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Abstract 

Membranes possessing high permeability to water vapor and high liquid entry pressure (LEP) are 

necessary for efficient membrane distillation (MD) desalination. A common technique to prepare 

specialized MD membranes consists of coating a hydrophilic or hydrophobic base membrane 

with a low surface-energy material.  This increases its liquid entry pressure, making the 

membrane suitable for MD.  However, in addition to increasing LEP, the surface-coating may 

also decrease permeability of the membrane by reducing its average pore size. In this study, we 

quantify the effects of initiated chemical vapor deposition (iCVD) polymer coatings on 

membrane permeability and LEP. We consider whether the iCVD films should have minimized 

thickness or maximized non-conformality, in order to maximize the permeability achieved for a 

given value of LEP. We determined theoretically that permeability of a single pore is maximized 

with a highly non-conformal iCVD coating.  However, the overall permeability of a membrane 

consisting of many pores is maximized when iCVD film thickness is minimized. We applied the 

findings experimentally, preparing an iCVD-treated track-etched polycarbonate (PCTE) 

membrane and testing it in a permeate gap membrane distillation (PCMD) system. This study 

focuses on membranes with clearly defined, cylindrical pores.  However, we believe that the 

principles we discuss will extend to membranes with more complex pore architectures. Overall, 

this work indicates that the focus of surface-coating development should be on minimizing film 

thickness, not on increasing their non-conformality. 

 

Keywords: Membrane distillation (MD), Desalination, Track-etched polycarbonate (PCTE) 

membranes, Dusty gas model, Initiated chemical vapor deposition (iCVD). 
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Variables 

 

a  Ratio of uncoated/coated pore radii measured at top surface of membrane, a = ro/rt 

Ad  Coefficient of molecular diffusion (kg/m-s-Pa) 

Ak  Coefficient of Knudsen diffusion (kg/m2-s-Pa) 

c  Pore concentration on the membrane surface (pores/m2) 

c200  Pore concentration of Sterlitech’s 200 nm (radius) PCTE membrane 

de  Collision diameter of water molecules (m) 

D  Diffusion coefficient of water in air (m2/s) 

K  Permeability of membrane with pores of constant radius (kg/m2-s-Pa) 

kb  Boltzmann constant (J/K) 

KiCVD  Permeability of membrane treated with an iCVD polymer coating (kg/m2-s-Pa) 

KiCVD,lin Permeability of membrane with iCVD coating approximated linearly (kg/m2-s-Pa) 

K(x)  Permeability of membrane at distance, x, from its surface (kg/m2-s-Pa) 

Kn  Knudsen number ( ) 

L  Pore length = membrane thickness multiplied by tortuosity for straight pores (m) 

ΔP  Liquid entry pressure (Pa) 

P  Total pressure within the pores during membrane distillation (Pa) 

pa  Partial pressure of air within the pores during membrane distillation (Pa) 

R  Universal gas constant (J/K-mol) 

r  Pore radius, constant value (m)   

rt  Pore radius at the membrane’s top surface (m) 

rb  Pore radius at the membrane’s bottom surface (m) 

ro  Pore radius prior to iCVD treatment (m) 
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r(x)  Pore radius within the membrane (m) 

SL  Step coverage of the iCVD coating, can be written as �� = �����
�����

 

S(x)  Step coverage of the iCVD coating within the membrane, written as �� = ����(
)
�����

 

T  Temperature (K) 

x  Distance from the top surface of the membrane (m)  

γ  Surface tension of the liquid (N/m) 

Γ  Sticking coefficient 

θ  Contact angle between the membrane and the liquid (°) 

λ  Mean free path (m) 

 

1. Introduction 

Membrane distillation (MD) is a thermal separation process used for desalination [1–5]. In direct 

contact and permeate gap membrane distillation (DCMD and PGMD), a hydrophobic membrane 

acts as a barrier separating the heated feed stream from the cooled distillate stream [6]. The 

temperature difference across the membrane creates a difference in the partial pressure between 

the water vapor on either side. This causes a net diffusion of water vapor through the membrane 

from the feed to the distillate. Salt and other contaminants in the feed stream are left behind. 

 

The hydrophobic membrane in the MD system has two roles. It must be impermeable to liquid 

water, but permeable to water vapor. A high liquid entry pressure (LEP) ensures that liquid water 

does not enter the membrane. High permeability to water vapor is necessary to maintain efficient 

production of desalinated water [7–10]. Currently, MD systems primarily use hydrophobic 

membranes developed for micro- and ultra- filtration [5]. However, experimental, higher 
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performance MD membranes are often prepared. Many of these membranes consist of a 

hydrophilic or hydrophobic base membrane coated with a low surface-energy chemistry to 

increase liquid entry pressure [11–16]. This versatile method increases the options for base 

membranes and surface chemistries, making it possible to produce higher performance 

membranes. However, while the hydrophobic surface treatment increases LEP, if it has thickness 

that is a significant fraction of pore radius, it will also change the membrane’s permeability to 

water vapor. The current study explores how the thickness and conformality of the hydrophobic 

coating affects the relationship between LEP and permeability. We also discuss how to maximize 

permeability for a given value of LEP. 

