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Abstract

Recent therapeutic successes have renewed interest in drug combinations, but experimental 

screening approaches are costly and often identify only small numbers of synergistic 

combinations. The DREAM consortium launched an open challenge to foster the development of 

in silico methods to computationally rank 91 compound pairs, from the most synergistic to the 

most antagonistic, based on gene-expression profiles of human B cells treated with individual 

compounds at multiple time points and concentrations. Using scoring metrics based on 

experimental dose-response curves, we assessed 32 methods (31 community-generated approaches 

and SynGen), four of which performed significantly better than random guessing. We highlight 

similarities between the methods. Although the accuracy of predictions was not optimal, we find 

that computational prediction of compound-pair activity is possible, and that community 

challenges can be useful to advance the field of in silico compound-synergy prediction.

Recent success in the study of synergistic combinations, such as the use of CHK1 inhibitors 

in combination with several DNA damaging agents1 or of the PARP inhibitor olaparib in 

combination with the PI3K inhibitor BKM120 (ref. 2), have generated significant interest in 

the systematic screening of compound pairs to identify synergistic pairs for combination 

therapy. Compound synergy can be measured by multiple endpoints, including reducing or 

delaying the development of resistance to treatment3 (for instance by abrogating the 

emergence of resistant clones4–6), improving overall survival7,8 or lowering toxicity by 

decreasing individual compound dose9.

Similarly, at the molecular level, synergistic interactions can be implemented by several 

distinct mechanisms. For instance, a compound may sensitize cells to another compound by 

regulating its absorption and distribution, modulating the cell’s growth properties10, 

inhibiting compound degradation11, inhibiting pathways that induce resistance6 or reducing 

the other compound’s toxicity12. When used in combination, two compounds may elicit one 

of three distinct responses: (i) additive, when the combined effect is equivalent to the sum of 

the independent effects; (ii) synergistic, when the combined effect is greater than additive; 

and (iii) antagonistic, when the combined effect is smaller than additive. The goal of 
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combination therapy is thus to attain a synergistic or at least an additive yet complementary 

effect.

Most approaches to identify synergistic compound pairs are still exploratory13,14. In cancer 

research, synergy assays are usually performed by treating cell lines in vitro with all possible 

compound combinations from a diverse library or with candidate combinations selected on 

the basis of mechanistic principles. Unfortunately, such experimental screens impose severe 

limits on the practical size of compound diversity libraries. Computational methods to 

predict compound synergy can potentially complement high-throughput synergy screens, but 

the few that have been published lack rigorous experimental validation or are appropriate 

only for compounds that modulate well-studied molecular pathways15 or that are equivalent 

to previously established combinations16. Current algorithms are not generalizable to 

arbitrary compound combinations unless molecular profile data following compound-pair 

treatment are available17, which is clearly impractical. Thus, there is a need for new 

methods to predict compound synergy from molecular profiles of single compound activity, 

as well as for assays designed to objectively and systematically evaluate the accuracy and 

specificity of such predictions.

To address this issue, the DREAM Challenges initiative (an effort run by a community of 

researchers that poses fundamental questions in systems biology and translational science in 

the form of crowdsourced challenges), in collaboration with the National Cancer Institute, 

organized a community-based challenge to systematically and objectively test methods to 

computationally predict compound-pair activity in human B cells. Challenge participants 

were asked to rank 91 compound pairs (all pairs of 14 compounds) from the most synergistic 

to the most antagonistic in the OCI-LY3 human diffuse large B-cell lymphoma (DLBCL) 

cell line (Fig. 1), based on the gene expression profiles of cells perturbed with the individual 

compounds. Predictions were then evaluated against an experimentally assessed gold 

standard, generated by systematic evaluation of compound-pair synergy in vitro. This data 

set was originally intended to experimentally validate the SynGen algorithm, which we 

introduce for the first time in this paper. However, we chose to first give the community the 

opportunity to develop in silico methods for synergy predictions. Therefore, we also 

evaluated SynGen, which, by introducing original ideas of synergy prediction, complements 

the 31 methods that participated in the DREAM challenge.

We present a comparative blind-assessment of all 31 methods submitted to the DREAM 

Challenge as well as a nonblind assessment of SynGen. Comparative analyses suggest that 

some de novo, in silico compound synergy prediction methods can achieve a performance 

that is statistically significantly better than random guessing. Moreover, integrating the 

methods can further increase performance. Although these results are encouraging, there is 

still much room for performance improvement.

