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Abstract

Olefin metathesis has made a significant impact on modern organic chemistry, but important 

shortcomings remain: for example, the lack of efficient processes that can be used to generate 

acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or 

deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding 

high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown 

halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to 

participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-

alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst 

with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and 

proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, 

bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This 

method can be used to easily synthesize biologically active compounds and to perform the site- 

and stereoselective fluorination of other organic compounds.

Olefins with a halide substituent are a mainstay in chemistry. Alkenyl chlorides and 

bromides are found in biologically active natural products (e.g., the recently isolated Z-

alkenyl chloride containing neuromodulator janthielamide A1 or bromine-containing fatty 

acids that are adipogenesis stimulators2) or can be used in some of the most central 

transformations in chemistry (i.e., catalytic cross-coupling 3). Alkenyl fluorides are valued 
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because of the importance of organofluorine compounds in medicine 4, agrochemicals 5 and 

materials development6. A fluoro-substituted olefin can strongly impact the property of a 

molecule; an example is the Z-fluoroalkene derivative of γ-aminobutyric acid (GABA) 

transaminase inhibitor7, more active than its E isomer8 yet similarly potent and with a 

distinct mode of action compared to the parent non-fluorinated alkene (vigabatrin). Fluoro-

olefins may be used as substrates in synthesis of fluorine-containing building blocks9. And 

still, the number of approaches for accessing alkenyl halides is limited; many entail multi-

step sequences demanding prior synthesis of alkenylboron10, alkenylsilane11 or an 

organometallic species12,13, followed by conversion of the C–B, C–Si or C–metal unit to a 

carbon–halogen bond (for a more extensive list, see the Supplementary Information). 

Reactions might begin with the more costly and less widely available (vs. alkenes) alkyne 

substrates13, at times proceed with moderate stereoselectivity10, or are not sufficiently 

general11,12. Methods for preparation of 1,2-disubstituted Z-halo-alkenes with high 

stereoselectivity are even fewer in number10-13. One option is a Wittig reaction of an 

aldehyde with a halogen-substituted phosphonium salt14,15, but stereoselectivities are 

variable and, at times, toxic hexamethylphosphoramide and/or severely low temperatures are 

needed for high Z:E ratios16. Approaches to synthesis of 1,2-disubstitutedZ-alkenyl 

fluorides are scarce15,17,18 and none has reasonable scope.

Certain 1,2-disubstituted Z-alkenyl halides can be prepared via stereo-defined alkenyl–

B(pin) (pin, pinacolato) compounds19,20, accessible by catalytic cross-metathesis (CM) with 

vinyl–B(pin)21,22. Direct CM may deliver halogen-substituted olefins in a single catalytic 

reaction from a terminal olefin without the need for use and/or synthesis of (at times 

expensive) organoboron reagents. There would be several other advantages: (1) Strong 

oxidants (e.g., Br2), toxic mercury salts23 and/or the more difficult to prepare and use 

alkenylboronic acids24 [vs. B(pin) derivatives] would not be needed. (2) Severely basic 

conditions for (pin)B-to-halogen exchange and reactive halide sources (e.g., iodine 

monochloride), which may be detrimental to certain functionality (e.g., sulfides 25 or 

indoles 26), would not be necessary. (3) Product purification would be more practical: 

organic halide reagents are more easily removable (sufficiently volatile) and do not afford 

pinacol byproduct that can be difficult to separate from the desired product. (4) Access to 

multifunctional molecules with an alkenyl–B(pin) as well as an alkenyl halide would be 

more feasible27.

The Potential and Challenge of Alkenyl Halide Cross-Metathesis

A catalytic CM protocol that converts an alkene to an alkenyl halide directly would be 

complementary to the existing methods (offer a distinct disconnection) and especially 

advantageous if a commercially available, easy-to-handle (i.e., liquid at ambient conditions) 

and relatively inexpensive reagent could be used in a highly stereoselective process (Fig. 1a). 