 

2. Theoretical background 

2.1. Models for LEP and permeability of an ideal membrane 

MD membranes consist of a collection of pores. According to the Young-Laplace model [17], 

membranes consisting of cylindrical pores have LEP given by  

∆ = ������ (�)
��

 (Eq. 1) 

where γ is the liquid’s surface tension, θ is the contact angle between the liquid and the 

membrane, and rt is the pore radius at the surface of the membrane. For these ideal membranes, 

the only geometric quantity determining LEP is the pore radius at the membrane surface. 

Increasing this value decreases liquid entry pressure. 

 

In contrast, permeability of a membrane to water vapor is affected by multiple aspects of the 

membrane architecture. For an ideal membrane consisting of straight, cylindrical pores, these 

factors include pore radius, pore concentration, and membrane thickness. MD membranes 
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typically have pore sizes ranging from 100 to 450 nm [5]. At this size range, the mean free path 

of water vapor, λ, is comparable to the pore radius (Appendix A). This means that the Knudsen 

numbers, Kn = λ/2r, is within the transition regime (0.2 < Kn < 1.0) in which both continuum and 

discrete effects are important. Although it has been met with some criticism [18], the 

permeability (often referred to as the membrane coefficient) for MD membranes is often 

described using the dusty gas model [19]. In the dusty gas model, the total resistance to diffusion 

is the sum of the resistances to molecular and Knudsen diffusion. This captures the effects of 

both the intramolecular and the wall collisions expected to occur at these Kn values. 

 

The dusty gas model assumes that Knudsen and molecular diffusion are present in series within 

the pores [2]. The physical basis for the mechanisms being in series is still under debate [18]. A 

condensed version of the dusty gas model for a membrane consisting of cylindrical pores of 

radius, r, length, L and concentration, c (pores/m2) is given by 

� = ����
������

���

�  (Eq. 2) 

where K is permeability and Ak is a constant of the system. Ak is defined as 

�� = ��
�

 !
"# $ %"#

� !
&

'/�
 (Eq. 3) 

where R is the universal gas constant (J/mol-K), T is temperature (K), and Mw is the molecular 

weight of water (g/mol). Ad is also a constant of the system. It is defined as 

�) = � !
"#

*+
,-

  (Eq. 4) 

where P is the total pressure inside the pores (Pa), D is the water diffusion coefficient with air 

(m2/s) and pa is the air pressure within the pores (Pa) [19]. According to Eq. (2), as r approaches 

zero (Kn >>1), K approaches pure Knudsen diffusion. As r becomes very large (Kn<<1), K 
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approaches pure molecular diffusion. At intermediate values of Kn, both sources of resistance are 

significant, and permeability is lower than it would be for pure Knudsen or pure molecular 

diffusion.  As seen in Eq. (2), permeability is highly sensitive to pore radius, increasing 

substantially with increased values of r. 

 

As seen from Eq. (1) and Eq. (2), liquid entry pressure and permeability do not necessarily scale 

with each other. To produce more efficient MD membranes, it is desired to increase permeability 

without decreasing LEP beyond the limit needed to prevent liquid water entry. One way to do 

this is to modify the attributes of the membrane that affect permeability but do not affect LEP. 

These include membrane thickness, pore concentration and pore size below the surface of the 

membrane. In this study, we focus on pore size, determining how iCVD coatings affect the 

relationship between pore size at and below the surface of the membrane. We use knowledge of 

the pore profiles to predict how the iCVD coating will affect the relationship between 

permeability and LEP of the membrane. 

 

2.2. Overview of iCVD film thickness and conformality 

iCVD has been used previously to prepare hydrophobic membranes for MD and other 

applications [12, 16, 20–22]. A defining characteristic of iCVD coatings is the ability to make 

them ultra-thin (~10 nm) and the ability to tune their conformality. iCVD films are grown from 

vapor-phase monomer and initiating radicals. The monomer and initiating radicals enter the 

pores from the “top” surface of the membrane, polymerizing on the internal walls [23–25] (Fig. 

1). Multiple factors influence the thickness of the iCVD film along the lengths of the pores. The 
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limit of uniform thickness in all locations is termed conformal coating. Reduction in film 

thickness with increased depth into the pore is termed non-conformal coating. 

 

In an iCVD reactor, the membrane is placed on a stage and monomer and initiating radicals are 

introduced from one side (the "top" of the membrane). During the deposition, the diffusion rate 

of the monomer into the pores is fast with respect to the surface reaction rate (low Damköhler 

number). This is due to the relatively large pore size (~200 nm) and the slow deposition rate. 

Under this assumption, an equilibrium concentration of monomer is maintained on all surfaces of 

the membrane. However, unreacted initiating radicals in the gas phase are depleted with 

increasing depth into the pores. If the rate of polymerization is proportional to radical 

concentration, film-thickness decreases down the length of the pore, resulting in increased pore 

radius with increasing distance from the top surface. 

