
MIT Open Access Articles

Nipype: A Flexible, Lightweight and Extensible
Neuroimaging Data Processing Framework in Python

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gorgolewski, Krzysztof et al. “Nipype: A Flexible, Lightweight and Extensible
Neuroimaging Data Processing Framework in Python.” Frontiers in Neuroinformatics 5 (2011): n.
pag.

As Published: http://dx.doi.org/10.3389/fninf.2011.00013

Publisher: Frontiers Research Foundation

Persistent URL: http://hdl.handle.net/1721.1/106998

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/106998
http://creativecommons.org/licenses/by-nc-sa/4.0/

NEUROINFORMATICS

Current problems
Here we outline issues that hinder replicable, efficient, and optimal
use of neuroimaging analysis approaches.

No uniform access to neuroimaging analysis software and usage
information
For current multi-modal datasets, researchers typically resort to
using different software packages for different components of the
analysis. However, these different software packages are accessed,
and interfaced with, in different ways, such as: shell scripting (FSL,
AFNI, Camino), MATLAB (SPM), and Python (Nipy). This has
resulted in a heterogeneous set of software with no uniform way
to use these tools or execute them. With the primary focus on algo-
rithmic improvement, academic software development often lacks
a rigorous software engineering framework that involves extensive
testing and documentation and ensures compatibility with other

IntroduCtIon
Over the past 20 years, advances in non-invasive in vivo neuroimag-
ing have resulted in an explosion of studies investigating human
cognition in health and disease. Current imaging studies acquire
multi-modal image data (e.g., structural, diffusion, functional) and
combine these with non-imaging behavioral data, patient and/or
treatment history, and demographic and genetic information.
Several sophisticated software packages (e.g., AFNI, BrainVoyager,
FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze
such extensive data. In a typical analysis, algorithms from these
packages, each with its own set of parameters, process the raw data.
However, data collected for a single study can be diverse (highly
multi-dimensional) and large, and algorithms suited for one dataset
may not be optimal for another. This complicates analysis methods
and makes data exploration and inference challenging, and com-
parative analysis of new algorithms difficult.

Nipype: a flexible, lightweight and extensible neuroimaging
data processing framework in Python

Krzysztof Gorgolewski1*, Christopher D. Burns2, Cindee Madison2, Dav Clark3, Yaroslav O. Halchenko4,
Michael L. Waskom5,6, Satrajit S. Ghosh7

1 Neuroinformatics and Computational Neuroscience Doctoral Training Centre, School of Informatics, University of Edinburgh, Edinburgh, UK
2 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
3 Department of Psychology, University of California, Berkeley, CA, USA
4 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
6 McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
7 Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

Current neuroimaging software offer users an incredible opportunity to analyze their data in
different ways, with different underlying assumptions. Several sophisticated software packages
(e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large
and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of
specialized applications creates several issues that hinder replicable, efficient, and optimal
use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis
software and usage information; (2) No framework for comparative algorithm development
and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity
and training new personnel takes time; (4) Neuroimaging software packages do not address
computational efficiency; and (5) Methods sections in journal articles are inadequate for
reproducing results. To address these issues, we present Nipype (Neuroimaging in Python:
Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software
package, and scriptable library. Nipype solves the issues by providing Interfaces to existing
neuroimaging software with uniform usage semantics and by facilitating interaction between
these packages using Workflows. Nipype provides an environment that encourages interactive
exploration of algorithms, eases the design of Workflows within and between packages, allows
rapid comparative development of algorithms and reduces the learning curve necessary to use
different packages. Nipype supports both local and remote execution on multi-core machines
and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed,
allowing anyone unrestricted usage. An open, community-driven development philosophy
allows the software to quickly adapt and address the varied needs of the evolving neuroimaging
community, especially in the context of increasing demand for reproducible research.

Keywords: neuroimaging, data processing, workflow, pipeline, reproducible research, Python

Edited by:
Andrew P. Davison, CNRS, France

Reviewed by:
Gael Varoquaux, INSERM, France
Ivo Dinov, University of California, USA

*Correspondence:
Krzysztof Gorgolewski, School of
Informatics, University of Edinburgh,
Informatics Forum, 10 Crichton Street,
Edinburgh EH8 9AB, UK.
e-mail: krzysztof.gorgolewski@gmail.com

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 1

Methods Article
published: 22 August 2011

doi: 10.3389/fninf.2011.00013

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00013/abstract
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/people/krzysztofgorgolewski/34684
http://www.frontiersin.org/people/cindeemadison/36111
http://www.frontiersin.org/people/davclark/35205
http://www.frontiersin.org/people/michaelwaskom/36090
http://www.frontiersin.org/people/satrajitghosh/17765

tools. This often necessitates extensive interactions with the authors
of the software to understand their parameters, their quirks, and
their usage.

No framework for comparative algorithm development and
dissemination
Except for some large software development efforts (e.g., SPM, FSL,
FreeSurfer), most algorithm development happens in-house and
stays within the walls of a lab, without extensive exposure or test-
ing. Furthermore, testing comparative efficacy of algorithms often
requires significant effort (Klein et al., 2010). In general, developers
create software for a single package (e.g., VBM8 for SPM), create
a standalone cross-platform tool (e.g., Mricron), or simply do not
distribute the software or code (e.g., normalization software used
for registering architectonic atlases to MNI single subject template
– Hömke, 2006).

Personnel turnover in laboratories often limits methodological
continuity and training new personnel takes time
Most cognitive neuroscience laboratories aim to understand some
aspect of cognition. Although a majority of such laboratories gather
and analyze neuroimaging data, very few of them have the per-
sonnel with the technical expertise to understand methodological
development and modify laboratory procedures to adopt new tools.
Lab personnel with no prior imaging experience often learn by
following online tutorials, taking organized courses or, as is most
often the case, by learning from existing members of the lab. While
this provides some amount of continuity, understanding different
aspects of neuroimaging has a steep learning curve, and steeper
when one takes into account the time and resources needed to learn
the different package interfaces and algorithms.

Neuroimaging software packages do not address computational
efficiency
The primary focus of neuroimaging analysis algorithms is to solve
problems (e.g., registration, statistical estimation, tractography).
While some developers focus on algorithmic or numerical effi-
ciency, most developers do not focus on efficiency in the context of
running multiple algorithms on multiple subjects, a common sce-
nario in neuroimaging analysis. Creating an analysis workflow for a
particular study is an iterative process dependent on the quality of
the data and participant population (e.g., neurotypical, presurgical,
etc.). Researchers usually experiment with different methods and
their parameters to create a workflow suitable for their application,
but no suitable framework currently exists to make this process
efficient. Furthermore, very few of the available neuroimaging
tools take advantage of the growing number of parallel hardware
configurations (multi-core, clusters, clouds, and supercomputers).

Method sections of journal articles are often inadequate for
reproducing results
Several journals (e.g., PNAS, Science, PLoS) require mandatory
submission of data and scripts necessary to reproduce results of
a study. However, most current method sections do not have suf-
ficient details to enable a researcher knowledgeable in the domain
to reproduce the analysis process. Furthermore, as discussed above,
typical neuroimaging analyses integrate several tools and current

analysis software do not make it easy to reproduce all the analysis
steps in the proper order. This leaves a significant burden on the user
to satisfy these journal requirements as well as ensure that analysis
details are preserved with the intent to reproduce.