For instance, a transition metal complex that catalyzes CM of an abundant substrate such as 

methyl oleate and an easily accessible organo-chloride reagent, would afford separable Z-

alkenyl halide compounds (Fig. 1a); one (1b) could be converted to anti-inflammatory agent 

(S)-coriolic acid methyl ester28 by an ensuing catalytic cross-coupling. Ring-opening/cross-

metathesis (ROCM) of cyclooctene with an alkenyl bromide would deliver Z,Z-

dibromoalkene 2, an intermediate utilized to access anti-tumor and immunosuppressive 
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agent tetrahydrosiphonodiol29 (Fig. 1a). The feasibility of a CM that furnishes alkenyl 

fluorides would allow for late-stage fluorination30 of complex molecules, such as potassium 

channel activator isopimaric acid31 in a catalytic, chemo- and stereoselective fashion (3, Fig. 

1a).

Development of efficient alkenyl halide-generating CM reactions is anything but 

straightforward however. Unlike Ru carbenes or Mo or W alkylidenes with alkyl, aryl, boryl 

or alkoxy substituents, those bearing a halogen atom are either unstable (Ru), their 

transformations inefficient (Ru)32,33,34 or there is hardly anything known about them 

(Mo/W). Fluoro-, chloro-, or bromo-substituted Fischer-type Ru complexes show negligible 

activity (Ru-1b, Fig. 1b)34. With phosphine-containing systems (e.g., Ru-1a) inactive 

species such as phosphoniomethylidene Ru-1c and carbide Ru-1d32 are produced. There is 

some improvement with phosphine-free complexes (e.g., Ru-2, Fig. 1b)33,34, but reactions 

are low yielding and minimally stereoselective despite elevated temperatures (e.g., 50 °C) 

and long reaction times (e.g., 24 h).

Identification of an Effective Catalyst

The central issue, therefore, was whether high-oxidation-state (Mo/W) halo-substituted 

alkylidene complexes would be sufficiently robust yet appropriately reactive. Since alkoxy-

substituted Mo alkylidenes are more active than the related Ru carbenes35, we hoped that the 

same might apply to halogen-containing olefins, but we did not know of any data on the 

structure, stability or reactivity of a halo-substituted Mo or W alkylidene. Adding to the 

uncertainty is a computational study suggesting that fluoro-substituted Mo alkylidenes 

would be less stable than even the methylidenes36. Equally discouraging were the outcome 

of our attempts to prepare halo-substituted alkylidenes of Mo monoaryloxide pyrrolide 

(MAP) species (cf. iv, Fig. 1c) by utilizing Z-dichloroethene (4a). Subjection of a 

neophylidene MAP complex (cf. i) with two equivalents of 4a resulted in <2% 

transformation (4 h, 22 °C; 400 MHz 1H NMR analysis). The more reactive methylidene 

(generated from ethylene) was consumed completely, but a halo-substituted alkylidene was 

not found spectroscopically. Our remaining hope was that, although undetected, the putative 

complex might be sufficiently long living to fuel the catalytic cycles (cf. iv, Fig. 1c). If so, 

reaction of a neophylidene with a terminal alkene could generate the less congested ii, which 

in turn might react with a Z-dihaloalkene (vs. the more volatile vinyl halide), affording the 

desired product and halo-substitued alkylidene (iv) via all-syn metallacyclobutane iii. 
Complex iv and the olefin could then combine to afford v, which would in turn release 

alkylidene ii and vinyl halide. Alternatively, the halo-substitued alkylidene could react with 

another substrate molecule to furnish, by means of vi, the Z-alkenyl halide product and 

methylidenes vii and viii, which are precursors to ii.

