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ABSTRACT

We present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–
Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey.
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We consider the 377 cluster candidates identified at >z 0.25 with a detection significance greater than five,
corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using
the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-
wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the
normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine
the cluster data with a prior on H0 and find s = 0.784 0.0398 and W = 0.289 0.042m , with the parameter
combination s W = 0.27 0.797 0.031m8

0.3( ) . These results are in good agreement with constraints from the
cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other
cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of
dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (Neff) are free
parameters. When combined with constraints from the Planck CMB, H0, baryon acoustic oscillation, and SNe,
adding the SPT cluster data improves the w constraint by 14%, to = - w 1.023 0.042.

Key words: cosmology: observations – galaxies: clusters: general

1. INTRODUCTION

Galaxy clusters trace extreme peaks in the matter density
field on megaparsec scales. The abundance of these peaks as a
function of mass and redshift is highly sensitive to the matter
density and the growth of structure (e.g., Allen et al. 2011). As
this abundance can be predicted with sufficient accuracy for a
given cosmology (Holder & Carlstrom 2001; Tinker
et al. 2008; Bhattacharya et al. 2011), even modest measure-
ments of cluster abundance can yield powerful cosmological
constraints. These constraints are particularly powerful when
combined with or compared to independent constraints from
probes such as the power spectrum of the cosmic microwave
background (CMB) and baryon acoustic oscillations (BAOs).
Taken together, growth-based and geometrical probes can place
significantly tighter constraints on parameters such as the
equation of state of dark energy than either one independently,
because of nearly orthogonal parameter degeneracies. Con-
sidered independently, these constraints provide a consistency
test of the dark energy paradigm and the validity of general
relativity (Ishak et al. 2006; Mortonson et al. 2009, 2010;
Rapetti et al. 2009, 2010; Zhan et al. 2009; Acquaviva &
Gawiser 2010; Vanderveld et al. 2012).

In recent years, constraints on cosmological parameters from
cluster abundance measurements have advanced significantly
using cluster samples selected at X-ray (e.g., Vikhlinin
et al. 2009b; Mantz et al. 2010, 2015), optical (e.g., Rozo
et al. 2010), and millimeter (e.g., Hasselfield et al. 2013;
Reichardt et al. 2013; Planck Collaboration et al. 2014b;
Bocquet et al. 2015; Planck Collaboration et al. 2015)
wavelengths. The predominant millimeter-wave (mm-wave)
signal from clusters arises from the thermal Sunyaev–
Zel’dovich (tSZ) effect (Sunyaev & Zel’dovich 1972), i.e.,
the scattering of CMB photons by hot electrons in the intra-
cluster medium (ICM). The surface brightness of the tSZ effect
is redshift-independent, allowing high-resolution mm-wave
surveys to obtain nearly mass-limited samples of clusters to
arbitrarily high redshift. The ability to cleanly select clusters
out to the redshift at which dark energy begins to contribute
significantly to the energy budget of the universe ( ~z 1) is
particularly important for constraints on the dark energy
equation of state and tests of the dark energy paradigm. Cluster
surveys using high-resolution tSZ data are uniquely positioned
to deliver such constraints (Carlstrom et al. 2002).

The primary limitation to cosmological constraints from
current cluster surveys at all wavelengths is an imperfect
understanding of the relationship between the quantity that can
be predicted from theory or simulations (the cluster mass or the

height of the associated density peak) and the observable
property of the cluster that is used as a proxy for this quantity.
The mass proxy can be the observable quantity used to
construct the sample; it can also include observables from
follow-up observations, often at different wavelengths than the
cluster selection observable. Since the cluster abundance is an
extremely steep function of mass, misestimation of the relation
between the mass proxy and the true cluster mass can lead to
significant biases on the resulting cosmological parameter
constraints.
Different cluster mass proxies have distinct advantages and

disadvantages related to the accuracy and precision with which
they trace the true cluster mass and the expense of obtaining the
data required to construct them. In terms of ultimate accuracy,
or absence of bias, the current gold standard mass proxy is
derived from measurements of weak gravitational lensing of
background galaxies by clusters (see von der Linden
et al. 2014b for a discussion). Optical mass measurements
from weak gravitational lensing are observationally expensive
to obtain at high redshift, and the scatter on individual cluster
mass estimates is large. Gravitational lensing of the CMB by
clusters is a promising future avenue for mass estimation (e.g.,
Baxter et al. 2015; Madhavacheril et al. 2015; Planck
Collaboration et al. 2015). Cluster velocity dispersions,
generally obtained through spectroscopic observations of tens
of cluster member galaxies, are also mostly unaffected by
complex ICM physics but are expensive observationally and
have large scatter (e.g., Evrard et al. 2008; Saro et al. 2013;
Sifón et al. 2013; Ruel et al. 2014), as well as uncertain
velocity bias (e.g., Munari et al. 2013). Where weak lensing
(WL) measurements provide high accuracy, measurements of
the gas mass Mgas, and/or of the integrated cluster pressure Y
provide high precision. Estimated from tSZ or X-ray data,
integrated cluster pressure is predicted and measured to track
cluster mass with low scatter (e.g., Motl et al. 2005; Kravtsov
et al. 2006; Nagai et al. 2007; Stanek et al. 2010), but its
relation to true cluster mass can be complicated by non-thermal
pressure support in clusters (e.g., Evrard et al. 1996; Nagai
et al. 2007; Yu et al. 2015). Furthermore, robust Y estimates
require either relatively high-quality X-ray data (to provide
deprojected temperature and density profiles), or tSZ measure-
ments with accurate information on all cluster scales (sub-
arcminute scales to the virial radius). Mass proxies built from
the same data used to select clusters, such as optical richness,
X-ray luminosity, and tSZ detection significance, come at no
extra cost but can demonstrate high scatter and require external
calibration data to tie them robustly to the true cluster mass.
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In this work, we use a sample of clusters derived from the
SPT-SZ survey, a three-band mm-wave survey of 2500 deg2 of
the southern sky conducted with the South Pole Telescope
(SPT, Carlstrom et al. 2011). The cluster selection method,
redshift determination, and sample characteristics are described
in detail in Bleem et al. (2015, hereafter B15). We use the mm-
wave and redshift information from B15 in conjunction with
targeted X-ray follow-up observations from Chandra to obtain
cosmological constraints. The mass proxy we use is the tSZ
detection significance ξ, calibrated using X-ray integrated
pressure YX, which is in turn tied to true cluster mass using
optical WL measurements.

The paper is organized as follows. In Section 2, we briefly
describe the cluster sample, including the mm-wave data and
analysis methods that went into producing the sample. We
summarize the optical/infrared data and redshift estimation in
Section 3, and the X-ray data and analysis methods in
Section 4. The cosmological analysis methods are described
in Section 5, and we present the cosmological parameter
constraints in Section 6. We compare the cosmological
constraints from this work to those from other cluster surveys
in Section 7, and we conclude in Section 8.

When parameter constraints are reported, the best-fit value
and uncertainties correspond to the mean and standard
deviation of the posterior distribution. Cluster masses, denoted
with DM , refer to spherical overdensities for which the enclosed
density is equal to Δ times the critical density, rc. Similarly, Dr

refers to the associated radius such that p r= DD DM r zc
4

3
3 ( ).

2. SZ DATA AND METHODS

The cluster sample used in this work is a subset of that
previously presented in B15. We choose clusters with redshift
>z 0.25 and detection significance x > 5. The significance cut

was chosen such that the resulting catalog has high (~95%)
purity, and the redshift cut allows for a nearly redshift-
independent selection function (Vanderlinde et al. 2010,
hereafter V10). Our strategy for tying the cluster abundance
measurement to the cosmologically predicted halo mass
function is to calibrate the SZ–mass scaling relation using
Chandra X-ray measurements. The X-ray scaling relation is
taken from Vikhlinin et al. (2009a, 2009b, hereafter V09),
though we modify the overall normalization of this relation in
Section 4.2 to be consistent with more recent WL measure-
ments from Hoekstra et al. (2015, hereafter H15) and the
Weighing the Giants (WtG) project (Applegate et al. 2014; von
der Linden et al. 2014a; Mantz et al. 2015).