Current solutIons
There have been several attempts to address these issues by creat-
ing pipeline systems (for comparison see Table 1). Taverna (Oinn
et al., 2006), VisTrails (Callahan et al., 2006) are general pipelining
systems with excellent support for web-services, but they do not
address problems specific to neuroimaging. BrainVisa (Cointepas
et al., 2001), MIPAV (McAuliffe et al., 2001), SPM include their own
batch processing tools, but do not allow mixing components from
other packages. Fiswidgets (Fissell et al., 2003), a promising initial
approach, appears to have not been developed and does not support
state of the art methods. A much more extensive and feature rich
solution is the LONI Pipeline (Rex et al., 2003; Dinov et al., 2009,
2010). It provides an easy to use graphical interface for choosing pro-
cessing steps or nodes from a predefined library and defining their
dependencies and parameters. Thanks to an advanced client–server
architecture, it also has extensive support for parallel execution on
an appropriately configured cluster (including data transfer, pausing
execution, and combining local and remote software). Additionally,
the LONI Pipeline saves information about executed steps (such as
software origin, version, and architecture) providing provenance
information (Mackenzie-Graham et al., 2008).

However, the LONI Pipeline does not come without limitations.
Processing nodes are defined using eXtensible Markup Language
(XML). This “one size fits all” method makes it easy to add new
nodes as long as they are well-behaved command lines. However,
many software packages do not meet this criterion. For example,
SPM, written in MATLAB, does not provide a command line inter-
face. Furthermore, for several command line programs, arguments
are not easy to describe in the LONI XML schema (e.g., ANTS –
Avants and Gee, 2004). Although it provides a helpful graphical
interface, the LONI Pipeline environment does not provide an easy
option to script a workflow or for rapidly exploring parametric
variations within a workflow (e.g., VisTrails). Finally, due to restric-
tive licensing, it is not straightforward to modify and redistribute
the modifications.

To address issues with existing workflow systems and the ones
described earlier, we present Nipype (Neuroimaging in Python:
Pipelines and Interfaces), an open-source, community-developed,
Python-based software package that easily interfaces with exist-
ing software for efficient analysis of neuroimaging data and rapid
comparative development of algorithms. Nipype uses a flexible,
efficient, and general purpose programming language – Python – as
its foundation. Processing modules and their inputs and outputs
are described in an object-oriented manner providing the flexibility
to interface with any type of software (not just well-behaved com-
mand lines). The workflow execution engine has a plug-in archi-
tecture and supports both local execution on multi-core machines
and remote execution on clusters. Nipype is distributed with a
Berkeley Software Distribution (BSD) license allowing anyone to
make changes and redistribute it. Development is done openly with
collaborators from many different labs, allowing adaptation to the
varied needs of the neuroimaging community.

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

We use Enthought Traits3 to create a formal definition for
Interface inputs and outputs, to define input constraints (e.g., type,
dependency, whether mandatory) and to provide validation (e.g.,
file existence). This allows malformed or underspecified inputs to
be detected prior to executing the underlying program. The input
definition also allows specifying relations between inputs. Often,
some input options should not be set together (mutual exclusion)
while other inputs need to be set as a group (mutual inclusion).
Part of the input specification for the “bet” (Brain Extraction Tool)
program from FSL is shown in Listing 2.

Currently, Nipype (version 0.4) is distributed with a wide range
of interfaces (see Table 2). Adding new Interfaces is simply a mat-
ter of writing a Python class definition as was shown in Listing 1.
When a formal specification of inputs and outputs are provided
by the underlying software, Nipype can support these programs
automatically. For example, the Slicer command line execution
modules come with an XML specification that allows Nipype to
wrap them without creating individual interfaces.

nodes, mapnodes, and WorkfloWs
Nipype provides a framework for connecting Interfaces to create
a data analysis Workflow. In order for Interfaces to be used in a
Workflow they need to be encapsulated in either Node or MapNode
objects. Node and MapNode objects provide additional functional-
ity to Interfaces. For example, creating a hash of the input state,
caching of results, and the ability to iterate over inputs. Additionally,
they execute the underlying interfaces in their own uniquely named
directories (almost like a sandbox), thus providing a mechanism
to isolate and track the outputs resulting from execution of the
Interfaces. These mechanisms allow not only for provenance track-
ing, but aid in efficient pipeline execution.

The MapNode class is a sub-class of Node that implements
a MapReduce-like architecture (Dean and Ghemawat, 2008).
Encapsulating an Interface within a MapNode allows Interfaces
that normally operate on a single input to execute the Interface on
multiple inputs. When a MapNode executes, it creates a separate
instance of the underlying Interface for every value of an input list
and executes these instances independently. When all instances finish
running, their results are collected into a list and exposed through
the MapNode’s outputs (see Figure 4D). This approach improves

ImplementatIon detaIls
Nipype consists of three components (see Figure 1): (1) interfaces to
external tools that provide a unified way for setting inputs, execut-
ing, and retrieving outputs; (2) a workflow engine that allows creat-
ing analysis pipelines by connecting inputs and outputs of interfaces
as a directed acyclic graph (DAG); and (3) plug-ins that execute
workflows either locally or in a distributed processing environment
(e.g., Torque1, SGE/OGE). In the following sections, we describe key
architectural components and features of this software.

InterfaCes
Interfaces form the core of Nipype. The goal of Interfaces2 is to provide
a uniform mechanism for accessing analysis tools from neuroimaging
software packages (e.g., FreeSurfer, FSL, SPM). Interfaces can be used
directly as a Python object, incorporated into custom Python scripts
or used interactively in a Python console. For example, there is a
Realign Interface that exposes the SPM realignment routine, while the
MCFLIRT Interface exposes the FSL realignment routine. In addition,
one can also implement an algorithm in Python within Nipype and
expose it as an Interface. Interfaces are flexible and can accommodate
the heterogeneous software that needs to be supported, while provid-
ing unified and uniform access to these tools for the user. Since, there
is no need for the underlying software to be changed (recompiled or
adjusted to conform to a certain standard), developers can continue
to create software using the computer language of their choice.

An Interface definition consists of: (a) input parameters, their
types (e.g., file, floating point value, list of integers, etc…) and
dependencies (e.g., does input “a” require input “b”); (b) outputs
and their types, (c) how to execute the underlying software (e.g.,
run a MATLAB script, or call a command line program); and (d) a
mapping which defines the outputs that are produced given a par-
ticular set of inputs. Using an object-oriented approach, we minimize
redundancy in interface definition by creating a hierarchy of base
Interface classes (see Figure 2) to encapsulate common functionality
(e.g., Interfaces that call command line programs are derived from the
CommandLine class, which provides methods to translate Interface
inputs into command line parameters and for calling the command).
Source code of an example Interface is shown in Listing 1.

1http://www.clusterresources.com/products/torque-resource-manager.php
2Throughout the rest of the paper we are going to use upper case for referring to clas-
ses (such as Interfaces, Workflows, etc…) and lower case to refer to general concepts.

Table 1 | Feature comparison of selected pipeline frameworks.

 Local multi- Grid engine Scripting XNAT Web-services2 Platforms Graphical Designed for

 processing1 support user interface neuroimaging

Taverna Yes PBS Java, R Yes Yes Mac, Unix, Windows Yes No

VisTrails Yes n/a Python Yes Yes Mac, Unix, Windows Yes No

Fiswidgets No n/a Java No No Mac, Unix, Windows Yes Yes

LONI No DRMAA No Yes No Mac, Unix, Windows Yes Yes

Nipype Yes SGE, PBS, Python Yes No Mac, Unix No Yes

 IPython

BrainVisa, MIPAV, and SPM were not included due to their inability to combine software from different packages.
1Without additional dependencies.
2Support for executing processing steps defined as web-services.