We probed the ability of several complexes to effect Z-selective CM between 8-bromo-1-

octene and commercially available and easy to handle and dispense Z-dichloroethene 4a 
(boiling point, 60 °C vs. −13 °C for vinyl chloride). Reaction with dichloro complex Ru-2 
required 50 °C to reach 82% conversion after four hours (Table 1, entry 1), affording 5a as a 

near equal mixture of stereoisomers; there was no transformation with Z-selective Ru-337 or 

Ru-438 (entries 2-3). Use of bis-alkoxide Mo-1 led to ~70% conversion (4 h, 22 °C) but 
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mostly to the corresponding homocoupling product without any detectable alkenyl halide 

(entry 4). Experiments with complexes W-1 and Mo-2 were similarly disappointing (entries 

5-6) as again there was only alkene homocoupling (<2% 5a). Adamantylimido Mo-3 
provided the first hopeful data: we isolated 5a in 27% yield and >98% Z selectivity (entry 

7). Efficiency improved with perfluoroimido complex Mo-4a: Z-5a was obtained in 60% 

yield with none of the alternative E isomer being observable (1H NMR analysis, 4 h, 22 °C; 

entry 8). We then reasoned that a larger aryloxide ligand, although likely less active, might 

translate into longer catalyst lifetime and better efficiency; we therefore examined the CM 

with Mo-4b, but, while high stereochemical control could be retained (98:2 Z:E), conversion 

and yield were reduced (62% conv., 40% yield; entry 9). After 12 hours, 5a was isolated in 

84% yield (95% conv.; entry 10) but with some diminution in stereoisomeric purity (93:7 

Z:E), probably caused by post-metathesis isomerization. To achieve a better balance between 

robustness and reaction rate without forfeiting stereocontrol, we examined 2,4,6-triethyl-

substituted aryloxide complex Mo-4c (entry 11); 5a could thus be secured in 75% yield and 

>98:2 Z:E selectivity after four hours at room temperature.

Synthesis of Z-Alkenyl Chlorides

An array of Z-alkenyl chlorides can be prepared; yields were in the 50-91% range with 

uniformly high stereoselectivity (95:5 to >98:2 Z:E; Fig. 2); the dichloroethene reagent (4a) 

was used without purification. Commonly occurring and versatile functional groups such as 

a silyl ether (5b, Fig. 2a), a sulfide (5c), an alkyne (5d), an epoxide (5e), an ester (5f) or a 

phthalimide (5g) were tolerated. An aryl or a heteroaryl moiety at the allylic position did not 

hinder the CM process (5j,k), but reactions with styrenes (regardless of its electronic 

attributes) were inefficient; this is probably due to steric hindrance within the requisite 

trisubstituted all-syn metallacyclobutane intermediate (cf. iii, Fig. 1c) and the relatively 

facile homocoupling of aryl olefins. Hence, stilbenes, which do not re-enter the catalytic 

cycle easily (vs. the homocoupling product of an aliphatic alkene), were produced 

predominantly (see below for further discussion); however, in the reactions with α-branched 

aliphatic alkenes, which do not as undergo homocoupling rapidly for steric reasons, CM is 

efficient. Z-Selective synthesis of polycyclic compound 5n demonstrates applicability to 

alkenes with a homoallylic quaternary carbon center.

Allylboronate 5o (Fig. 2b) was isolated in 66% yield and >98:2 Z:E selectivity; this product, 

similar to allyltin compound 5h and allylsilane product 5i, may be used as a reagent for C–C 

bond formation. Two representative cases are shown; in one, allyl chloride 6a was obtained 

in >98% γ- and diastereoselectivity, and in the other, performed in the presence of 10 mol % 

aminophenol 739, alkenyl chloride 6b was generated with high α selectivity without any loss 

in Z:E ratio (>98:2). As noted, access to several of the aforementioned CM products, such as 

sulfide 5c, stannane 5h, indole 5k as well as allyl boron compound 5o, by means of the two-

step protocol involving vinyl–B(pin) CM/boron-to-halogen exchange would be problematic.