RESULTS

Summary of data set and challenge

Participants were provided with (i) dose-response curves for viability of OCI-LY3 cells 

following perturbation with 14 distinct compounds (Supplementary File 1), including 
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DMSO as a control media, (ii) gene expression profiles (GEP) in triplicates of the same cells 

untreated (baseline) and at 6 h, 12 h and 24 h following perturbation with each of the 14 

compounds, and (iii) the previously reported18 baseline genetic profile of the OCI-LY3 cell 

line (Fig. 1). Two compound concentrations were used, including the compound’s IC20 

(concentration of drug needed to kill 20% of cells) at 24 h and the compound’s IC20 at 48 h, 

as assessed from nine-point titration curves. Any additional baseline data from the literature 

or experimental assays were considered admissible in the challenge, but direct measurement 

of compound synergy, even in limited format, was expressly prohibited. Challenge 

participation required ranking each of the 91 compound pairs from most synergistic to most 

antagonistic.

The 31 predictions submitted to this challenge showed considerable diversity in the methods 

and data used (Table 1 and Supplementary Table 1). This reflects the lack of standard 

approaches for predicting compound-pair activity from transcriptomic data and the lack of 

training data (that is, pairs of compounds known to be synergistic or nonsynergistic), 

intentionally preventing use of established machine learning methods. Despite broad 

methodological diversity, of the 31 teams, 10 based their predictions on the hypothesis that 

compounds with higher transcriptional profile similarity (different similarity definitions 

were used) were more likely to be synergistic (similarity hypothesis). In contrast, eight 

teams assumed the opposite (dissimilarity hypothesis). The remaining teams either used a 

combination of similarity and dissimilarity hypotheses (combination hypothesis, n = 4) or 

used more complex hypotheses (n = 9). Only two teams made explicit use of OCI-LY3 

genetic profiles, suggesting either that genomic data are deemed not useful to this analysis or 

that their use in predicting compound synergy is not yet developed. Finally, 12 teams relied 

only on provided information, whereas the others used additional literature information, 

such as generic pathway knowledge, compound structure or targets, and substrates of these 

compounds.

Performance evaluation

To objectively evaluate challenge submissions, we generated a gold-standard data set based 

on the experimental assessment of OCI-LY3 cell viability for the 91 compound pairs used in 

the challenge, at 60 h. The joint compound-pair activity was estimated using excess over 

Bliss (EOB) (Supplementary Fig. 1), which determines whether the combined effect of two 

compounds is significantly greater or smaller than the naive (independent) combination of 

their individual effects. These activity estimates were used to rank all pairs from most 

synergistic to most antagonistic (Supplementary Table 2).

Predictions were scored using a modified version of the concordance index19 called the 

probabilistic concordance-index (PC-index, Supplementary Note 1). This metric quantifies 

the concordance between the ranking of compound pairs in the gold standard (Fig. 2a) and 

the predicted ranking in each submission, accounting for experimental measurement errors 

in the estimation of the EOB, that is, it estimates the average fraction of compound pairs, 

over all experimental replicates, ranked correctly when rankings of pairs of compound pairs 

are compared with their respective experimental rank. Other methods such as concordance 

index or correlation assume no ambiguity in the observed ranks. However, experimental 
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noise causes uncertainty in ranking compound pairs, thus making these methods unsuitable 

for scoring the predictions. Source code for the PC-index can be found in Supplementary 

Software 1.

Of 31 predictions (SynGen was evaluated separately as it was developed by one of the 

Challenge organizers and therefore it did not participate in the Challenge on the same terms 

as the other 31 methods), three methods (DIGRE, IUPUI_CCBB and DPST) produced 

predictions that were statistically significant at a conservative false-discovery rate threshold 

(FDR = 0.05) (Fig. 2b). Independent of whether these methods may help in planning large 

synergy screens, this suggests that compound synergy prediction is possible. Furthermore, 

our challenge-based blind assessment of these methods’ performance provides a realistic and 

effective baseline for further methodological development.

We found little obvious association between method performance and data utilization (Fig. 

2b and Supplementary Fig. 2). Only use of gene expression profiles at 24 h following 

treatment showed a minimal effect on performance (Supplementary Fig. 2). However, this 

trend was not statistically significant and additional data will be required to evaluate it. 