3http://code.enthought.com/projects/traits/

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://code.enthought.com/projects/traits/
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.frontiersin.org/Neuroinformatics/archive

together within a Workflow. By connecting outputs of some
Nodes to inputs of others, the user implicitly specifies depend-
encies. These are represented internally as a DAG. The current
semantics of Workflow do not allow conditionals and hence the
graph needs to be acyclic. Workflows themselves can be a node
of the Workflow graph (see Figure 1). This enables a hierarchi-
cal architecture and encourages Workflow reuse. The Workflow
engine validates that all nodes have unique names, ensures that
there are no cycles, and prevents connecting multiple outputs
to a given input. For example in an fMRI processing Workflow,
preprocessing, model fitting, and visualization of results can
be implemented as individual Workflows connected together
in a main Workflow. This not only improves clarity of designed
Workflows but also enables easy exchange of whole subsets.
Common Workflows can be shared across different studies
within and across laboratories thus reducing redundancy and
increasing consistency.

While a neuroimaging processing pipeline could be imple-
mented as a Bash, MATLAB, or a Python script, Nipype explicitly
implements a pipeline as a graph. This makes it easy to follow
what steps are being executed and in what order. It also makes it
easier to go back and change things by simply reconnecting dif-
ferent outputs and inputs or by inserting new Nodes/MapNodes.
This alleviates the tedious component of scripting where one has
to manually ensure that the inputs and outputs of different pro-
cessing calls match and that operations do not overwrite each
other’s outputs.

A Workflow provides a detailed description of the process-
ing steps and how data flows between Interfaces. Thus it is also a
source of provenance information. We encourage users to provide
Workflow definitions (as scripts or graphs) as supplementary mate-
rial when submitting articles. This ensures that at least the data
processing part of the published experiment is fully reproducible.
Additionally, exchange of Workflows between researchers stimu-
lates efficient use of methods and experimentation.

FiGure 1 | Architecture overview of the Nipype framework. Interfaces are
wrapped with Nodes or MapNodes and connected together as a graph within
a Workflow. Workflows themselves can act as a Node inside another
Workflow, supporting a composite design pattern. The dependency graph is
transformed before being executed by the engine component. Execution is
performed by one of the plug-ins. Currently Nipype supports serial and parallel
(both local multithreading and cluster) execution.

FiGure 2 | Simplified hierarchy of interface classes. An object-oriented
design is used to reduce code redundancy by defining common functionality
in base classes, and makes adding new interfaces easier and quicker.
MatlabCommand, FSLCommand, and FSCommand extend the
CommandLine class to provide functionality specific to executing MATLAB,
FSL, and FreeSurfer programs. The SPMCommand class defines functions
that simplify wrapping SPM functionality. The dashed line indicates that the
SPMCommand class uses the MatlabCommand class to execute the SPM
matlab scripts generated by the SPM interfaces.

granularity of the Workflow and provides easy support for Interfaces
that can only process one input at a time. For example, the FSL “bet”
program can only run on a single input, but wrapping the BET
Interface in a MapNode allows running “bet” on multiple inputs.

A Workflow object captures the processing stages of a pipe-
line and the dependencies between these processes. Interfaces
encapsulated into Node or MapNode objects can be connected

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

from nipype.interfaces.base import (TraitedSpec, CommandLineInputSpec,
 CommandLine, File)

import os

class GZipInputSpec(CommandLineInputSpec):
input_file = File(desc = "File", exists = True, mandatory = True,

argstr = "%s")

class GZipOutputSpec(TraitedSpec):
output_file = File(desc = "Zip file", exists = True)

class GZipTask(CommandLine):
input_spec = GZipInputSpec
output_spec = GZipOutputSpec
cmd = 'gzip'

def _list_outputs(self):
outputs = self.output_spec().get()
outputs['output_file'] = os.path.abspath(self.inputs.input_file + ".gz")
return outputs

if __name__ == '__main__':
zipper = GZipTask(input_file='an_existing_file')
print zipper.cmdline
zipper.run()

LiSTiNG 1 | An example interface wrapping the gzip command line tool and a usage example. This Interface takes a file name as an input, calls gzip to
compress it and returns a name of the compressed output file.

class BETInputSpec(FSLCommandInputSpec):
in_file = File(exists=True,

desc = 'input file to skull strip',
argstr='%s', position=0, mandatory=True)

out_file = File(desc = 'name of output skull stripped image',
argstr='%s', position=1, genfile=True)

mask = traits.Bool(desc = 'create binary mask image', argstr='-m')

functional = traits.Bool(argstr='-F', xor=('functional', 'reduce_bias'),
desc="apply to 4D fMRI data")

...

LiSTiNG 2 | Part of the input specification for the Brain extraction Tool (BeT) interface. Full specification covers 18 different arguments. Each attribute of this
class is a Traits object which defines an input and its data type (i.e., list of integers), constraints (i.e., length of the list), dependencies (when for example setting one
option is mutually exclusive with another, see the xor parameter), and additional parameters (such as argstr and position which describe how to convert an input into
a command line argument).

example – buIldIng a WorkfloW from sCratCh
In this section, we describe how to create and extend a typical fMRI
processing Workflow. A typical fMRI Workflow can be divided into
two sections: (1) preprocessing and (2) modeling. The first one deals
with cleaning data from confounds and noise and the second one fits
a model to the cleaned data based on the experimental design. The
preprocessing stage in this Workflow will consist of only two steps: (1)
motion correction (aligns all volumes in a functional run to the mean
realigned volume) and (2) smoothing (convolution with a 3D Gaussian
kernel). We use SPM Interfaces to define the processing Nodes.

from nipype.pipeline.engine import Node, Workflow

realign = Node(interface=spm.Realign(),
 name="realign")

realign.inputs.register_to_mean = True

smooth = Node(interface=spm.Smooth(),
 name="smooth")

smooth.inputs.fwhm = 4

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

DataSink on the other side provides means for storing selected
results in a specified location. It supports automatic creation of
folders, simple substitutions, and regular expressions to alter target
filenames. In this example we store the statistical (T maps) resulting
from contrast estimation.

A Workflow defined this way (see Figure 3, for full code see
Supplementary Material) is ready to run. This can be done by call-
ing run() method of the master Workflow.

If the run() method is called twice, the Workflow input hashing
mechanism ensures that none of the Nodes are executed during the
second run if the inputs remain the same. If, however, a highpass
filter parameter of specify_model is changed, some of the Nodes
(but not all) would have to rerun. Nipype automatically determines
which Nodes require rerunning.

Iterables – parameter spaCe exploratIon
Nipype provides a flexible approach to prototype and experiment
with different processing strategies, through the unified and uni-
form access to a variety of software packages (Interfaces) and cre-
ating data flows (Workflows). However, for various neuroimaging

We create a Workflow to include these two Nodes and define
the data flow from the output of the realign Node (realigned_files)
to the input of the smooth Node (in_files). This creates a simple
preprocessing workflow (see Figure 3).

preprocessing = Workflow
 (name="preprocessing")
preprocessing.connect(realign,
 "realigned_files", smooth, "in_files")

A modeling Workflow is constructed in an analogous man-
ner, by first defining Nodes for model design, model estimation,
and contrast estimation. We again use SPM Interfaces for this
purpose. However, Nipype adds an extra abstraction Interface for
model specification whose output can be used to create mod-
els in different packages (e.g., SPM, FSL, and Nipy). The nodes
of this Workflow are: SpecifyModel (Nipype model abstraction
Interface), Level1Design (SPM design definition), ModelEstimate,
and ContrastEstimate. The connected modeling Workflow can be
seen on Figure 3.

We create a master Workflow that connects the preprocessing
and modeling Workflows, adds the ability to select data for process-
ing (using DataGrabber Interface) and a DataSink Node to save the
outputs of the entire Workflow. Nipype allows connecting Nodes
between Workflows. We will use this feature to connect realign-
ment_parameters and smoothed_files to modeling workflow.