2.1. Sample of SZ Cluster Candidates

The SPT is a 10 m telescope located at the geographic South
Pole. With a 1degree field of view and ∼1arcmin resolution, it
was designed to rapidly map large areas of sky while being
well matched to the angular size of high-redshift clusters. The
SPT-SZ camera operated from 2007 through 2011 and
consisted of a 960-element, photon-noise-limited bolometer
array observing in three frequency bands centered at 95, 150,
and 220GHz, though this work uses only the first two bands.
The observation strategy and analysis for the 2500 square-
degree SPT-SZ survey are described in many previous SPT
papers (e.g., Schaffer et al. 2011), and the analysis specific to
obtaining the cluster sample is described in B15. Briefly, the
majority of the 2500 square-degree survey was performed

using the following scan strategy. The telescope is moved using
a right-going scan in azimuth, followed by a left-going scan,
followed by a step in elevation. This pattern is repeated until a
100 square degree patch of sky is observed. One such
iteration is termed an observation, whereas the patch of sky is
termed a field. In the only exception to this observing strategy,
for two thirds of the data taken on one field (ra21hdec-50), the
scan pattern instead consisted of scans in elevation at a series of
fixed azimuth positions. Each field was observed until a depth
of  m18 K-arcmin at 150GHz was reached. Table 1 lists the
19 fields that comprise the full survey. For more information on
the properties of the fields, see Table 1 of B15.
Two-dimensional maps of the sky are made by binning the

time-ordered data (TOD), to which mild time-domain filtering
has been applied, into 0.25 arcmin pixels. This produces
estimates of the 95 and 150GHz sky, to which we apply a
simultaneous spatial-spectral filter, yielding a filtered estimate
of the tSZ sky, optimized for extracting cluster candidates. The
candidates are identified using a peak-finding algorithm.
Due to the exact choice of field extent, as well as the finite

footprint of the SPT-SZ array on the sky, the fields overlap
slightly. The overlap regions only comprise ~2% of the total
survey area, and for simplicity we choose to treat the fields as
fully independent. As a result of this treatment, we would
expect to double-count roughly 2% of cluster candidates, or
seven to eight of our total number of candidates. In fact we find
nine cases of candidates with a very high probability of having
been detected in two different fields (i.e., 18 total candidates
that correspond to nine physical clusters). There is no bias to
our cosmological constraints from this treatment. Our uncer-
tainties will be very slightly underestimated, but this has a
negligible effect on our final cosmological constraints.

Table 1
The 19 SPT-SZ Fields with the Simulation-derived Inputs to the Cosmological

Analysis of the 2500Square-degree Survey

Name afield bfield gfield

RA5H30DEC-55 16.79 4.60 1.33
RA23H30DEC-55 17.58 4.03 1.39
RA21HDEC-60 25.64 4.07 1.29
RA3H30DEC-60 20.53 4.70 1.25
RA21HDEC-50 25.28 4.14 1.11
RA4H10DEC-50 16.75 5.48 1.27
RA0H50DEC-50 20.76 5.11 1.14
RA2H30DEC-50 14.98 4.78 1.19
RA1HDEC-60 17.25 5.38 1.18
RA5H30DEC-45 15.91 4.81 1.08
RA6H30DEC-55 17.77 4.58 1.16
RA3H30DEC-42.5 16.85 4.31 1.20
RA23HDEC-62.5 14.90 4.92 1.18
RA21HDEC-42.5 17.11 4.49 1.15
RA1HDEC-42.5 18.41 5.55 1.19
RA22H30DEC-55 16.45 5.23 1.13
RA23HDEC-45 17.00 5.20 1.19
RA6H30DEC-45 14.78 4.23 1.16
RA6HDEC-62.5 16.53 4.70 1.18

Note. The parameter afield describes the number of false detections expected
above x = 5 scaled to 2500 square degrees, while bfield describes the scaling of
the number of false detections with ξ as defined in Equation (3). gfield describes
the renormalization of ASZ in the SZ–mass scaling relation of Equation (2).
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2.1.1. SZ–Mass Scaling Relation Parameterization

We use the same functional form for the SZ–mass scaling
relation as previous SPT cluster cosmology analyses (V10;
Benson et al. 2013; hereafter B13; Reichardt et al. 2013;
hereafter R13; Bocquet et al. 2015).

Briefly, we introduce two SZ parameters related to the
cluster detection process. The first is the detection significance
ξ. After generating filtered synthesized SZ maps at a series of
filter scales, each map pixel value is divided by the rms of the
map in a strip that spans 90arcmin in declination. Then the
maximum peak height over all filter scales is identified and
defined as ξ, the SZ observable used in this paper. Because this
observable allows for a very well understood selection
function, and cosmological constraints are dominated by the
unknown normalization of the observable-mass scaling rela-
tion, we find that this observable is preferred over going to a
different SZ observable such as YSZ.

The second parameter is the unbiased significance ζ. It is
defined as the value of ξ that would be found in the absence of
instrumental noise and astrophysical contaminants (including
the SZ background). Due to the fact that ξ is determined by
maximizing the significance after searching in two-dimensional
position space and source template size, the average ξ found
across many noise realizations is enhanced by those three
degrees of freedom, resulting in the approximate relation

x zá ñ = + 3. 12 2 ( )

Since this relation cannot hold down to very low ζ, we only
model this maximization bias for z > 2. We find that changing
the location of this cutoff to z > 1.5 or z > 2.5 has negligible
impact on the results presented in this work. Motivated by the
definition of ξ, and the fact that the astrophysical contaminants
and instrument noise are Gaussian to a high degree, we model ξ
as related to xá ñ by unit-width Gaussian scatter. We then
parameterize the ζ–M scaling relation as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟z =

´ -


A
M

M h

E z

E3 10 0.6
, 2

B C

SZ 14 1

SZ SZ( )
( )

( )

with an additional log-normal intrinsic scatter parameter s zln .
The dimensionless Hubble parameter is denoted by E(z). We
follow B13 and R13 and apply Gaussian priors to these scaling
relation parameters. However, the mean values and widths of
the priors are updated to reflect results from the more recent
cosmo-OWLS hydrodynamic simulations (Le Brun
et al. 2014), which will be discussed in Section 2.2.
Specifically, we use the Gaussian priors = A 5.38 1.61SZ ,

= B 1.340 0.268SZ , = C 0.49 0.49SZ , and
s = z 0.13 0.13ln , while requiring s >z 0.05ln .

2.2. By-field Simulations

Each of the 19 fields that comprises the 2500 square degree
survey has slightly different properties, which we account for
using two similar types of simulations. The first is to account
for the fact that the map noise is slightly different in each of the
fields. This causes the detection significance ξ (the selection
observable) of a cluster to relate to true underlying mass
differently depending on the field in which the cluster was
found. We model this by simulating the relation between true

cluster mass and unbiased significance ζ separately for each
field. The simulations contain several components.

1. A Gaussian random field with a power spectrum equal to
the CMB power spectrum calculated using the best-fit
ΛCDM parameters from Keisler et al. (2011).

2. A Gaussian random field meant to approximate the
background of emissive point sources after the brightest
sources are masked. The power spectrum is generated
using three components. The first is a Poisson component
modeling the radio point source population with an
amplitude at =ℓ 3000 of m=D 1.28 Kr

3000 CMB
2 at

150GHz and spectral index a = -0.6r (defined by flux
nµ a). The second and third components model the

Poisson and clustered dusty star-forming galaxy (DSFG)
populations, respectively. The assumed spectral index is
a = 3.6DSFG and the amplitudes are the best-fit values
from Shirokoff et al. (2011).

3. Atmospheric and instrumental noise. These are simulated
using the actual TOD. The coherent nature of the sky
signal, modulated by the scan strategy, and the incoherent
nature of the instrumental and atmospheric noise
contributions allow us to estimate the map noise by
simply subtracting the right-going scan TOD from the
left-going scan TOD (up- and down-going in the case of
most of the ra21hdec-50 field) in the map-making
process. This removes any coherent signal present on
the sky. We furthermore apply a sign change to half the
observations before they are coadded into the final map.
By changing which signs are assigned, we generate
different realizations of realistic noise maps.

4. Maps of the Compton y parameter from the cosmo-
OWLS simulations in Le Brun et al. (2014). We use maps
from the AGN8.0 model and convert the Comptonization
maps to CMB temperature units by integrating the
measured frequency response of the instrument against
a relativistic 5keV tSZ spectrum.

A modified version of the standard cluster-finding process is
run on the sum of these four components, and the cluster
candidates are recorded. In addition, the same spatial-spectral
filter is applied to the maps only containing SZ signal. The
latter is used to identify cluster candidates and define their SZ
center. The amplitude in these filtered, SZ-only maps, divided
by the standard deviation in a 90 arcmin strip in the filtered
maps that include noise, is precisely the unbiased significance ζ
introduced in Section 2.1.1. These candidates are then
compared to the underlying halo catalog used to generate the
mock SZ maps, which provide the cluster redshift. For each
SZ-identified cluster candidate, we choose the nearest dark
matter halo with > ´ M M5 10200

13 .
With mass, unbiased significance and redshift in hand, we

use the method of least absolute deviations to fit the ζ–M
relation from Equation (2) over the range >z 0.25,

> ´ M M1 10500
14 . We find nearly identical results when

using a linear least-squares method. The normalization
parameter ASZ differs from field to field by up to 30%, while
the other scaling relation parameters only vary at the few
percent level. We therefore model field variation with one
parameter gfield that renormalizes the overall scaling:

gA ASZ field SZ. For consistency with previous publications,
we normalize gfield so that the weighted average over the three
fields which share 100% of the raw data used in R13 matches
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the weighted average in that work. We note that any other
choice of normalization would simply alter the definition of
ASZ, leaving all other results unaffected. The values of gfield are
shown in Table 1.