Additionally, distinct hypotheses used by the teams may have had an influence on 

performance (Supplementary Fig. 3 and Table 1). For instance, teams using similarity or 

combination hypotheses achieved overall a higher PC-index compared to other teams using 

other hypotheses. However, these differences are not statistically significant and are reported 

here for completeness.

To test performance consistency, we scored each prediction using a second metric 

(resampled Spearman correlation). Both metrics yielded virtually identical performance 

evaluation (correlation r = 0.99), with only small differences in rank for a few methods that 

did not perform better than random (Supplementary Fig. 4). The robustness of the prediction 

ranking was tested by removing one compound at a time from the set and considering the 

remaining 13 compounds (leave-one-out). This analysis revealed that the predictions from 

two best-performing methods consistently ranked in the top 5 across each of the 14 different 

rankings obtained by removing each compound, suggesting that their predictions are only 

weakly biased by any specific drug selection (Fig. 2c and Supplementary Fig. 5). The 

remaining methods showed much greater variation in their performance.

Best performing methods

The best performing method, DIGRE (drug-induced genomic residual effect) hypothesizes 

that when cells are sequentially treated with two compounds, the transcriptional changes 

induced by the first contribute to the effect of the second (Fig. 3a). This is consistent with 

the observation that sequential drug administration affects outcome20,21. Thus, although 

compounds were administered simultaneously in the experimental assays, the algorithm 

models synergy sequentially. DIGRE implements three major steps. The first step involves 

comparing transcriptional changes following individual compound treatment to derive a 

compound-pair similarity score. This is obtained, first, by overlapping differentially 

expressed genes after treatment with the two compounds with eight cell growth–related 

KEGG pathways (focused view), and second, by considering genes upstream of the 

differentially expressed genes in 32 cancer-relevant KEGG pathways (global view). In the 
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second step, the effects of compound-induced transcriptional changes on cell survival are 

approximated using a compound similarity score r, defined as: (1 − fB+A′) = (1 − rf2B)[1 − (1 

− r)fB], assuming that samples were treated first with compound A (where ′ suggested 

primary treatment) followed by compound B (Fig. 3b). Here, fB+A′ represents the cell 

viability reduction after B treatment, following the transcriptional changes induced by A, r is 

the compound-pair similarity score, fB is the viability reduction after B treatment, and f2B is 

the viability reduction for a double dose of B, estimated from the dose-response curve. The 

final step introduces a combined score defined as ZB+A′ = 1 − (1 − fA)(1 − fB+A′), where fA is 

the viability reduction after A treatment. Finally, the fraction of dead cells Z, also defined as 

synergistic score, is estimated as the average between the two possible sequential orders of 

treatment (Supplementary Note 2).

Our analyses suggest that the following factors contribute to DIGRE performance (Fig. 3c): 

(i) the hypothesis that compound synergy is at least partially due to compound-induced 

transcriptomic residual effects, which are the transcriptional changes induced by the first 

compound that contribute to the cell inhibition effect of both compounds; (ii) using explicit 

mathematical models to quantify the relationships between transcriptomic changes and 

compound synergy (i.e., analysis of compound-induced transcriptomic residual effects and 

compound similarity score); (iii) using information from the full dose-response curve instead 

of just the IC20 data; (iv) incorporating pathway information (focused view) and gene-gene 

interactions (global view) to measure similarity between transcriptomic changes induced by 

different compounds; and (v) using external data sets to optimize pathway selection and 

model parameters. When each of these factors was systematically removed from the 

analysis, the algorithm performance decreased. In particular, the residual effect hypothesis is 

critical as its removal completely abrogates the algorithm’s predictive power 

(Supplementary Note 2 and Supplementary Fig. 6).

The second-best-performing method (IUPUI_CCBB) hypothesized that the activity of a 

compound can be estimated from its effect on the genes that are significantly differentially 

expressed following treatment with highly toxic compounds versus control media. 

Compound synergy or antagonism is then determined by computing whether the effect of 

two compounds on this set of genes is concordant or discordant, by means of a compound-

pair interaction score.

For methods that are not based on machine learning and cannot thus rely on positive and 

negative examples, performance is determined by how well they model the underlying 

biology of the process. As such, the best-performing algorithms exploited the dose-response 

curve, the concept that one compound may have a faster pharmacodynamics than the other, 

and also the fact that synergy was estimated by excess over Bliss additivity. Further 

information about all participating methods and the source codes for the DIGRE and 

IUPUI_CCBB methods can be found in Supplementary Note 2 and Supplementary Software 

2 and 3.

