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Hydrogels are an appealing class of materials for many biomedical applications, ranging 

from tissue engineering to drug delivery, and offer a number of functional benefits as a result 

of their high water content and solid-like mechanical properties. [1–3] Typically, hydrogels 

are prepared from either covalent or physical cross-linking of hydrophilic polymers to form 

an insoluble network. Covalently cross-linked hydrogels are typically mechanically stable 

and elastic, but lack shear-thinning and self-healing properties that are required for 

applications necessitating minimally invasive injection or catheter delivery. Hydrogels 

physically cross-linked through ionic interactions, in general, exhibit reduced mechanical 

properties and are less stable than those produced through covalent cross-linking. Imparting 

hydrogels with mechanical properties that can be responsive to biologically relevant 

environmental stimuli could also be of broad interest for biomedical applications. [4,5] The 

use of dynamic covalent chemistry offers an attractive route in order to prepare hydrogels 

that could exhibit shear-thinning and self-healing characteristics. These materials would 

leverage cross-linking mechanisms that arise from a number of recently reported dynamic 

covalent chemistries. [6–9] One example would be to form hydrogel materials by using the 

complexation of boronic acids and cis-1,2 or cis-1,3 diol compounds as cross-links in the 

material. [10–13] The formation of diol–boronic acid complex occurs at pH greater than or 

equal to the pKa of the boronic acid, and since most boronic acids used to prepare materials 

through this cross-linking mechanism have pKa values of ≥8 these materials have limited 

utility in physiologic conditions. [14,15] The pH sensitivity of this dynamic covalent bond 

does introduce the ability to form dynamically restructuring hydrogels with mechanical 

properties that are responsive to changes in pH.

Here, we report on the design, synthesis, and application of poly(ethylene glycol) (PEG)-

based shear-thinning and self-healing hydrogel networks prepared using reversible covalent 

interactions between phenylboronic acid (PBA) derivatives and cis-diols. The dependence of 

gel strength on pH was systematically studied using nine hydrogel formulations composed 

of PBA derivatives with varied pKa. These materials were further evaluated for use in the 

delivery of protein therapeutics as well as three-dimensional (3D) cell culture substrates, and 

biocompatibility was assessed following subcutaneous syringe injection.

PEG macromonomers containing either PBA groups or a glucose-like diol (Figure 1) were 

constructed by modifying four-arm PEG-NH2 (5 kDa) with various phenylboronic acid 

derivatives. PEG-NH2 was functionalized using HBTU-activated 4-carboxy-3-

fluorophenylboronic acid or 4-carboxyphenylboronic acid to yield PEG-FPBA and PEG-

PBA, respectively. Alternatively, 2-formylphenylboronic acid was coupled via reductive 

amination with PEG-NH2 to yield PEG-APBA. The pKa of these three phenylboronic acid 

groups have been reported in literature and are ranked as PBA (7.8) > FPBA (7.2) > APBA 

(6.5–6.7). [16–18] To prepare a macromonomer containing a glucose-like diol, D-

glucolactone was reacted with PEG-NH2 in the presence of triethylamine to yield PEG-diol. 
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The products were dialyzed and lyophilized to yield a white powder. All PEG derivatives 

exhibited water solubility of up to 40 w/v% in various buffers. Detailed information on 

synthesis and characterization of macromolecules can be found in the Supporting 

Information.

An array of nine hydrogels was formulated by mixing each of the PEG-phenylboronic acid 

macromonomers with equimolar PEG-diol macromonomer in three different pH buffers (pH 

6–8). All formulations resulted in rapid gel formation (within 10–30 s), with the exception 

of PEG-PBA, which did not gel at pH 6 likely because this particular phenylboronic acid has 

a higher pKa than the others evaluated. We hypothesized that gels should become weaker 

when pH is below the pKa of the phenylboronic acid conjugated to the PEG macromonomer. 