The other field-specific simulation is used to compute the
expected false detection rate. At a detection threshold of x > 5,
approximately 5% of cluster candidates are expected to be
false. In order to simulate the rate of false detections, we
perform the cluster-finding process on the simulated maps
described above, omitting the SZ component. The resulting
number of cluster candidates as a function of ξ is recorded for
100 such simulations. To reduce shot noise from the finite
number of simulated realizations, we model the false detection
rate with the empirically chosen fitting function

x a b x> = - -N exp 5 . 3false field field( ) ( ( )) ( )

The values of afield and bfield are shown in Table 1. The total
number of expected false detections per 2500square degrees
with x > 5 from these simulations is 18±4, which is
consistent with the number of optically unconfirmed cluster
candidates, 21 (B15).

3. REDSHIFT ESTIMATION

As the SPT-SZ selection is essentially independent of
redshift, we require optical and—for the highest-redshift
systems—near-infrared (NIR) data to both confirm the SPT
candidates as clusters and to obtain redshifts for these systems.
We provide a brief overview of this process here; for more
details readers are referred to B15.

As a first step, each SPT cluster candidate is visually
inspected in imaging data from the Digitized Sky Survey
(DSS),49 as we have found most SPT clusters at redshift
<z 0.5 are visible in these scanned photographic plates. These

relatively low-redshift systems are then reimaged with 1–2m
class telescopes to obtain robust confirmations and redshifts.
Higher-redshift candidates not visible in the DSS (or
designated non-confirmed after imaging on the small tele-
scopes) are observed with 4–6.5 m class telescopes. The latter
observations are conducted in two passes: first-pass observa-
tions are designed to ensure  s5 detection of 0.4L* red-
sequence galaxies (where L* is the characteristic luminosity
that appears in the Schechter 1976 formulation of the galaxy
luminosity function) at <z 0.75; higher-redshift clusters or
candidates not confirmed in the first pass are also observed
(telescope resources permitting) in the optical and/or NIR to
extend this redshift range to >z 0.9. In total 69/78 of the
highest-redshift ( >z 0.75) or non-confirmed systems received
second-pass imaging; the majority of these systems (58/78)
were observed with Spitzer/IRAC (Fazio et al. 2004, PI:
Brodwin) at 3.6μm and 4.5μm to a depth sufficient for the
s10 detection of 0.4L* galaxies at z=1.5 (Brodwin

et al. 2010).
Following imaging, a few arcmin region around each SPT

location is searched for an overdensity of red-sequence cluster
galaxies. When such an overdensity is identified, we confirm
the candidate as a cluster and assign the system a redshift using
a red-sequence model calibrated using the subset of SPT
clusters with spectroscopic redshifts. For candidates not
confirmed in our imaging data we compute a redshift “lower
limit” corresponding to the highest redshift for which we would

have detected the overdensity of red galaxies we require to
confirm a cluster (Song et al. 2012). The redshift range of the
confirmed cosmological cluster sample is  z0.25 1.7 with
a median redshift =z 0.58med . Typical redshift uncertainties
range from σz∼0.02×(1+z) for the optical-based redshifts
to ∼0.035×(1+z) for clusters with redshifts determined
from Spitzer/IRAC observations.
A large subset (31%) of the SPT cosmological cluster sample

has also been spectroscopically observed. Spectroscopic red-
shifts for 86SPT clusters were obtained as part of a dedicated
follow-up campaign using spectrographs on the Magellan
telescope, the Gemini-South telescope, and the Very Large
Telescope. We have also searched the literature for cluster
counterparts and find an additional 21 clusters with reported
spectroscopic redshifts. The spectroscopic sample spans almost
the full redshift range of the cluster sample, from

< z0.26 1.478, with a median redshift of =z 0.53med .
The SPT spectroscopic follow-up effort is described in detail in
Ruel et al. (2014), and the redshifts are presented in B15.

4. CHANDRA X-RAY DATA SET AND METHODS

The X-ray data used in this work were originally presented
in McDonald et al. (2013b) and most were acquired as part of a
Chandra X-ray Visionary Project (PI: Benson). In general,
exposure times were chosen to ensure 2000 X-ray counts,
based on measured ROSAT fluxes (when available) or a
combination of the L MX – relation and mass estimates from the
SZ signal. Data were obtained using the front-illuminated
ACIS-I CCDs, and cleaned for background flares before
applying calibration corrections using CIAO v4.7 and
CALDB v4.6.8.
Global cluster properties (e.g., gas mass Mg,500 and X-ray

temperature kT500) for each cluster are derived in McDonald
et al. (2013b), following closely the procedures described in
Andersson et al. (2011). For a detailed description of the X-ray
analysis, the reader is directed to these works. Here, we make
use of the mass proxy YX, which is obtained from the measured
gas mass and X-ray temperature. This temperature kT500 is
derived by first assuming some value of r500 (i.e., 1 Mpc), and
measuring the core-excised ( r0.15 500 to r1.0 500) temperature
within this radius. Using this temperature, we compute a new
estimate of r500 using the T MX – relation from V09. The
temperature is then measured within this radius, and the
process is repeated until it converges.
We also measure the enclosed gas mass as a function of r500,

following the procedures described in McDonald et al. (2013a).
This involves measuring the X-ray surface brightness in the
rest-frame energy range 0.7 2.0 keV– as a function of radius,
and fitting a line-of-sight projected model for the electron
density profile to these data, following Vikhlinin et al. (2006).
In converting from the electron density to the gas density, we
assume r = m n A Zg p e , where A=1.397 is the average
nuclear charge and Z=1.199 is the average nuclear mass.
The enclosed gas mass within a given radius is simply the
volume integral of the gas density profile out to the specified
radius.
These two quantities are combined into the mass proxy YX.

Since r500 must be known to compute Mg,500, we numerically
solve =Y M kTgX ,500 500 together with the scaling relation given
in Equation (4). This numerical calculation is performed for
each set of cosmological parameters that will be explored in
Section 5.49 http://archive.stsci.edu/dss/
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4.1. Y MX – Scaling Relation Parameterization

Following V09, B13, R13, and Bocquet et al. (2015), we use
YX as a proxy for the total cluster mass. We write the scaling
relation as

⎜ ⎟
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⎝
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⎞
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where the parameters AX, BX, CX describe the normalization,
mass dependence and redshift dependence of the relation,
respectively.50 As we did for the ζ–M relation, we introduce a
parameter slnYx which models a log-normal intrinsic scatter in
the Y MX – relation. We allow the intrinsic scatter in the Y MX –
relation and the ζ–M relation to be correlated, parameterizing
this with the correlation coefficient rz,Yx. We follow B13 and
R13 and apply Gaussian priors of = B 0.57 0.03X ,

= - C 0.40 0.20X , and s = 0.12 0.08lnYx , respectively,
as well as a uniform prior between −0.98 and 0.98 on rz,Yx.

4.2. Prior on the Normalization of the Y MX – Relation

In B13 and R13, we used a prior on the normalization of the
Y MX – relation, AX, motivated from V09. In V09, the normal-
ization was cross-checked against WL mass estimates from
Hoekstra (2007) for the 10 clusters at <z 0.3 that, at the time,
also had sufficient Chandra observations to measure YX.
In B13, this normalization was remeasured using more recent
WL mass estimates from Hoekstra et al. (2012), and found to
be consistent with the assumed calibration from V09. In this
work, we revisit the Y MX – normalization, using the most recent
WL mass estimates from H15 to constrain any mean offset in
the normalization of the original hydrostatic mass calibration of
the YX-mass scaling relation from V09. In addition, we also
consider any systematic offset in the H15 WL mass estimates,
by comparing to alternative WL mass estimates from WtG.

In Figure 1, we compare WL-based mass estimates from
H15 to YX-based mass estimates and to weak-lensing masses
from WtG. We have remeasured YX from archival Chandra
X-ray data for the 14 clusters from H15 with sufficiently deep
X-ray measurements, which we use to estimate a cluster mass
(MYx) using the YX-mass scaling relation from V09. For these
clusters, we also remeasure the deprojected weak-lensing
aperture mass from the H15 data set using the X-ray implied
r500. Using the X-ray implied r500 approximates what would
happen if the WL mass estimates were included in a joint YX–
WL scaling relation fit because of the relatively low scatter of
YX with cluster mass and, as we will show later, the agreement
in the resulting Y MX – relation. To compare H15 and WtG mass
estimates at the same radius, we extract a WtG mass for each of
the 18clusters in common at the value of r500 implied by the
H15 analysis. We specifically use the mass estimates computed
by fitting an NFW model to the observed shear profiles from
the WtG “color-cut” method (Applegate et al. 2014).