Z-Disubstituted alkenes are effective substrates. Treatment of commercially available Z-5-

decene and Z-dichloroethene with 1.0 mol % Mo-4c for two hours followed by the addition 

of alkyne 8 (5.0 mol % PdCl2(PhCN)2, 10 mol % CuI, piperidine, 15 h), afforded 9 in 67% 

overall yield and 97:3 Z:E selectivity. These processes were performed without the need for 
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isolation of volatile Z-alkenyl chloride 5p (Fig. 2b), and the enyne product has been used in 

the synthesis of marine metabolite clathculin B40. Reactions can be easily carried out on 

gram scale: CM of methyl oleate and 4a in the presence of 3.0 mol % Mo-4c afforded Z-

alkenyl chlorides 1a and 1b in 86% and 91% yield and with 97:3 Z:E selectivity, 

respectively (Fig. 2b). Subsequent catalytic cross-coupling with alkenylboronate 10, 

obtained from site- and E-selective catalytic protoboryl addition of the commercially 

available propargyl alcohol41, completed the two-step synthesis of (S)-coriolic acid methyl 

ester28 from a renewable resource in 65% overall yield and 97:3 Z:E selectivity (vs. 5 steps 

previously; see the Supplementary Information for bibliography).

Z-Alkenyl Bromides and Fluoride Synthesis

Z-Selective synthesis of alkenyl bromides brings with it the added complication that 

stereoisomerically pure Z-dibromoethene (4b) is not readily available and difficult to 

prepare, but a 64:36 Z:E mixture can be purchased at relatively low cost (Fig. 3a). Although 

MAP complexes prefer to react with Z-1,2-disubstituted alkene isomers42, our concern was 

possible interference by E-4b, leading to diminution in stereoselectivity. It was also unclear 

whether the more sizeable dibromoethene would cause significant lowering of efficiency. In 

the event, a range of Z-alkenyl bromides were obtained in 57–83% yield and 87:13–91:9 Z:E 
selectivity (11a-f, Fig. 3a). With the more volatile vinyl bromide (vs. 4b), yields were 

significantly lower (<25%) because the increased amount of ethylene boosts the 

concentration of the comparatively unstable methylidene complexes (cf. vii-viii, Fig. 1c). 

The lower Z selectivity in the case of bromoalkene products (vs. alkenyl chlorides) may be 

attributed to a minor pathway involving metallacyclobutanes derived from the E isomer of 

the dibromo-alkene reagent (see the Supplementary Information for details).

The present strategies are applicable to ROCM; two instances are depicted in Fig. 3b. Z,Z-

Dibromoalkene 2 was obtained in 88% yield and 89:11 Z,Z:Z,E selectivity (10 mol % 

Mo-4c, 1 h); as mentioned (cf. Fig. 1a), diene 2 has been utilized in the preparation of 

tetrahydrosiphonodiol29. The need for larger amounts of the more active pentafluoroimido 

Mo-4c is so that maximum amounts of the ring-opening polymerization (ROMP) byproduct 

can be converted to monomeric 2. Z,Z-Dichloroalkene 12 was isolated in 75% yield as a 

single stereoisomer; adamantylimido complex Mo-3 proved optimal, as this less active 

catalyst (vs. Mo-4c) is sufficient for the faster ROCM involving the less hindered Z-

dichloroethene to compete with ROMP for attaining maximal Z selectivity. When the milder 

Mo-3 was used in the more demanding transformation leading to bromo-alkene 2, there was 

>98:2 Z,Z:Z,E selectivity but with less conversion to the desired product (~35%, ~20% 

ROMP). Control experiments indicated that post-metathesis isomerization is minimal.

Development of Z-selective CM reactions that afford organofluorine products posed a new 

complication (Fig. 4). Vinyl fluoride has a notoriously low boiling point (−72 °C vs. –13 °C 

for vinyl chloride); Z-difluoroethene is exorbitantly expensive, similarly difficult to handle 

as well as explosive (Fig. 4a). We thus envisioned using Z-bromo-fluoroethene (4c), a 

commercially available, economically viable and substantially less volatile organohalide 

(boiling point, +36 °C), an option that raises a selectivity problem: the bromo-fluoroethene 

compound must interact with a Mo alkylidene according to the regiochemical mode of 
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addition I in Fig. 4a. If the transformation were to proceed through II, a Z-alkenyl bromide 

would be formed. We reasoned that reaction via I might be preferred for two reasons. 

