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Small genomic insertions form enhancers that
misregulate oncogenes
Brian J. Abraham1, Denes Hnisz1, Abraham S. Weintraub1,2, Nicholas Kwiatkowski1, Charles H. Li1,2,

Zhaodong Li3,4, Nina Weichert-Leahey3,4, Sunniyat Rahman5, Yu Liu6, Julia Etchin3,4, Benshang Li7,8,

Shuhong Shen7,8, Tong Ihn Lee1, Jinghui Zhang6, A. Thomas Look3,4, Marc R. Mansour5 & Richard A. Young1,2

The non-coding regions of tumour cell genomes harbour a considerable fraction of total

DNA sequence variation, but the functional contribution of these variants to tumorigenesis is

ill-defined. Among these non-coding variants, somatic insertions are among the least well

characterized due to challenges with interpreting short-read DNA sequences. Here, using a

combination of Chip-seq to enrich enhancer DNA and a computational approach with mul-

tiple DNA alignment procedures, we identify enhancer-associated small insertion variants.

Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in

enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically

acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an

active enhancer that drives expression of the LMO2 oncogene. The approach described here

to identify enhancer-associated small insertion variants provides a foundation for further

study of these abnormalities across human cancers.
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T
umour genomes can contain thousands of DNA variants
that distinguish them from the genomes of healthy cells,
including single-nucleotide substitutions, small and

large insertions and deletions (INDELs), copy number alterations
and translocations1,2. Only a small fraction of all variants,
however, represent driver mutations that are truly pathogenic3–5.
While the functions of numerous coding variants discovered in
cancer cells through next-generation sequencing studies have
been tested, the relevance of the numerous non-coding variants in
the DNA of each human cancer remains largely unknown5.
Few non-coding mutations have been investigated in depth, but
among those studied, several play key roles in tumour biology,
suggesting that non-coding drivers are underappreciated6–10.

Non-coding variants that are potential drivers of tumour
biology are likely to occur in gene regulatory elements, but their
identification and verification can be challenging. For example,
there is recent evidence that somatically acquired small INDELs
can nucleate oncogenic enhancer activity8, but this form of
variation can be overlooked because sequencing technologies
generally produce short reads that can be challenging to align to
the reference genome2,10,11. The impact of non-coding variants
within gene regulatory elements on oncogenic gene misregulation
can be more challenging to establish than those that affect
protein-coding sequences because gene regulatory elements are
not as well defined and may occupy a larger fraction of the
genome than protein-coding regions. To overcome these
obstacles, several approaches have sought non-coding variants
that alter transcription by incorporating gene expression and
transcription factor motif position weight matrices into their
discovery algorithms12,13.

Here we propose an alternative strategy to identify bona fide
non-coding driver mutations by analysis of sequencing reads
from chromatin immunoprecipitation (ChIP-Seq) of the enhan-
cer-associated histone mark H3K27ac (H3K27ac ChIP-Seq). This
approach has an intrinsic advantage over whole-genome sequen-
cing approaches to identifying functional variants because
H3K27ac sequence reads are generated predominantly from
active regulatory sites, providing a more direct link between the
variant and putative function14,15. This approach dramatically
reduces the search space and enriches for the set of variants that
are likely to be functional at the level of gene control. We present
a catalogue of enhancer-associated insertion variants from a panel
of 102 tumour cell genomes and show they are frequently
associated with known oncogenes. One example, a heterozygous
8 basepair (bp) insertion in T cell leukaemias proximal to
the LMO2 oncogene, is demonstrated to affect gene control.
This knowledge of enhancer-associated insertions provides
a foundation for further studies to define the oncogenic
contributions of this class of variants.

Results
Cataloguing enhancer-associated insertions. To identify
enhancer-associated variation in cancer cells and include inser-
tion variants that are overlooked with common short-read
alignment approaches, we developed a computational pipeline
optimized to recover sequences of insertions that are present in
tumor cells but are not present in the NCBI human reference
genome (Fig. 1a, Supplementary Fig. 1A). The NCBI reference
genome was used for comparison because most cancer cells do
not have corresponding healthy samples for comparisons. The
pipeline was used to analyse newly generated and previously
published ChIP-Seq datasets for H3K27ac-enriched DNA from
78 tumour cell lines and 24 primary tumour samples, eight of
which are new here (Supplementary Table 1)8,16–43. Using these
enhancer-targeting ChIP-Seq datasets narrows the variant-

discovery search space to B2% of each genome
(Supplementary Fig. 1B). The computational pipeline was
optimized to identify the subset of reads that could only be
aligned to the reference genome when allowing for insertions in
the reads, which were then analysed to discover the DNA
sequence of the insertions themselves (Supplementary Fig. 1A).
The pipeline leverages recent advances in alignment algorithms to
permit the analysis of sequences that align only when allowing for
the presence of insertions11,44,45. In addition, to aid in capturing
somewhat larger (14–31 bp) insertions, contigs were assembled
from initially unalignable reads and used in parallel with raw
reads to reveal the underlying sequence (Methods). Although the
majority of reads aligned without accounting for insertions
(Supplementary Fig. 1C), there were a large number of insertions
identified in these tumour samples. A catalogue of 328,871
candidate enhancer-associated insertions (Supplementary Data
1), which range in size from 1 to 31 bp (Fig. 1B, Supplementary
Fig. 1D), were identified using this approach.