 

 

Fig. 1. Schematic drawing of a single pore during iCVD polymer deposition. x indicates the 

distance from the top surface of the pore. L is the length of the pore. M is a monomer and I∙ is an 

initiating radical. The pore radius prior to iCVD coating is ro. 
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Assuming that the chemistry and surface energy of the iCVD coating are fixed, there are three 

main options for the iCVD coating profile (Fig. 2). These options have different implications for 

the permeability of the membrane. 

 

Fig. 2. Schematic cross-sections four pore structure, with the base membrane is shaded dark grey 

and having a horizontal cylindrical pore of radius, ro. Structure (a) is an untreated membrane.  

The hydrophobic iCVD film is denoted in blue.  For pores (b), (c) and (d), the thickness of the 

iCVD film varies down the length of the pores. However, the radius of the pore at the top 

surface, rt, is identical for all three coated pores. For (b) and (c), the iCVD thickness at the 

bottom of the pore is 90% that of the value at the top (SL=0.9 as defined in Eq. (5)). For (d) the 

variation in thickness is greater, with SL=0.1.  

 

Fig. 2a shows a single uncoated cylindrical pore, with a small starting pore size. The radius of 

the pore at the top of the membrane, rt, equals the pore’s original, untreated radius, ro. Fig. 2b 

shows the membrane from Fig. 2a coated with an ultrathin, iCVD film.  In this case, rt is slightly 

less than ro (ro/rt = 1.1). In addition to being ultra-thin, the iCVD film in Fig. 2b has a high 

degree of conformally with a step coverage of SL = 0.9.  Step coverage is defined as the ratio of 
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coating thickness at the bottom and top of a pore. Smaller values of SL indicate coatings that are 

less conformal. 

 

Fig. 2c shows a different way of achieving the same rt using iCVD. We hypothesis that having 

identical values of rt will result in identical values of LEP.  In Fig. 2c, the starting pore radius, ro, 

is larger and the iCVD coating is thicker than in Fig. 2b. The coated pore has ro/rt = 4. The step 

coverage is again highly conformal with SL = 0.9. A third coating option expected to have the 

same LEP is illustrated in Fig. 2d. This pore has the same starting pore radius as Fig. 2c, and the 

same ratio of ro/rt =4.  However, the conformality of the film is significantly lower, with SL = 

0.1. While we anticipate the pores in Fig 2b – d will have the same LEP, differences in their 

permeability to water vapor are expected. In this study, we quantify how they differ. 

 

2.3. Quantifying iCVD film thickness and conformality 

In order to quantify the effects of non-conformality on the permeability of membranes, it is 

necessary to characterize the profile of the iCVD coating at all points within the membrane. This 

profile can be calculated based on the principles of the polymerization. 

 

iCVD films are grown from vapor-phase monomer and initiating radicals that enter the pores 

from the “top” surface of the membrane (Fig. 1). As initiating radicals react with the monomer, 

they are depleted, reducing the rate of polymerization with increasing distance from the surface. 

The rate of depletion of initiated radicals with distance from the surface of the pore depends on a 

quantity called the sticking coefficient [24]. The sticking coefficient is controlled during iCVD 

deposition by the fractional saturation of the monomer in the deposition chamber. Low sticking 
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coefficients produce films that are nearly conformal (constant film thickness). Higher sticking 

coefficients cause steeper depletion and greater asymmetry of the film, producing pores 

increasingly similar to Fig. 2d. 

 

The step coverage of iCVD polymer films has been studied previously [24]. Step coverage, SL, 

can be written as  

�� = �����
�����

 (Eq. 5) 

where ro is the unmodified pore radius. rt and rb are the top and bottom pore radii after iCVD 

treatment. Analytical modeling [24] has determined that 

ln(��) = − �1
2 $ �

���
&

�
 (Eq. 6) 

where Γ is the sticking coefficient of the initiator and L is the length of the pore. This model 

assumes that the monomer and initiating radicals are in the Knudsen diffusion regime within the 

pore and so collide primarily with the pore walls. This is a reasonable assumption given the low 

pressure in the iCVD deposition chamber (< 1 Torr). Increasing the sticking coefficient or 

increasing the aspect ratio of the pores lowers the step coverage, producing less conformal 

coatings.  

 

Eq. (5) can be generalized to describe the step coefficient at any distance x from the top surface 

of the membrane. SL is replaced by S(x) which is defined as 

�(3) = ����(
)
�����

 (Eq. 7) 

where r(x) is the pore radius at distance x from the top of the pore. Using the same analytical 

model as for Eq. (6), S(x) is modeled as  
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ln(�(3)) = − �4
2 $ 5

�67
&

�
= $


�&
�

ln(��). (Eq. 8) 

As x approaches L, S(x) approaches SL. Combining Eq. (7) and Eq. (8) and solving for r(x) 

produces an equation for r(x): 

8(3) = 89 − ��
$:

;&
<

(89 − 8=). (Eq. 9) 

 

While the pore profile in Eq. (9) is implied in [24], this is the first time it has been calculated 

explicitly. Fig. 2d illustrates the predicted shape of a non-conformal iCVD coating profile. 

Knowledge of the pore profile makes it possible to calculate the effect of the iCVD film on 

permeability. 

