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Abstract

Peridynamics has gained significant attention as an alternative formulation for

problems in solid mechanics. Recent contributions have included initial at-

tempts to include material damage and failure. In this paper, we propose an

approach to incorporate classical continuum damage models in the state-based

theory of peridynamics. This has the advantage of enabling the description

of the damage evolution process in peridynamics according to well-established

models. The approach is based on modifying the peridynamic influence function

according to the state of accumulated damage. As a result, peridynamic bonds

between nonlocal material points are severed in accordance with the damage

law. The peridynamic damage formulation proposed is implemented for the

particular case of a well established ductile damage model for metals. The

model is applied to the simulation of ballistic impact of extruded corrugated

aluminum panels and compared with experiments.
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1. Introduction

Peridynamics is a non-local continuum theory of solid mechanics originally

proposed by Silling to address elasticity problems involving discontinuities and

long-range forces [1]. One of its main objectives is to provide a formulation

which naturally supports the presence of discontinuities in the deformation field.

Another advantage of the theory is that the resulting equations of motion are

naturally discretized using particle-based methods [2]. This is presumed to have

advantages in problems involving severe material deformations where mesh-

based discretizations fail. One of the key remaining challenges in peridynamics

and associated discretization methods is how to describe material failure in ways

which are consistent with established models of fracture and damage.

In the original formulation of peridynamics, usually referred to as the bond-

based theory, fracture is commonly incorporated by means of a critical relative

displacement criterion, i.e., when the change in distance between two particles

reaches a critical value uc, their bond is irreversibly broken [3]. A particle-based

discretization of peridynamic was proposed in [4], where it was demonstrated

that the critical bond elongation uc can be related to the fracture energy G0 for

brittle materials. This approach has been used for modeling fracture and fail-

ure of composites, nanofiber networks and polycrystals [5], to simulate ballistic

impact on brittle plates [6], to study crack nucleation in peridynamic solids [7],

and to study dynamic crack propagation and crack branching [8]. The main

limitation of the bond-based peridynamic theory is that it only considers pair-

wise interactions between particles. As is well known, a direct consequence of

this assumption is that the effective Poisson’s ratio for isotropic linear materials

is fixed at the value of ν = 0.25 [1]. An immediate repercussion of this limita-

tion is the inadequacy of the bond-based peridynamics formulation in situations

involving incompressible deformations, e.g. plasticity.
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To address these issues, Silling et al. developed the so called state-based

peridynamics formulation [9], which makes it possible to incorporate general

constitutive models. In particular, the new formulation introduces a constitu-

tive correspondence framework which enables the use of traditional constitutive

models formulated in terms of a continuum local measure of deformation (i.e.,

the deformation gradient tensor, F). Recently, this approach was used to model

viscoplastic deformations in metals [10, 2]. The ability to incorporate classical

constitutive models also opens the path for using classical continuum damage

models within the peridynamics framework.

Existing state-based peridynamic damage modeling approaches in the litera-

ture are based on permanently modifying the peridynamic influence function by

instantly setting it equal to zero and severing the bond when a failure criterion

is achieved [10, 11]. Within the context of ordinary state-based peridynamics,

the role of the influence function has been explored in [12], and a critical bond

elongation criterion has been proposed in [11] which is similar to the damage

modeling approach commonly used in bond-based peridynamics [3, 4, 5, 6, 7, 8].

A severing criterion based on a maximum elastic bond energy was proposed in

[10] for the constitutive correspondence formulation and calibrated to dissipate

a pre-specified fracture energy when a new surface is created. These approaches

appear to be successful for modeling brittle fracture. However, there are sit-

uations (e.g. in ductile fracture), in which damage evolution and failure are

known to depend on quantities such as the stress triaxiality, Lode angle, and

possibly other parameters characterizing the local stress state [13, 14, 15]. It

would therefore be desirable to be able to incoporate classical damage models

whose primary objective is the description of damage mechanisms and their

evolution in a physics-based or phenomenological manner.