Although germline variation may contribute to oncogene
misregulation18, most cancer-driving variants are somatic in
origin, so insertions judged likely to be background, germline
variation were deprioritized for further study. Of 168,149
candidate enhancer-associated insertions with unique positions
and/or sequences, 57,013 were deprioritized because they likely
reflect germline variation based on two considerations,
annotation and recurrence (Fig. 1c, Supplementary Data 1). Of
the 57,013 putative germline insertions, 49,992 were present in
dbSNP, which curates germline variants of multiple variant types
across many databases46. Additionally, 20,715 variants were
recurrent across multiple independent tumour types and samples
and may thus reflect germline variation not represented in the
reference genome. Indeed, 13,694 of the 20,715 nearly ubiquitous
insertions were present in dbSNP46, supporting the view that
these insertions are predominantly germline. Thus, 111,136
(168,149� 57,013) unique predicted enhancer-associated
insertions appear, by these considerations, not to reflect
germline variation and thus may be somatically acquired
non-coding variants (Supplementary Fig. 1E). The catalogue of
predicted enhancer-associated insertions described here thus
expands the number of reported small insertions in enhancers of
tumour cells from 10,165 (ref. 2) to 121,301 (10,165þ 111,136).
The instances of enhancer-associated insertions observed in T cell
acute lymphoblastic leukemia (T-ALL), breast, neuroblastoma
(NB), lung, colorectal, melanoma, glioblastoma multiforme
(GBM), B cell lymphoma (BCL), pancreatic, and other tumour
cell types are summarized in Fig. 1d and Supplementary Fig. 1E.
The pipeline was adapted to predict deletions in a similar manner
(Supplementary Data 2), but we chose to focus on insertions for
further study because of our previous experience with analysis of
this class of variants8.

Confirming predicted enhancer-associated insertions. Four
lines of evidence confirmed that the method described here
captured bona fide insertions present in tumour genomes. First,
we searched for previously validated TAL1-proximal enhancer-
associated insertions in MOLT4 and Jurkat T-ALL cells8;
these were rediscovered by our method (Fig. 2a, Supplementary
Data 1). Second, we subjected a random subset of 68 enhancer-
associated insertion candidates in MOLT4 T-ALL cells to high-
throughput sequencing, which confirmed that 48 (71%) of the
predicted insertions were indeed present in these tumour
genomes (Fig. 2b, Supplementary Table 2). Third, we carried
out targeted Sanger sequencing of 37 candidate loci with
insertions in MOLT4, Jurkat, Kelly, SH-SY5Y and LS174T cells,
which confirmed the majority of these loci (29 of 37; 78%)
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contained insertions (Fig. 2c, Supplementary Table 3,
Supplementary Data 1). Finally, 74% (1,112 of 1,492) of
predicted enhancer-associated insertions in the GM12878 cell
line were supported by an Illumina Platinum Genome sequence

(Fig. 2d, Supplementary Table 4)47. Confirmed insertions span
the size range of the predictions (1–22 bp) and include examples
of homozygous and heterozygous insertions. Thirty-six
of 48 high-throughput-confirmed insertions and 17 of
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Figure 1 | Genome-wide identification of enhancer-associated insertions. (a) A subset of variants in tumour genomes occurs within and impacts

transcriptional enhancers. ChIP-Seq experiments enrich for enhancer DNA, which may contain either reference sequences or homozygous or heterozygous

variants, including insertions. Histone modifications of chromatin surround the DNA where a small insertion (red) creates a transcription factor-binding

event, and this sequence is detected in the reads created in the ChIP-Seq experiment. A commonly used sequence alignment algorithm attempts to map

reads to the reference genome but discards reads with insertions. Mining these initially discarded reads uncovers enhancer-associated insertions.

(b) Genome-wide distribution of sizes of insertions predicted by our ChIP-Seq computational pipeline in 102 samples. The majority of insertions are 1 bp.

(c) Left: Histogram showing number of samples in which an insertion is predicted. Insertions predicted in more than two samples (same location, same

sequence) are considered separately because they may represent germline polymorphisms in the reference genome. Right: Pie chart depicting proportion

of predicted enhancer-associated insertions present in dbSNP, predicted in many samples, or both, suggesting that these variants are acquired in the

germline. (d) Counts of enhancer-associated insertions predicted by the pipeline processing each H3K27ac sample. Samples are grouped according to

tumour type: GBM, Glioblastoma Multiforme; NB, Neuroblastoma; PaCa, Pancreatic cancer; T-ALL, T cell acute lymphoblastic leukaemia.
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29 Sanger-confirmed insertions were found to be heterozygous,
which is a feature we noted previously for the TAL1-proximal
enhancer-associated insertions, although both homozygous and
heterozygous insertions may alter gene expression8. These lines of
evidence suggest that many of the predicted enhancer-associated
insertions in the catalogue reflect bona fide insertions in
tumour cell genomes. Reanalysis of whole-genome sequences
from T-ALL patients showed that half of the predictions in
T-ALL cell lines exist in patient genomes, demonstrating that
whole-genome sequencing is capable of interrogating these

variants, but current analysis pipelines commonly discard them.
Only a small number of enhancer-associated insertions (25) are
curated by the Catalogue of Somatic Mutations in Cancer
(COSMIC) in 36 cell lines, suggesting current whole-genome
analysis discards most of this class of variants2.

Enhancer-altering insertions associated with oncogenes. To
find the subset of insertions in our catalogue that are likely
to increase enhancer activity, we filtered for insertions whose
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presence correlates with increased ChIP-Seq signal for nucleo-
somes with histone H3K27ac, which occupy active enhancers14.
The TAL1-proximal insertions that cause elevated enhancer
activity show such a bias8, so we identified insertions that have
increased insertion-containing reads relative to reference
sequence reads. Of the 111,136 non-germline, enhancer-
associated insertions, 7,213 show a twofold or greater bias in
read mapping and are thus predicted to increase enhancer activity
(Fig. 3a,b, Supplementary Data 1). This includes the TAL1-
proximal insertion, which has an Bthreefold bias in coverage in
Jurkat and Beightfold bias in coverage in MOLT4. The insertions
that bias ChIP-Seq coverage by greater than twofold are more
likely to be present in the genomes of tumour cells; 96% of 23
randomly selected coverage-biasing insertions were confirmed to
be present as either heterozygotes or homozygotes by targeted
sequencing in MOLT4 cells (Fig. 3c–e). This filtration of read-
biasing insertions thus prioritizes candidate insertions that are
most likely to be present and to affect enhancer activity.