The DataGrabber Interface allows the user to define flexible search
patterns which can be parameterized by user defined inputs (such as
subject ID, session, etc.). This Interface can adapt to a wide range of
directory organization and file naming conventions. In our case we
will parameterize it with subject ID. In this way we can run the same
Workflow for different subjects. We automate this by iterating over a
list of subject IDs, by setting the iterables property of the DataGrabber
Node for the input subject_id. The DataGrabber Node output is con-
nected to the realign Node from preprocessing Workflow.

Table 2 | Supported software.

Name urL

AFNI afni.nimh.nih.gov/afni

BRAINS www.psychiatry.uiowa.edu/mhcrc/IPLpages/

 BRAINS.htm

Camino www.cs.ucl.ac.uk/research/medic/camino

Camino-TrackVis www.nitrc.org/projects/camino-trackvis

ConnecomeViewerToolkit www.connectomeviewer.org

dcm2nii www.cabiatl.com/mricro/mricron/dcm2nii.html

Diffusion Toolkit www.trackvis.org/dtk

FreeSurfer freesurfer.net

FSL www.fmrib.ox.ac.uk/fsl

Nipy nipy.org/nipy

NiTime nipy.org/nitime

Slicer www.slicer.org/

SPM www.fil.ion.ucl.ac.uk/spm

SQLite www.sqlite.org

PyXNAT github.com/pyxnat, xnat.org

List of software packages fully or partially supported by Nipype. For more details
see http://nipy.org/nipype/interfaces.

FiGure 3 | Graph depicting the processing steps and dependencies for a
first level functional analysis workflow. Every output–input connection is
represented with a separate arrow. Nodes from every subworkflow are
grouped in boxes with labels corresponding to the name of the subworkflow.
Such graphs can be automatically generated from a Workflow definition and
provide a quick overview of the pipeline.

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The Workflow engine sends an execution graph to the plug-
in. Executing the Workflow in series is then simply a matter of
performing a topological sort on the graph and running each
node in the sorted order. However, Nipype also provides addi-
tional plug-ins that use Python’s multi-processing module, use
IPython (includes SSH-based, SGE, LSF, PBS, among others)
and provide native interfaces to SGE or PBS/Torque clusters.
For all of these, the graph structure defines the dependencies
as well as which nodes can be executed in parallel at any given
stage of execution.

One of the biggest advantages of Nipype’s execution system is
that parallel execution using local multi-processing plug-in does
not require any additional software (such as cluster managers like
SGE) and therefore makes prototyping on a local multi-core work-
stations easy. However for bigger studies and complex Workflows,
a high-performance computing cluster can provide substantial
improvements in execution time. Since there is a clear separation
between definition of the Workflow and its execution, Workflows
can be executed in parallel (locally or on a cluster) without any
modification. Transitioning from developing a processing pipeline
on a single subject on a local workstation to executing it on a bigger
cohort on a cluster is therefore seamless.

Rerunning workflows has also been optimized. When a Node or
MapNode is run, the framework will actually execute the underlying
interface only if inputs have changed relative to prior execution. If
not, it will simply return cached results.

the funCtIon InterfaCe
One of the Interfaces implemented in Nipype requires special atten-
tion: The Function Interface. Its constructor takes as arguments
Python function pointer or code, list of inputs, and list of outputs.
This allows running any Python code as part of a Workflow. When
combined with libraries such as Nibabel (neuroimaging data input
and output), Numpy/Scipy (array representation and processing)
and scikits-learn or PyMVPA (machine learning and data min-
ing) the Function Interface provides means for rapid prototyping
of complex data processing methods. In addition, by using the

tasks, there is often a need to explore the impact of variations in
parameter settings (e.g., how do different amounts of smoothing
affect group statistics, what is the impact of spline interpolation
over trilinear interpolation). To enable such parametric explora-
tion, Nodes have an attribute called iterables.

When an iterable is set on a Node input, the Node, and its
subgraph are executed for each value of the iterable input
(see Figure 4 iterables_vs_mapnode). Iterables can also
be set on multiple inputs of a Node (e.g., somenode.itera-
bles = [(“input1,” [1,2,3]), (“input2,” [“a,” “b”])]). In such
cases, every combination of those values is used as a parameter
set (the prior example would result in the following parameter
sets: (1, “a”), (1, “b”), (2, “a”), etc…). This feature is especially
useful to investigate interactions between parameters of inter-
mediate stages with respect to the final results of a workflow. A
common use-case of iterables is to execute the same Workflow
for many subjects in an fMRI experiment and to simultane-
ously look at the impact of parameter variations on the results
of the Workflow.

It is important to note that unlike MapNode, which creates cop-
ies of the underlying interface for every element of an input of
type list, iterables operate on the subgraph of a node and create
copies not only of the node but also of all the nodes dependent on
it (see Figure 4).

parallel dIstrIbutIon and exeCutIon plug-Ins
Nipype supports executing Workflows locally (in series or parallel)
or on load-balanced grid-computing clusters (e.g., SGE, Torque,
or even via SSH) through an extensible plug-in interface. No
change is needed to the Workflow to switch between these execu-
tion modes. One simply calls the Workflow’s run function with a
different plug-in and its arguments. Very often different compo-
nents of a Workflow can be executed in parallel and even more so
when the same Workflow is being repeated on multiple parameters
(e.g., subjects). Adding support for additional cluster management
systems does not require changes in Nipype, but simply writing a
plug-in extension conforming to the plug-in API.

A B C D

FiGure 4 | Workflow modification using iterables and MapNodes. If we
take the processing pipeline (A) and set iterables parameter of DataGrabber to a
list of two subjects, Nipype will effectively execute graph (B). Identical
processing will be applied to every subject from the list. Iterables can be used in

a graph on many levels. For example, setting iterables on Smooth FWHM to a
list of 4 and 8 mm will result in graph (C). In contrast to iterables, MapNode
branches within a node of the graph and also merges the results of the
branches, effectively performing a MapReduce operation (D).

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

PyPI repository lifts this constraint by providing dependency infor-
mation and automatically installing required packages. Nipype is
available from standard repositories on recent Debian and Ubuntu
releases. Moreover, NeuroDebian6 (Hanke et al., 2010) repository
provides the most recent releases of Nipype for Debian-based sys-
tems and a NeuroDebian Virtual Appliance making it easy to deploy
Nipype and other imaging tools in a virtual environment on other
OS, e.g., Windows. In addition to providing all core dependen-
cies and automatic updates NeuroDebian also provides many of
the software packages supported by Nipype (AFNI, FSL, Mricron,
etc.), making deployment of heterogeneous Nipype pipelines more
straightforward.

development
Nipype is trying to address the problem of interacting with the
ever changing universe of neuroimaging software in a sustainable
 manner. Therefore the way its development is managed is a part
of the solution. Nipype is distributed under BSD license which
allows free copying, modification, and distribution and addition-
ally meets all the requirements of open-source definition (see
Open-Source Initiative7) and Debian Free Software Guidelines8.
Development is carried out openly through distributed version
control system (git via GitHub9) in an online community. The
current version of the source code together with complete his-
tory is accessible to everyone. Discussions between developers and
design decisions are done on an open access mailing list. This setup
encourages a broader community of developers to join the project
and allows sharing of the development resources (effort, money,
information, and time).