Community-based methods

Participants used quite distinct computational strategies resulting in at least partially 

statistically independent predictions that may be complementary. This suggests that their 
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integration may outperform individual methods. Similar integrative methods have been 

successful in a variety of biological challenges, such as predicting the disorder of proteins22, 

identifying monoamine oxidase inhibitors23, inferring gene regulation24, and in cancer 

prognostics25 and diagnostics26.

To test the predictive power of integrative approaches, we divided the gold standard data set 

into three subsets (S1, S2 and S3). S1 was used to sort the methods from best to worst 

performers, S2 for determining how many of the top-performing methods should be 

integrated to achieve optimal performance, and S3 for determining the final performance of 

the best individual and best integrative methods independent of training bias, thus avoiding 

overfitting. This provides a practical approach to implement multimethod integration as a 

crowdsourcing activity. Based on 1,000 distinct S1, S2 and S3 splits, we found that 

integrative methods consistently and significantly outperformed the best single methods 

obtained from S1 (P ≤ 10−36, by Wilcoxon rank sum test, Fig. 4a) in more than 75% of splits 

(Supplementary Fig. 7). When using only single best method’s performance (ordered 

according to set S1), average integrative performance (when evaluated independently in 

both set S2 and S3) peaked at ~7% improvement, when the first seven methods were 

integrated, and decreased monotonically when more than seven methods were used (Fig. 

4b). When also selecting the optimal number of methods (based on evaluations in S2), 

integration of the first 4–6 methods, on average, produced the best result (Supplementary 

Fig. 8). Critically, challenge submissions were evaluated using the full 91 compound-pair 

set, whereas predictive power of the crowdsourcing approach was evaluated using only a 

third of these (i.e., 30 compound pairs). This consideration should be taken into account 

when comparing the PC-index in Figures 2b and 4. Such an increase in performance when 

integrating disparate methods has been called the “wisdom of crowds”24.

Methods’ advantages and limitations

Because multimetric evaluation provides a broader assessment of a method’s bias and 

value27, we used two additional metrics, sensitivity versus specificity (ROC) analysis and 

precision/sensitivity analysis, for performance assessment. The first is a threshold-free 

metric designed to assess a method’s tradeoff between sensitivity and specificity in 

predicting synergistic or antagonistic combinations, whereas the second tests how precise in 

predicting the intended pairs the methods are at a specific cutoff. If we choose the cutoff to 

be the number of pairs of interest (that is, the number of synergistic and antagonistic pairs 

when studying synergy and antagonism, respectively), then precision coincides with 

sensitivity.

We first defined a criterion and identified 16 synergistic and 36 antagonistic compound pairs 

(Fig. 5a). We then evaluated the sensitivity versus specificity tradeoff using the area under 

the receiver operating characteristic (ROC) curve (AUC)28 independently for synergistic and 

antagonistic compound pairs (Supplementary Fig. 9), resulting in distinct rankings. Based on 

AUC ranking, DIGRE was the best algorithm for antagonistic pair prediction and the fourth 

for synergistic ones. Conversely, the second team was the best performer in predicting 

synergistic pairs but did not perform well on antagonistic ones (Fig. 5b). Using the ROCs, 

we could also compute the statistical significance of the difference in performance of any 

Bansal et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2015 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two methods using the Hanley-McNeil method. This was done separately for synergistic and 

antagonistic compound pairs. We considered method A to outperform method B if its ROC-

based performance was statistically significantly better, either in predicting antagonism or 

synergy (P ≤ 0.05). This analysis revealed no statistically significant differences in the direct 

performance comparison of the top methods (Supplementary Fig. 10) but confirmed that the 

top three methods were statistically significantly better than the others.