A more general framework for modeling damage within peridynamics has
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recently been proposed [16]. The theory constitutes a thermodynamically con-

sistent extension of state-based peridynamics where accumulated damage is rep-

resented by a damage-state. However, the requirement to introduce a peridy-

namic damage-state makes it impossible to use existing damage models directly,

and the necessary reformulation within this framework has yet to be done for

general damage models. Specifically, it is not clear how the Johnson-Cook dam-

age model adopted in the examples in this paper should be modified to fit this

general framework.

The main objective of this paper is to develop a state-based peridynamics

formulation where classical (local) continuum damage models can be incorpo-

rated without modification. It is found that a direct implementation of damage

models within the constitutive correspondence framework leads to instabilities

associated with unphysical diffusion of the damage zone. To address this issue,

we employ a peridynamic bond degradation criterion based on the accumulated

material damage. As damage evolves at a material point, the peridynamic in-

fluence function for bonds in the neighborhood is decreased so that in the limit

of full damage its interaction with other material points vanishes. This can be

viewed as an extension of previous bond-severing criteria in state-based peridy-

namics to more general cases where the influence function is allowed to degrade

gradually and to have a general dependence on other state variables such as

plastic strain, void volume fraction, temperature, etc., thereby enabling the de-

scription of the damage evolution process. To assess the method, we consider

the specific case of the Johnson-Cook plasticity and damage model [17].

In Section 2, we present the state-based peridynamic damage formulation

and discuss the implementation of the method for the specific damage model

considered. In Section 3, we present numerical results consisting of: 1) the simu-

lation of a Taylor impact test which is used for verification against other numer-
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ical methods; and 2) the simulation of ballistic impact of extruded aluminum

sandwich panels by steel spheres. A summary and discussion with suggestions

for future research is presented in Section 4.

2. Model description

For completeness, we briefly review the state-based peridynamic theory in-

cluding a summary of the peridynamic equations of motion, and the idea of

constitutive correspondence and its key properties. Subsequently, we describe

the modified theory to incorporate constitutive damage and demonstrate the in-

tegration of a specific classical damage model into the peridynamic theory. We

conclude this section with some details about the numerical implementation.

2.1. Peridynamic states

State-based peridynamics is a non-local continuum theory describing the

dynamics of a peridynamic body which we assume occupies the region B0 ⊂ R3

in the reference configuration at time t = 0 and the region Bt ⊂ R3 at time

t. Consider material points in the reference configuration x,x′ ∈ B0. Under

the deformation mapping ϕ : B0 → Bt, points x and x′ map to y and y′

respectively. From the perspective of point x, the bond to x′ is the vector

ξ = x′ − x.

Using similar definitions to those provided in [16], we define a family H at x by

H(x) =
{
ξ ∈ R3 | (ξ + x) ∈ B0, |ξ| < δ

}
,

where δ > 0 is the horizon radius, which defines a physical length scale in the

continuum formulation. A schematic of a peridynamic body and the family at

x is shown in Figure 1.
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Figure 1: Schematic representation of a body B and the family H of the point x.

A peridynamic vector-state a[x] at a point x ∈ B0 is a function

a[x] 〈·〉 : H(x)→ R3.

An important example of a vector-state is the deformation vector-state Y, which

is defined at x by

Y 〈ξ〉 ≡ y′ − y. (1)

Vector-states take an analogous role in state-based peridynamic theory as ten-

sors do in classical local continuum mechanics. For example, the deformation

vector-state is analogous to the deformation gradient in classical theories, but

is able to describe more general kinematics [16].

What differentiates peridynamics from classical continuum mechanics in an

essential way is that the theory is inherently non-local in the sense that material

points are assumed to interact through long-range forces represented by the force

vector-state T, where T 〈ξ〉 ∈ R3 can be loosly interpreted as a force density

per unit reference volume at point x due to interactions with the point x′.