In these previous paragraphs, we presented key features of
Nipype that facilitate rapid development and deployment of
analysis procedures in laboratories, and address all of the issues
described earlier. In particular, Nipype provides: (1) uniform
access to neuroimaging analysis software and usage information;
(2) a framework for comparative algorithm development and dis-
semination; (3) an environment for methodological continuity
and paced training of new personnel in laboratories; (4) compu-
tationally efficient execution of neuroimaging analysis; and (5)
a mechanism to capture the data processing details in compact
scripts and graphs. In the following section, we provide examples
to demonstrate these solutions.

usage examples
unIform aCCess to tools, theIr usage, and exeCutIon
Users access Interfaces by importing them from Nipype mod-
ules. Each neuroimaging software distribution such as FSL, SPM,
Camino, etc., has a corresponding module in the nipype.interfaces
namespace.

from nipype.interfaces.camino import DTIFit

The help() function for each interface prints the inputs and the
outputs associated with the interface.

Function Interface users can avoid writing their own Interfaces
which is especially useful for ad hoc solutions (e.g., calling an exter-
nal program that has not yet been wrapped as an Interface).

WorkfloW vIsualIzatIon
To be able to efficiently manage and debug Workflows, one has to
have access to a graphical representation. Using graphviz (Ellson
et al., 2002), Nipype generates static graphs representing Nodes and
connections between them. In the current version four types of
graphs are supported: orig – does not expand inner Workflows, flat
– expands inner workflows, exec – expands workflows and iterables,
and hierarchical – expands workflows but maintains their hierarchy.
Graphs can be saved in a variety of file formats including Scalable
Vector Graphics (SVG) and Portable Network Graphics (PNG; see
Figures 3 and 6).

ConfIguratIon optIons
Certain options concerning verbosity of output and execution effi-
ciency can be controlled through configuration files or variables.
These include, among others, hash_method and remove_ unecessary_
outputs. As explained before, rerunning a Workflow only recomputes
those Nodes whose inputs have changed since the last run. This is
achieved by recording a hash of the inputs. For files there are two
ways of calculating the hash (controlled by the hash_method con-
fig option): timestamp – based only on the size and modification
time and content – based on the content of the file. The first one is
faster, but does not deal with the situation when an identical copy
overwrites the file. The second one can be slower especially for big
files, but can tell that two files are identical even if they have different
modification times. To allow efficient recomputation Nipype has to
store outputs of all Nodes. This can generate a significant amount
of data for typical neuroimaging studies. However, not all outputs
of every Node are used as inputs to other Nodes or relevant to the
final results. Users can decide to remove those outputs (and save
some disk space) by setting the remove_unecessary_outputs to True.
These and other configuration options provide a mechanism to
streamline the use of Nipype for different applications.

deployment
Nipype supports GNU/Linux and Mac OS X operating systems
(OS). A recent Internet survey based study (Hanke and Halchenko,
2011) showed that GNU/Linux is the most popular platform in the
neuroimaging community and together with Mac OS X is used by
over 70% of neuroimagers. There are not theoretical reasons why
Nipype should not work on Windows (Python is a cross-platform
language), but since most of the supported software (for example
FSL) requires a Unix based OS, Nipype has not been tested on
this platform.

We currently provide three ways of deploying Nipype on a new
machine: manual installation from sources4, PyPi repository5, and
from package repositories on Debian-based systems. Manual instal-
lation involves downloading a source code archive and running a
standard Python installation script (distutils). This way the user
has to take care of installing all of the dependencies. Installing from

4http://nipy.org/nipype/
5http://pypi.python.org/pypi/nipype/

6http://neuro.debian.net
7http://www.opensource.org/docs/osd
8http://www.debian.org/social_contract#guidelines
9http://github.com/nipy/nipype

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://nipy.org/nipype/
http://pypi.python.org/pypi/nipype/
http://github.com/nipy/nipype
http://www.debian.org/social_contract#guidelines
http://www.opensource.org/docs/osd
http://neuro.debian.net
http://www.frontiersin.org/Neuroinformatics/archive

The output of the help() function is standardized across all
Interfaces. It is automatically generated based on the traited input
and output definitions and includes information about required
inputs, types, and default value. Alternatively, extended information
is available in the form of auto-generated HTML documentation
on the Nipype website (see Figure 5). This extended information
includes examples that demonstrate how the interface can be used.

For every Interface, input values are set through the inputs field:

fit.inputs.scheme_file = 'A.scheme'
fit.inputs.in_file = \
 'tensor_fitted_data.Bfloat'

When trying to set an invalid input type (for example a non-
existing input file, or a number instead of a string) the Nipype
framework will display an error message. Input validity checking
before actual Workflow execution saves time. To run an Interface
user needs to call run() method:

fit.run()

At this stage the framework checks if all mandatory inputs are
set and all input dependencies are satisfied, generating an error if
either of these conditions are not met.

>>> DTIFit.help()
Inputs

Mandatory:
 in_file: voxel-order data filename
 scheme_file: Camino scheme file
 (b values / vectors, see camino.fsl2scheme)

Optional:
 args: Additional parameters to the command
 environ: Environment variables (default={})
 ignore_exception: Print an error message
instead of throwing an exception in case
the interface fails to run (default=False)
 non_linear: Use non-linear fitting instead
of the default linear regression to the log
measurements.
 out_file: None

Outputs

tensor_fitted: path/name of 4D volume in voxel
 order

FiGure 5 | HTML help page for dtfit command from Camino. This was generated based on the Interface code: description and example was taken from the
class docstring and inputs/outputs were list was created using traited input/output specification.

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

they are interested in. As an example of such use, we have com-
pared voxelwise isotropic, voxelwise anisotropic, and surface based
smoothing all for two levels of FWHM – 4 and 8 mm. First one is the
standard convolution with Gaussian kernel as implemented in SPM.
Second one involves smoothing only voxels of similar intensity in
attempt to retain structure. This was implemented in SUSAN from
FSL (Smith, 1992). Third method involves reconstructing surface
of the cortex and smoothing along it (Hagler et al., 2006). This
avoids bleeding of signal over sulci.

Establishing parameters from data and smoothing using SUSAN
is already built into Nipype as a Workflow. It can be created using
create_susan_smooth() function. It has similar inputs and outputs
as SPM Smooth Interface. Smoothing on a surface involves doing a
full cortical reconstruction from T1 volume using FreeSurfer (Fischl
et al., 1999) followed by coregistering functional images to the
reconstructed surface using BBRegister (Greve and Fischl, 2009).
Finally, the surface smoothing algorithm from FreeSurfer is called.

Smoothed EPI volumes (direct/local influence) and statistical
maps (indirect/global influence), along with the pipeline used to
generate them can be found in Figures 6 and 7. Full code used to
generate this data can be found in the Supplementary Material.
This comparison serves only to demonstrate Nipype capabilities;
a comparison between smoothing methods is outside of the scope
of this paper.

Nipype standardizes running and accessing help information
irrespective of whether the underlying software is a MATLAB pro-
gram, a command line tool, or Python module. The framework deals
with translating inputs into appropriate form (e.g., command line
arguments or MATLAB scripts) for executing the underlying tools
in the right way, while presenting the user with a uniform interface.

a frameWork for ComparatIve algorIthm development and
dIssemInatIon
Uniform semantics for interfacing with a wide range of processing
methods not only opens the possibility for richer Workflows, but
also allows comparing algorithms that are designed to solve the
same problem across and within such diverse Workflows. Typically,
such an exhaustive comparison can be time-consuming, because
of the need to deal with interfacing different software packages.
Nipype simplifies this process by standardizing the access to the
software. Additionally, the iterables mechanism allows users to easily
extend such comparisons by providing a simple mechanism to test
different parameter sets.