To find insertions most likely to affect expression of known
oncogenes, we searched for read-biasing enhancer-associated
insertions that occurred within the same insulated neighbour-
hoods as known oncogenes (Supplementary Data 1). Insulated
neighbourhoods are CCCTC-binding factor (CTCF)/cohesin-
anchored DNA loops that are thought to constrain enhancer-to-
gene regulatory interactions, so insertions influencing oncogene
expression are likely to be inside the same insulated neighbour-
hoods as those oncogenes48–50. Many notable oncogenes occur in
the same insulated neighbourhoods as enhancer-associated
insertions that affect enhancer signal (Table 1). Indeed there
was a significant enrichment of enhancer-associated insertions in
insulated neighbourhoods that contain oncogenes (Po0.0001,
permutation test).

Leukaemia oncogene targeted by enhancer-associated insertion.
We first sought to identify examples of insertion-specific
enhancer activity near oncogenes in T-ALL because much
is known about leukaemia oncogenes and the transcriptional
control of these tumour cells8,51,52. A heterozygous 8-bp insertion
was identified in MOLT4 T-ALL cells in the same insulated
neighbourhood as LMO2, an established oncogenic driver
in T-ALL (Fig. 4a)53–55. The insertion falls in a predicted
SINE repeat occurrence that is uniquely mappable, so the
insertion could be uniquely localized to this site using ChIP-Seq
reads56,57. LMO2 is not expressed in normal mature thymocytes,
and its aberrant expression in these cells is thought to initiate
a series of events leading to leukaemia58, so its misregulation
by enhancers is of particular interest. Interestingly, a DNase
I-hypersensitive site is present at the locus in a related T-ALL cell

line, Jurkat, which does not express LMO2 (ref. 59). This is
consistent with the notion that DNase I signal alone does not
necessarily represent an active enhancer site, but rather the
potential for enhancer formation60. Together, these data suggest
the insertion is near a region with potential regulatory capacity
near a key oncogene in leukaemia.

We next focused on the impact of the insertion
on transcription using assays and analyses inspired by our initial
study of a TAL1-proximal insertion8. Sanger sequencing of cloned
alleles confirmed that the 8-bp insertion occurs in MOLT4 and is
heterozygous (Fig. 4b). Among the T-ALL cells studied here,
both the insertion and an active enhancer at this region
were unique to MOLT4 cells (Fig. 4c). The location of this
aberrant enhancer is not consistent with simple reactivation
of a developmental enhancer (Supplementary Fig. 2A), which
is a proposed general phenomenon explaining oncogenic
enhancer activation10,61. Other, similar insertions were found in
the same location in a patient-derived xenograft (TALL-12) and
in 4 of 164 (2.4%) T-ALL patient samples (Fig. 4d). In three of
three patients where non-tumour cells were available, we did not
observe the insertion in the non-tumour cells by Sanger
sequencing, suggesting that the insertion was somatically
acquired in the tumour samples. In an additional cohort
of T-ALL samples with whole-genome sequences from the same
patient at diagnosis, remission, and relapse, we found
a 45-bp insertion present at this locus at diagnosis and relapse
but absent in remission DNA, suggesting this insertion was
somatically acquired (Supplementary Fig. 2B).

To determine whether the 8-bp heterozygous insertion in
the LMO2 locus confers enhancer activity, the insertion allele
and the reference allele were cloned into enhancer reporter
vectors, and these were transfected into Jurkat T-ALL cells; the
results indicate that the insertion allele has significantly more
enhancer activity than the reference allele (Fig. 4e, Po0.001,
two-tailed Student’s t-test). In addition, ChIP-qPCR showed that
the levels of the enhancer mark H3K27ac are substantially higher
on the insertion-allele than the reference allele (Fig. 4f). The
insertion sequence resembles a motif recognized by MYB, which
is known to interact with the H3K27ac-catalysing histone
acetyltransferase CBP; ChIP-qPCR showed that MYB indeed
binds preferentially to the insertion allele (Fig. 4f)62. MYB is part
of a protein complex known to regulate the T-ALL expression
programme that also includes TAL1 (ref. 8). TAL1 was also
found to bind preferentially to the insertion allele (Fig. 4f),
suggesting that the leukemogenic transcription-regulating
complex is present at the enhancer due to the insertion.

Reanalysis of ChIP-Seq data with a modified target
genome sequence showed that reads from H3K27ac, MYB and
TAL1 ChIP-Seq experiments more frequently mapped to

Figure 2 | Confirmation of predictions in the catalogue. (a) Our computational pipeline recovered the known TAL1-proximal insertion in the MOLT4 and

Jurkat T-ALL genomes. The insertions CG[GT]TA in MOLT4, and CG[GTTAGGAAACGG]TA noted in red, upstream of the TAL1 gene are bound by H3K27

acetylated histones. This region was immunoprecipitated in ChIP-Seq experiments targeting acetylated H3K27, and sequence reads from this experiment

contain the insertion and surrounding genomic context. (b) Left: Example enhancer-associated insertion in MOLT4 T-ALL cells that was confirmed by high-

throughput sequencing pooled PCR products. Number of H3K27ac ChIP-Seq reads in bins at the USP39/SFTPB/GNLY locus is represented in purple.

Annotated RefSeq genes are noted below. Representative contigs detected in the high-throughput sequencing that contain reference sequence and the

predicted insertion, suggesting this insertion is heterozygous. The insertion is noted in red. Note that scaffolds were aligned to the negative strand, so

insertion predicted was GCG but insertion in scaffold is GCG. Right: Pie chart summarizing numbers of predicted insertions detected using this approach.

(c) Left: Example enhancer-associated insertion in Jurkat T-ALL cells that was confirmed by Sanger sequencing of PCR products. Number of H3K27ac

ChIP-Seq reads in bins at the AUH locus is represented in purple. Annotated RefSeq genes are noted below. Chromatograms of Sanger sequencing of this

locus are below. Chromatograms show the signal from each of four possible nucleotides at a position. Sequences of the insertions are indicated with a grey

box. Right: Pie chart summarizing numbers of predicted insertions detected using this approach. (d) Left: Example enhancer-associated insertion in

GM12878 B lymphoblastoid cells that was confirmed by the Illumina Platinum genome of these cells. Number of H3K27ac ChIP-Seq reads in bins

at the CLLU1 locus is represented in purple. The predicted insertion in genomic context is noted below in red. The Illumina-identified variant is below.