This state-based peridynamic formulation is a generalization of the bond-

based peridynamic framework which allows the response of the material at a

given point to depend on the collective deformation of all the bonds connected
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to that point [9]. The peridynamic equations of motion are given by

ρ(x) ÿ(x, t) =

∫
H(x)

{
T [x, t] 〈ξ〉 −T [x + ξ, t] 〈−ξ〉

}
dVξ + b(x, t), (2)

where ρ is the density of the material and b is an externally applied body force.

The peridynamic equations of motion enforce conservation of linear momentum.

In the following, the more concise “prime” notation: T 〈ξ〉 ≡ T[x, t]〈x′ − x〉,

and T′〈−ξ〉 ≡ T[x′, t]〈x − x′〉 will be used. The equations of motion in this

notation are then

ρ ÿ =

∫
H
T 〈ξ〉 −T′〈−ξ〉 dVξ + b,

where the dependence on x and t is implied.

A key assumption of the state-based peridynamic theory is that the force

vector-state T at each material point x is a function of the deformation vector-

state Y defined in equation (1), and possibly of the rate of deformation vector-

state Ẏ, temperature θ, and other internal variables q as well. Restrictions on

the form of T are required to ensure conservation of angular momentum and to

satisfy the first and second laws of thermodynamics [16].

In order to facilitate the incorporation of classic constitutive models into the

peridynamic framework, Silling et al. [9] introduced the concept of peridynamic

constitutive correspondence. A peridynamic material model is said to corre-

spond to a classical material model when the strain energy density of both the

classical and peridynamic material are equal under affine deformations. For this

purpose, an approximate deformation gradient field F̄ was introduced:

F̄ (Y) =

[∫
H
ω(|ξ|)(Y〈ξ〉 ⊗ ξ) dVξ

]
K̄
−1
, (3)
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where ω(|ξ|) is a scalar valued radial influence function which depends only on

the length of the bond ξ, and K̄ is a non-local shape tensor defined by

K̄ =

∫
H
ω(|ξ|)(ξ ⊗ ξ) dVξ.

Alternatively, we can define this integral without recourse to peridynamics states

as follows:

F̄(x, t) =

∫
Ωx

ω(|x′ − x|) [(y(x′, t)− y(x, t))⊗ (x′ − x)] dVx′ K̄
−1

(x), (4)

K̄(x) =

∫
Ωx

ω(|x′ − x|) [(x′ − x)⊗ (x′ − x)] dVx′ ,

where Ωx = {x′ ∈ B0 | |x′ − x| < δ}. It can be seen from equation 4 that

the constitutive correspondence form of F̄ provides a description of the state of

deformation at point x, based on a weighted average of the deformation of all

the neighboring bonds. It has been shown that the approximate deformation

gradient obtained in this way is identical to the classic deformation gradient (i.e.,

the continuous gradient of the deformation mapping, F) for affine deformations

[9].

The force vector-state for constitutive correspondence takes the form:

T〈ξ〉 = ω(|ξ|)P̄K̄
−1
ξ, (5)

where P̄ = P̂(F̄) is the first Piola-Kirchhoff stress tensor obtained from a classic

constitutive law as a function of the approximate deformation gradient. This

form of the force vector-state leads to a peridynamic formulation which conserves

angular momentum provided the classical constitutive model used is one which

ensures conservation of angular momentum and is non-polar. This is the case if
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the resulting Cauchy stress σ̄ is symmetric, i.e., σ̄ = J̄−1P̄ F̄
T

= σ̄T .

2.2. Damage correspondence

The ability to incorporate existing classical constitutive models provided by

the correspondence formulation opens up the possibility of using classical con-

tinuum descriptions of damage within the peridynamic framework. However, it

can be easily seen that an inattentive use of such models results in unphysical

instabilities in numerical computations. Specifically, when a material particle

in the peridynamic body is fully damaged, the material is able to flow un-

constrained. Due to the non-local character of the peridynamic deformation

gradient F̄, material points within the horizon of fully damaged regions will

then compute unphysically-large strains which, in turn, will lead to unphysical

damage. As a result, there is a tendency for damage to diffuse in an unre-

alistic manner in situations where damage should in fact localize into regions

whose width should be of the order of the horizon size. It is therefore necessary

to augment the peridynamic formulation to preserve the ability for damage to

localize.