Accuracy or efficiency of algorithms can be determined in an
isolated manner by comparing their outputs or execution time or
memory consumption on a given set of data. However, researchers
typically want to know how different algorithms used at earlier
stages of processing might influence the final output or statistics

FiGure 6 | Graph showing the workflow used for the smoothing methods and parameters comparison. The gray shaded nodes have iterables parameter set.
This allows easy iteration over all combinations of FWHM and smoothing algorithms used in the comparison.

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 10

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

an envIronment for methodologICal ContInuIty and paCed
traInIng of neW personnel In laboratorIes
Neuroimaging studies in any laboratory typically use similar data
processing methods with possibly different parameters. Nipype
Workflows can be very useful in dividing the data processing into
reusable building blocks. This not only improves the speed of
building new Workflows but also reduces the number of potential
errors, because a well tested piece of code is being reused (instead
of being reimplemented every time). Since a Workflow definition
is an abstract and simplified representation of the data process-
ing stream, it is much easier to describe and hand over to new
project personnel. Furthermore, a data independent Workflow
definition (see Figure 8) enables sharing Workflows within and
across research laboratories. Nipype provides a high-level abstrac-
tion mechanism for exchanging knowledge and expertise between
researchers focused on methods in neuroimaging and those inter-
ested in applications.

The uniform access to Interfaces and the ease of use of Workflows
in Nipype helps with training new staff. Composition provided by
Workflows allows users to gradually increase the level of details
when learning how to perform neuroimaging analysis. For exam-
ple user can start with a “black box” Workflow that does analysis
from A to Z, and gradually learn what the sub-components (and
their sub-components) do. Playing with Interfaces in an interactive
console is also a great way to learn how different algorithms work
with different parameters without having to understand how to set
them up and execute them.

ComputatIonally effICIent exeCutIon of neuroImagIng
analysIs
A computationally efficient execution allows for multiple rapid
iterations to optimize a Workflow for a given application. Support
for optimized local execution (running independent processes in
parallel, rerunning only those steps that have been influenced by
the changes in parameters or dependencies since the last run) and
exploration of parameter space eases Workflow development. The
Nipype package provides a seamless and flexible environment for
executing Workflows in parallel on a variety of environments from
local multi-core workstations to high-performance clusters. In
the SPM workflow for single subject functional data analysis (see
Figure 9), only a few components can be parallelized. However,
running this Workflow across several subjects provides room
for embarrassingly parallel execution. Running this Workflow in
distributed mode for 69 subjects on a compute cluster (40 cores
distributed across 6 machines) took 1 h and 40 min relative to the
32-min required to execute the analysis steps in series for a sin-
gle subject on the same cluster. The difference from the expected
runtime of 64 min (32 min for the first 40 subjects and another
32 min for the remaining 29 subjects) stems from disk I/O and
other network and processing resource bottlenecks.

Captures detaIls of analysIs requIred to reproduCe results
The graphs and code presented in the examples above capture all the
necessary details to rerun the analysis. Any user, who has the same
versions of the tools installed on their machine and access to the data
and scripts, will be able to reproduce the results of the study. For
example, running Nipype within the NeuroDebian framework can

Algorithm comparison is not the only way Nipype can be
useful for a neuroimaging methods researcher. It is in the inter-
est of every methods developer to make his or hers work most
accessible. This usually means providing ready to use imple-
mentations. However, because the field is so diverse, software
developers have to provide several packages (SPM toolbox, com-
mand line tool, C++ library, etc.) to cover the whole user base.
With Nipype, a developer can create one Interface and expose
a new tool, written in any language, to a greater range of users,
knowing it will work with the wide range of software currently
supported by Nipype.

A good example of such scenario is ArtifactDetection toolbox10.
This piece of software uses EPI timeseries and realignment param-
eters to find timepoints (volumes) that are most likely artifacts
and should be removed (by including them as confound regres-
sors in the design matrix). The tool was initially implemented as a
MATLAB script, compatible only with SPM and used locally within
the lab. The current Nipype interface can work with SPM or FSL
Workflows, thereby not limiting its users to SPM.

FiGure 7 | influence of different smoothing methods and their
parameters. Upper half shows direct influence of smoothing on the EPI
sequence (slice 16, volume 0, run 2). Lower half shows indirect influence of
smoothing on the T maps (same slice) of the main contrast.

10http://www.nitrc.org/projects/artifact_detect/

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 11

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.nitrc.org/projects/artifact_detect/
http://www.frontiersin.org/Neuroinformatics/archive

FiGure 8 | create_spm_preproc() functions returns this reusable, data
independent Workflow. It implements typical fMRI preprocessing with
smoothing (SPM), motion correction (SPM), artifact detection (Nipype), and

coregistration (FreeSurfer). Inputs and outputs are grouped using IdentityInterfaces.
Thanks to this, changes in the configuration of the nodes will not break
backward compatibility. For full source code see Supplementary Material.

provide access to specific versions of the underlying tools. This pro-
vides an easy mechanism to be compliant with the submitting data
and scripts/code mandates of journals such as PNAS and Science.

dIsCussIon
Current neuroimaging software offer users an incredible opportu-
nity to analyze their data in different ways, with different underlying
assumptions. However, this heterogeneous collection of specialized
applications creates several problems: (1) No uniform access to neu-
roimaging analysis software and usage information; (2) No frame-
work for comparative algorithm development and dissemination; (3)
Personnel turnover in laboratories often limit methodological continu-
ity and training new personnel takes time; (4) Neuroimaging software
packages do not address computational efficiency; and (5) Method
sections of journal articles are often inadequate for reproducing results.

We addressed these issues by creating Nipype, an open-source,
community-developed initiative under the umbrella of Nipy. Nipype,
solves these issues by providing uniform Interfaces to existing neuroim-
aging software and by facilitating interaction between these packages
within Workflows. Nipype provides an environment that encourages

 interactive exploration of algorithms from different packages (e.g.,
SPM, FSL), eases the design of Workflows within and between pack-
ages, and reduces the learning curve necessary to use different packages.
Nipype is addressing limitations of existing pipeline systems and creat-
ing a collaborative platform for neuroimaging software development
in Python, a high-level scientific computing language.

We use Python for several reasons. It has extensive scientific com-
puting and visualization support through packages such as SciPy,
NumPy, Matplotlib, and Mayavi (Pérez et al., 2010; Millman and
Aivazis, 2011). The Nibabel package provides support for reading and
writing common neuroimaging file formats (e.g., NIFTI, ANALYZE,
and DICOM). Being a high-level language, Python supports rapid
prototyping, is easy to learn and adopt and is available across all major
OS. At the same time Python allows to seamlessly bind with C code
(using Weave package) for improved efficiency of critical subroutines.

Python is also known to be a good choice for the first program-
ming language to learn (Zelle, 1999) and is chosen as the language
for introductory programming at many schools and universities11.

11http://wiki.python.org/moin/SchoolsUsingPython

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 12

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://wiki.python.org/moin/SchoolsUsingPython
http://www.frontiersin.org/Neuroinformatics/archive

FiGure 9 | Single subject fMri Workflow used for benchmarking parallel execution.

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 13

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

enance information, this aspect can be improved by generat-
ing provenance reports defined by a standardized XML schema
(Mackenzie-Graham et al., 2008).