In Table 2, we give three different measures of the relative
cluster mass estimates between H15, WtG, and V09. First, we

fit a scaling relation of the form = +M A Mln lnWL Yx( ) ( ) with
a free log-normal intrinsic scatter, using the Bayesian linear
regression fitting code from Kelly (2007). For comparison, we
also estimate the bootstrap mean and median of the log of the
mass ratio, which makes no assumption about the underlying
scatter.
First considering the mass ratio between H15 and V09, we

find all three estimates imply a mass ratio near unity with the
scaling relation, bootstrap mean, and bootstrap median, giving
ratios of 1.01±0.07, 1.03±0.06, and 1.12±0.05, respec-
tively. This implies that the YX-based masses from V09 are in
relatively good agreement with H15, with the H15 masses
∼1%–12% larger, depending on how the mass ratio is
estimated. Next, we consider the mass ratio between WtG
and H15. We also find that all three estimates imply a mass
ratio near unity with the scaling relation, bootstrap mean, and
bootstrap median giving ratios of 1.06±0.07, 1.07±0.07,
and 1.11±0.05, respectively. Therefore the WL-based mass
estimates from H15 and WtG are also in relatively good
agreement, with the WtG masses ∼6%–11% larger, comparable
to the 7% estimated systematic uncertainty from H15. The
overlapping cluster sample between our V09-YX sample and
WtG is smaller (eight clusters), and therefore has larger

Figure 1. A plot comparing cluster weak lensing and YX-based mass estimates.
Plotted along the y-axis are weak lensing-based mass estimates from WtG (red)
and YX-based mass estimates using the scaling from V09 (black). On the x-axis
are weak lensing-based mass estimates from H15. For the H15/V09
comparison (black points), we have re-estimated the H15 masses using the
X-ray implied r500. The solid grey line shows a one-to-one relation, and the
dashed black and red lines give the normalization implied for the bootstrap
mean fit to the ratio of the masses (for details see text).

Table 2
Mass Ratios between Weak Lensing (H15, WtG) and YX (V09) Based Mass

Estimates

Data set Nclust Log-normal Mean Median

H15/V09 14 1.01±0.07 1.03±0.06 1.12±0.05
WtG/H15 18 1.06±0.07 1.07±0.07 1.11±0.05
WtG/V09 8 1.15±0.10 1.17±0.13 1.24±0.09

50 This equation differs slightly from B13 and R13 in order to more rigorously
scale the V09 results if ¹B 0.6X and ¹h 0.72 simultaneously. This
modification has a negligible effect on any of the results in this work.
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uncertainty on the mass ratio. We find that the three different
mass ratio estimates between WtG and V09 range from
1.15–1.24. This range is somewhat larger than, but comparable
with, the expectation when considering the mass ratios of the
larger samples used to calculate the WtG/H15 and H15/V09
mass ratios, which would predict a mass ratio between WtG
and V09 of ∼1.1–1.2.

In summary, comparing to the original Y MX – calibration
from V09, we find that the WL measurements imply a
normalization that increases the YX-based cluster masses by a
factor between 1.0 and 1.2, depending on the WL analysis and
data set (H15, WtG), and the fit assumptions. We therefore
choose a Gaussian prior on the normalization of our Y MX –
relation of = A 6.35 0.61X , which increases the normal-
ization from V09 by a factor of 1.1 with an overall uncertainty
of 10%. We expect that this uncertainty includes the sum of our
statistical and systematic uncertainty, because it brackets the
range of values in the above comparison with the WL
measurements and is comparable to our naive expectation
given the statistical uncertainty in the fit above and the
systematic uncertainty estimated in H15. This effectively gives
us a purely WL-derived mass scale, independent of the
hydrostatic mass estimates. We expect our constraints on the
mass scale to improve in future work using WL observations of
SPT-SZ survey clusters, which we will then be able to directly
include in our cosmological analysis.

Finally, we have also estimated the dependence of the weak-
lensing and X-ray-derived mass estimates on cosmological
parameters. Over the range of cosmological parameters
explored, the ratio of the two varies negligibly compared to
the uncertainty of 10%.

5. COSMOLOGICAL ANALYSIS

Armed with the abundance of clusters as a function of the
observables z, ξ, and YX, and models of the scaling of these
observables with cluster mass, we are almost ready to place
constraints on the cosmological parameters. For the final step,
we need a theoretical framework for translating the cosmolo-
gical parameters into a prediction for the number of clusters as
a function of mass and redshift, and we need a statistical
method for comparing those predictions to our observed
abundance. For both of these requirements, we closely follow
the methods of V10, B13, and R13.

5.1. Parameters to Cluster Abundance Predictions

For a given set of cosmological parameters, we use the Code
for Anisotropies in the Microwave Background (CAMB, Lewis
et al. 2000) to generate the matter power spectrum as a function
of redshift. We use this power spectrum as input to the Tinker
et al. (2008) halo mass function, with which we calculate the
number of dark matter halos as a function of spherical
overdensity mass M500 and redshift.

More recent results (e.g., Bhattacharya et al. 2011; Skillman
et al. 2014) confirm that, over the range of cluster masses and
redshifts considered in this work, the Tinker mass function is
accurate to a level that is more than sufficient for the
cosmological parameter constraints presented. For instance,
even a shift as large as 10% in the halo mass function at

~ ´ M M3 10500
14 would only affect the cosmological

constraints presented in Section 6.2 at the  s0.2 level.

Given the Tinker mass function, we relate the cluster mass to
the observed quantities ξ and YX using the scaling relations
described in Sections 2.1.1 and 4.1.
In our default cosmological analysis, we use the standard

six-parameter ΛCDM model, parameterized by the physical
densities of baryons and cold dark matter at z=0, W hb

2 and
W hc

2, the angular scale of the sound horizon at last scattering qs,
the tilt of the scalar power spectrum ns, the amplitude of the
scalar power spectrum As, and the optical depth to reionization
τ. We will often refer to values of parameters derived from
combinations of these original six, such as s8, the amplitude of
linear matter fluctuations on 8Mpc/h scales at z=0, Wm, the
total matter density at z=0, and = - -H h100 km s Mpc0

1 1,
the value of the Hubble parameter at z=0. We explore three
extensions to ΛCDM. We first explore a model in which the
sum of the neutrino masses S nm is a free parameter. In this
work we use the prescription from Costanzi et al. (2013) to
predict the effect of massive neutrinos on the halo mass
function. We also consider a cosmological model in whichS nm
and Neff , the effective number of relativistic particle species, are
both free parameters, and a model in which w, the parameter
describing the equation of state of dark energy, is allowed
to vary.

5.2. Cluster Likelihood Evaluation

To compare theoretical predictions for cluster abundance to
the observations in this work, we closely follow the likelihood
derivation of V10, B13, and R13. We differ from those
analyses in this work by presenting an efficient numerical
technique that scales linearly rather than exponentially with the
number of mass proxies.
As is appropriate for a cluster abundance measurement (Hu

& Kravtsov 2003; Holder 2006), we start with the binned
Poisson statistic in cluster observable space, which consists of
redshift z and an arbirary number of mass proxies. In this work,
we use the SZ mass proxy ξwhich was described in
Section 2.1.1, and the X-ray mass proxy YX as described in
Section 4.1. For a given observable-space bin xi, the probability
of observing n events, with expectation value y xi( ) is

=
-

P
e y x

n
. 5i

y x
i

ni ( )
!

( )
( )

We choose to take the limit of small bins where y becomes
arbitrarily small at all xi, and n is zero except at the locations of
xi where clusters have been observed (Mantz et al. 2008, 2010,
V09). If we let xj denote the bin that contains the jth cluster, we
obtain

 å å å= = - +P y x y xln ln ln , 6
i

i
i

i
j

j( ) ( ) ( )

where i runs over all observable space bins, and j runs over
detected clusters. In this work, we are dealing specifically with
the three-dimensional cluster observable space xz Y, , X{ }, so
we can write the model expectation value

x=y x N z Y, ,i i i iX,( ) ( ) and express the likelihood as
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where the i i i, ,1 2 3 sums again run over all possible values and j
only runs over the bins where clusters were detected. Going to
the continuous limit would result in a divergent likelihood
expression. This can be understood by the fact that the model is
increasingly unlikely to produce our particular realization of the
cluster catalog as we go to finer binning. The divergence can be
removed by simply adding x- D D Dz Yln X to Equation (7).
This quantity (the logarithm of the observable-space bin
volume) depends only on the choice of bin size, so that

D ln for different values of cosmological or scaling relation
parameters remains meaningful. This procedure corresponds to
substituting the number density x xdN z Y dzd dY, , X X( ) for the
number contained in a bin xN z Y, ,j j jX,( ). We then obtain the
expression

 ò

å
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ln
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V10, B13, and R13 evaluated this expression on either a two-
dimensional or three-dimensional uniformly spaced grid. Each
dimension was gridded into several hundred points, so that the
computational cost rises exponentially with the number of mass
proxies. The computational cost was trivial for V10, challen-
ging for B13 and R13, and likely intractable in future work if
another mass proxy is added. The techniques used in Mantz
et al. (2010) and Vikhlinin et al. (2009b) also scale
exponentially with the number of mass proxies.

Instead of computing Equation (8) on a uniformly spaced
grid, we use the following numerical techniques. First, we note
that the follow-up mass proxy YX immediately integrates out of
the first term. This applies to any mass proxy that does not
appear in the survey selection function. Therefore, we only
need to perform a two-dimensional integral
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We evaluate this expression with
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where x x>P Mcut( ∣ ) is simply the significance cut modeled
through the scaling relation as described in Section 2.1.1.