Instabilities in peridynamic simulations have been previously observed in

the form of zero energy modes [18], which are common to many particle based

continuum discretizations [19, 20]. These zero energy modes can manifest them-

selves even in purely elastic simulations. However, the instability we focus on

here appears to be primarily due to unphysical propagation of damage.

In order to address this issue, we adopt a generalized definition of the influ-

ence function ω, equation (3), and make it dependent not only on the length of

the bond |ξ|, but also on the internal state-variables (q,q′):

ω = ω̂(|ξ|,q,q′)
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where q and q′ are vectors of internal or state variables at the material points

x and x′ respectively. This strategy can be viewed as an extension of previous

approaches to state-based peridynamic damage modeling in which the influence

function is set to zero when a bond failure criterion is satisfied [10, 11, 12] with

two major differences: 1) the proposed formulation contemplates the possibility

that the influence function may depend smoothly on the internal fields, resulting

in a gradual degradation of material point interactions. In addition, 2) both the

evolution of the damage process and the ultimate material failure criterion are

governed by the classical continuum damage model which in general may depend

on any of the internal state fields (e.g. plastic strain, void volume fraction,

temperature, stress triaxiality, Lode angle, as well as material properties). These

two considerations are probably critical to fully capture the damage mechanisms

that are phenomenologically implied by the original continuum damage model.

In this paper we will assume for simplicity that the state of material damage

in the constitutive model is described by a single parameter D, which is com-

monly the case in some of the most popular damage models used in practice.

We consider influence functions of the form

ω̂ (|ξ|,q,q′) = ωξ(|ξ|)ωD(D,D′) (6)

where D and D′ ∈ [0, 1] are the values of the damage parameter at x and x′,

respectively, and ωξ(|ξ|) is the conventional (radial) influence function which

quantifies the relative degree of interaction between neighboring material points

in an undamaged material. We require ωD to be a non-increasing function of

each of its arguments and to be zero if either argument is 1, i.e., ωD(a, b) =

0 if a = 1 or b = 1. In this way, the contribution of a damaged material

point to the peridynamic force-state of neighboring points decreases as damage

accumulates, and vanishes altogether when the material point is fully damaged.
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Any subsequent compressive response resulting from contact interactions are

handled by a particle contact algorithm.

The specific forms we choose for the influence functions are

ωξ(|ξ|) = e−
|ξ|2

σ2 ,

ωD(D,D′) =


0 if D > Dc, or D′ > Dc

1 otherwise,

(7)

where σ defines the physical length scale, and Dc is the critical bond damage. A

Gaussian influence function such as ωξ has previously been used in the context

of bond-based peridynamics [21]. The influence function, equation (6), leads to

equations of motion which conserve angular momentum, as can be shown by

arguments identical to those presented in [9]. The only difference is the added

explicit dependence on additional internal state-variables, q and q′, which does

not affect momentum conservation.

2.3. Constitutive model

The damage correspondence formulation of Section 2.2 is general and can

in principle be applied to a wide array of continuum damage models. For def-

initeness, we specialize it to a modified Johnson-Cook constitutive model of

viscoplasticity and failure of metals [22, 17]. In this model, the flow stress Y is

defined as

Y = σ0

[
1 +

εp

εp0

]n 1 + C log

 ε̇p

2ε̇p0
+

√
1 +

(
ε̇p

2ε̇p0

)2
 ,
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where εp is the equivalent plastic strain, ε̇p is the equivalent plastic strain rate,

εp0 =
(σ0

B

) 1
n

is a reference plastic strain, and ε̇p0 is a reference plastic strain rate. Compared

to the classical Johnson-Cook flow stress, this modified expression avoids sin-

gularities in the hardening as ε̇p → 0 and in the hardening modulus as εp → 0.

[22, 23, 24, 25]. The elastic response is described using a hyperelastic formula-

tions based on logarithmic strains and standard isotropic elastic constants.