Right: Pie chart summarizing numbers of predicted insertions detected using this approach.
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Figure 3 | A subset of enhancer-associated insertions is predicted to alter enhancer activity. (a) Cartoon depicting two plausible models of the effect of

insertions on enhancers. If insertions do affect enhancers, there should be more ChIP-Seq reads for enhancer-binding proteins that contain the insertion

than do not. (b) Counts of predicted enhancer-associated insertions in all tested samples that bias ChIP-Seq read mapping and thus are likely associated

with altered enhancer activity. (c–e) Example enhancer-associated insertions that are predicted to alter enhancer activity. Counts of ChIP-Seq reads for

H3K27ac are displayed in purple. RefSeq gene positions are noted below. ChIP-Seq reads containing the predicted insertion are noted below. The insertion

is noted in red.
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a reference sequence containing the insertion than a reference
sequence without the insertion (Fig. 4g). Using this approach,
the majority of the ChIP-Seq reads include the enhancer-
associated insertion sequence, supporting our interpretation.
We conclude that the 8-bp heterozygous insertion in the
LMO2 locus of MOLT4 cells confers elevated transcription factor
binding and enhancer activity at that locus.

We next investigated whether the MOLT4 8-bp heterozygous
insertion conferred heterozygous expression of LMO2.
A heterozygous coding sequence variant (rs3740617) occurs in
the exons of the two LMO2 alleles in MOLT4 cells, allowing us to
investigate whether allele-specific LMO2 transcription takes place
in these cells. Sequencing of complementary DNA (cDNA)
generated from MOLT4 cells revealed that only one allele is
expressed, consistent with allelic expression due to the enhancer-
producing insertion (Fig. 4h). These results are consistent with
the model that the 8-bp heterozygous insertion in the LMO2
locus of MOLT4 cells creates an active enhancer that drives
heterozygous expression of the LMO2 oncogene. Furthermore, in
one T-ALL patient with an LMO2-proximal insertion at this site,
RNA sequence data were available, which showed that LMO2 was
expressed from one allele (Supplementary Fig. 2C).

Discussion
We describe here a combined experimental/computational
approach that can be used for genome-wide identification of
enhancer-associated variants in tumour cells. We showed that
tumour cell DNA insertions identified in this way can be further
studied to establish functional significance, and confirmed that an
insertion at the LMO2 locus produces enhancer function in
MOLT4 T-ALL cells. It is noteworthy that the target genes of this
altered enhancer, and another we described previously (TAL1)8,
encode transcription factors that regulate many additional genes,
so a single enhancer-inducing variant can have an outsized effect
on the gene expression programme of tumour cells.

The catalogue reported here includes enhancer-associated
insertions in T-ALL, breast, neuroblastoma (NB), lung, colorectal,
melanoma, glioblastoma multiforme (GBM), B cell lymphoma
(BCL), pancreatic and other tumour cell types (Supplementary
Data 1). While this catalogue has been filtered for putatively
germline variants, the catalogue may still contain both germline
and somatically acquired variants. Although most cancer-driving
variants described thus far are somatic in origin, and somatic
variants are considered more likely to be functionally important
than germline variants, the somatic or germline origin of most
variants described here could not be determined for the tumour
cells in this study. Nonetheless, germline variants in non-coding
DNA may contribute to transcriptional misregulation of tumour
oncogenes18, so it is useful to have a catalogue of both types of
enhancer-associated variants.

Cancer genome sequencing has proven valuable for the
identification of numerous variants in coding DNA, but small

insertion variants in non-coding DNA that may play functional
roles in tumorigenesis are less well understood. This new
knowledge of enhancer-associated insertions provides a founda-
tion for further studies to define the oncogenic contributions of
this class of variants across a broad spectrum of human cancers
and a new means to implicate targets for specific therapies and
diagnostic approaches that empower precision medicine.

Methods
Cell culture. Jurkat and MOLT4 T-ALL cells were purchased from ATCC
(see Reagent validation) cultured in RPMI GlutaMAX (Invitrogen, 61,870–127),
supplemented with 10% fetal bovine serum, 100 U ml� 1 penicillin and
100 mg ml� 1 streptomycin (Invitrogen, 15,140–122). CCRF-CEM, DU.528, KOPT-
K1, PEER, PF-382 and P12-ICHIKAWA T-ALL cells were cultured in in RPMI
1640 (Life Technologies), supplemented with 10% fetal bovine serum, 100 U ml� 1

penicillin and 100mg ml� 1 streptomycin (Life Technologies, 15140122). All
additional cell lines were propagated according to the respective ATCC guidelines.

ChIP-Seq. ChIP was performed as described in Lee et al.63 with a few adaptations.
Suspension cultures were grown to a density of B1 million cells ml� 1 before
crosslinking, and adherent cell lines were crosslinked directly on the culture vessel.
Crosslinking was performed for 10–15 min at room temperature by the addition of
one-tenth of the volume of 11% formaldehyde solution (11% formaldehyde, 50 mM
HEPES pH 7.3, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0) to the
growth media followed by five quenching with 125 mM glycine or 1 M Tris pH 7.5.
Cells were washed twice with PBS, then the supernatant was aspirated and the cell
pellet was flash frozen in liquid nitrogen. Frozen crosslinked cells were stored at
� 80 �C. Antibody-conjugated beads were prepared as follows: 100 ml of
Protein G Dynabeads (Life Technologies, 10009D) were blocked with 0.5% BSA
(w/v) in PBS. Magnetic beads were bound with 10 mg of anti-H3K27ac
antibody (Abcam ab4729). Additional antibodies used included anti-MYB
(Abcam ab45150), anti-TAL1 (Santa Cruz SC12984). These amounts were adjusted
based on the number of cells used per each immunoprecipitation (see below).

