ shows four approximately normal distribu-

tions spaced by 40 ppm (see Fig. S4). This particular error

was also identified using PANAV. PANAV allows each

chemical shift to be re-referenced independently (even

within one protein). Thus, these chemical shifts would have

been re-referenced to the ‘‘ideal value’’. However, it is not

clear to us how this maintains a distribution related to the

experiment; indeed, tests of re-referencing programs with

intentionally misreferenced data show residual errors of

0.2–1.4 ppm (see Table 2 of ref. Ginzinger et al. 2007).

Assignment selection by PLUQin

As outlined in the ‘‘Introduction’’, sequential-assignment

algorithms (Hu et al. 2011; Tycko and Hu 2010; Yang et al.

2013) require as input all reasonably possible type

assignments for a given set of chemical shifts. Based on the

Fig. 8 a Asp(N, Ca)-sheet
chemical shift distribution. Two

distinct local maxima are

marked by boxes. b The

distributions of torsion angles

for each of the local maxima in

(a). The upper distribution

(dashed lines) is close to the

canonical b-turn torsion angles.

c Examples of typical Asp

residues from the two maxima

in the chemical shift

distribution. Top row residues

without canonical H-bonding

between neighboring b-strands.
Bottom row residues with

H-bonding between strands. All

images are of the first model in

the PDB, except for the 1XFL

image, which is of the second

model

Fig. 9 Refined correlation patterns for 13C–13C chemical shifts of

Leu for atoms within two bonds. Regions are shown at 68 and 85 %

confidence levels. Helix is represented by red, coil and turn by blue,

and sheet by green. Regions where neither atom contributes

secondary-structure information are not filled in. Similar figures are

provided in the supporting information for the other 19 common

amino acids

J Biomol NMR (2016) 64:115–130 127

123



chemical-shift ranges identified here, we provide a pro-

gram, called PLUQin, that upon input of an individual

chemical shift, or of two correlated chemical shifts, pro-

vides all possible type assignments at a chosen confidence

level (e.g. 68 or 95 %). Compared to its precursor, PLUQ,

PLUQin is normalized with respect to, and therefore

insensitive to, the occurrence frequency of different amino-

acid types in the database. Optionally, secondary structure

information is also provided. Tested on the model protein

GB1 (BMRB ID 15156), with a 95 % confidence level,

94 % out of 413 correct two-bond correlations were

included in the assignments proposed by PLUQin. The

average number of proposed amino-acid types for a given

cross peak was 4; there were B3 possible assignments

69 % of the time (48 % for Ca and Cb). It should be useful

to run the sequential-assignment algorithm iteratively: First

PLUQin should be run with tight (e.g. 68 %) confinement

regions, corresponding to the highest-likelihood regions of

the chemical shift distributions to assign the resonances

with fairly typical chemical shifts. If a certain chemical-

shift correlation is not assigned a residue in most of the

solutions offered, its confinement level can be relaxed to

include more unusual chemical shift assignment

possibilities.

Nearly unique type assignments are possible along the

margins of the 13C–13C chemical shift distributions. Fig-

ure 10 show these regions with a 90 % confidence level,

i.e. the probability density for one amino acid type in

such a region is at least ten times larger than for all others

combined. The plot was obtained based on our smoother

chemical shift distributions, and updates Fig. 6 from our

previous paper (Fritzsching et al. 2013). Figure 10a shows

the plot for a protein with the average amino-acid com-

position of many proteins, but this analysis can also take

into account the amino-acid composition of the specific

protein under study. As an example, in an extreme case

the protein may not contain Cys, and therefore a peak

near (53.5, 46) ppm cannot be assigned to Cys, which

makes an assignment to Leu much more likely. Similarly,

few Cys and large numbers of Leu in the sequence still

make a Leu assignment more probable. This is the case

for the VDAC protein (Raschle et al. 2009), whose nearly

unique type assignment distributions are shown in

Fig. 10b.

Simple offset and quality test (SQAT) for new

protein data

The presence of *6 % incorrectly referenced protein data

indicated by PIQC suggests that successful chemical-shift

re-referencing programs have not been sufficiently widely

adopted. Our analysis suggests a simple quality test

(SQAT) that should be applied to new protein NMR data

before submission to the BMRB or for publication. At that

stage, the secondary-structure information required by

SQAT is usually available. The distribution pDd should be

calculated for the new protein structure, simply based on

the tabulated modes from PIQC analysis (which does not

have to be performed again) and the protein’s measured

chemical shifts with their amino-acid type and conforma-

tional assignments. This distribution easily reveals likely

referencing offset and outliers. For instance, the incorrect

referencing by about -2.4 ppm in Fig. 2b is apparent.

Figure S4 shows additional examples where visual

inspection immediately reveals problems with the data.

The SQAT routine requires experimental chemical-shift

data (BMRB Star or TALOS format) and the protein sec-

ondary structure (STRIDE or DSSP format) as input. The

program is available at ksrlab.org/pluqin-sqat.

Fig. 10 All 13C–13C chemical shift regions where one residue type

assignment is [10 times more likely than all other assignments

combined, for a a hypothetical protein with the typical amino-acid

fractions and for b the VDAC-1 (PDB ID = 2K4T) protein. These

maps can be used to type assign a 2D chemical shift peak that falls

into one of the colored regions with[90 % confidence
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Conclusions

A simple self-referencing method, without handpicked data

sets, for eliminating incorrectly referenced protein data has

been introduced (purging by intrinsic quality criteria, or

PIQC). Our analysis shows that [94 % of 13C NMR

spectra have been referenced with a SD of \0.2 ppm,

which is better than previous analyses have suggested.

Indeed, our distributions imply that traditional approaches

will improperly ‘‘correct’’[10 % of data that actually have

accurate offsets; this also applies to 15N chemical shifts.

The increased resolution of our approach can be attributed

to the[10 times larger amounts of data used. Our distri-

bution of estimated offsets also demonstrates more clearly

than previous studies that about 6 % of data are distinctly

misreferenced by more than -1 ppm, mostly by

-2.4 ppm, which strongly suggests use of a TMS rather

than the preferred DSS standard. After removal of these

outliers and of data from proteins with excessively wide

chemical-shift distributions, more tightly defined spectral

regions for 282 carbon types have been obtained. In par-

ticular, the helix, sheet, and coil regions for C0, Ca, and Cb
have been determined more accurately. The two-dimen-

sional distributions of carbon–carbon and carbon–nitrogen

correlations within many conformation types are distinctly

non-Gaussian, revealing the commonly made Gaussian

approximation as inadequate. Secondary maxima in the

distributions have been revealed as being due to unusual

conformations (e.g. ‘‘left-handed helix’’), from ends of

secondary-structure elements, or arising from following

proline residues. Future analysis of secondary maxima or

distinct lobes in other distributions promises to reveal more

such features of interest for structural analysis. The more

distinct conformationally selective distributions obtained

here may be useful for other chemical-shift based tools and

enable conformational analysis without sequential assign-

ment. For instance, they enable amino-acid type assign-

ment with improved confidence (PLUQin), as well as a

simple quality test (SQAT) for detecting referencing errors

and similar problems that should be applied to any new

protein data before publication or deposition in a databank.
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