Thus, it was expected that hydrogels formed from PEG-APBA would exhibit the strongest 

mechanical properties across the range of pH evaluated, since this phenylboronic acid had 

the lowest pKa value of three used here. Initially, oscillatory strain sweeps were run to 

determine the linear viscoelastic region for these hydrogels. Then, dynamic frequency sweep 

measurements were performed within the viscoelastic region to determine the crossover 

frequency (ωc) in order to quantify the gel strength. In a frequency sweep, ωc is the 

frequency at which the elastic modulus G′ (storage modulus) is equal to the viscous modulus 

G″ (loss modulus). In hydrogels with lower ωc, the mechanical properties are dominated by 

the storage modulus over a broader frequency range, resulting in more elastic behavior and 

higher strength. [19] As seen in Figure 2a–c, PEG hydrogels prepared from cross-linking 

phenylboronic acid with glucose-like diols demonstrated frequency-dependent viscoelastic 

behavior in all pH conditions, a typical behavior of dynamic gel networks. [20–22] At low 

frequencies, G″ was greater than G′, indicating liquid-like character. However, at higher 

frequencies, G′ was greater than G″, indicating gel-like character. As predicted, ωc 

correlated with the rank of pKa values for the three phenylboronic acids, with the lowest pKa 

PEG-APBA having the smallest ωc across the pH range tested and the highest pKa PEG-

PBA having the largest ωc (Figure 2d). In addition, all phenylboronic acid gels demonstrated 

pH dependence, with ωc decreasing as pH is increased. For example, ωc of the PEG-FPBA 

hydrogel was 22 rad s−1 at pH 6, 12 rad s−1 at pH 7, and 4 rad s−1 at pH 8. Comparatively, at 

pH 7 the ωc for PEG-APBA gels was 1.2 rad s−1, indicating stronger gel formation when 

compared to PEG-FPBA at the same pH. This is likely attributable to the lower pKa of 

phenylboronic acid used for PEG-APBA. Thus, the relationship between pKa of the 

phenylboronic acid and the environmental pH dictates the extent of cross-linking in these 

hydrogels. Compared to the other hydrogels, the PEG-APBA was quite rigid and difficult to 

mold or inject at pH 6–8, likely due to a highly cross-linked network. PEG-FPBA at all pH 

values, PEG-PBA at pH 7 and pH 8 produced hydrogels that were soft, moldable, and which 

could be injected through a standard syringe needles (i.e., 21 G).

Next, we studied the shear-thinning and self-healing properties of these hydrogels. We 

selected the gels formed at pH 7 for the following studies as this pH is more relevant to 

physiological conditions. Gel formation occurs as a result of dynamic formation of boronic 

esters between phenylboronic acid and cis-diol, and the reversible and dynamic nature of 

this interaction should translate to dynamic mechanical properties. First, the effect of high 

shear rates on gel viscosity, a critical parameter for injectability, was measured. As expected, 

the viscosity of 10 w/v% PEG-FPBA and PEG-PBA gels at 37 °C decreased with increasing 
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shear rates (Figure 3a and Figure S1a, Supporting Information), indicating a shear-thinning 

behavior as dynamic cross-links in the gel network are disrupted by shear. This behavior was 

visualized by injecting 10 w/v% PEG-FPBA gel through 21 G needle (Figure 3a, inset). We 

were not able to conduct flow experiments on PEG-APBA hydrogels at pH 7 because under 

high shear this gel breaks apart and is expelled from the cone-disk rheometer. This is most 

likely due to the highly rigid and brittle character of the PEG-APBA gel, which in essence 

behaves more like a typical covalently cross-linked hydrogel network that does not exhibit 

shear-thinning and self-healing properties.