We performed precision/sensitivity analysis by selecting the top 16 and the bottom 36 

predictions from each method (Online Methods). Using this metric, the fifth overall best 

method and DIGRE were the best at predicting synergistic and antagonistic combinations, 

respectively (Fig. 5c). When a similar analysis was performed to test for the 

misclassification rate (i.e., synergistic pairs predicted as antagonistic and vice versa), we 

found that DIGRE’s misclassification rate was very low, despite their weak performance in 

predicting synergistic pairs (Supplementary Fig. 11); that is, although the algorithm was not 

effective at identifying synergistic pairs, it virtually never misclassified a synergistic pair as 

antagonistic and vice versa (they were misclassified as additive). Across these metrics, the 

methods’ hypotheses had a trending effect on predicting synergy (methods using a similarity 

hypothesis trended to have better sensitivity, Supplementary Fig. 12a) based on precision/

sensitivity analysis but hardly any effect on predicting antagonism (Supplementary Fig. 

12b), suggesting that hypotheses needed to correctly predict synergy and antagonism may be 

different. We need more extensive studies to confirm if such a trend generalizes.

As we did for the PC-index, we also evaluated the performance of aggregating predictions 

by various methods using these metrics to test “wisdom of crowds.” Due to the limited 

number of synergistic (16) and antagonistic (36) compound pairs, we could not divide the 

gold standard data set into three subsets (S1, S2 and S3) to train and evaluate the 

performance of aggregating predictions by various methods on these metrics. Therefore, we 

used the training outcome based on the PC-index used in the previous section and averaged 

the performance of the optimized number of top-performing methods according to S2 across 

1,000 partitions to determine the average precision and AUC metrics to test “wisdom of 

crowds.” Similar to the PC-index, average integrated performance of the top seven methods 

(when evaluated in S3) showed 14% and 7% improvement in AUC for predicting synergistic 

and antagonistic compound pairs, respectively, compared to only single-best method’s 

performance (ordered according to set S1). Results showed that “wisdom of crowds” results 

in high and consistent performance across all metrics, further supporting the notion of 

integrative strategies in scientific research. Indeed, no individual method outperformed the 

others across all metrics, suggesting that multiple hypotheses may need to be combined to 

globally address context-dependent compound synergy and antagonism. In particular, 

although several methods (Fig. 5c) were clearly statistically significant in predicting 

compound synergy, overall sensitivity was relatively modest (the highest being 37.5% (P ≤ 

0.02), compared to 17.6% by random selection, Fig. 5c). Performance using “wisdom of 

crowds” did especially well, achieving greater than 46% sensitivity for synergy and 51% for 

antagonism, suggesting that methods for in silico assessment of compound synergy are 

starting to achieve predictive value.
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The SynGen algorithm

The experimental data set was originally intended to validate SynGen, a method explicitly 

designed to predict synergy and not antagonism. Following on results from several 

publications6,29–33, SynGen assumes that the activity of the Master Regulators (MRs) of a 

specific cellular phenotype, as inferred by the Master Regulator Inference algorithm 

MARINa29,30, is essential for cell viability (akin to oncogene addiction34). MRs are defined 

as regulators that are causally necessary and sufficient for the maintenance of a phenotype-

specific gene expression signature. Thus, perturbations that either (i) abrogate the activity 

pattern of cell state MRs or (ii) activate MRs of cell death phenotypes, as also inferred by 

MARINa, may induce loss of cell viability. Based on this hypothesis, SynGen first infers 

relevant MR patterns for OCI-LY3 cell death and cell state and then identifies compounds 

that are most complementary in inducing the former and abrogating the latter 

(Supplementary Note 2). Two signatures used for MR inference were (i) a ‘cell death’ 

signature based on GEP following perturbation by the 14 compounds at 24 h, which induce 

appreciable toxicity levels (IC20); and (ii) a ‘cell addiction’ signature, associated with the 

activated B-cell subtype of DLBCL cells (which include OCI-LY3) versus germinal center 

B-cell subtype, as we have shown that MRs of tumor subtype elicit addiction30. The latter 

signature was computed using publically available GEPs35 for germinal center B-cell 

subtype cell lines (OCI-LY1, OCI-LY7, OCI-LY8, OCI-LY18 and SUDHL5) and for the 

activated B-cell subtype line OCI-LY3. SynGen then predicted synergistic compound 

combinations by selecting the compound pairs that are most complementary in 

implementing or abrogating these MR patterns, respectively. SynGen predicted synergistic 

compound pairs with high sensitivity (56%, P ≤ 0.001). However, its ability to predict the 

full compound-pair ranking was not statistically significant, as the algorithm was not 

designed to predict compound antagonism. Source code for the SynGen algorithm can be 

found in Supplementary Software 4.