Firstly, 1H NMR spectrum (CDCl3) of 4c contains a significantly more upfield signal for the 

proton at the base of the C–Br bond, indicating electron density is higher at this carbon 

(stronger π donation and σ withdrawing inductive effect by fluorine), favoring its association 

with the Lewis acidic Mo center (cf. I vs. II). Additionally, the metallacyclobutane 

generated via II would suffer from steric repulsion between the more sizeable halogen and 

the alkylidene subsituent (G). The catalytic CM affording Z-alkenyl fluoride 13a indeed 

generated bromide 11b as the minor product (72:28 fluoro:bromo; Fig. 4b). Consistent with 

the suggested model (I vs. II), with an α-branched terminal alkene, the product mixture is 

less contaminated by the corresponding bromoalkene: pure 13b, formed from a CM reaction 

that proceeded with 96:4 fluoro:bromo selectivity, was isolated in 70% yield and >98:2 Z:E 
ratio after distillation.

Contrary to transformations of styrenes with dichloro- or dibromoethene (4a,b), CM with 4c 
and aryl olefins proceeds readily and stereoselectively: β-(Z)-fluorostyrenes 13c-f were 

obtained in 93:7–96:4 fluoro:bromo selectivity, 64–72% yield of the pure Z-alkenyl fluoride 

and 93:7–97:3 Z:E selectivity. These variations in efficiency might be associated with the 

lower steric repulsion (eclipsing interaction of fluorine with G in the all-syn 
metallacyclobutane) versus the larger chlorine and bromine atoms, such that CM with 4c 
competes better with homocoupling of styrene. To the best of our knowledge, there are no 

reports regarding the synthesis of aryl-substituted Z-alkenyl fluorides by catalytic cross-

coupling of 4c, and such transformations (e.g., 13e,f) would likely suffer from 

chemoselectivity complications. The present processes would offer an attractive pathway for 

accessing a variety of organofluorine compounds43. Z-Alkenyl fluoride 13g has been 

converted to the afore mentioned GABA transaminase inhibitor 147; product 13g was 

obtained in 55% overall yield and >98:2 fluoro:bromo and Z:E selectivity by CM with the 

silyl-amide substrate followed by deprotection. There was <5% conversion with the parent 

amide probably due to internal association of the Lewis basic amide with the Mo center in 

the intermediate alkylidene complex44.

Z-Selective Complex Molecule Fluorination

A corollary to the present approach is the possibility of implementing net stereoselective 

olefinic C–H/C–F bond exchange within a complex molecule; this would allow rapid access 

and screening of well-defined fluorine-tagged derivatives for possible desirable properties. 

In this context (Fig. 4c), formation of Z-alkenyl fluoride 15 (>98:2 fluoro:bromo, 63% yield, 

>98:2 Z:E) demonstrates relevance to processes involving a relatively hindered allylic 

ether45. Tricyclic product 3 (94:6 fluoro:bromo, 70% yield in the pure form, 96:4 Z:E) is 

derived from the challenging CM with the isopimaric acid31 methyl ester (cf. Fig. 1a); here, 

the alkene is next to a sterically demanding all-carbon quaternary center.

The findings summarized in Fig. 4d illustrate that the method is tolerant of a range of 

functional units commonly found in biologically active molecules. Z-alkenyl fluoride 16 
(from anti-depressant perphenazine 46) was obtained efficiently and stereoselectively (91:9 

fluoro:bromo, 78% yield, >98:2 Z:E), underscoring tolerance toward aryl or alkyl amines 
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and aryl sulfides. Synthesis of Z-fluoro-alkene 17 (from β-lactamase inhibitor sulbactam47) 

by the two-step sequence of Z-selective CM with vinyl–B(pin)21 followed by conversion of 

the C–B unit to a C–F bond, according to the only available reported procedure48, led to 

outright substrate decomposition. The first step afforded the Z-alkenyl–B(pin) compound as 

expected (22 °C, 24 h, 70% conv., >98:2 Z:E); but attempts to generate 17 by treatment with 

NaOH and AgOTf and then Selectfluor yielded an unidentifiable mixture of compounds, 

likely due to sensitivity of the substrate's bicyclic core49. In contrast, Z-alkenyl fluoride 17 
was obtained through direct CM in 80% yield (>98:2 fluoro:bromo) as a single stereoisomer 

(>98% Z).