 

3. Materials and methods 

3.1. Membrane preparation 

In addition to building new theory, in this study we also prepared a membrane similar to the one 

in Fig. 2b, and tested it in a permeate gap membrane distillation (PGMD) system. We used 

polyvinylpyrrolidone (PVP) treated, hydrophilic, track-etched polycarbonate membranes 

(Sterlitech, PCT0214220) as the base membrane. We chose this membrane because its pore 

structure resembles an ideal membrane with straight cylindrical pores (Fig. 3). Pore size 

(diameter) was 400 nm. Total membrane thickness was 24 µm. Pore density was 1.5×1012 

pores/m2. 
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Fig. 3. SEM images of the PCTE membrane (a) as-purchased (top view) (b) as-purchased (cross-

section) and (c) after iCVD treatment (top view). The scale bars represent 5 µm. (d) A schematic 

of a pDVB (light grey)-pC6PFA (blue) bilayer iCVD coating on the PCTE membrane (dark 

gray). The iCVD film as shown is perfectly conformal.  

 

We used initiated chemical vapor deposition (iCVD) [26] as a method to deposit a hydrophobic 

coating on the PCTE membranes. iCVD can deposit polymer films that range from ultra-thin to 

microns thick. The iCVD polymer used in this study was a bilayer of poly(divinyl benzene) 

(pDVB) and poly(1H, 1H, 2H, 2H-perfluorooctyl acrylate) (pC6PFA) (Fig. 3d). The cross-

linking polymer, pDVB, forms a robust layer at the interface of the membrane. The pC6PFA 

forms an ultra-thin (<10 nm) layer on top of the pDVB to achieve a high contact angle with 
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water (110 - 135 º). Without the pDVB base layer, pC6PFA has significant side-chain 

rearrangement, reducing its contact angle hysteresis and making it less suitable use for MD [27, 

28]. pDVB-pC6PFA bilayers have been studied as an environmentally friendly alternative to 

poly(1H, 1H, 2H, 2H-perfluorodecyl acrylate) (pPFDA). However, they have not been applied 

previously to MD membranes [27, 28].  

 

Both iCVD layers were deposited in a custom-built reaction chamber. The chamber is cylindrical 

(height = 38 mm, diameter = 246 mm). It contains an array of 14 resistively heated parallel 

filaments (80% Ni, 20% Cr). Membranes were taped to a cooled stage (recirculating 

chiller/heater, NESLAB). The total pressure inside the chamber was maintained at a constant 

value using a mechanical pump (45 CFM pumping speed, Alcatel). 

 

To produce the pDVB layer, tert-butyl peroxide (TBPO, Sigma-Aldrich, 97%) initiator and DVB 

(Sigma-Aldrich, 80%) monomer were introduced into the chamber. The TBPO was at room-

temperature and was introduced at a rate of 1.0 sccm. The DVB was heated to 60 °C and 

introduced at a rate of 0.5 sccm. The stage was maintained at 30 °C, and the total pressure in the 

vacuum chamber was 800 mTorr. This resulted in a fractional saturation of the DVB monomer of 

0.3. Deposition time of the pDVB layer was 189 minutes. 

 

The pC6PFA layer was deposited directly on top of the pDVB film using the iCVD closed-batch 

configuration described previously [29]. The closed-batch configuration makes it easier to 

control film thickness for monomers that polymerize rapidly such as C6PFA. C6PFA monomer 

(Sigma-Aldrich, 97%,) and TBPO (Sigma-Aldrich, 97%) were used. The chamber was initially 
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evacuated. The TBPO initiator was fed into the evacuated chamber at room temperature until the 

total pressure reached 110 mTorr. The C6PFA monomer was heated to 80 °C and fed into the 

chamber until the total pressure in the chamber was 190 mTorr. The stage was maintained at 25 

°C. After filling the chamber with initiator and monomer, all valves were closed and the system 

was let rest for 2 minutes to allow mixing. The filament array was then turned on for 15 minutes, 

allowing the film to form. Next, the filaments were turned off and the chamber was evacuated. 

When the system had cooled, the chamber was refilled with initiator and monomer and the 

deposition process was repeated for a total of nine times. Depositing multiple rounds of C6PFA 

increased the pC6PFA layer thickness, reducing the possibility of defects due to thinness of the 

coating. 

 

3.2. SEM imaging and pore size analysis 

The pore radii at the top and bottom surfaces of the membrane was determined using image 

analysis of 445 µm2, 5 nm/pixel resolution SEM images of the top and bottom surfaces of the 

membrane. This made it possible to characterize the step coverage of the pores in a way that bulk 

characterization would be unable to do. SEM images were collected using a JEOL 6010a SEM 

microscope with an acceleration voltage of 5 keV. All SEM samples were sputtered with gold to 

improve conductivity during imaging. The thickness of this gold layer was taken into account 

when calculating pore size. SEM images were read into MATLAB and converted to black and 

white using a threshold determined using Otsu’s method. Pores were identified and their areas 

were measured using MATLAB’s regionprops command. Pores with areas smaller than 500 

pixels were discarded. The remaining pores were placed in a histogram with bin-size of 5 nm. 