Nuclei were isolated as previously described in Lee et al.63 and sonicated in
sonication buffer (50 mM HEPES-KOH pH7.5, 140 mM NaCl, 1 mM EDTA
pH 8.0, 1 mM EGTA pH 8.0, 0.1% Na-Deoxycholate, 1% Triton X-100, 0.1% SDS)
on a Misonix 3,000 sonicator for 10 cycles at 30 s each on ice (18–21 W) with
60 s on ice between cycles. Sonicated lysates were cleared once by centrifugation
and incubated overnight at 4 �C with magnetic beads bound with antibody to
enrich for DNA fragments bound by the indicated factor. 50–150 million cells were
used per immunoprecipitation. For 100 million cells, 50 ml of Protein G Dynabeads
and 5 mg antibody were used for each ChIP experiment, and the Dynabead and
antibody amounts were scaled to cell numbers other than 100 million keeping these
ratios. These ratios were used for all antibodies (H3K27ac, MYB, TAL1). After
overnight incubation with the lysates, the beads were washed with sonication
buffer, high-salt sonication buffer (50 mM HEPES-KOH pH 7.9, 0.5 M NaCl, 1 mM
EDTA pH 8.0, 1 mM EGTA pH 8.0, 0.1% Na-Deoxycholate, 1% Triton X-100,
0.1% SDS), LiCl wash buffer (20 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA
pH 8.0, 0.5% Na-Deoxycholate, 0.5% IGEPAL C-630 0.1% SDS) and TE-0.1%
Triton X-100 buffer (10 mM Tris-HCl pH 7.5, 0.1 mM EDTA pH 8.0, 0.1% Triton
X-100) sequentially. DNA was eluted in elution buffer (50 mM Tris-HCL pH 8.0,
10 mM EDTA, 1% SDS). Cross-links were reversed overnight at 65 �C. RNA and
protein were digested using RNase A and Proteinase K, respectively, and DNA was
purified with phenol chloroform extraction and ethanol precipitation.

Purified ChIP DNA was used to prepare Illumina multiplexed sequencing
libraries. Libraries for Illumina sequencing were prepared following the Illumina
TruSeq DNA Sample Preparation v2 kit. Amplified libraries were size-selected
using a 2% gel cassette in the Pippin Prep system from Sage Science set to capture
fragments between 200 and 400 bp. Libraries were quantified by qPCR using the
KAPA Biosystems Illumina Library Quantification kit according to kit protocols.

Table 1 | Selected genes with enhancer-associated insertions in their insulated neighbourhoods.

Tumour type Selected insertion-associated genes

T-ALL ABL, ETO2, IKZF1, IL6-RB, LMO2, MLLT1, PIM1, RUNX1, TAL1
Breast BCR, CCND1, FGFR1, KLF4, RUNX1
Neuroblastoma ETV6, FOXO1, MYCN
Lung ASXL1, EML4, MYC, NF2
Colorectal ATM, AXIN2, CASP8, ERG, MSH2, PDGFB, RUNX1, TCF3
Melanoma AXIN1, BCL2, CCNE1, MYC, SS18L1, STAT3, U2AF1
Glioblastoma ERG, EXT1, SND1
B cell lymphoma ABL, BCL11A, BCL2, CASP8, CD79A, JAK2, LYL1, MSH2, PIM1, POU2AF1, RUNX1, TAL2, TNFAIP3
Pancreatic ATM
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Libraries were sequenced on the Illumina HiSeq 2500 for 40 bases in single read
mode.

ChIP-Seq display. Reads were aligned to the hg19 revision of the human reference
genome using bowtie with parameters –best –k 2 –m 2 –sam and –l set to read
length44. Read pileup in 50 bp bins was determined using MACS with parameters –
w –S –space¼ 50 –shiftsize¼ 200 –nomodel64. WIG file output from MACS was
visualized in the UCSC genome browser65.

Insertion detection pipeline. Enhancer-associated insertions were detected using
multiple alignment procedures on each H3K27ac ChIP-Seq dataset. First, to identify
reads without insertions and to identify enhancers, all reads were mapped to the hg19
reference genome using bowtie with parameters –chunkmbs 256 –best –strata –m
1 –n 2 –S (ref. 44). H3K27ac reads that successfully aligned were used to locate active
enhancers in each genome using MACS with parameters –p 1e-9 –keep-
dup¼ auto64. Where possible, input DNA controls were used for peak calling.

Reads not initially alignable by bowtie were assembled into contigs using Edena
with parameters –d 20 –c 20 and the default number of reads (5) per base to extend
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read length and increase the likelihood of finding a homologous sequence in
the reference genome66. For samples whose read lengths were inconsistent, the first
25 bases of reads were used to build contigs. Initially unmapped reads and contigs
made from these reads were aligned again to the hg19 reference genome using
Bowtie 2, which permits insertions/deletions relative to the target genome, with
parameters –rfg 1,1 –k 1 (ref. 11). To verify reads and contigs with insertions were
robustly alignable by multiple algorithms, reads with a CIGAR string containing
‘I’ were used as input for BLAT with parameters –minScore¼ 0 –stepSize¼ 1.
BLAT output was parsed such that each accepted read/contig hit (1) incorporated
the whole read/read sequence and did not align only parts of the read/contig,
(2) contained only one insertion, (3) this insertion was shorter than the read/
contig, (4) contained no BLAT-called mismatches, and the single best hit with the
highest score was retained. BLAT hits were also filtered such that they had at most
a 20-bp insertion, but the CIGAR string from the bowtie hit was used to determine
where and what the insertion was. Bowtie 2 and BLAT hits for a read were required
to be within 100 bp to be retained. Insertions in enhancers were determined
by overlaps with enhancers identified above.