An injectable hydrogel designed for in vivo gelation should undergo structural recovery 

(self-heal) upon relaxation of the applied stress. To examine self-healing properties, strain-

dependent oscillatory measurements were first conducted on 10 w/v% PEG-FPBA hydrogel 

formed at pH 7 to determine the critical strain value required to disrupt the gel network and 

transition to a solution state, found here to be 60% (Figure 3b). Step–strain measurements 

were then performed to determine recovery of hydrogel mechanical properties following 

network rupture at high strains. For this purpose, 10 w/v% PEG-FPBA and PEG-PBA gels 

formed at pH 7 were subjected to high strain (γ = 500%) and G ′ immediately dropped to 

≈10 Pa, with the corresponding inversion of G′ and G″ indicating network disruption. When 

high strain was discontinued and a low magnitude strain (γ = 0.05%) was applied, the 

hydrogel exhibited 100% recovery of both G′ and G″ within a few seconds after strain-

induced failure, which was reproducible upon additional strain cycles (Figure 3c and Figure 

S1b, Supporting Information). Additionally, time–sweep experiments immediately after 

rapid continuous flow (preshearing performed at 100 s−1) was performed using 10 w/v% 

PEG-FPBA and PEG-PBA gels formed at pH 7 to demonstrate the time frame of healing. 

There was an immediate recovery of the material properties after high preshear rates were 

removed (Figure S1c,d, Supporting Information). Furthermore, step–shear measurements, 

which are conceptually similar to step–strain measurements, whereby one monitors the 

increase in viscosity at a low magnitude shear rate following high magnitude shear in 

continuous flow, was performed using the same hydrogel formulations. A high magnitude 

shear rate (100 s−1) was applied to break down the hydrogel network, followed by a low 

magnitude shear rate (0.05 s−1) in order to monitor the recovery of bulk material properties 

(Figure S1e,f, Supporting Information). The observed complete recovery of the viscosity 

after network destruction supports the self-healing characteristics of 10 w/v% PEG-FPBA 

and PEG-PBA hydrogels formed at pH 7.

Self-healing of PEG-FPBA gel was also verified by reforming the hydrogel from two pieces 

(Figure 3d). Healing occurred instantly, and the resultant hydrogel maintained its integrity 

even upon mechanical agitation with forceps.

Once the hydrogel mechanical properties had been characterized, we examined the potential 

of these hydrogels for controlled delivery of biomacromolecules as well as for cell 

encapsulation. These studies focused on PEG-FPBA hydrogel as a result of its ease of 

injectability compared to PEG-APBA and its better mechanical strength compared to PEG-

PBA. Three model proteins, fluorescein isothiocyanate (FITC)-labeled insulin (≈5800 g 

mol−1), bovine serum albumin-FITC (BSA-FITC) (≈66 000 g mol−1), and Alexa Fluor-

conjugated immunoglobulin G (IgG) (≈150 000 g mol−1) were chosen as representative 
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proteins to span a range of molecular weights. Proteins could be encapsulated within 10 w/v

% PEG-FPBA hydrogels by combining them into either of the macromonomer precursor 

solutions prior to hydrogel formation. Efficient protein incorporation was achieved in all 

cases with no observable changes to hydrogel properties. The protein-loaded gels were 

incubated at 37 °C in a phosphate-buffered saline (1× PBS) bulk phase, which was collected 

at serial time points and quantified using fluorescence spectroscopy. The release profiles for 

all proteins (Figure 4a) follow first-order Fickian diffusive release. [23,24] Both BSA and 

insulin had an initial burst release of 11% and 22%, respectively, before controlled release 

was observed. A burst release was not observed for the larger IgG. The release rate of 

protein from the hydrogel correlated with protein molecular weight, with 77% of insulin 

released within the first 48 h while only 30% of IgG released over the course of 10 d. We 

attribute this protein size-dependent release effect to the mesh size of the hydrogel network. 