The average (mode) pore size was determined by identifying the bin with the most pores and 
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calculating a radius assuming a circular pore-shape. Similar analysis using curve-fitting instead 

of mode value to determine average pore size, has been used by other researchers [30]. 

 

The pore size distribution of a representative membrane is shown in Fig. 4. The inset shows a 

section of the membrane with the centroids of the pores marked. Some overlapping pores can be 

seen which produce larger openings at the surface of the membrane. More work is needed to 

determine their exact effect on the LEP and permeability of the overall membrane. 

 

Fig. 4. The pore size distribution of a 445 µm2 section of an iCVD-treated membrane as 

determined using analysis of an SEM image. The inset is a small section of the processed image. 

 

3.3. Angle resolved x-ray photo spectroscopy (ARXPS) 

SEM imaging determined the total thickness of the iCVD coating. ARXPS was used to measure 

the thickness of just the pC6PFA layer on the treated membrane. ARXPS was conducted using a 

Surface Science Instruments SSX-100 with an operating pressure of ~2×10-9 Torr. A 4 keV 

Argon ion source was used with a beam current of 1 mA. We used angling of the beam to 
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measure the ratio of the FS1 and CS1 signals at a range of depths from the top and bottom surfaces 

of the membrane (where top is the direction from which the iCVD coating was deposited). Based 

on the inelastic mean free path of 2.4 nm, the depth of penetration of the x-ray beam was 

calculated to be 7.2, 6.2, 4.6 and 2.5 nm at incidence angles of 0, 30, 50 and 70 °, respectively. 

Measurements taken at each angle indicated the strength of the fluorine signal to each of these 

depths. FS1/CS1 for pure pC6PFA is 1.3 based on calculation from its chemical structure. Values 

below this indicate that the coating is incomplete when measured to that depth. 

 

3.4. Contact angle, liquid entry pressure, and permeate gap membrane distillation (PGMD) 

Advancing contact angles were measured using a goniometer equipped with an automatic 

dispenser (model 590, Ramé-Hart). DropImage software was used to acquire images for 

measurement. A 3 µL drop of room-temperature DI water was first placed onto the membrane 

surface. Water was then added to this drop in increments of 2 µL, and the angle between the 

advancing drop and the membrane surface was measured 100 ms after each addition. 

  

Liquid entry pressure (LEP) was measured using a custom system similar to ones used 

previously [12, 16, 31, 32]. A pristine sample of the membrane was held in a 13 mm syringe 

membrane holder (GE healthcare biosciences). The membrane was exposed to the saline solution 

(35 g/L, NaCl) on one surface and deionized (DI) water on the other. A syringe pump (PHD 

22/2000, Harvard apparatus) incrementally increased the pressure of the saline solution against 

the membrane. After each increase, the pressure was held constant for 12 seconds. A USB 

pressure transducer (PX409, Omega) monitored the pressure difference across the membrane. 

LEP is defined as the pressure at which liquid first passes through the membrane. The deionized 
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water reservoir was monitored using an electrical conductivity meter (Oakton Con6 Probe). LEP 

was detected by an increase in the electrical conductivity of the reservoir corresponding to a rate 

of 0.3 µL/s of saline entering the reservoir. This was the smallest rate that we could measure with 

our system. For all LEP testing, the active area of the membrane was 0.64 cm2. Three samples 

from each membrane were tested for LEP. 

 

Permeate gap membrane distillation (PGMD) was conducted using a custom-built lab-scale 

system. The active area of the membrane was rectangular with a surface area of 21 cm2. The feed 

solution contained DI water and NaCl at a concentration of 35 g/L. Feed and distillate flowed 

past the membrane at a rate of 680 L/hr. Distillate temperature was maintained at 20 °C. Feed 

temperature was 40 – 60 °C. Experiment duration was 18 hours. When calculating the membrane 

distillation coefficient, temperature polarization was taken into account using previous 

simulations. This modelling included a simultaneous equation solver with discretized cells for 

heat and mass transfer balancing, solved with the finite difference method. It accounted for 

convection, conduction, evaporation, temperature polarization, etc [33]. Analysis was done and 

validated through comparisons to well-characterized membranes, with trials for numerous 

temperatures. 

 

4. Results and discussion 

4.1. Theoretical findings 

4.1.1. Permeability of asymmetric membranes 

The dusty gas model assumes pores that are cylindrical with unvarying pore radius within the 

membrane.  In this study, we extend the dusty gas model to describe membranes with pores 
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whose radii vary lengthwise along the pore. This new model is described below with further 

derivation in Appendix B. 

 

Due to the iCVD coating, the membranes considered in this study have pores that are 

asymmetric, with the pore radius varying with distance from the surface of the membrane. We 

have not seen analysis of the permeability of such pores in the literature so we derive new 

equations. If the pores have radii that vary with distance, x, from the membrane surface, the 

dusty gas permeability becomes 

�>?@+ = �
A B

C(:)D
;
E

 (Eq. 10) 

where K is a function of x and is defined in Eq. (2). This approach assumes that changes in r with 

respect to x occur over length scales much larger than r. It also assumes that the mean free path 

of the gas is small compared to the rate of variation of r with respect to x. 

