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ABSTRACT: Architects are increasingly using digital tools during the design process, particularly as they 
approach complex problems such as designing for successful daylighting performance. However, while 
simulation tools may provide the designer with valuable information, they do not necessarily guide the user 
towards design changes which will improve performance. This paper proposes an interactive, goal-based expert 
system for daylighting design, intended for use during the early design phase. The expert system consists of two 
major components: a daylighting knowledge-base which contains information regarding the effects of a variety of 
design conditions on resultant daylighting performance, and a fuzzy rule-based decision-making logic which is 
used to determine those design changes most likely to improve performance for a given design. The system 
gives the user the ability to input an initial model and a set of daylighting performance goals in the form of 
illuminance and daylighting-specific glare metrics. The system acts as a “virtual daylighting consultant,” guiding 
the user towards improved performance while maintaining the integrity of the original design and of the design 
process itself.   
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1. INTRODUCTION 
Designers have long considered daylight as an 

important aid for architectural expression. In recent 
decades, we have come to understand that 
daylighting may provide additional benefits, such as 
reduced energy consumption and improved occupant 
health and well-being [1,2,3]. Nevertheless, simply 
providing daylight in a building will not always result 
in positive results. Daylighting is only as good as its 
delivery system, so careful design is necessary to 
ensure that enough light is available and that glare, 
shadows, and reflections are reduced [4]. 
Unfortunately, it is often a challenge to create a 
successfully daylit building. 

Digital tools offer new ways of helping architects 
create or find designs with high levels of daylighting 
performance using efficient and intelligent guided 
design exploration methods.  Optimization algorithms 
are a common solution, largely because they have 
the capabilities necessary to find or generate 
successful solutions; however, these methods 
generally do not allow for user-interaction. As it is 
highly unlikely for a designer to simply accept a 
design generated by an optimization algorithm, a 
better approach would be a more interactive search 
method, which would accept input from a designer 
and which would grant the designer a larger degree 
of control. 

An example of such an approach is a knowledge-
based or expert system. An expert system is one in 
which human expert knowledge about a specific 
domain is encoded in an algorithm or computer 
system [5]. In the daylighting domain, such a system 

would function as a virtual lighting consultant, guiding 
the designer towards design modifications which 
improve overall daylighting performance. Knowledge-
based systems have already been successfully 
implemented for artificial lighting scenarios [6,7]. For 
daylighting, a few simple expert systems exist. The 
Leso-DIAL tool provides users with a “qualitative 
diagnosis” using an expert system based on fuzzy 
logic rules [8]. The NewFacades approach considers 
energy and visual comfort based on a prescription 
energy code for hot climates to suggest a range of 
facade solutions to the designer [9].  These systems 
represent first steps in expert systems for daylighting 
in design, but they do not allow for a comprehensive 
understanding of daylighting or a large amount of 
user interactivity. 

This paper will describe a user-interactive expert 
system approach which enables a comprehensive 
analysis of daylighting. This approach includes two 
climate-based performance metrics, one for 
illuminance and one for daylighting-specific glare, in 
order for the designer to have an understanding of 
the amount of light and the visual comfort in the 
space. The method begins with a designer's own 
initial design and performance goals. It then 
evaluates the performance of the design and creates 
a series of suggestions for design changes which are 
likely to result in improved performance, thus 
enabling a search process that is highly specific to 
the user's design problem. Decisions are made using 
an expert system which is comprised of a pre-
calculated database of daylighting-specific 
information connected to a set of fuzzy daylighting 
expert rules. Any design decision that the designer 
chooses to allow will be automatically generated in 
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the original model and the new performance will be 
calculated. The designer is allowed to interact with 
the system during an iterative search process that is 
both agreeable to the designer and likely to improve 
the performance of the design. 