The glucose responsiveness of the hydrogels was also studied by monitoring the release of 

two model proteins, insulin and IgG from hydrogel network. It is expected that competitive 

binding to phenylboronic acid from freely diffusible glucose should disrupt the hydrogel 

network and accelerate the release of proteins from hydrogels. [25,26] The glucose levels 

chosen were 4 mg mL−1, which is consistent with levels used to mimic hyperglycemia in 

diabetes patients, and 12 mg mL−1 as a high glucose concentration. Together, these buffers 

could enable probing of the effect of concentration on phenylboronic acid–diol binding 

equilibrium in the presence of very high glucose concentration. As the mesh size of the 

hydrogel was poorly selective to insulin, there was minimal effect of glucose on the release 

kinetics of insulin (Figure 4b). However, IgG, which did demonstrate size-selective release 

from the hydrogel, also exhibited glucose-dependent release kinetics (Figure 4c). 13% of 

IgG was released over 48 h in glucose-free PBS buffer, whereas 46% released in a buffer of 

4 mg mL−1 glucose and 65% released in 12 mg mL−1 glucose. Over 120 h, 80% of the IgG 

released in the presence of 4 mg mL−1 glucose, while only 20% released in glucose-free 

conditions. Gradual dissociation of the IgG loaded gels exposed to glucose solutions is 

shown in Figure 4d. These results confirm glucose responsiveness of the PEG-FPBA 

hydrogels, and indicate glucose-responsive release for encapsulated proteins that are large 

enough such that release kinetics can be controlled by the mesh size of the hydrogel.

Injectable self-healing hydrogels may also have application as scaffolds for 3D support of 

cells. To evaluate cytocompatibility of these materials as 3D substrates, 3T3 fibroblasts were 

dispersed within the PEG-diol macromonomer prior to mixing with PEG-FPBA 

macromonomer for in situ hydrogel formation (10 w/v%). The presence of cells did not 

inhibit gel formation, and cells were dispersed homogenously within the hydrogel. To assess 

cytocompatibility, Live/Dead staining was performed after cells had been cultured within the 

material for 72 h. The majority of cells encapsulated within PEG-FPBA gel remained viable, 

indicating minimal cytotoxicity in response to the material or its in situ cross-linking 

mechanism (Figure 4e,f). However, when cells were dispersed in PEG-FPBA hydrogels and 

subsequently extruded through a syringe (21 gauge), cell viability was not preserved, which 

is attributed to the high shear rates necessary to induce shear-thinning in the gel. Moreover, 

the toxicity of hydrogel degradation products was evaluated using gel extracts (Figure S2, 

Supporting Information). Gel extracts were obtained by incubating hydrogels (10 w/v%) in 1 

mL of cell culture media for 72 h at 37 °C. To assess the toxicity of the gel degradation 
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products, 3T3 fibroblast cells were then cultured in gel extract media for 24 h and toxicity 

was quantified using an MTT assay. No significant cytotoxicity was observed in response to 

gel extracts, as cell number was in excess of 85% compared to untreated controls. In 

addition to MTT quantification, viable cells were also visualized using Live/Dead staining, 

which confirmed that the vast majority of cells remained viable (Figure S2, Supporting 

Information).

To evaluate tissue biocompatibility, hydrogels prepared from PEG-FPBA were applied by 

transcutaneous injection via extrusion from an 18 G syringe needle. The material formed a 

visible gel mass in the subcutaneous space. At serial time points following injection, the 

hydrogel and its surrounding implantation bed were harvested and processed for qualitative 

histological analysis (Figure 5). At 3 d following injection, only the outer margins of the 

hydrogel had been infiltrated by immune cells, primarily monocytes. There was also 

evidence of a mild inflammatory response in the peri-implant tissue. By 7 d, the number of 

infiltrating cells had increased, as had the extent to which the material had been infiltrated, 

though the center of the scaffold remained uninfiltrated by cells. At this time, monocytes 

were still the primary cell population present. There was again evidence of mild infiltration 

and some tissue damage in the peri-implant tissue. By 14 d, the gel was completely 

infiltrated by a large number of immune cells, with the appearance of an appreciable 

inflammatory response. At this time, the presence of monocytes was reduced, and most 

infiltrating cells were macrophages with a large number of multinucleated giant cells also 

present. There was evidence of both inflammation and tissue damage in the peri-implant 

tissue. One month following injection of the hydrogel, the material had been replaced with a 

vascularized connective tissue, suggesting cell-mediated material clearance. The number of 

infiltrating inflammatory cells was dramatically reduced. There was also no sign of 

inflammation or tissue damage in the peri-implant tissue, with the entire implant site 

appearing to have healed by this time. Overall, the kinetics and characteristics of the tissue 

reaction to the implanted hydrogel were consistent with those of a typical foreign body 

reaction to an implanted material, and no chronic effects were noted. [27]