 

A closed-form solution for KiCVD is not available when r(x) is defined by Eq. (9). However, a 

closed-form solution would be useful to build intuition about the system. One such solution can 

be obtained if we approximate r(x) as varying linearly in x. In a linear approximation, r(x) is 

described by 

8(3) = 8= + ��(G�')
� 3 (Eq. 11) 

where a is a measure of asymmetry defined as the ratio of the radius at the bottom of the pore 

(rb) and the radius at the top of the pore (rt) so that a = rb/rt. The pore radius is always larger at 

the bottom of the pore so a is always greater than one. With this definition of r(x), the dusty gas 

permeability of a membrane with asymmetric pores, KiCVD,lin, is given by 
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�>?@+,I>J = �G<����
��(G�')��G����

���
�

� . (Eq. 12) 

Eq. (12) can be rewritten as 

�>?@+,I>J = K ����
��

(-LB)
<- �����

���
�

� , (Eq. 13) 

revealing that KiCVD,lin ≈ aK. 

 

4.1.2. Effect of iCVD films on membrane permeability 

To theoretically compare the effects of different iCVD films on membrane permeability, we 

must compare membranes with the same value of rt and LEP. We consider the ratio, R, between 

the permeability of coated and uncoated pores with top pore radius, rt. 

 

As was observed in Eq. (13), if both membranes have the same value of rt, 

M = NOPQR,SOT
N ≈ K. (Eq. 14) 

Since, unlike SL, a is not an experimentally controllable parameter, we use Eq. (5) to rewrite a in 

terms of SL: 

K = ��
��

− $��
��

− 1& ��. (Eq. 15) 

Eq. (14) thus becomes  

M ≈ ��
��

− $��
��

− 1& ��. (Eq. 16) 

Eq. (16) shows that as SL approaches zero, R approaches ro/rt. As SL approaches 1, R approaches 

1. This implies that increasing ro/rt (i.e. increasing the iCVD film thickness) increases the 

permeability possible at a given value of rt and LEP. This result is plotted in Fig. 5. The shaded 

area in Fig. 5 is the area between Eq. (16) evaluated for SL = 0 and SL = 1.  The three additional 

curves show R evaluated using the exact equation for pore radius rather than the linear 
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approximation. These three curves, which are exact predictions of iCVD-treated membrane 

performance, lie within the envelope defined using the approximations. 

 

Fig. 5. The ratio of the permeability of iCVD-coated and uncoated membranes, both with rt = 

200 nm. Pore concentration is constant across membranes. The insets illustrate the geometries of 

the pores on the lines that they overlap. Plotted on a log-log scale. 

 

Fig. 5 suggests that permeability is maximized by maximizing thickness and non-conformality of 

the iCVD coatings.  However, this is misleading. For real membranes, if the starting pore size, ro, 

increases, the number of pores that can fit on the membrane decreases. If total porosity at the 

membrane surface is preserved precisely, pore density scales according to 

W~ '
��<

 (Eq. 17) 

Taking this into account, R is now multiplied by $��
��

&
�
. It now becomes 

 M~ $��
��

− $��
��

− 1& ��& $����&
�
. (Eq. 18) 
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According to Eq. (18), as SL approaches 1, R approaches $��
��

&
�
. As SL approaches zero, R 

approaches 
��
��

. Since rt is always less than or equal to ro, this indicates that increasing film 

thickness decreases permeability regardless of the level of asymmetry of the iCVD film. This 

result is shown in Fig. 6.  

 

Fig. 6. The ratio of the permeability of iCVD-coated and uncoated membranes, both with rt = 

200 nm. Pore concentration scales according to Eq. (17). The insets illustrate the geometries of 

the pores on the lines that they overlap. Plotted on a log-log scale. 

 

This analysis shows that if the base membrane is chosen to preserve porosity regardless of the 

uncoated membrane’s pore size, then increasing iCVD film thickness decreases permeability. 

This result is independent of whether the coating is conformal. This finding can be applied as 

follows. For example, Sterlitech sells many PCTE membranes, including ones with pore sizes 

(radius) of 200, 500, 1000 and 2500 nm (Table 1). These membranes have pore densities ranging 
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from 1.5×1012 pores/m2 for the 200 nm membrane, to 4×109 pores/m2 for the 2500 nm 

membrane. If a value of rt = 200 nm is needed to have adequate LEP for MD, we can compare 

the permeabilities of the three larger membranes after iCVD coating to rt = 200 to the 

permeability of the 200 nm membrane without any coating. The results are shown in Table 1. 

What we find is that the 500, 1000 and 2500 nm membranes are predicted to have 33.25%, 

6.65% and 3.375% the permeability of the uncoated 200 nm membrane after coating. This is 

assuming that limiting case of SL = 0. This result illustrates that increasing the starting pore size 

and then narrowing the top of the pore using iCVD, ultimately causes a reduction in membrane 

permeability. In order to maximize permeability, a membrane with a pore size as close as 

possible to the desired value of rt should be chosen and the iCVD film thickness should be 

minimized. 