The second term of Equation (8) is more challenging to
evaluate. It can be written as an integral over the mass function,
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The probability density functions ¢P z zj( ∣ ), x xá ñP j( ∣ ), and

¢P Y YjX, X( ∣ ) describe the (independent) measurement error of
each of the observables. x¢ á ñ ¢P z Y z M, , , lnX( ∣ ) describes the

joint scaling relations, implemented with multi-dimensional
log-normal intrinsic scatter. In our case of two mass proxies (ξ,
YX), this is implemented with three parameters: two describing
the marginal variances s zln and sYx, as well as one correlation
coefficient rz,Yx, each of which is marginalized over in this
work. Due to the treatment of maximization bias in
Section 2.1.1, the scaling relation is defined in terms of ζ

rather than xá ñ. We perform the change of variables using
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The computational bottleneck for evaluating the cluster
likelihood lies in evaluating Equation (11). We use Monte
Carlo integration, randomly drawing from the probability
distribution ¢P z zj( ∣ ) x xá ñP j( ∣ ) ¢P Y Y XjX,( ∣ )

x¢ á ñ ¢P z Y z M, , X , ln( ∣ ), weighted by the mass function dN

d Mln
.

Let ¢mln k denote the kth integration variable corresponding to
its flat-prior mass estimate (i.e., z ¢ and ¢Y X substituted into
their respective observable-mass scaling relations). We can
then write
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where Y is the mass proxy covariance matrix containing the
intrinsic scatter and correlation coefficient parameters intro-
duced in Sections 2.1.1 and 4.1 so
that Y = á ¢ ¢ ¢ ¢ ñm M m Mln ln ln lnkl k l( – )( – ) .
Now, we wish to obtain samples of the integration variable
¢Mln , given the location at which we are attempting to evaluate

dN x dxj( ) . In order to efficiently draw samples we first, for
each k, draw samples from the (inverse) measurement error

¢P x xk j k,( ∣ ), which is assumed to be independent for each k. We
then substitute these values into the scaling relations to obtain
an ensemble of ¢mln k values. The remaining task is then to draw
random deviates ¢Mln that follow the probability distribution
explicitly shown in Equation (13), given each value of ¢mln k .
To do so, we note that

S ¢ - ¢ ¢ - ¢ Y

= S ¢ ¢ Y

- ¢S ¢S Y + ¢ S Y
= - ¢ + ¢

= + -

-

-

- -

¢ -

m M m M

m m

M m M

T T M T M

T

ln ln ln ln

ln ln

2 ln ln ln

2 ln ln

, 14

kl k l kl

kl k l kl

k k l kl kl kl

M T T

T

T

T

1

1

1 2 1

0 1 2
2

ln

1

2

0
1 2

2

1
2

2( )

( )( )( )
( )

( ) ( )

( )

where = S ¢ ¢ Y-T m mln lnkl k l kl0
1( ) , = S ¢S Y-T mlnk k l kl1

1( ) , and
= S Y-T kl kl2

1( ) , which is quadratic in ¢Mln , so that
Equation (13) is a log-normal distribution in ¢M with a known
mean, width and normalization. We compute T0, T1, and T2
explicitly and sample from the resulting distribution.
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Having obtained samples of ¢Mln , which we denote as
¢Mln ˜ , we average the mass function
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and combine with Equation (14) to obtain an estimate for
Equation (11). Our implementation of this estimator has been
demonstrated to be unbiased through extensive simulations,
with well-behaved residuals. The error on the mean is found to
decrease as the inverse square root of the number of deviates
drawn. In practice, for two mass proxies and 377 cluster
candidates, we draw 104 deviates per cluster candidate,
resulting in rms noise on the likelihood surface of

 D -2 ln 0.1( ) near the maximum likelihood. For the
cluster catalog used in this work, the execution time is
approximately one second on a single CPU thread. This
likelihood module has been checked against an independent
implementation, based on the estimator presented in Bocquet
et al. (2015). The comparison shows agreement to well within
the 1σ uncertainties on the cosmological parameter constraints
found in this work.

5.3. External Data sets

In Section 6, we will discuss the cosmological constraints
obtained using the analysis laid out so far. We will evaluate the
compatibility of the cluster data with other data sets, as well as
show the improvements in parameter constraints when the
cluster data set is combined with other data sets. The primary
external data we use are CMB power spectrum measurements,
measurements of BAO from galaxy surveys, and distances to
Type Ia supernovae (SNe).

The canonical CMB power spectrum data we use is the
temperature–temperature power spectrum from the Planck
2013 release, combined with low-ℓ polarization information
from WMAP (Planck Collaboration et al. 2014a, hereafter
Planck+WP). The qualitative results from this work will be
very similar to those that would have been obtained by
considering the Planck 2015 data set, since the constraints on
s8 and Wm from the temperature and low-ℓ polarization power
spectrum are very similar between the two Planck releases. In
Section 6.2, we will briefly review the effect of substituting the
best CMB power spectrum data from before the Planck 2013
release, using instead the combination of WMAP9 (Hinshaw
et al. 2013) and SPT (Story et al. 2013, hereafter S13) CMB
power spectrum data.

We sometimes use a prior on the angular scale of the sound
horizon qs. This is a powerful piece of cosmological
information, and relies only very weakly on the details of the
CMB analysis, since it affects the peak positions. We use the
Planck+WP measurement, though we conservatively increase
the uncertainty by a factor of five to

q = 100 1.0413 0.0034MC .51 Since qs is so well-measured,
none of the results presented in this work that use a prior on qs
are sensitive to the specific value of the assumed uncertainty.

When BAO data are used in this work, we use the SDSS-III
BOSS results from data release 11. Specifically, we use the

measurements of the parameter combination D rV s at z=0.32
(LOWZ) and z=0.57 (CMASS) from Anderson et al. (2014).
When considering cosmologies with a free parameter

describing the dark energy equation of state, we compare to
and contrast with the SN results from the joint likelihood
analysis of the SDSS-II and SNLS SN samples from Betoule
et al. (2014).
Cluster abundances do weakly constrain the baryon density,

but for our main results we choose to adopt a prior based on
big-bang nucleosynthesis calculations and deuterium abun-
dance measurements of W = h 0.02202 0.00045b

2 (Cooke
et al. 2014). Rather than fixing this parameter, we marginalize
over the uncertainty, though that analysis choice has no
significant effect on the results presented in this work.
Finally, where stated, we adopt a prior of
=  - -H 73.8 2.4 km s Mpc0

1 1 from the direct H0 measure-
ments of Riess et al. (2011). We find that changing this prior by
s1 affects the resulting s8 constraint by  s0.2 , while the Wm
constraint is affected by s~0.4 . These two effects are anti-
correlated so that the commonly used parameter combination
s W 0.27m8

0.3( ) is highly insensitive to the assumed value
of H0.

6. COSMOLOGICAL CONSTRAINTS

In this section, we discuss the parameter constraints obtained
using the data and methods described in the previous sections.
We first explain which parameters and combinations of
parameters are most strongly constrained by cluster abundance
measurements. We then discuss the constraints from this cluster
sample, both in comparison to and in combination with other
cosmological data sets, for different choices of cosmological
models. We assume spatial flatness throughout this work.

6.1. Parameter Sensitivity to Cluster Abundance

A measurement of cluster abundance as a function of redshift
provides constraints on cosmological parameters through
several mechanisms. First, the total number of clusters found
strongly depends on the matter density and the amplitude of the
matter power spectrum (e.g., Bahcall & Cen 1992; White
et al. 1993). As shown in, e.g., White et al. (1993), a simple
spherical-collapse model for the halo mass function (Press &
Schechter 1974) indicates that the total number of clusters
should most strongly constrain the parameter combination
s Wa

m8 , where α is related to the local slope of the matter power
spectrum at the mean mass of the cluster catalog. This
prediction has been empirically borne out in many cluster
abundance studies, including this one.
The redshift dependence of the cluster abundance contains

information on the growth function, as well as a dependence on
the cosmic volume surveyed. This combination of sensitivity to
growth and volume provides a unique constraint on parameters
that affect the expansion history, notably w, the equation of
state of dark energy (e.g., Haiman et al. 2001). In the case of w,
the effect of changing this parameter on the cluster abundance
actually changes sign at ~z 1 (e.g., Figure 1 of Mohr 2005).
The 377 cluster candidates presented in this work provide a
large enough sample to constrain cosmological parameters by
measuring the evolution of cluster abundance. However, this
constraint is also potentially limited by knowledge of the
observable-mass scaling relations, in this case their evolution51 qMC is the approximation to qs used in CosmoMC (Lewis & Bridle 2002).
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with redshift. This is further discussed in the context of dark
energy in Section 6.5.

In addition to their effect on the true abundance of clusters as
a function of mass and redshift, cosmological parameters also
affect the cluster observables through their influence on the SZ
and X-ray scaling relations. Specifically, while the mass
estimate inferred from the ζ–M relation depends weakly on
redshift, the mass estimate inferred from the Y MX – scaling
relation depends strongly on the angular diameter distance to
the cluster.

6.2. ΛCDM

In this section, we present constraints on the parameters of
the ΛCDM model. Because not all parameters of this model are
well constrained by cluster counts alone, we adopt priors on
some of the six cosmological parameters (W hb

2,W hc
2, qs, ns, As,

and τ, defined in Section 5.1), in addition to the priors on the
scaling relation parameters (ASZ, BSZ, CSZ, and s zln , described
in Section 2.1.1, as well as AX, BX, CX, slnYx, and rz,Yx,
described in Section 4.1). The cluster likelihood is insensitive
to the optical depth to reionization τ as well as to the primordial
scalar spectrum power-law index ns, once an appropriate pivot
point is chosen. Therefore, when discussing cluster constraints
without the inclusion of CMB temperature power spectrum
data, we fix these parameters to the best-fit values from Planck
Collaboration et al. (2014a).