2. EXPERT SYSTEM FOR DAYLIGHTING 
The expert system described in this paper is a 

fuzzy rule-based system combined with an external 
database of previously computed daylighting 
simulation data, called the daylighting knowledge-
base. This system has been implemented as a 
functional tool within the Lightsolve project [10]. 

2.1. A Daylighting Knowledge-Base 

Most expert systems are traditional systems in 
the sense that they are populated using knowledge 
from a human expert, and as a result, such systems 
are restricted in terms of accuracy and complexity. 
To create an expert system capable of more 
sophisticated analysis, the expert system described 
in this paper uses a daylighting-specific database, or 
“knowledge-base,” which has been populated using 
data from a set of completed daylighting simulations. 

These simulations were performed for a set of 
512 models with differing facade characteristics, 
based on the Design of Experiments method [11]. 
For each model, the illuminance and a model-based 
approximation of the daylight glare probability 
(DGPm) [12] were calculated in five different zones 
within the space (and four different views from within 
each zone for the glare metric), over the whole year. 
These climate-based metrics were calculated using 
the Lightsolve Viewer (“LSV”) [13], the simulation 
engine native to the Lightsolve program. The 
knowledge-base contains information about the 
relative effects of ten different facade parameters on 
each of the two daylighting metrics from the various 
zones and views within the space. The ten different 
façade parameters considered are: window area, 
window height-to-width ratio, vertical and horizontal 
location of windows on the façade, window 
distribution (how close or far apart windows are to 
each other), total number of windows, length of 
horizontal overhangs and/or vertical fins, glass 
transmissivity, and glass type (regular or 
translucent). 

By using calculated data rather than heuristics to 
populate the knowledge base, the expert system can 
consider highly specific goals and multiple sets of 
goals for the same design, which can differ based on 
the daily time period(s), season(s), or zone(s) of 
interest within a space. It also allows for more logical 
and accurate comparisons of multiple design options 
than mere heuristics. A more detailed explanation of 
the knowledge-base can be found in [14]. The 
knowledge-base used in this paper used simulations 
from Boston, MA (USA). 

2.2. Expert System User Inputs 

The expert system rule base is a decision-making 
algorithm that assesses specific design situations 
and creates lists of suggested design changes which 
should improve the current performance. The rule 

base uses fuzzy logic [15], which allows it to better 
emulate the human thought process than classical 
logic.  It has been developed to be a flexible 
algorithm which can accommodate a wide variety of 
initial design scenarios. The system was also created 
in such a way that it requires user interaction and 
user inputs in order to function.  

The major user input is a 3d model of an original 
design with sensor planes for illuminance and/or 
glare.  Additionally, performance goals for each 
sensor plane must be specified.  For each 
illuminance sensor plane, the user must specify a 
desired illuminance goal range in lux, including the 
actual desired range and a buffer zone of acceptable 
values. For example, the user may desire the 
illuminance of a given sensor plane to fall between 
400 lux and 1200 lux, but he or she will also accept 
illuminances as low as 200 lux and as high as 1500 
lux. For each glare sensor or glare sensor group, the 
user must choose a glare tolerance. The glare 
tolerance options are “zero” (which means that no 
glare is tolerated), “medium”, and “high” (which 
means that a high amount of glare is allowed). These 
tolerance values correspond to the three glare 
ratings of “perceptible”, “disturbing”, and “intolerable” 
glare described by Wienold in [16]. 

In addition to the 3d model and performance 
goals, the user must also several other inputs.  One 
set of inputs is the set of priority levels for each 
performance goal.  The priority level is a number 
from 1 to n, where n is the total number of sensors.  
The highest priority value is 1, and multiple goals 
may have the same priority.  The user must also 
select a window uniformity scheme from three 
possible choices: “All windows in the model should 
look the same”, “All windows on a façade should look 
the same”, or “Windows can look different from other 
windows on the same façade.”  Finally, the user must 
indicate times and seasons of interest (the choices 
are: winter, fall/spring, summer, morning, mid-day, 
and afternoon) and input the latitude and a weather 
file for the desired location. 