As in the standard Johnson-Cook damage model [17], the evolution of dam-

age is controled by the damage parameter given by

D =

∫ t

0

Ḋ dτ,

Ḋ =


ε̇p

εf
if D < 1

0 otherwise

with εf defined as

εf =

[
d1 + d2 exp

(
−d3

σm
σe

)][
1 + d4 ln

(
ε̇p

ε̇0

)]
,

where d1, d2, d3, d4, and ε̇0 are material parameters, σm is the hydrostatic

stress, and σe is the Von Mises equivalent stress.

2.4. Discretization

The discretization approach adopted here follows [2]. The initial config-

uration of the problem domain is discretized into a set of N particles which

represent the volume of the Voronoi cells. Displacement degrees of freedom and
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other field and internal variable data are associated with each particle, which

in effect implies a piecewise-constant interpolation supported on the Voronoi

diagram. Particles located at xi ∈ B0 in the reference configuration map to

positions yi ∈ Bt in the deformed configuration at time t. Integrals in the peri-

dynamic formulation are naturally discretized as volume-weighted sums over the

Voronoi cells. Thus, the deformation gradient is obtained from equation (4) as

F̄j =

Nj∑
i=1

Vi ω(|xi − xj |)
(
yi − yj

)
⊗ (xi − xj) K̄

−1
j ,

K̄j =

Nj∑
i=1

Vi ω(|xi − xj |) (xi − xj)⊗ (xi − xj) ,

where Vi is the volume represented by particle i, and i = 1, Nj are the particles

in the horizon of particle j. The stress and internal state corresponding to

this state of deformation is computed for each particle by direct application of

the classical constitutive update P̄j(F̄j ,qj). Integrating the force state (5) and

replacing in (2) leads to the following semi-discrete equations of motion

ρ ÿi =

Ni∑
j=1

Vj ω(|xj − xi|)
{
P̄iK̄

−1
i (xj − xi)− P̄jK̄

−1
j (xi − xj)

}
.

These equations of motion are integrated in time using the Newmark time step-

ping algorithm, with Newmark parameters chosen for explicit time integration

and second order accuracy [26], β = 0 and γ = 1
2 .

3. Results

To assess the functionality of the proposed state-based constitutive corre-

spondence damage formulation, the discretized equations were implemented
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from scratch in a C++ computer code for three dimensional simulations. A

Taylor impact test was used to verify our implementation of the state-based

peridynamics formulation against other numerical methods for a case involving

viscoplasticity but no damage. The proposed peridynamics damage approach

was then applied to ballistic impact tests of spherical steel projectiles on ex-

truded aluminum panels.

3.1. Taylor impact test

The Taylor impact test [27] has been extensively used for characterizing

the dynamic plastic response of materials as well as for validating numerical

methods, e.g. [28, 29]. The test consists of a cylindrical metallic bar impacting

a rigid wall at a high velocity. In the case of peridynamics, a Taylor impact

test has been used to demonstrate a numerical implementation of the state-

based formulation without damage [2]. This test consisted of a 0.0324 m long

6061-T6 aluminum cylinder with a diameter of 0.00635 m impacting a rigid

wall at 363 m/s. Instead of using this test, we chose to adopt the specific

configuration of the numerical test presented in [29] in order to compare with

alternative discretization approaches from the literature [30, 31, 32, 33]. In this

case, the cylinder material is copper, which is modeled as elastic-plastic with

linear isotropic hardening. The cylinder length is l = 0.0324 m and its radius

r = 0.0032 m. The impact velocity is 227 m·s−1. The material properties of

the cylinder are shown in Table 1. Three different discretizations of 2394 (D1),

16929 (D2) and 130536 (D3) peridynamic particles are used in calculations.

Similarly to the approach in [2], for each discretization the horizon size, δ, was

chosen to be 3.01 ·∆x, where ∆x is the approximate average distance between

neighboring discrete particles.