These two prior constraints, in addition to the H0 and BBN
priors discussed in 5.3, leave us two remaining degrees of
freedom in the ΛCDM model, which we choose to express as
Wm and s8 (though in exploring the likelihood surface we
actually vary the base parameters W hb

2, W hc
2, Aln 10 s

10 and
H0). We fix the species-summed neutrino mass S nm to
0.06eV, the minimum allowed value from terrestrial measure-
ments of squared neutrino mass differences (see e.g., Gonzalez-
Garcia et al. 2012 for a review). Figure 2 shows the constraints

on s8 and Wm from B13, R13, and this work. The large increase
in the number of clusters primarily reduces the uncertainty on
Wm by constraining the shape of the halo mass function. The
uncertainty on the parameter combination s W 0.27m8

0.3( ) is set
by the knowledge of the overall mass scale, rather than the
number of clusters, since Poisson errors on this number are
subdominant. The improvement in the s W 0.27m8

0.3( ) con-
straint results from the increase in the number of clusters with
Chandra follow-up data. These two effects result in tighter
joint constraints on the two parameters than we obtained in
previous cluster analyses, if we use the same prior on the
observable-mass relations. This can be seen in Figure 2: the
innermost, purple contours use the current cluster sample and
the same observable-mass priors as B13 and R13. However, in
contrast to B13 and R13 we choose to use a WL-based prior on
the overall mass scale for our baseline results, as discussed in
4.2. This results in slightly degraded constraints, in particular
on s8, as can be seen from the light-blue contours in Figure 2.
With the current cluster sample, the stated priors on
cosmological parameters, and the updated priors on the
observable-mass relations, we obtain

s = 0.784 0.039, 168 ( )

W = 0.289 0.042, 17m ( )

and

s W = 0.27 0.797 0.031. 18m8
0.3( ) ( )

The ΛCDM parameter constraints, including scaling relation
parameters, are shown in Table 3.
In the left- and right-hand panels of Figure 3 we show the

cluster abundance as a function of redshift and detection
significance, respectively. Both show one-dimensional repre-
sentations of the observable-space mass function. The data
points, with approximate ( N ) error bars shown, are
independent of cosmological and scaling relation parameters.
The points are independent between bins for xdN d , and nearly
independent for dN/dz, where clusters without spectroscopic
redshift information can contribute to multiple bins.
Shifts in the parameters s8 and ASZ result in roughly global

shifts in the amplitude of both curves, simultaneously. The
scaling relation parameter BSZ induces a roughly power-law tilt
in xdN d , and parameters such as CSZ and Wm induce tilts in
dN/dz. This visualization shows two important ways in which
the model, marginalized over a large number of scaling relation
and cosmological parameters, is tested for agreement with
the data.
Figure 4 shows the cluster constraints on the ΛCDM model

in the s8-Wm plane, when combined with either the H0+BBN
prior or the BAO q+ s+BBN prior. We also show the constraints
from CMB power spectrum measurements from Planck+WP
and WMAP9+S13 data. The 68% confidence regions from the
cluster constraints and the CMB power spectrum constraints
overlap. We proceed to adopt the Planck+WP data set as the
baseline CMB data set for the remainder of this work. We also
combine the SPTCL+Planck+WP+BAO data sets to obtain
joint ΛCDM parameter constraints. Finally, we note that the s8
constraint obtained using the SPTCL data in Table 3 is within
s1 of the value recently reported by the Planck collaboration
for the full-mission data (their 2015 TT+lowP+lensing data
set) of s = 0.815 0.0098 .

Figure 2. Comparison of cluster constraints on s8 and Wm from this work with
those from previous SPT publications. The B13 analysis (outermost, gray
contours) used 18clusters, 14of which have Chandra observations. The
number of clusters increased to 100in R13 (red contours), whereas this work
uses 377 cluster candidates, 82 of which have high-quality Chandra
observations. If we adopt the same observable-mass priors as B13 and R13,
we obtain the innermost, purple contours. However, the main results in this
paper assume a new weak lensing-based prior on the X-ray scaling relation
normalization, which changes the central value by 10% and increases the 1σ
uncertainty slightly from 9% to 11%. The s8-Wm constraints using this prior and
the current cluster data are shown by the light-blue contours.
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6.2.1. Constraints on Scaling Relation Parameters

While the main focus of this work is on the cosmological
constraints, the nuisance parameters are of interest themselves,
both in terms of the cluster scaling relation parameter
constraints and their degeneracy with the cosmological
parameters. In Figure 5, we show the marginalized posterior
in the multi-dimensional parameter space.

The dominant systematic uncertainty limiting the cosmolo-
gical constraints from the SPT-SZ cluster sample is the
uncertainty of the overall cluster mass scale. This can be seen
as a strong degeneracy between AX and s W 0.27m8

0.3( ) , which
are 85% correlated given the SPTCL+H0+BBN data set. The
second most important source of systematic uncertainty in the
cosmological constraints is from the parameter characterizing
the redshift evolution of the scaling relation, CSZ. In a ΛCDM
cosmology, it is highly degenerate with Wm, correlated at 87%
when considering the SPTCL+H0+BBN data set.

The parameters that shift most significantly away from their
priors are the BSZ and BX parameters which encode the power-
law slopes of the scaling relations. We find that the preference
for high BSZ persists when the X-ray data are not used. In
addition, this preference is not localized to any particular region
of the data; when considering half the cluster sample at a time,
either by redshift, ξ, or gfield, the high BSZ persists, albeit at a
lower significance.

This high BSZ implies that the measured observable-space
mass function, xdN d , is shallower than expected given the
scaling relation found from the simulations described in
Section 2.2. We can approximately quantify this by assuming

xdN d follows a power law. The data prefer a power-law index
of ∼4.0, compared to the simulation prediction of ∼5.0, which
is disfavored by the measured xdN d at s~4.5 .

The preference for a higher BSZ, i.e., a steeper ζ–M relation,
is statistically weak, approximately s1 , due to the relatively
weak 20% width assumed on the BSZ prior. By contrast, the
assumed width of the prior on the X-ray scaling relation slope
BX is 5%, leading to a tension between the likelihood and the
prior of approximately s4 . There is some evidence for a
similarly steep Y MX – scaling relation from the comparison of
the V09 and H15 WL mass estimates in Figure 1, which prefers

~B 0.42X . Such a slope would be in s~4 tension with the
expected self-similar cluster slope of =B 0.6X .

In this work, we will assume that our observational priors on
the Y MX – slope and theoretical priors on the mass function
slope are well motivated, but note that the shape of the

observable-space mass function will need to be studied in more
detail for future work.

6.3. ΛCDM + S nm

We now consider a cosmological model in which the
species-summed neutrino mass S nm is a free parameter.
Constraints on this model from the CMB power spectrum
show a strong degeneracy between s8 and S nm (e.g., Komatsu
et al. 2009; Planck Collaboration et al. 2014a; Abazajian
et al. 2015). This allows even modest measurements of s8 to
improve on neutrino mass constraints from the CMB power
spectrum data alone. Figure 6 shows the improvement in
constraints when adding cluster abundance information to
CMB power spectrum data alone (Planck+WP), and also when
including BAO data. In both cases, the addition of cluster
information tightens the constraint and causes the posterior to
peak at positive values of S nm , though the 95% upper limit on
S nm remains largely unchanged. Allowing the S nm to vary in
the range of 0–2eV, and using the combination of the
SPTCL+Planck+WP+BAO data sets, we find

S = nm 0.14 0.08eV. 19( )

We note that the preference for positive S nm , when we
combine our cluster abundance measurements with Planck
data, is driven by the small residual tension between the
preferred values of s8 in the two data sets. Such a preference
has been pointed out by several authors (e.g., Battye & Moss
2014; Planck Collaboration et al. 2014b; Wyman et al. 2014),
but is in contrast to the preference for positive S nm shown, for
example, by the combination of WMAP+SPT CMB power
spectrum data and SPT cluster data in Hou et al. (2014), in
which the evidence for positiveS nm is not driven by the cluster
data. In this work, we find relatively good agreement between
the preferred s8 using the CMB and SPTCL data sets, so the
preference for positive S nm is weak and consistent at 1σ with
the minimum expected value of ∼0.06 eV from neutrino
oscillation experiments (Lesgourgues & Pastor 2006). Relative
to the previous cluster-based constraints cited above, the
updated WL-based calibration described in Section 4.2, has
shifted the normalization and increased the uncertainty of the
observable-mass relation in a way that relieves tension with the
Planck CMB data (see Figure 2). We also note that our
constraint on S nm is largely independent of the change in the
optical depth to reionization, τ, between the Planck 2013 and
2015 data release; the SPTCL constraints are independent of τ,

Table 3
Constraints on Cosmological and Scaling Relation Parameters Assuming a ΛCDM Cosmology

Parameter Prior SPTCL+H0+BBN SPTCL+BAO+BBN SPTCL+Planck+WP+BAO

ASZ 5.38±1.61 4.842±0.913 4.936±0.955 3.531±0.273
BSZ 1.340±0.268 1.668±0.083 1.660±0.064 1.661±0.060
CSZ 0.49±0.49 0.550±0.315 0.864±0.159 0.733±0.123
s zln 0.13±0.13 0.199±0.069 0.201±0.070 0.203±0.066

AX 6.38±0.61 6.235±0.514 6.316±0.505 7.030±0.341
BX 0.57±0.03 0.491±0.023 0.493±0.023 0.498±0.021
CX −0.40±0.20 −0.251±0.127 −0.280±0.122 −0.174±0.102
slnYx 0.12±0.08 0.162±0.070 0.160±0.069 0.154±0.064
rz ,Yx -0.98, 0.98[ ] −0.147±0.458 −0.136±0.465 −0.204±0.443

Wm L 0.289±0.042 0.306±0.010 0.304±0.007
s8 L 0.784±0.039 0.768±0.030 0.820±0.009
s W 0.27m8

0.3( ) L 0.797±0.031 0.797±0.030 0.850±0.013
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and the Planck CMB constraints on s8 and Wm negligibly
changed between the two data releases.