2.3. Fuzzy Sets and Rules 

After the user has begun the expert system 
process, the LSV engine is used to calculate goal-
based performance metrics for both illuminance and 
glare.  This information, along with the original user 
inputs, is used to create sets of fuzzy variables, 
which help to describe the current scenario.  These 
fuzzy sets are: userPriority (high and low), 
sensorPerformance (good and bad), 
illuminanceSensorPerformance (too high and too 
low), glareSensorPerformance (too high), and 
distanceFromGoal (close and far). In addition to 
these fuzzy variables, the system also creates a 
customized knowledge-base, which is a subset of the 
knowledge-base described in section 2.1 that 
contains only the information most relevant to the 
current design.  Based on this customized 
knowledge-base, each potential design action is 
given values for the fuzzy set actionResult (Fig 1).  
These fuzzy variables refer to the likely result of the 
given design action on a given sensor, for example 
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“Large Illuminance in Illuminance”.  Each sensor in 
the model will have a unique actionResult fuzzy set. 

Once the fuzzy variables have been created, they 
are used to fire a series of fuzzy rules.  The result of 
this process is a set of design actions which has 
been ordered based on which actions are most likely 
to improve the performance of the current design 
based on the user’s goals and preferences.  The 
rules are fired in four steps: 

1. Determine priority of each sensor.  For 
example, IF SensorPerformance is Bad AND 
UserPriority is High, THEN SensorPriority is High. 

2. Determine which change(s) will improve 
performance, based on the current scenario.  For 
example, IF SensorPriority is High AND SensorType 
is Illuminance AND IlluminancePerformance is 
TooLow: (a) IF distanceFromGoal is Far, THEN 
DesiredChange is “Increase Illuminance by a Large 
Amount”; (b) IF distanceFromGoal is Close, THEN 
DesiredChange is “Increase Illuminance by a Small 
Amount”. 

3. Evaluate each possible design action in the 
customized database using the desired changes 
determine in Rule Base 2.  For example, IF 
DesiredChange is “Increase Illuminance by a Large 
Amount” AND ActionResult is LargeIncrease, THEN 
action is GoodForSensor.  These rules are fired once 
per potential action, and once per sensor. 

4. Each potential action is ranked based on how 
likely it is to improve each sensor and the sensor 
priorities. 

The final step is to sort the set of design actions 
from highest to lowest rank. The first design actions 
in the list will be those actions most likely to produce 
positive performance results in the current design, 
while those actions at the end of the list are likely to 
decrease overall performance. 

Figure 1: Membership functions for ActionResult fuzzy set. 

 

2.4. System Implementation and Process 

The expert system has been implemented within 
the framework of the Lightsolve project.  Google 
SketchUp [17] is used as the 3d modeller, and the 
embedded Ruby application programming interface 
(API) within SketchUp is used to create pop-up 
interfaces which allow the user to enter the initial 
inputs and to perform the major processes and 
calculations. The LSV simulation engine is a stand-
alone executable which is called directly from within 
the SketchUp/Ruby environment.  

 

Figure 2: Schematic diagram of expert system process. 

The expert system has a functional, stand-alone 
interface which allows designers to interact with the 
system (Fig. 3), which has been implemented using  
Adobe Flash. The interface has been designed to 
provide an intuitive and clear way of communicating 
the current performance of a design and the list of 
changes suggested by the expert system. The 
interface also allows designers to view the 
performance of their design over multiple iterations of 
the exploration process.  

The overall expert system process is shown in 
Figure 2 and consists of the following steps: 

1. The user creates an initial 3d model of a 
design with illuminance and/or glare sensor planes 
and specifies all necessary initial inputs to the 
system (using pop-ups in SketchUp). 

2. Daylighting performance for the current model 
is calculated using the LSV engine based on the 
user’s illuminance and glare goals. 