The final configurations of the bar and contours of equivalent plastic strain

are shown in Figure 2. The final radius of the impacting face of the cylinder
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Properties Values

Initial density 8930 kg·m−3

Bulk modulus 1.3×1011 N·m−2

Shear modulus 4.3×1010 N·m−2

Initial yield stress 4.0×108 N·m−2

Linear hardening modulus 1.0×108 N·m−2

Table 1: Material properties used in Taylor impact test simulations.

Figure 2: Simulated final configurations of the Taylor impact test for discretizations D1 (left),
D2 (center), and D3(right).

rmax, the cylinder length lf , and the maximum equivalent plastic strain εpmax

are compared to results obtained with finite element calculations [30, 31, 32] and

the optimal-transportation method (OTM) [33] in Table 2. With the exception

of the results computed by means of the OTM method, the other calculations

used for comparison were carried out in axisymmetric mode. It can be seen

that the peridynamic simulation results compare reasonably well with results

obtained using other numerical methods. These computational results provide

an initial verification of the theory, the discretization method, and its computer

implementation.

3.2. Ballistic impact test

The second example involves the simulation of recent experiments of hard-

steel spherical projectiles of diameter 0.55 inches impacting extruded 6061-T6

aluminum sandwich panels [34]. The design of such sandwich structures for im-
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lf (mm) rmax (mm) εpmax
Kamoulakos [30] 21.47-21.66 7.02-7.12 2.47-3.24
Zhu and Cescotto [31] 21.26-21.49 6.89-7.18 2.47-3.24
Camacho and Ortiz [32] 21.42-21.44 7.21-7.24 2.97-3.25
Li et al. [33] 21.43 6.8 3.0
Peridynamics, D1 21.5 7.1 2.69
Peridynamics, D2 21.4 7.5 2.88
Peridynamics, D3 21.4 7.4 3.29

Table 2: Comparison of Taylor impact test results.

proved protection performance against impulsive loadings has recently received

significant attention [35, 36, 37]. This case provides a stringent test on the abil-

ity of the numerical method to model damage, as material damage has a critical

influence on the ballistic limit of the structure (the lowest projectile impact

velocity for which the target is fully penetrated), and on the residual projec-

tile velocities at higher impact speeds. The left column of Figure 3 shows the

post-mortem configurations of the tested panels for different impact velocities.

In simulations, the panel’s constitutive response was described by the mod-

ified Johnson Cook model, Section 2.3. The Young’s modulus E and the strain

hardening parameters n, B, and σ0 were calibrated to quasi-static tensile tests,

conducted on coupons cut from the faces of the finished panels and measured

in the direction of extrusion [38]. Figure 4 shows the quasi-static tensile test

stress-strain curve obtained in experiments and the results from the calibrated

constitutive model. The parameter C controlling rate-sensitivity in the flow

stress was adopted from [39], where it was calibrated to dynamic test data for

this material at a reference strain rate ε̇p = 1 s−1. The full set of calibrated con-

stitutive parameter values for the viscoplastic response of the aluminum panels

is shown in Table 3. A systematic approach to calibrate damage models for

ductile fracture of metals typically involves conducting specific experiments of

strain-to-failure for different triaxialities and possibly other parameters charac-
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Figure 3: Comparison between numerical simulations and experimental results courtesy of
Hayden Wadley, UVA.

Figure 4: Modified Johnson-Cook material model fit against uniaxial test data [38].
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terizing the local stress state [13, 14, 15]. However, it is well known that the

damage parameters of the model must be recalibrated in simulations depending

on the type and size of the discretization [40]. Considering these difficulties and

that the emphasis of this paper is in demonstrating the peridynamics descrip-

tion of damage, we calibrated the damage model using a simplified approach

where the parameters were adjusted to match a specific measurable metric of a

single experiment.