In summary, we have designed and synthesized a library of self-healing hydrogels based on 

dynamic covalent bond formation between phenylboronic acid and cis-diol modified PEG 

macromonomers. The effect of pH on the gelation behavior was investigated to formulate 

hydrogels with highly tunable mechanical properties. The nature of this dynamic covalent 

chemistry enables shear-thinning delivery of the gels via syringe, followed by rapid 

structural recovery (self-healing). These gels also exhibit size-dependent controlled release 

of proteins encapsulated within the network as well as glucose-responsive release of larger 

proteins. The materials are cytocompatible in vitro, and the tissue reaction in vivo was 

consistent with a typical foreign body reaction with no chronic inflammation. These 

injectable, self-healing hydrogels could have many applications, such as 3D cell culture 

substrates for tissue engineering as well as controlled release of macromolecule for drug 

delivery applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Schematic depicting hydrogel formation between four-arm phenylboronic acid–containing 

PEG macromonomers and diol-containing PEG macromonomer. b) Chemical structures of 

PEG-phenylboronic acid macromonomers and PEG-diol, and the representative mechanism 

of phenylboronic acid-cis-diol binding.
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Figure 2. 
Dynamic oscillatory frequency sweeps performed at 37 °C of 10 w/v% hydrogels formed at 

a) pH 6, b) pH 7, and c) pH 8. d) The crossover frequencies (ωc) obtained from frequency 

sweeps at each pH value for hydrogels. Arrows in (a) denote representative crossover 

frequencies.
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Figure 3. 
a) Viscosity and shear-thinning behavior of 10 w/v% PEG-FPBA gel. The inset shows that 

gel is injectable through a conventional syringe using a 21 G needle. b) Strain amplitude 

sweep. c) Step–strain measurements of 10 w/v% PEG-FPBA gel formed at pH 7. d) 

Demonstration of the self-healing properties of 10 w/v% PEG-FPBA gel, formed at pH 7, in 

fusing two hydrogel pieces. Gel was prepared in the presence of methylene blue for 

observation.
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Figure 4. 
Release profiles of proteins from 10 w/v% PEG-FPBA hydrogels formed at pH 7. a) Release 

profiles in 1× PBS buffer. Release of b) insulin and c) IgG at different glucose 

concentrations. d) Pictures of IgG loaded 10 w/v% PEG-FPBA gels incubated in different 

glucose concentrations over 7 d. e) LIVE/DEAD assay image of cells encapsulated within 

10 w/v% PEG-FBA hydrogels for 72 h. (Scale bar: 200 μm, green: live, red: dead.) f) Cell 

viability quantified at different time points (24–72 h).
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Figure 5. 
Histological images (H&E staining) of 10 w/v% PEG-FPBA gels injected subcutaneously 

and harvested at 3 d, 7 d, 14 d, and 1 month following injection. Shown is a cross section of 

skin (oriented to the right in all images) with the underlying material. In the lowest 

magnification images (left column), the approximate location of the margins of material is 

noted with a blue dotted outline. Intermediate magnification images (center column) show 

the material–tissue interface, while high magnification images (right column) show 

infiltrating cells within the material. Scale bars shown apply to entire column. A low 

magnification image (first column) shows the entire implant bed and peri-implant tissue, an 

intermediate magnification (middle column) shows the cell–material interface, and a high 

magnification image (right column) shows the specific cells present in the implant–tissue 

interface.

Yesilyurt et al. Page 12

Adv Mater. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