Germline variation. Enhancer-associated insertions were analysed for (1) presence
in dbSNP46 and (2) recurrence across samples. The sequences and hg19 positions
of dbSNP 144 were downloaded from the UCSC table browser and converted into
coordinateþ allele identifiers. Predicted variants with the same position and
sequence as the dbSNP identifiers were considered present in dbSNP and thus
germline. In the absence of matched germline data for the cell lines, we reasoned
that recurrent insertions across samples from many, unrelated individuals likely
represent germline variation. Any insertion with the same position and sequence
identified in more than two samples was considered germline, because (1) the
TAL1-proximal insertion existed in only two of our cell lines and (2) the majority
of these insertions was present in dbSNP.

Deletions. Deletions were determined using only contigs. Contigs were aligned
using bowtie 2 as described above and reads with CIGAR strings containing
‘D’ were used as input for BLAT as described above. BLAT alignments were
processed as aligned above but CIGAR strings from bowtie2 were used for
downstream analysis. Hits with a CIGAR string containing one D, two Ms and zero
Is were considered deletions.

Assignment of predictions to genes. Insertions were assigned to genes
considered active that are in the same insulated neighbourhood as the insertion.
DNA interactions where cohesin is present were previously defined in Jurkat cells
using SMC1 Chromatin Interaction Analysis by Paired-end Tag sequencing
(ChIA-PET)50. We filtered these loops for high-confidence interactions that have
an FDRo0.2 and have CTCF-enriched regions contacting both loop anchors.
CTCF peaks were defined using MACS with input control and parameters –keep-
dup¼ 1 and –p 1e-9. Because these loops can be nested, one insertion can be
contained within multiple loops, so the smallest loop containing an insertion was
considered. Insertions were associated with RefSeq genes whose TSS was also in
the same insulated neighbourhood. Oncogenes are defined as all genes listed in the
COSMIC cancer gene census2.

Confirming predictions by high-throughput sequencing. A portion of the
predicted indels was confirmed using an Illumina MiSeq. First, the genomic
region in question was amplified with PCR. PCR primers were designed
B100–150 bp upstream and downstream of the predicted indel using Primer3
(total amplicon size ranged from 200 to 300 bp)67. Primer sequences are available
in Supplementary Table 2. PCR was carried out with Phusion Flash High
Fidelity PCR Mix (Fischer Scientific F-548S) using standard conditions and

genomic DNA from the cell line in which the indel was predicted. The products
were pooled and purified. The pooled PCRs were then sequenced on a MiSeq with
150� 150 paired-end reads. The raw output is available in dbGaP under accession
phs001242.v1.p1.

The presence or absence of the indel was determined through an alignment
strategy. Small custom genomes were created for the reference- and insertion-
containing sequences at each predicted insertion with 250 nucleotides upstream
and downstream of the insertion position. Reads were assembled into contigs using
Edena66 with parameters –d 20 –c 20 -minCoverage 5 to get a minimum of
5x coverage of ease nucleotide in the contig. Contigs were mapped to the small
custom genomes using bowtie with parameters –chunkmbs 256 –best –strata –f –m
1 –n 0 –p 10 to allow for zero mismatches between the small custom genome and
each alignable contig. Alleles were considered present if there were any contigs that
aligned and contacted the position of the predicted insertion.

Confirming predictions with Sanger sequencing. A portion of the predicted
indels was confirmed using Sanger sequencing. First the genomic region in ques-
tion was amplified with PCR. PCR primers were designed B250 bp upstream and
downstream of the predicted indel using Primer3 (ref. 67). Primer sequences are
available in Supplementary Table 3. PCR was carried out with Phusion Flash High
Fidelity PCR Mix (Fischer Scientific F-548S) using standard conditions and
genomic DNA from the cell line in which the indel was predicted in. The products
were purified (Qiagen 28104) and Sanger sequenced in the forward and reverse
direction using the original primers. The presence or absence of the indel was
called through examination of the chromatogram and comparison with the
reference genome. The sequence of the insertion was determined either by manual
deconvolution of the chromatogram or cloning. When cloning was used,
PCR products were cloned into the pGL3 vector and at least six individual
clones were sequenced.

Patient-derived xenografts/patient samples. Diagnostic DNA samples were
available from 164 paediatric and young adult T-ALL patients (age 1–25)
entered into the UKALL2003 trial, excluding those with bi-phenotypic leukaemia
or T-cell lymphoma. Ethical approval for the trial was obtained from the
Scottish Multi-centre Research Ethics Committee and informed consent was
obtained in accordance with the Declaration of Helsinki. The trial is registered at
http://www.controlled-trials.com under ISRCTN number 07355119. Mutation
screening for recurrence of the LMO2 enhancer mutation was performed using
denaturing high-performance liquid chromatography and Sanger sequencing.

Luciferase enhancer-reporter assays. Luciferase reporter assays were performed
as previously described68 with modifications. The candidate enhancer region
(B600 bp) around the LMO2 locus was cloned into a pGL3 (Promega) reporter
vector (BamHI-SalI sites) that contains a Firefly luciferase gene driven by
a minimal c-MYC promoter69. The candidate enhancer region around LMO2 was
PCR-amplified using the following primer sequences (50–30): ACTTTGCC
TTTCCCCAGTTGC and ATGGCCTTTCTGAGCCTTCC. MOLT4 genomic
DNA was used as template DNA in the PCR reactions. The sequences of the cloned
candidate enhancer containing the LMO2-proximal or the reference sequence
were verified by Sanger sequencing. 2� 105 Jurkat T-ALL cells were transfected
with 475 ng of the reporters using MOLT4 Avalanche transfection reagent
(EZ Biosystems). 25 ng of a Renilla luciferase control plasmid (pRL-SV40;
Promega) was co-transfected as a normalization control. After 40 h of incubation
luciferase activity was measured using the Dual-Luciferase Reporter Assay System
(Promega). All luciferase reporter assays were performed in quadruplicates.
Luciferase activity was normalized to the activity measured in cells transfected with
a construct containing only the promoter.

Figure 4 | A confirmed insertion alters the regulation of a T-ALL oncogene. (a) Insertion near LMO2 in MOLT4 T cell acute lymphoblastic leukaemia cells.