In simulations we represent failure between particles by breaking their bonds

when the damage parameter Dc in equation (7) exceeds the value 0.99. The

choice of a critical damage of 0.99 was chosen arbitrarily and its calibration may

have a non-negligible impact on simulation results. Contact between particles

is enforced using a simple penalty algorithm which prevents interpenetration

of both undamaged and damaged particles. This form of contact is similar to

what has been used in the peridynamic literature for particle-on-particle contact

[6]. Since the spherical projectiles showed no perceivable plastic deformation in

experiments, for simplicity we decided to model them as elastic with density

7800 kg/m3, Young’s modulus 200 GPa, and Poisson’s ratio 0.25 using a finite

element mesh. The boundary conditions for the plate were chosen so as to

replicate the experimental conditions by fully constraining the particles along

the two long sides of the sandwich specimen. Contact between the finite element

mesh (projectile) and the peridynamic domain (sandwich structure) is enforced

via penalty contact forces between the nodes of the finite element mesh and the

particles in the peridynamic discretization. The peridynamic horizon radius was

taken to be approximately three times the largest distance between neighboring

particles, which proved to be sufficiently large to ensure reasonably stability of

the method.

Simulations were conducted for all of the projectile impact velocities used in
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E ν σ0 B n C ε̇p0 ρ

72 GPa 0.343 250 MPa 365 MPa 0.04 0.002 1 2700 kg/m
3

Table 3: Material parameters used in numerical simulations.

d1 d2 d3 d4

0.875 0.13 -1.5 0.0

Table 4: Damage parameters used in numerical simulations.

experiments. The simulations were run until the projectile: bounced, partially

penetrated and was arrested by the panel, or fully penetrated and exited the

back face with a final residual velocity. The Johnson-Cook damage parame-

ters were calibrated using the test-case where the initial projective velocity was

740 m/s. The parameters, shown in Table 4, were calibrated to exactly repro-

duce the experimentally observed residual velocity for this test-case. All other

simulations were performed using those same parameters.

Figure 3 shows both the experimentally obtained [34] and simulated post-

mortem deformed configuration of the impacted sandwich structures. The re-

sults show that the simulated results accurately predict that an initial projectile

velocity of v = 370 m/s is well below the ballistic limit. For an initial veloc-

ity of v = 530 m/s, which is near the experimentally predicted ballistic limit,

the simulated results accurately predict that the projectile penetrates the top

face of the sandwich structure, but is barely stopped by the second layer. At

v = 900 m/s, the prediction that the projectile penetrates both layers is again

consistent with the experiments. The numerically computed projectile residual

velocity as a function of the initial impact velocity is shown in Figure 5 and

is compared with the corresponding experimental results by Wetzel [34]. As it

can be observed in this figure, there is a very reasonable agreement between

simulations and experiments.
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Figure 5: Simulated peridynamic residual velocity vs. initial impact velocity for sandwich
panel impact compared to experimental results [34].

4. Summary and conclusions

An extension of the peridynamic state-based constitutive correspondence

framework to incorporate material damage has been proposed. The main moti-

vation is the desire to incorporate in the modeling framework continuum damage

models commonly used in other numerical approaches which have difficulty in

simulating problems involving extreme deformations, e.g. the finite element

method.

It is found that a direct use of damage models within the constitutive corre-

spondence framework leads to instabilities associated with unphysical diffusion

of the damage zone. In order to address this issue, we proposed to progressively

degrade the peridynamic influence function appearing in the non-local integral

measure of deformation as continuum damage accumulates. This approach ef-

fectively generalizes previous approaches which set the influence function to zero
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when a bond extension [11] or a bond elastic energy [10] criterion is satisfied.

As a result, fully-damaged material points cease their interaction with their

neighbors and damage diffusion issues are avoided.

Benchmark Taylor impact test simulations were performed without dam-

age and compared with established computational approaches, where favorable

agreement was found. The method was then tested in the presence of damage

for the case of ballistic impact of steel spheres on corrugated aluminum sandwich

structures at varying initial velocities. After calibrating the damage evolution

law to a single experimental result, both the ballistic limit and the dependence

of residual velocity on impact velocity were found to be in close agreement with

experimental results. In conclusion, the proposed method furnishes a robust

and simple way to incorporate damage models in the peridynamics framework

method which is critical for problems involving severe deformations and failure.
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