6.4. ΛCDM + S nm + Neff

The effective number of relativistic species, Neff , affects the
CMB power spectrum by altering the time of matter–radiation
equality, changing the apparent sound horizon at recombination
(e.g., Hou et al. 2013). This mechanism results in strong
degeneracies between Neff and other cosmological parameters,
notably H0 and s8, when considering CMB data alone (e.g.,
Bashinsky & Seljak 2004). Thus, the addition of constraints on
s8—such as from the cluster data in this work—and H0 can
improve upon CMB-only constraints on Neff .

Here, we consider simultaneously varying the species-
summed neutrino mass and the effective number of relativistic
species. In this cosmological model, the Planck+WP data
alone constrain the s8-Wm-H0 parameter volume relatively
poorly. Adding the cluster information improves on all three of
those parameters by roughly a factor of two. Through

parameter degeneracies, this improves the simultaneous con-
straints on Neff and S nm as shown in Figure 7. The
simultaneous constraints are

= N 3.25 0.23 20eff ( )

and

S = nm 0.39 0.20 eV, 21( )

which represent factors of 1.3 and 1.6 respective improvement
over the Planck+WP data alone.
Adding BAO data reduces the remaining allowed parameter

space significantly to = N 3.28 0.20eff and
S = nm 0.18 0.09, and results in a degeneracy between
Neff and S nm , allowing for larger values of Neff for increasing
S nm . These constraints can be further tightened with the
addition of local H0 measurements, with the caveat that the
best-fit value of H0 from the SPTCL+Planck+WP+BAO data
set, =  - -H 68.6 1.2 km s Mpc0

1 1, is in mild tension with
direct local measurements from Riess et al. (2011). Proceeding
to add those local measurements, so that we consider a
SPTCL+Planck+WP+H0+BAO data set, we find a preference
for larger Neff , resulting in the marginalized constraints of

= N 3.43 0.16 22eff ( )

and

S = nm 0.16 0.08 eV. 23( )

The combined data set has a 2.3σ preference for >N 3.046eff ,
the standard model prediction. This is partially driven by the
weak tension between local H0 measurements and the Planck
+BAO data set, as has been noted by other authors (e.g.,
Battye & Moss 2014; Hou et al. 2014; Wyman et al. 2014).
However, the sensitivity to the H0 prior is relatively weak. The
preference for Neff exceeding the standard model prediction
would still be s2.0 if the central value of the H0 prior was
reduced by one standard deviation.
This mild preference for massive neutrinos and extra Neff has

also been noted by other authors. For example, by combining
CMB power spectrum data, BAO, SZ cluster counts, cosmic
shear data, redshift space distortions from BOSS, and CMB
lensing from Planck, Battye et al. (2015) found an even

Figure 3. Number density of clusters as a function of redshift (left panel) and of the SPT-SZ mass proxy ξ (right panel). The data points show the measured abundance
with N error bars. The grey bands show the 68% and 95% allowed model ranges after marginalizing over all cosmological and scaling relation parameters in the
ΛCDM model with the SPTCL+H0+BBN data set. In the right-hand panel, the ξ axis is shown on a logarithmic scale and the abundance axis has been multiplied by
three powers of ξ in order to visualize the abundance over a range of ξ values despite the extreme steepness of the measured mass function.

Figure 4. Comparison of cluster constraints on s8 and Wm to constraints from
primary CMB anisotropies, assuming a ΛCDM cosmology. The cluster
constraints, when combined with either the H0 or BAO q+ s prior, are in
agreement with the CMB data sets.
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stronger preference for Neff being larger than the ΛCDM model
value. In MacCrann et al. (2015), the tension between
CFHTLenS cosmic shear data and Planck+WP in the

sW -m 8 plane is shown, and the effective number of extra
neutrino species (DNeff) is favored to be non-zero in the joint
fit, alleviating such tension to some extent. More concretely,
Ruiz & Huterer (2015) found redshift-space distortion data in

s~3 tension with ΛCDM but that this tension was alleviated
when the species-summed neutrino mass was made a free
parameter. Another similar study has been done by Bernal et al.
(2016) where adding neutrino mass reduces the tension on dark

energy parameters inferred from the combination of geometry
and the growth of the large-scale structure.

6.5. wCDM

With the increased number of clusters in this work we are
able to place constraints not only on the local cluster abundance
but also on the evolution of cluster abundance with redshift. In
particular, we examine the constraints on the wCDM
cosmology, where the equation of state of dark energy w is a
free parameter. We assume that w is a constant (i.e., its value
does not evolve with redshift). This additional parameter
affects the cluster abundance and observables through its

Figure 5. Contour triangle plot showing the degeneracies between scaling relation parameters and cosmological parameters. Parameters W hb
2, H0, ns, slnYx, and rz ,Yx

are marginalized over and not shown since they are primarily constrained by priors, or by the Planck data. The cluster likelihood is nearly flat over the explored range
of these parameters.
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influence on the geometry of the universe and, more
importantly, the growth of structure. The geometrical effects
include the change in the survey volume element and the
angular diameter distance that modifies the implied X-ray mass
information. However, in contrast to other probes of dark
energy, the cluster abundance measurement is very sensitive to
the effect of w on the growth of structure, primarily s z8 ( ) (e.g.,
Wang & Steinhardt 1998; Haiman et al. 2001).

In Figure 8, we show constraints on the dark energy equation
of state parameter w and the energy density of dark energy
today WDE for different cosmological probes. With the
SPTCL+H0+BBN data set, we obtain

= - w 1.28 0.31 24( )

and

W = 0.738 0.046. 25DE ( )

This is in good agreement, and of comparable precision, with
the constraints when considering other cosmological probes,
including Planck+WP, BAO, and SNe, as can be seen in
Figure 8. Since all these probes except the cluster abundance
measurement are primarily geometrical tests in this plane, the
consistency between the cluster-implied parameter constraints,
and those from other data sets, offers an important systematic
test of dark energy. This measurement is limited primarily by
our knowledge of the redshift evolution of the ζ–M scaling
relation, CSZ. Specifically, both Wm and w are correlated with
CSZ at the ~60% level, whereas the correlation with AX is
only ~30%.
As shown in Figure 9, the Planck+WP measurements of the

primary CMB show a strong degeneracy between w and s8.
The addition of cluster data breaks the degeneracy and results
in the marginalized constraints

= - w 1.04 0.17 26( )

and

s = 0.803 0.045. 278 ( )

This level of w-uncertainty is ∼2.5 times larger compared to the
constraints when adding either of the BAO or SNe data sets to
the Planck+WP measurements (Aubourg et al. 2015; Betoule
et al. 2014).
For the data set combination H0+BAO+SNe, which does

not include primary CMB data, s8 is not determined. Adding
the cluster data improves the w constraint by 37% through a
direct measurement of the dark energy parameters w and WDE,
rather than by breaking the w-s8 degeneracy. For this
combination, we find

= - w 1.08 0.07. 28( )

Figure 6. Constraints on the species-summed neutrino mass. The addition of
cluster constraints to either the Planck+WP or Planck+WP+BAO data sets
has a similar effect: the posterior peaks at positive values, but remains
consistent with zero.

Figure 7. Simultaneous constraints on the effective number of relativistic
species and the species-summed neutrino mass. The addition of the SPT cluster
data reduces the allowed parameter space.

Figure 8. Comparison of different cosmological probes of dark energy. The
countours show the simultaneous constraints on the present-day density of dark
energy W = - W1 mDE and the dark energy equation of state parameter w.
Using priors on H0 and W hb

2, the SPT cluster data are able to simultaneously
constrain the two parameters, and are in good agreement with the other probes.
The other probes are sensitive to dark energy primarily through its effect on the
geometry of the universe.
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Finally, when considering the Planck+WP+H0+BAO+SNe
data sets, w is constrained to −1.062±0.048. The allowed
parameter space shows a significant w-s8 degeneracy, which
allows the addition of the cluster data to improve this constraint
by 14%, to

= - w 1.023 0.042, 29( )

consistent with ΛCDM where = -w 1.