Increased diversity of neuroimaging data processing software
has made systematic comparison of performance and accuracy
of underlying algorithms essential (for examples, see Klein et al.,
2009, 2010). However, a platform for comparing algorithms,
either by themselves or in the context of an analysis workflow,
or determining optimal workflows in a given application context
(e.g., Churchill et al., 2011), does not exist. Furthermore, in this
context of changing hardware and software, traditional analysis
approaches may not be suitable in all contexts (e.g., data from
32-channel coils which show a very different sensitivity profile,
or data from children). Nipype can make such evaluations, design
of optimal workflows, and investigations easier (as demonstrated
via the smoothing example above), resulting in more efficient data
analysis for the community.

summary
We presented Nipype, an extensible Python library and framework
that provides interactive manipulation of neuroimaging data through
uniform Interfaces and enables reproducible, distributed analysis using
the Workflow system. Nipype has encouraged the scientific explora-
tion of different algorithms and associated parameters, eased the
development of Workflows within and between packages and reduced
the learning curve associated with understanding the algorithms, APIs,
and user interfaces of disparate packages. An open, community-driven
development philosophy provides the flexibility required to address
the diverse needs in neuroimaging analysis. Overall, Nipype repre-
sents an effort toward collaborative, open-source, reproducible, and
efficient neuroimaging software development and analysis.

aCknoWledgments
A list of people who have contributed code to the project is available
at http://github.com/nipy/nipype/contributors. We thank Fernando
Perez, Matthew Brett, Gael Varoquaux, Jean-Baptiste Poline, Bertrand
Thirion, Alexis Roche, and Jarrod Millman for technical and social
support and for design discussions. We would like to thank Prof.
John Gabrieli’s laboratory at MIT for testing Nipype through its
evolutionary stages, in particular, Tyler Perrachione and Gretchen
Reynolds. We would also like to thank the developers of FreeSurfer,
FSL, and SPM for being supportive of the project and providing
valuable feedback on technical issues. We would like to thank James
Bednar, Stephan Gerhard, and Helen Ramsden for providing feed-
back during the preparation of the manuscript. Satrajit Ghosh would
like to acknowledge support from NIBIB R03 EB008673 (PI: Ghosh
and Whitfield-Gabrieli), the Ellison Medical Foundation, Katrien
Vander Straeten, and Amie Ghosh. Krzysztof Gorgolewski would
like to thank his supervisors Mark Bastin, Cyril Pernet, and Amos
Storkey for their support during this project.

supplementary materIal
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/neuroinformatics/10.3389/
fninf.2011.00013/abstract

Being a generic and free language, with various extensions avail-
able “out of the box,” it has allowed many researchers to start
implementing and sharing their ideas with minimal knowledge
of Python, while learning more of the language and programming
principles along the way. Many such endeavors later on became
popular community-driven FOSS projects, attracting users and
contributors, and even outlasting the involvement of the original
authors. Python has already been embraced by the neuroscien-
tific community and is rapidly gaining popularity (Bednar, 2009;
Goodman and Brette, 2009). The Connectome Viewer Toolkit
(Gerhard et al., 2011), Dipy (Garyfallidis et al., 2011), NiBabel12,
Nipy13, NiTime (Rokem et al., 2009), PyMVPA (Hanke et al.,
2009), PyXNAT (Schwartz et al., 2011), and Scikits-Learn14 are
just a few examples of neuroimaging related software written in
Python. Nipype, based on Python, thus has immediate access to
this extensive community and its software, technological resources
and support structure.

Nipype provides a formal and flexible framework to accommo-
date the diversity of imaging software. Within the neuroimaging
community, not all software is limited to well-behaved command
line tools. Furthermore, a number of these tools do not have well
defined inputs, outputs, or usage help. Although, currently we
use Enthought Traits to define inputs and outputs of interfaces,
such definitions could be easily translated into instances of XML
schemas compatible with other pipeline frameworks. On the other
hand, when a tool provides a formal XML description of their
inputs and outputs (e.g., Slicer 3D, BRAINS), it is possible to take
these definitions and automatically generate Nipype wrappers for
those classes.

Nipype development welcomes input and contributions from
the community. The source code is freely distributed under a
BSD license allowing anyone any use of the software and Nipype
conforms to the Open Software Definition of the Open-Source
Initiative. Development process is fully transparent and encour-
ages contributions from users from all around the world. The
diverse and geographically distributed user and developer base
makes Nipype a flexible project that takes into account needs of
many scientists.

Improving openness, transparency, and reproducibility
of research has been a goal of Nipype since its inception. A
Workflow definition is, in principle, sufficient to reproduce the
analysis. Since it was used to analyze the data, it is more detailed
and accurate than a typical methods description in a paper,
but also has the advantage of being reused and shared within
and across laboratories. Accompanying a publication with a
formal definition of the processing pipeline (such as a Nipype
script) increases reproducibility and transparency of research.
The Interfaces and Workflows of Nipype capture neuroimaging
analysis knowledge and the evolution of methods. Although, at
the execution level, Nipype already captures a variety of prov-

12http://nipy.sourceforge.net/nibabel/
13http://nipy.sourceforge.net/nipy/
14http://scikit-learn.sourceforge.net

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 14

http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00013/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00013/abstract
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://nipy.sourceforge.net/nibabel/
http://nipy.sourceforge.net/nipy/
http://scikit-learn.sourceforge.net
http://www.frontiersin.org/Neuroinformatics/archive

referenCes
Avants, B., and Gee, J. C. (2004). Geodesic

estimation for large deformation ana-
tomical shape averaging and inter-
polation. Neuroimage 23(Suppl. 1),
S139–S150.

Bednar, J. A. (2009). Topographica:
 building and analyzing map-level
simulations from Python, C/C++,
MATLAB, NEST, or NEURON com-
ponents. Front. Neuroinform. 3:8. doi:
10.3389/neuro.11.008.2009

Callahan, S. P., Freire, J., Santos, E., Scheidegger,
C. E., Silva, C. T., and Vo, H. T. (2006).
“VisTrails: visualization meets data
management,” in Proceedings of the 2006
ACM SIGMOD International Conference
on Management of Data, Chicago, IL,
745–747.

Churchill, N. W., Oder, A., Abdi, H.,
Tam, F., Lee, W., Thomas, C., Ween,
J. E., Graham, S. J., and Strother, S. C.
(2011). Optimizing preprocessing and
analysis pipelines for single-subject
fMRI. I. Standard temporal motion
and physiological noise correction
methods. Hum. Brain Mapp. doi:
10.1002/hbm.21238. [Epub ahead of
print].

Cointepas, Y., Mangin, J., Garnero, L., and
Poline, J. (2001). BrainVISA: software
platform for visualization and analy-
sis of multi-modality brain data.
Neuroimage 13, 98.

Dean, J., and Ghemawat, S. (2008).
MapReduce: simplified data process-
ing on large clusters. Commun. ACM
51, 1–13.

Dinov, I., Lozev, K., Petrosyan, P., Liu,
Z., Eggert, P., Pierce, J., Zamanyan,
A., Chakrapani, S., Van Horn, J.,
Parker, D. S., Magsipoc, R., Leung, K.,
Gutman, B., Woods, R., and Toga, A.
(2010). Neuroimaging study designs,
computational analyses and data prov-
enance using the LONI pipeline. PLoS
ONE 5, e13070. doi: 10.1371/journal.
pone.0013070

Dinov, I. D., Van Horn, J. D., Lozev, K.
M., Magsipoc, R., Petrosyan, P., Liu,
Z., Mackenzie-Graham, A., Eggert,
P., Parker, D. S., and Toga, A. W.
(2009). Efficient, distributed and

for the life sciences. Concurr. Comput.
18, 1067–1100.

Pérez, F., Granger, B. E., and Hunter, J. D.
(2010). Python: an ecosystem for sci-
entific computing. Comput. Sci. Eng.
13, 13–21.

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003).
The LONI pipeline processing environ-
ment. Neuroimage 19, 1033–1048.