 

Table 1. Predicted permeability of three membranes from the Sterlitech catalog after iCVD 

treatment.  Permeability is expressed relative to the permeability of an uncoated membrane from 

the same catalog with ro = 200 nm and pore concentration, c200 = 1.5×1012 pores/m2. We assume 

the coated pore size at the surface of the membrane is rt = 200 nm.  The rightmost column is 

calculated by multiplying Eq. (16) by c/c200 to account for differences in pore concentration 

between the different membranes. We assume that step coverage of the iCVD coating is SL = 0. 

This is the limit of non-conformality. 

ro c ro/rt c/c200 R = KiCVD,lin/K200 

500 2×1011 2.5 0.133 0.3325 

1000 2×1010 5 0.0133 0.0665 

2500 4×109 12.5 0.0027 0.03375 



24 

 

One exception to this finding is if a membrane can be produced that has large internal pore radii, 

where each large pore has many small openings at the membrane surface. This structure has the 

benefits of non-conformality/asymmetry without the accompanying reduction in pore density. 

Membranes such as this have been produced using phase inversion [13]. They could also 

potentially be prepared using free-standing, iCVD polymer films [34]. This type of membrane 

could have permeability that increases with ro/rt according to Eq. (14). However, more work is 

needed to make this a viable option. 

 

4.2. Experimental findings 

4.2.1. Membrane characterization 

With the insights about base membrane pore size and iCVD film thickness, we set out to prepare 

a membrane suitable for MD. For the base membrane, we chose a 200 nm radius PCTE 

membrane from Sterlitech. We deposited a pDVB-pC6PFA iCVD bilayer on the membrane, 

trying to minimize the thickness of the bilayer while maintaining the desired surface energy. 

Image analysis determined that the pDVB-pC6PFA bilayer was 20 nm thick at the top surface of 

the membrane and 5 nm thick at the bottom surface of the membrane (both measurements +/- 10 

nm). This corresponds to step coverage, SL = 0.25. Angle resolved XPS (ARXPS) was used to 

determine the contribution of the pC6PFA to the total bilayer thickness (Fig. 7). On the top 

surface, the pC6PFA layer on the top surface is at least 7.2 nm thick. On the bottom surface, the 

pC6PFA layer is slightly thinner than 2.5 nm. Both of these thicknesses are adequate to achieve 

the desired pC6PFA material properties. 
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Fig. 7. The ratio of the FS1 and CS1 ARXPS signals at four sampling depths from the top and 

bottom surfaces of the membrane. The inset shows a schematic of the area near the membrane’s 

top surface. The thickness of the pC6PFA film is indicated. The layer below the pC6PFA is the 

pDVB. 

 

4.2.2. Membrane performance 

We first verified that the pDVB-pC6PFA bilayer increased LEP enough to prevent wetting 

during MD testing. This was especially important because bilayer polymer films of this 

composition have never before been applied to MD membranes. We measured the apparent 

advancing contact angle (ACA) and LEP of a PCTE membrane as-purchased, after application of 

pDVB and after applications of the pDVB-pC6PFA bilayer (Table 2). Measurements showed 

that the bilayer-treated membrane has a water LEP of 276 kPa (LEP measurements were ± 21 

kPa) This value is suitable for MD. The membrane treated with the pDVB layer only does not 

have an LEP high enough for successful MD performance. This indicates that the bilayer is 

necessary to prepare a membrane suitable for MD. 
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Table 2. Advancing contact angle (ACA) and liquid entry pressure (LEP) of PCTE membranes 

as-purchased, after application of pDVB and after application of the full pDVB-pC6PFA bilayer. 

Membrane rt (nm) ACA (°) LEP (kPa) 

(measured)  

LEP (kPa) 

(Y-L) 

As-purchased PCTE 200 91 0 13 

pDVB 193 103 53 168 

pDVB-pC6PFA bilayer (Membrane M0) 180 124 276 447 

 

We compared the measured LEP values to the values calculated from the Young-Laplace model 

(Eq. (1)). We assumed surface tension, γ = 0.072 N/m. We found that for the three membranes in 

Table 2, the measured LEP value was less than the predicted value. This may be an effect of the 

“double-pores” at the surface seen in Fig. 3 and Fig. 4. Over-predicting LEP for PCTE 

membranes has been shown previously as well [35]. 

 

We tested the bilayer-treated membrane in a permeate gap membrane distillation (PGMD) 

system using NaCl solution at a concentration of 35 g/L. This test showed that the iCVD-treated 

PCTE membrane had 99.98% salt rejection. This indicates that the membrane did not wet in the 

MD system. This is the first demonstration of a pDVB-pC6PFA bilayer successfully being used 

to prepare a hydrophobic membrane with adequately high LEP for MD. The measured 

permeability (membrane distillation coefficient) of the membrane was 1.36×10-6 ± 3.4 ×10-7 

kg/m2-Pa-s (Fig. 8). This value is slightly lower than the values for other membranes currently 
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used for MD [5]. This is largely explained by the significantly lower porosity (~10% versus 

>70%) of the PCTE membranes compared to other MD membranes. 