(Left) representation of an insulated neighbourhood, which is a loop between distal CTCF- and cohesin-bound sites. The MYB-bound LMO2 enhancer and

LMO2 gene are within the neighbourhood. (Right) An insulated neighbourhood defined in Jurkat T-ALL cells connecting CTCF-bound sites encompasses

LMO2 and its enhancer. Tracks of H3K27ac and MYB ChIP-Seq signal at the LMO2 locus with predicted insertion in the MOLT4 genome and protein-coding

oncogene below. Region containing the insertion is indicated in black. Inserted sequence is in red. Scale bar represents 5,000 bases. (b) Sanger sequencing

chromatograms of MOLT4 alleles separately cloned from the heterozygous insertion in the LMO2 enhancer. (c) ChIP-Seq signal at the LMO2 enhancer

across 10 T-ALL samples. The sequence at the LMO2 enhancer-associated insertion is noted. The KOPT-K1 genome contains a translocation near LMO2 and

was not included in the display. Scale bar represents 2,000 bases. (d) Patient genomes contain insertions at the LMO2 enhancer locus, noted in red.

(e) Enhancer activity of the luciferase reporter is significantly higher for the region containing the insertion allele compared to the region not containing the

insertion allele (Po0.001, two-tailed Student’s t-test). The mean is plotted, and error bars indicate s.d. from four replicates. (f) Allele-specific ChIP-qPCR

bar charts showing quantitative H3K27ac, TAL1 and MYB binding at the region containing the insertion; the allele with the insertion is preferentially bound

by all three. ChIP-qPCR was performed for each of the three factors with primers that include or exclude the insertion. Enrichment over input DNA (DDcT)

is plotted. (g) ChIP-Seq reads for H3K27ac, TAL1, and MYB preferentially aligned to reference sequences containing the LMO2-proximal insertion. Counts

of reads aligning to an insertion-including reference (red) and insertion-excluding reference (black) are displayed as barplots. (h) Sanger sequencing

chromatograms of gDNA and cDNA show that the LMO2 gene is expressed from one allele in MOLT4 cells. (top) A coding SNP in LMO2 is confirmed to be

heterozygous by sequencing genomic DNA in an LMO2 exon (gDNA). (bottom) Sanger sequencing of cDNA reverse-transcribed from mRNA shows only

one heterozygous LMO2 allele is transcribed.
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Allele-specific ChIP-qPCR. ChIP was performed as described in the ChIP-Seq
section above with antibody dilutions as described. Additional antibodies used
included anti-MYB (Abcam ab45150) and anti-TAL1 (Santa Cruz sc12984).
Allele-specific enrichment was detected using allele-specific primers in quantitative
real-time PCR performed on a 7000 AB Detection System according to the
manufacturer’s instructions (Applied Biosystems). The following primers
were used:

Insertion containing allele: (50–30) TCCTGCCCTGCGGTTTAACG, and
(50–30) GATCTGCTTCTTGGAGAGCTGC

Reference allele: (50–30) GCCCTGCGTGAGTTTACTGTG and (50–30)
GATCTGCTTCTTGGAGAGCTGC

Enrichment was calculated using the delta Ct method against a negative
control region amplified by the following primers: (50–30) CCCACCTTGTGTTCA
AATGCTGA and (50–30) ACGCTTTTCTTCTGCCTTCTGC. The values
calculated in the ChIP samples were subsequently normalized against those
measured using the ChIP input DNA as a template in the qPCR reaction.

Allele-specific ChIP-seq coverage. If an enhancer-associated insertion alters
enhancer activity, it is predicted to alter the number of reads coming from each
allele in ChIP-seq experiments. For each predicted insertion, two small genomes
were created containing only the reference sequence or the reference sequence
modified with the predicted insertion. Small genomes were two times the read
length, centred on the insertion locus, and the reference sequence was taken from
hg19.

For expediency, bowtie (parameters –chunkmbs 256 –best –strata –n 2) was
used to align to a file containing all reference or all insertion sequences to create a
list of all possible mappable reads in this strategy. The –m parameter that
determines the maximum number of allowed mappings was set to the number of
insertions predicted in the sample to allow reads that may map to multiple
insertion sites.

The files containing all reference-mapping or insertion-mapping reads was then
used to align to each reference small genome or insertion small genome for
each insertion. This was accomplished with bowtie with parameters –chunkmbs
256 –best –strata –m 1 –n 2. Reads mapping to each allele were counted.

Allele-specific RNA assay. To detect allele-specific LMO2 expression, we
exploited the heterozygosity at the rs3740617 SNP in MOLT4 cells. This
SNP is located in the 30untranslated regions of the LMO2 transcript. The region
containing the SNP was amplified by PCR using the following primers:
(50–30) GTCCTTCTGTCACCTTGAAGTG and (50–30) TATGCCAGATCCAAA
TGCCAG. Either genomic DNA of MOLT4 cells or cDNA was used as a template
in the PCR reaction. To generate cDNA, RNA was isolated using the RNeasy Plus
purification kit (Promega), and reverse transcribed using oligo-dT primers and
SuperScript III reverse transcriptase (Life Technologies 18080044) according to the
manufacturers’ instructions. The fragments were gel-purified (Qiagen Gel Extrac-
tion Kit) and submitted to Sanger sequencing using the primers used for ampli-
fication. The distribution of the alleles containing the two nucleotide variant at the
SNP position in the genomic DNA and cDNA was estimated by inspection of the
Chromatograms of the Sanger sequencing reactions.

Processing insertions in COSMIC. To identify predicted enhancer-associated
insertions in patient data, we downloaded grch37 coordinates and sequences from
COSMIC v75. These were parsed into coordinateþ sequence identifiers. The
collapsed union of all enhancers from all samples in this study was created and
used to find COSMIC insertions in enhancers. A strict overlap was required
to count the number of patient insertions that could exist in the enhancers
of our cell lines.