Conclusions

This report introduces halo-substituted Mo alkylidenes as highly reactive and difficult-to-

detect but viable intermediates in olefin metathesis. The matter of efficiency is especially 

noteworthy because, regardless of stereochemical control, heretofore there did not exist a 

catalytic CM protocol that generates halo-alkenes in useful yields. The ability of MAP 

catalysts to provide a solution to this central problem lies in their distinct electronic 

attributes, striking a balance between high reactivity and sufficient longevity. The 

catalytically active halo-substituted alkylidenes derived from Mo-4c can thus deliver the 

necessary activity (e.g., vs. Ru-2-4 or W-1) but not at the expense of catalyst lifetime [e.g., 

vs. bis(alkoxide) Mo-1]. The Mo center in a MAP system is likely electron-deficient enough 

to prevent metal-carbide formation34, and yet, unlike Ru carbenes, π-electron donation by a 

halide alkylidene substituent50 does not hamper reactivity. Another noteworthy aspect is the 

design of reactions where the use of a dissymmetric Z-bromo-fluoroethene leads to the 

predominant or exclusive formation of fluoro-substituted alkenes (vs. the bromo 

derivatives); this way, an easy-to-handle and readily accessible reagent can be used instead 

of the costly and impractical fluoro-olefin alternatives (e.g., vinyl fluoride or Z-1,2-

difluoroethene).

The advances outlined here serve as the foundation for future progress involving this 

intriguing set of halogen-containing Mo alkylidenes. The transformations should facilitate 

considerably the preparation of an assortment of desirable molecules for research in 

chemistry, biology and medicine, particularly since easy-to-handle (no glove box needed) 

paraffin-wrapped MAP complexes are becoming commercially accessible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Designing catalytic cross-metathesis (CM) reactions that afford Z-alkenyl halides
a, Potential applications of Z-selective CM reactions that afford alkenyl halides include a 

concise synthesis of an anti-inflammatory agent and a ring-opening/cross-metathesis process 

that delivers a compound with two Z-alkenyl bromide bonds formerly employed in the 

preparation of an immunosuppressant. The ability to perform late-stage stereoselective 

fluorination of complex molecules is another notable and high impact advantage. b, Ru 

complexes cannot promote efficient CM reactions of alkenyl halides because of the low 

reactivity and instability of the derived halo-substituted carbenes. c, The pathways that might 

allow a Mo or W species to promote CM transformations that generate alkenyl halides, 

despite the fleeting nature of the corresponding halo-substituted alkylidenes. Abbreviations: 

M, transition metal; X, halogen; Mes, 2,4,6-(Me)3C6H2; G or R, various functional groups; 

Ar, aryl group; NA, not applicable; ND, not determined.

Koh et al. Page 11

Nature. Author manuscript; available in PMC 2016 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Synthesis of Z-alkenyl chlorides and applications
a, Many Z-alkenyl chlorides can be prepared with Mo-4c and unpurified Z-dichloroethene. 

Useful functional units are tolerated, among them a sulfide, an allyl stannane, an indole and 

an allylboron. b, Chloro-substituted allylboron compounds for use in catalytic C–C bond 

forming transformations. Application to synthesis of clathculin B and (S)-coriolic acid 

methyl ester further underscores utility. Abbreviations: G, functional groups; TBS, t-
butyldimethylsilyl; Bn, benzyl; pin, pinacolato; Ac, acetyl; SPhos, 2-

dicyclohexylphosphino-2′,6′-dimethoxybiphenyl. Reactions were performed under N2. 