Rokem, A., Trumpis, M., and Perez, F.
(2009). “Nitime: time-series analysis
for neuroimaging data,” in Proceedings
of the 8th Python in Science Conference,
Pasadena.

Schwartz, Y., Barbot, A., Vincent, F., Thyreau,
B., Varoquaux, G., Thirion, B., and
Poline, J. (2011). “PyXNAT: a Python
interface for XNAT,” in 17th Annual
Meeting of the Organization for Human
Brain Mapping, Quebec City, QC.

Smith, S. M. (1992). “A new class of cor-
ner finder,” in Proceedings 3rd British
Machine Vision Conference (Leeds:
University of Leeds), 139–148.

Zelle, J. M. (1999). “Python as a first lan-
guage,” in Proceedings of 13th Annual
Midwest Computer Conference, Lisle,
IL, 2.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial
or financial relationships that could be
construed as a potential conflict of interest.

Received: 23 June 2011; accepted: 23 July
2011; published online: 22 August 2011.
Citation: Gorgolewski K, Burns CD,
Madison C, Clark D, Halchenko YO,
Waskom ML, Ghosh SS (2011) Nipype:
a flexible, lightweight and extensible neu-
roimaging data processing framework in
Python. Front. Neuroinform. 5:13. doi:
10.3389/fninf.2011.00013
Copyright © 2011 Gorgolewski, Burns,
Madison, Clark, Halchenko, Waskom,
Ghosh. This is an open-access article sub-
ject to a non-exclusive license between the
authors and Frontiers Media SA, which per-
mits use, distribution and reproduction in
other forums, provided the original authors
and source are credited and other Frontiers
conditions are complied with.

“Improving efficiency in cogni-
tive neuroscience research with
NeuroDebian,” in Cognit ive
Neuroscience Society, Montréal.

Hanke, M., Halchenko, Y. O., Sederberg,
P. B., Hanson, S. J., Haxby, J. V., and
Pollmann, S. (2009). PyMVPA:
a Python toolbox for multivari-
ate pattern analysis of fMRI data.
Neuroinformatics 7, 37–53.

Hömke, L. (2006). A multigrid method
for anisotropic PDEs in elastic image
registration. Numer. Linear Algebra
Appl. 13, 215–229.

Klein, A., Andersson, J., Ardekani, B. A.,
Ashburner, J., Avants, B., Chiang,
M. C., Christensen, G. E., Collins,
D. L., Gee, J., Hellier, P., Song, J. H.,
Jenkinson, M., Lepage, C., Rueckert,
D., Thompson, P., Vercauteren, T.,
Woods, R. P., Mann, J. J., and Parsey,
R. V. (2009). Evaluation of 14 nonlin-
ear deformation algorithms applied
to human brain MRI registration.
Neuroimage 46, 786–802.

Klein, A., Ghosh, S. S., Avants, B., Yeo, B.
T., Fischl, B., Ardekani, B., Gee, J. C.,
Mann, J. J., and Parsey, R. V. (2010).
Evaluation of volume-based and sur-
face-based brain image registration
methods. Neuroimage 51, 214–220.

Mackenzie-Graham, A. J., Van Horn, J.
D., Woods, R. P., Crawford, K. L., and
Toga, A. W. (2008). Provenance in neu-
roimaging. Neuroimage 42, 178–195.

McAuliffe, M. J., Lalonde, F. M., McGarry,
D., Gandler, W., Csaky, K., and Trus,
B. L. (2001). “Medical image pro-
cessing, analysis and visualization
in clinical research,” in Proceedings
14th IEEE Symposium on Computer-
Based Medical Systems, Bethesda, MD,
381–386.

Millman, K. J., and and Aivazis, M. (2011).
Python for scientists and engineers.
Comput. Sci. Eng. 13, 9–12.

Oinn, T., Greenwood, M., Addis, M. J.,
Alpdemir, M. N., Ferris, J., Glover,
K., Goble, C., Goderis, A., Hull, D.,
Marvin, D. J., Li, P., Lord, P., Pocock, M.
R., Senger, M., Stevens, R., Wipat, A.,
and Wroe, C. (2006). Taverna: lessons
in creating a workflow environment

interactive neuroimaging data analy-
sis using the LONI pipeline. Front.
Neuroinform. 3:22. doi: 10.3389/
neuro.11.022.2009

Ellson, J., Gansner, E., Koutsofios, L.,
North, S., and Woodhull, G. (2002).
“Graphviz – open source graph
drawing tools,” in Proceeding of 9th
Internation Symposium on Graph
Drawing, Vienna, 594–597.

Fischl, B., Sereno, M. I., and Dale, A.
M. (1999). Cortical surface-based
analysis. II: inflation, flattening, and
a surface-based coordinate system.
Neuroimage 9, 195–207.

Fissell, K., Tseytlin, E., Cunningham, D.,
Iyer, K., Carter, C. S., Schneider, W.,
and Cohen, J. D. (2003). A graphical
computing environment for neuro-
imaging analysis. Neuroinformatics
1, 111–125.

Garyfallidis, E., Brett, M., Amirbekian, B.,
Nguyen, C., Yeh, F.-C., Halchenko, Y.,
and Nimmo-Smith, I. (2011). “Dipy –
a novel software library for diffusion
MR and tractography,” in 17th Annual
Meeting of the Organization for Human
Brain Mapping, Quebec City, QC.

Gerhard, S., Daducci, A., Lemkaddem, A.,
Meuli, R., Thiran, J. P., and Hagmann,
P. (2011). The connectome viewer
toolkit: an open source framework to
manage, analyze, and visualize con-
nectomes. Front. Neuroinform. 5:3.
doi: 10.3389/fninf.2011.00003

Goodman, D. F., and Brette, R. (2009). The
brian simulator. Front. Neurosci. 3:2.
doi:10.3389/neuro.01.026.2009

Greve, D. N., and Fischl, B. (2009).
Accurate and robust brain image
alignment using boundary-based
registration. Neuroimage 48, 63–72.

Hagler, D. J., Saygin, A. P., and and Sereno,
M. I. (2006). Smoothing and cluster
thresholding for cortical surface-
based group analysis of fMRI data.
Neuroimage 33, 1093–1103.

Hanke, M., and Halchenko, Y. O. (2011).
Neuroscience runs on GNU/Linux.
Front. Neuroinform. 5: 8. doi: 10.3389/
fninf.2011.00008

Hanke, M., Halchenko, Y. O., Haxby,
J. V., and and Pollmann, S. (2010).

Gorgolewski et al. Nipype neuroimaging data processing framework

Frontiers in Neuroinformatics www.frontiersin.org August 2011 | Volume 5 | Article 13 | 15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Nipype: a flexible, lightweight and extensible neuroimagingdata processing framework in Python
	Introduction
	Current problems
	No uniform access to neuroimaging analysis software and usageinformation
	No framework for comparative algorithm development anddissemination
	Personnel turnover in laboratories often limits methodologicalcontinuity and training new personnel takes time
	Neuroimaging software packages do not address computationalefficiency
	Method sections of journal articles are often inadequate forreproducing results

	Current solutions

	Implementation details
	Interfaces
	Nodes, MapNodes, and Workflows
	Example – building a Workflow from scratch
	Iterables – Parameter space exploration
	Parallel Distribution and Execution Plug-ins
	The Function Interface
	Workflow Visualization
	Configuration Options
	Deployment
	Development

	Usage examples
	Uniform access to tools, their usage, and execution
	A framework for comparative algorithm development anddissemination
	An environment for methodological continuity and pacedtraining of new personnel in laboratories
	Computationally efficient execution of neuroimaginganalysis
	Captures details of analysis required to reproduce results

	Discussion
	Summary
	Acknowledgments
	supplementary material