Thirty-six of our 82 cell lines were analysed by COSMIC’s Cell Line Project:
A673, CAPAN-1, Capan-2, CCRF-CEM, CFPAC-1, COLO-741, DND-41,
DOHH-2, GRANTA-519, NCI-H2171, NCI-H358, NCI-H69, NCI-H82,
HCC1954, HCT-116, HeLa, JEKO-1, Jurkat, KARPAS-422, K-562, KELLY,
LOUCY, MCF7, MDA-MB-231, MDA-MB-468, MIA-PaCa-2, MM1S, MOLT-4,
OCI-LY7, P12-ICHIKAWA, PC-3, RPMI-8402, RS4-11, SK-MEL-5, SK-N-AS,
T47D. The COSMIC enhancer-associated insertions from each sample were
compared against the 118,514 predicted enhancer-associated insertions in
these lines using positionþ sequence.

Analysis of patient genomes. We analysed 60 tumour-normal matched samples
from Shanghai Children’s Medical Center (SCMC, N¼ 33) and St Jude Children’s
Research Hospital (SJCRH, N¼ 27) collected as part of an ongoing collaboration
between both, including 43 diagnosis tumours and 17 relapsed samples. Samples
were collected and analysed by whole genome sequencing (tumour and normal)
and RNA sequencing (tumour only) at SCMC or SJCRH accordingly. We
compared the variation between the tumour and normal samples to verify if any
candidate insertion from our analysis was somatically acquired. Insertions
proximal to TAL1 and LMO2 were discovered to be somatically acquired in this
cohort. RNA-seq data were analysed to identify allele-specific production of
reads consistent with heterozygous expression from this locus. Eleven SNPs were

confirmed to be heterozygous in the LMO2 locus. Allele-specific pileup of reads
from whole-genome sequencing and RNA-seq data were calculated.

Reagent validation. ab4729, which is used for all newly published ChIP-seq,
ab45150, which is used for MYB ChIP-PCR, and sc-12984, which is used for
TAL1 ChIP-PCR are human ChIP-grade antibodies: http://1degreebio.org/
reagents/product/101583/?qid=1356150

http://1degreebio.org/reagents/product/101339/?qid=1386512
https://www.citeab.com/antibodies/829388-sc-12984-tal1-c-21/
In addition, sc-12984 has been validated in our lab to specifically bind TAL1

(ref. 51).
RPMI-8402 is listed as a misidentified cell line where authentic stock is known

to exist70. For our previous publication, this stock was purchased from DSMZ,
which is the recommended source of authentic stock (GSM1442003).

For this study, we produced H3K27ac ChIP-Seq datasets in eight cell lines:
CCRF-CEM, DU.528, KOPT-K1, Loucy, MOLT-4, P12-ICHIKAWA, PF-382,
SK-N-AS.

CCRF-CEM, MOLT4, Jurkat, Loucy and SK-N-AS cells were purchased
from ATCC with catalogue numbers CCL-119, CRL-1582, TIB-152, CRL-2629 and
CRL-2137, respectively.

DU.528 cells were acquired from J. Kurtzberg at Duke.
KOPT-K1 cells were acquired from S. Nakazawa at Yamanashi Medical

University in Japan.
PF-382 cells were purchased from DSMZ with catalogue number AAC 38.
Cell lines were all authenticated by DNA fingerprinted with small tandem

repeat profiling by Genomics Core Services in Molecular Biology Core Facilities,
DFCI. CCRF-CEM, MOLT4, Jurkat, Loucy, DU.528, KOPT-K1 and PF-382 cells
were fingerprinted in February 2016. SK-N-AS cells were fingerprinted in March
2015. Cell lines were all tested for mycoplasma contamination using MycoAlert,
and all tested negative before sample preparation.

Data availability. The ChIP-Seq and control datasets generated for this study are
available in the GEO repository https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE76783. The ChIP-Seq datasets analysed in the current study are
noted in Supplementary Table 1.

The hg19 genomic locations of germline variants in dbSNP (All SNPs v 144) are
available via the UCSC genome browser:

https://genome.ucsc.edu/cgi-bin/hg
The identity and hg19 locations of mutations in cell line genomes are available

on request from COSMIC: http://cancer.sanger.ac.uk/cell_lines
The identity and hg19 locations of mutations in patient genomes are available

on request from COSMIC: http://cancer.sanger.ac.uk/wgs
The cohesin (SMC1) interactions used to define insulated neighbourhoods

for gene assignment are available in a previous publication50 as Table S2A.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884612/bin/NIHMS783783-
supplement-Table_S2.pdf

Variants in the GM12878 Illumina Platinum Genome are available from
Illumina: ftp://platgene_ro@ussd-ftp.illumina.com/older_releases/hg19/8.0.1/
NA12878/NA12878.vcf.gz

The hg19 genomic locations of repeat elements from RepeatMasker used to
qualify the LMO2-proximal enhancer region as a low-fidelity SINE repeat are
available from the UCSC genome browser: https://genome.ucsc.edu/cgi-bin/hg

The high-throughput sequencing results have been deposited on the
GEO database with accession number GSE76783.

Data from high-throughput sequencing of predicted insertions in the MOLT4
cell line have been deposted in dbGaP with accession number phs001242.v1.p1.
The remaining data are available within the Article file and Supplementary
Information or available from the author upon request.
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Corrigendum: Small genomic insertions form
enhancers that misregulate oncogenes
Brian J. Abraham, Denes Hnisz, Abraham S. Weintraub, Nicholas Kwiatkowski, Charles H. Li, Zhaodong Li,

Nina Weichert-Leahey, Sunniyat Rahman, Yu Liu, Julia Etchin, Benshang Li, Shuhong Shen, Tong Ihn Lee,

Jinghui Zhang, A. Thomas Look, Marc R. Mansour & Richard A. Young

Nature Communications 8:14385 doi: 10.1038/ncomms14385 (2017); Published 9 Feb 2017; Updated 1 Jun 2017

In the original version of Supplementary Data 1 associated with this Article, the list of predicted enhancer-associated insertions was
inadvertently truncated. The HTML has now been updated to include the correct version of the Supplementary Data 1.
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