7. COMPARISON TO OTHER CLUSTER SURVEYS

In this section, we compare the SPTCL cosmological
constraints to results using other cluster surveys. We focus
on the ΛCDM constraints from Section 6.2, which employed a
SPTCL+H0+BBN data set, and where we constrained
s W = 0.27 0.797 0.031m8

0.3( ) and s = 0.784 0.0398 .
When comparing to other results, we will discuss differences
where appropriate.

Other SZ cluster-based constraints include results from the
Atacama Cosmology Telescope (ACT, Hasselfield et al. 2013)
and Planck (Planck Collaboration et al. 2014b, 2015) cluster
surveys. However, comparisons to both are complicated by
differences in the assumed mass calibration. In Hasselfield
et al. (2013), the ACT collaboration reported cosmological
constraints using 15 SZ-selected clusters between

< <z0.2 1.4. Several sets of constraints were presented,
which assumed different priors on the SZ-scaling parameters
and also included a calibration based on the dynamical mass
measurements from Sifón et al. (2013). The latter relied on a
scaling relation between velocity dispersion and cluster mass,
which was later found to be biased high by ∼20% when using
more recent simulations (Kirk et al. 2015). Using a fixed SZ-
scaling relation based on the simulations from Battaglia et al.
(2012) i.e., without including any uncertainty in the cluster
mass calibration, the ACTCL+H0+BBN data set was used to
constrain s W = 0.27 0.848 0.032m8

0.3( ) and
s = 0.872 0.0658 , consistent with the constraints presented
in this work.

The Planck collaboration has produced two cluster-based
cosmological analyses (Planck Collaboration
et al. 2014b, 2015). Planck Collaboration et al. (2014b) used
a sample of 189 SZ-selected clusters between < <z0.0 0.55
with a median redshift of 0.15, which is lower than the SPT
cluster sample due to the Planck selection function. Assuming
an identical H0+BBN data set to our work and assuming a
fixed scaling relation except for an overall mass-bias factor b
with a uniform prior between 0.7 and 1.0, they constrained
s W = 0.27 0.774 0.024m8

0.3( ) and s = 0.77 0.038 , con-
sistent with our results. In Planck Collaboration et al. (2015),
the previous scaling relation calibration was compared to more
recent WL measurements (H15, WtG), which are also used in
this work. For example, H15 found a mass-bias factor of
0.76±0.08 for the Planck clusters in their lensing sample.
While no numerical constraints were given, the newer Planck
constraints were found to be consistent with the previous
Planck results, and are also visually in good agreement with
our results using this mass-bias factor.
In addition, our cosmological constraints are consistent with

other previous cluster surveys, including constraints from the
X-ray selected sample from Vikhlinin et al. (2009b) and the
optically selected sample from Rozo et al. (2010).
Finally, we compare to more recent cosmological constraints

from WtG (Mantz et al. 2015). Their baseline constraints
incorporate a cluster sample selected from the ROSAT All-Sky
Survey (RASS), follow-up X-ray observations from Chandra,
including cosmological constraints from cluster gas-fraction
( fgas, see Mantz et al. 2014) measurements, and WL data from
WtG, a sub-set of which we used to estimate our cluster mass
calibration in Section 4.2. In Figure 10, we compare directly to
the WtG constraints in the s8–Wm plane (WtG find marginalized
constraints of s = 0.830 0.0358 and W = 0.259 0.030m ).
We also plot the SPTCL constraints with an additional prior of
W W = h 0.089 0.012b m

1.5 , to mimic the fgas constraints.
Overall, we find good agreement between our SPTCL data set

and both the Planck-CMB and WtG data. The agreement
between the WtG and SPTCL constraints is impressive
considering the different selection methods (SZ versus
X-ray), the different X-ray observable (YX versus gas mass)

Figure 9. Combined constraints on w and s8. The CMB power spectrum data
from Planck+WP shows a strong degeneracy, while the purely geometric
constraints from H0+BAO+SNe do not constrain s8. The cluster data
simultaneously constrains the two parameters, improving the joint CMB+-
H0+BAO+SNe constraints both through breaking the w-s8 degeneracy present
in the CMB constraints, and the direct measurement of w.

Figure 10. Comparison of the constraints on s8 and Wm from this work,
Weighing the Giants (WtG), and Planck+WP CMB measurements. We also
show the results from this work after adding the approximate parameter
constraints from the fgas analysis of Mantz et al. (2014) for a more direct
comparison to the WtG cluster constraints.
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and corresponding observable-mass scaling relation, as well as
the independent X-ray analysis pipelines. This agreement
extends to the wCDM cosmological model. For example, using
the WtG cluster data (including fgas measurements), Mantz
et al. (2015) constrain = - w 0.98 0.15, consistent with the
results in Section 6.5. The combination of the two cluster data
sets is potentially very powerful for improving cluster-based
constraints due to the different redshift ranges of each sample;
the majority of the WtG sample is at <z 0.25, below the lower
redshift cut of the SPTCL sample used in this work. This is
particularly important for cluster-based constraints on dark
energy because the combined data sets would provide
improved constraints on the evolution of the cluster mass
function. This complementarity was also noted in Mantz et al.
(2015), who estimated that the combined data sets could
improve the WtG cluster-based constraints on dark energy and
modified gravity by a factor of >2.

8. CONCLUSION

In this work, we have taken a well-defined subsample of the
SPT cluster catalog from Bleem et al. (2015), selecting only for
redshift >z 0.25 and SPT-SZ detection significance x > 5. In
order to obtain cosmological constraints, we combine this
cluster catalog with Chandra X-ray observations for 82
clusters. In addition, we adopt a purely WL-based prior on
the overall mass scale of the sample from a reanalysis of
Vikhlinin et al. (2009b) using the more recent WL mass
estimates from Hoekstra et al. (2015) and the Weighing the
Giants (WtG) project (Applegate et al. 2014; Kelly et al. 2014;
von der Linden et al. 2014a; Mantz et al. 2015). The 1σ width
of this prior is 10%, which is limited by the small number of
clusters in the reanalysis.

The computation of the cluster likelihood uses a new
algorithm that scales linearly with the number of mass proxies,
where previous algorithms scaled exponentially, which makes
incorporating more mass proxies such as WL shear, velocity
dispersions, and/or multiple X-ray mass proxies computation-
ally tractable. Our algorithm includes the option to marginalize
over all possible correlations between the observables.

Assuming a ΛCDM cosmology and combining with
H0+BBN, we find the marginalized constraints
s = 0.784 0.0398 and W = 0.289 0.042m . The combined
parameter combination s W 0.27m8

0.3( ) is constrained to
0.797 0.031. We find good agreement with the parameter

constraints obtained from the WtG project, as well as CMB
constraints from either WMAP9+S13 (Hinshaw et al. 2013;
Story et al. 2013) or Planck+WP (Planck Collaboration
et al. 2014a). We proceed to adopt Planck+WP as our baseline
CMB data set.

We consider several extensions to the ΛCDM model. When
we allow the species-summed neutrino mass to be a free
parameter, the addition of cluster information to CMB
information causes the posterior to peak at positive values of
neutrino mass (though it is consistent with zero). The same
behavior is seen when combining with CMB+BAO, yielding
S = nm 0.14 0.08 eV. When further allowing the effective
number of relativistic species Neff to be a free parameter, and
combining with CMB+H0+BAO, we find = N 3.43 0.16eff
and S = nm 0.16 0.08 eV.

Finally, when the dark energy equation of state parameter w
is allowed to be free, this cluster catalog can be combined only
with priors on H0 and W hb

2 to measure = - w 1.28 0.31,

showing good consistency with the ΛCDM cosmological
model. Adding the cluster data to CMB+H0+BAO+SNe
improves the w constraint to = - w 1.023 0.042.
The full cosmological power of the 2500square-degree

SPT-SZ cluster survey has not yet been realized. A joint
analysis of the WtG and SPT-SZ cluster samples is currently
being performed. In addition, weak-lensing observations of
SPT-SZ discovered clusters themselves are currently being
analyzed and are expected to improve on the 10% mass
normalization uncertainty in this paper, in turn sharpening the
cosmological constraints. Especially important is accurate
knowledge of the mass scale over a range of redshifts, which
would specifically improve constraints on models of dark
energy or modified gravity.
The SPT is presently reobserving a 500square-degree patch

of the SPT-SZ survey area with the polarization-sensitive
receiver SPTpol (Austermann et al. 2012). While the primary
science goals are related to polarization, the greater map depth
allows for a lower cluster mass threshold, therefore extending
the survey out to higher redshift. The next receiver, SPT-3G
(Benson et al. 2014), is currently being built and will allow for
significant progress in the SPT cluster program. The SPT-3G
receiver will have a mapping speed ∼20times higher than
SPTpol, which should yield ∼5000cluster detections and,
importantly, allow cluster mass calibration through CMB-
cluster lensing (e.g., Baxter et al. 2015; Melin & Bartlett 2015;
Seljak & Zaldarriaga 2000).
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