3. The knowledge-base described in section 2.1 
is used to create a customized database which 
contains only the information most relevant to the 
current design. 

4. Information about the user’s preferences, the 
original 3d model, the current performance, and the 
customized knowledge-base is used to create the 
fuzzy variable sets. 

5. Fuzzy rules are fired using the fuzzy variables. 
The results are a set of suggested design changes 
that the system will propose to the user in order to 
improve performance.  

6. Results are presented to the user in the user 
interface (Fig. 3). 

7. The user selects a design change to make, 
and a new 3d model is created automatically.  The 
process begins again starting at step 2. 

2.5. An Expert System Design Process 

The user’s process begins when he or she 
creates an initial 3d model in SketchUp and initiates 
the expert system.  Once the first set of simulations 
is complete, the user interface will automatically 
open.  From there, the user’s design process is as 
follows: 

1. From the expert system interface, the user can 
view a list of suggested design changes that can be 
made to his or her initial model. The user may skip 
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forward or go backwards between the various 
options on the list before choosing one. 

2. After the user selects one design change to try, 
the expert system will automatically make the 
selected change to the 3d model, which should still 
be open in SketchUp. The expert system will make 
three different magnitudes of the selected change. 
For each change, the expert system will create and 
save a new 3d model, run the LSV engine, and 
calculate the goal-based performance. 

3. After the three different magnitudes of change 
have been simulated, the expert system will display 
all three results in the interactive graph within the 
interface. The user may browse the views of the 
current design and the temporal maps to see how 
the performance and design have changed in each 
of the three options. The user must choose one of 
the three possibilities before continuing to the next 
design iteration. 

4. After one or more design iterations have been 
made, the user may then choose either to select a 
new design change to try from the list presented by 
the expert system, or the user may return to a 
previous iteration of the design (including the initial 
model). If the user elects to make another design 
change, steps 2 and 3 repeat.  

5. After several iterations, the user should be able 
to view the progressive performance of the design. 
The user may stop the process at any point. 

3. EXPERT SYSTEM EVALUATION 
The main function of the expert system described 

in this paper is to effectively guide a user towards 
improved daylighting performance of an original 
design. It is of critical importance that users have 
confidence in the advice given to them by the 

system, so a high level of performance is essential. 
Although the expert system differs from a traditional 
optimization algorithm due to its domain-specific and 
user-interactive nature, it should be capable of 
performing similarly to an optimization algorithm in a 
best case scenario.  

In order to assess the behaviour of the expert 
system, a series of case studies were completed 
which compare the performance of designs found 
using the expert system to high performing 
benchmark designs generated using a genetic 
algorithm (GA). This paper will describe the results of 
two case studies, which both have two illuminance 
goals. These case studies were considered for 
Boston, MA (USA). Although they are not presented 
here, additional case studies were also completed 
which consider other situations, such as conflicting 
illuminance and glare goals.  These studies can be 
found in [18]. 

The GA used in these case studies was a micro-
genetic algorithm [19], which is a GA which uses a 
very small population size. For comparison 
purposes, the micro-GA was implemented within the 
Lightsolve system and uses the same 3d models and 
performance metrics as the expert system. This 
system is described in more detail in [20]. 

3.1. Case Study Procedure 

A set of study procedures was developed to 
better compare results from the expert system to the 
GA, given their differences in algorithm type. While a 
GA is one that generates designs, the expert system 
always assumes that an initial design is given and 
suggests design changes based on the current 
design. The following procedure was used: 

• Micro-GA procedure: An initial massing model 
with no windows was used to generate a new model 

Figure 3: Performance  analysis and decision making  interface for the expert system. Views of the current design 
are shown (top left) along with annual performance in temporal map form (top right).  Performance over multiple 

iterations is shown in the interactive graph (lower left).  Expert system design suggestions are given in the lower right. 
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of each generated design. The algorithm was run for 
ten generations before stopping. If a perfect solution 
was not found, the best design was considered that 
with the highest performance found over all 
generations. 