Conversions and Z:E ratios were measured by analysis of 1H NMR spectra of unpurified 

mixtures; the variance of values estimated to be <±2%. Yields correspond to isolated and 

purified products and represent an average of at least three runs (±5%). See the 

Supplementary Information for experimental details and spectroscopic analyses.
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Figure 3. Z-Alkenyl bromides through catalytic cross-metathesis (CM) and ring-opening-cross-
metathesis (ROCM)
a, Stereoisomeric mixture of 1,2-dibromoethene can be used in preparation of Z-alkenyl 

bromides. b, The protocol is applicable to ring-opening/cross-metathesis processes with 

readily accessible cyclic alkenes; Z,Z-bis(alkenyl)bromide has been employed in the 

preparation of anti-tumor agent tetrahydrosiphonodiol. The corresponding dichloride was 

synthesized in 75% yield and with complete Z selectivity. Abbreviations: G, various 

functional groups; Ar, aryl group; TBS, tert-butyldimethylsilyl; Bn, benzyl; Boc, tert-
butyloxycarbonyl. Reactions were performed under N2. Conversions and Z:E ratios were 

measured by analysis of 1H NMR spectra of unpurified mixtures; the variance of values 

estimated to be <±2%. Yields correspond to isolated and purified products and represent an 

average of at least three runs (±5%). See the Supplementary Information for experimental 

details and spectroscopic analyses.
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Figure 4. Z-alkenyl fluorides and late-stage fluorination
a, Z-Bromo-fluoroethene can be used for synthesis of Z-alkenyl fluorides. b, An array of 

products can be accessed, including those with an aryl substituent. c, Stereoselective late-

stage fluorination of complex molecules can be performed. d, A variety of widely occurring 

heteroatom-containing functional units are tolerated. Abbreviations: G, various functional 

groups; Ar, aryl group; PMP, p-methoxyphenyl; Ac, acetyl; Bn, benzyl; TBS, tert-
butyldimethylsilyl. Reactions were performed under N2. Conversions and Z:E ratios were 

measured by analysis of 1H NMR spectra of unpurified mixtures; the variance of values 

estimated to be <±2%. Yields correspond to purified products and represent an average of at 

least three runs (±5%). For 13a, 3.0 mol % Mo-4c and for 3, 13g and 15, 10 mol % Mo-4c 
was used (40 °C, 12 h for 13g). See the Supplementary Information for details.
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Table 1

Examination of Complexes for CM of a Terminal Alkene with Z-1,2-dibromoethene

Entry number Complex; Mol % Time (h); Temp. (°C) Conv. (%)
§
; Yield (%)

§§
Z:E 

†

1 Ru-2; 5.0 4; 50 82; 59 58:42

2 Ru-3; 5.0 4; 50 10; <5 NA

3 Ru-4; 5.0 4; 50 <10; <5 NA

4 Mo-1; 5.0 4; 22 67; <5 NA

5 W-1; 5.0 4; 22 45; <10 ND

6 Mo-2; 5.0 4; 22 43; <5 NA

7 Mo-3; 5.0 4; 22 60; 27 >98:2

8 Mo-4a; 5.0 4; 22 87; 60 >98:2

9 Mo-4b; 5.0 4; 22 62; 40 98:2

10 Mo-4b; 5.0 12; 22 95; 84 93:7

11 Mo-4c; 3.0 4; 22 90; 75 >98:2

Reactions were carried out under N2 atm.; see the Supplementary Information for details.

§
Conversion (conv.) was based on the disappearance of the limiting reagent (8-bromo-1-octene) and determined by analysis of the 1H NMR spectra 

of the unpurified mixtures; the variance of values is estimated to be ±±2%.

§§
Yield of isolated and purified product (Z/E mixture); the variance of values is estimated to be ±±5%.

†
Z/E ratios were determined by 1H NMR analysis of unpurified mixtures; the variance of values is estimated to be ±±2%. See the Supplementary 

Information for details.
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