 

 

Fig. 8. Permeability (membrane distillation coefficient) of the PCTE membrane treated with the 

iCVD pDVB-pC6FA bilayer. The membrane was tested in a PGMD system for 40 – 60 ° feed 

temperature and 20 ° distillate temperature. Feed was saline solution (35 g/L, NaCl). The dusty 

gas model for permeability (K) is shown as a dashed line. The dusty gas model for SL = 0.25 

(KiCVD) is shown as a solid line. 

 

In Fig. 8, the experimental membrane permeability is plotted along with the dusty gas model. 

The asymmetric dusty gas model (Eq. (10)) predicts higher permeability than the symmetric 

version (Eq. (2)) and decreases at a more constant rate with respect to pore radius. Interestingly, 

the membrane outperformed both forms of the dusty gas model. This may indicate that the dusty 
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gas model is not the correct model.  However, it is also consistent with the lower than expected 

LEP, indicating that there may be unaccounted for factors that increase the effective pore size of 

the membrane such as “double-pores”. The parameter values used for these models are based on 

measurements of the system and can be found in Appendix C.  

 

This experimental work shows that an iCVD coating can effectively raise the LEP of a PCTE 

membrane to a level where it can be used for MD. It also shows the limitations of trying to 

control and predict LEP and permeability of iCVD-coated PCTE membranes. Further 

experimental study could apply the pDVB-pC6PFA bilayer to membranes with more complex 

pore structures while still following the principle of minimizing film thickness according to the 

theoretical findings. 

 

5. Conclusions 

In this study, we analyzed the effects of iCVD surface-modification on the permeability and LEP 

of MD membranes. We developed new models for the iCVD coating profile and for the dusty 

gas permeability of asymmetric membranes.  We found that non-conformality of the iCVD film 

cannot be used to improve membrane permeability at constant LEP and that the key to 

maximizing permeability is to choose a base membrane that allows iCVD film thickness to be 

minimized. 

 

In addition to determining the theoretical effects of iCVD coatings on membrane performance, 

we also demonstrated how the theory relates to an experimental membrane.  We prepared a 

track-etched polycarbonate (PCTE) membrane treated with an iCVD pDVB-pC6PFA bilayer. 
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We determined that the bilayer successfully increased the LEP of the membrane to a level 

adequate to distill water in a PGMD system. We sized the base membrane to minimize the iCVD 

film thickness in order to maximize permeability. However, we found that we were limited 

experimentally in how thin we could make the iCVD layer while maintaining the desired 

material properties. We also found that the membrane had lower LEP and higher permeability 

than we calculated. This may because overlapping pores increase the effective pore size of the 

membrane. 

 

For future studies, we suggest the further exploration of free-standing iCVD films that may be 

used to produce membranes whose pores have multiple small openings. Further theoretical and 

experimental work is also needed to determine if these findings extend to membranes with more 

complex pore structures. 

 

Appendix A: Calculating Knudsen number 

The system parameters and Knudsen numbers of the experimental system are given in Table A1. 

Mean free path is calculated according to Y = �Z#
√��*)\<

 and the Knudsen number is calculated 

according �] = ^
��. 

 

Table A1. System parameters and Knudsen number. 

Variable Value 

Boltzmann constant, kB (J/K) 1.38×10-23 

Average temperature, T (K) 313 
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Average pressure, P (kPa) 101 

Collision diameter, de (m) 2.64×10-10 

Mean free path, λ (m) 1.38×10-7 

Pore radius, r (m) 2.0 ×10-7 

Knudsen number, Kn 0.35 

 

Appendix B: Derivations of asymmetric transport models 

The process for deriving the asymmetric versions of the dusty gas model is as follows. To go 

from K (Eq. (2)) to KiCVD (Eq. (10)), we need to incorporate the effects of non-constant r(x) and 

non-constant dP/dx. This results in the equation, 

�>?@+ = �(3) �
∆* $− )*

)
&. (Eq. B1) 

Rearranging and taking the integral with respect to x on both sides, this becomes 

A NOPQR
N(
)

�
_ `3 = A �

∆* $− )*
)
&�

_ `3. (Eq. B2) 

Simplify Eq. (B2), results in 

�>?@+ A '
N(
)

�
_ `3 = a.  (Eq. B3) 

Eq. (B3) rearranges to Eq. (10). 

 

To go from Eq. (10) to Eq. (12), we use a change of variables from x to r so that Eq. (10) 

becomes 

�>?@+,I>J = �
A B

C(b)�b
�:

-b�
b� )�. (Eq. B4) 
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Using the linear approximation for r(x) in Eq. (11), Eq. (B4) can be solved to produce Eq. (12). 

When evaluating KiCVD (Eq. (10)) numerically in MATLAB, rectangular numerical integration 

with a step-size of 0.1 nm was used. 

 

Appendix C: Parameter values for permeability models 

Table C1. Parameter values for the permeability models in Fig. 8. 

Parameter Value 

Diffusion coefficient of water in air 

multiplied by total pressure, PD 

(Pam2/s). PD = 1.895(T2.072)10-5[19] 

2.70 

Total average pressure, P (kPa) 101 

Molecular weight of water, Mw (g/mol) 18 

Universal gas constant, R (J/K-mol) 8.314 

Average temperature, T (K) 313 

Partial pressure of air, pa (kPa) 101 
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