• Expert system procedure: An initial model was 
created with generic rectangular windows. This initial 
model was designed to be of mediocre performance, 
so as to avoid starting out with an initial design 
whose performance was very poor or very good. For 
these case studies, a “perfect user” was assumed. 
The “perfect user” was defined as one who would 
select the first suggested design change at each 
iteration and the best performing magnitude of each 
design change. The “perfect user” scenario was also 
one in which the process continued even if 
performance decreased after a given design 
iteration. The algorithm was run for ten design 
iterations before stopping. As with the GA study, if a 
perfect solution was not found, the best design was 
considered that with the highest performance found 
over all completed iterations. 

3.2. Case Studies 

 
Figure 4: Massing model and sensor plane locations for L-

shape case study. 

This paper will present two case studies, which 
both have two illuminance goals.  The first case 
study features an L-shaped space (Fig. 4) where the 
two sensor planes are located roughly parallel to the 

facades of interest (west and south).  The 
performance goals for this case study were: 

• South zone: 400 lux minimum preferred (200 lux 
accepted); No maximum. 

• West zone: No minimum; 500 lux maximum 
preferred (800 lux accepted). 

Based on these goals, the known design 
solutions to this problem featured small, shaded 
windows on the west facade and larger windows on 
the south façade. 

	
  
Figure 5: Massing model and sensor plane locations for 

trapezoidal case study. 

The second case study features a trapezoidal 
space (Fig. 5) where the two facades of interest, 
north and south, are perpendicular to the two sensor 
planes.  The performance goals for this case study 
were:  

• East zone: 200 lux minimum preferred (100 lux 
accepted); 800 lux maximum preferred (1200 lux 
accepted) 

• West zone: 400 lux minimum preferred (200 lux 
accepted); No maximum. 

For this case study, it was assumed that good 
solutions would have windows on both facades 
shifted towards the west sensor. 

For both case studies, the best performing 
designs found after ten generations or ten design 
iterations are shown in Figure 6.  For the L-shaped 
space, both the expert system and the micro-GA 
were able to find designs which were close to 

Figure 6. Average performances for the starter expert system design, final expert system design, and final micro-
GA design for both case studies. 
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meeting the performance goals entirely.  As 
expected, both “best” designs have either very small 
or highly shaded windows on the west facade with 
larger or less shaded windows on the south facade. 

For the trapezoidal case study, both algorithms 
had more difficulty finding good solutions.  In this 
case study, the micro-GA was able to find a solution 
which performed about 5% higher than the expert 
system. This difference is due to the window 
uniformity scheme selected for the expert system (all 
windows on the facade must be uniform) and the 
univariate (“step-by-step”) nature of the expert 
system algorithm. While the micro-GA found a 
design solution that features windows clustered 
towards the west end of both facades as expected, 
the expert system focused on changing the 
properties of the windows without moving them.  

These case studies demonstrate that the expert 
system is successful at improving the performance of 
designs for two illuminance goals. The difference in 
performance between the expert system and the GA 
was small (4.4% at most) and acceptable given the 
fact that the expert system was designed with user 
interactivity in mind, while the GA was not. 

4. CONCLUSIONS 
This paper presented a new user-interactive 

expert system approach which enables architects to 
consider daylighting goals in the early design stages 
by engaging them in a performance-driven design 
exploration process. The expert system was shown 
to be successful at making design decisions which 
improved the daylighting performance of two case 
study designs. In both of these case studies, the 
performances of designs found using the expert 
system were comparable to those generated by a 
micro-genetic algorithm (micro-GA).  

In addition to the case studies presented in this 
paper, additional case studies which consider more 
complex scenarios such as conflicting illuminance 
and glare goals were also completed. The expert 
system has also been tested on a group of designers 
who were asked to complete a design task with the 
system and to evaluate their experiences using the 
tool. These additional results will be presented in 
future papers. 
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