Compound- and cell-dependent bias

To analyze whether specific compound categories are more likely to elicit synergy or 

antagonism, and whether successful predictions were biased toward specific compounds, we 

ranked all compounds using the area under recall curve, AURC, for their specific 

combinations (Supplementary Fig. 13). High AURCs indicate compound proclivity toward 

synergy, whereas low AURCs indicate antagonism. Analysis of gold standard data suggests 

that pleiotropic compounds, exhibiting significant polypharmacology, such as H-7 and 

mitomycin C, were enriched in synergistic pairs. Conversely, compounds with more targeted 

mechanisms, such as rapamycin and blebbistatin, were least synergistic.

Finally, to determine whether synergy or antagonism is a universal property of the 

compound pairs or is context specific, we performed additional experiments to assess 

synergistic activity for 142 compound pairs in MCF7 breast cancer cells and LNCaP 

prostate cancer cells and compared them (Supplementary Table 3). The analysis revealed no 

significant correlation between compound pairs ranked from the most synergistic to the most 

antagonistic (ρ = −0.06, P = 0.45, Supplementary Fig. 14). This shows that synergy and 

antagonism are highly context specific and are thus not universal properties of the 

compounds’ chemical, structural or substrate information. As a result, predictive methods 
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that account for the genetics and regulatory architecture of the context will become 

increasingly relevant to generalize results across multiple contexts.

DISCUSSION

This challenge provides a systematic and comparative evaluation of compound synergy and 

antagonism prediction methods based on blind experimental data. There are at least four 

reasons supporting the value and significance of this effort. First, although there are no 

previous experimentally validated efforts to predict synergy or antagonism of arbitrary 

compound pairs from single-compound perturbation data, our analysis shows that several 

laboratories have developed methodologies whose predictive ability is significantly better 

than random. Second, synergy and antagonism emerge as strongly context-dependent 

compound-pair properties. Thus, the value of synergy prediction methods is even more 

relevant, as experimental high-throughput synergy screen results cannot be generalized from 

one cellular context to others. Third, despite a complete lack of publications and established 

methodologies in this area, 31 teams from more than 13 countries participated in the 

challenge, thus effectively creating major interest in this field that over the long run is likely 

to further enhance our abilities to predict compound synergy and antagonism. Fourth, we 

established rigorous evaluation metrics for the assessment of synergy and antagonism 

prediction methods, thus allowing identification of three individual methods whose 

predictions significantly outperformed random guessing.

Although it is premature to claim that these advances will have an immediate and dramatic 

impact on the design of high-throughput screening assays for compound synergy 

assessment, the top-performing methods identified by this challenge already provide 

substantial potential reductions of the search space, suggesting that further improvements 

may increase the practical value of these techniques. For instance, the best-performing 

synergy-prediction method would have allowed screening only half of the compound 

combinations without missing any synergistic pair (Supplementary Fig. 15). Furthermore, 

many large-scale data sets representing individual compound perturbations are being 

generated and put in the public domain, such as those generated by the Library of Integrated 

Network-based Cellular Signatures (LINCS), which produced over 300,000 gene expression 

profiles following single-compound perturbations across multiple cell lines. It is reasonable 

to expect that availability of these data sets will lead to additional advances in the predictive 

power of these methods.

Introduction of additional, more specific metrics suggests that different methods did not 

score consistently across all of them, and that none of the methods is effective in predicting 

both synergy and antagonism. This suggests that the specific hypotheses used to predict 

synergy may not necessarily apply to antagonism prediction, and vice versa. This further 

suggests a valuable path for approaches that integrate different hypotheses for synergy, 

additivity and antagonism.

Even though the SynGen method, for which the data were originally generated, was highly 

effective in predicting compound synergy with higher sensitivity than other methods, its 

validation followed the more common procedure of prediction followed by evaluation 
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against experimental data. However, despite the fact that SynGen is not based on machine 

learning methods that may be trained from experimental data, one cannot absolutely rule out 

potential overfitting. As such, direct comparison of SynGen’s performance to the 

community-submitted algorithms is not appropriate and was deliberately avoided in this 

manuscript.

Our analysis also suggested that compounds exhibiting significant polypharmacology were 

enriched in synergistic pairs, whereas compounds with targeted mechanisms were more 

likely antagonistic. This may be due to the increase in the probability of modulating specific 

synergistic genetic dependencies in the cell, when using polypharmacology compounds36,37. 

Thus, these experimental assays provide an initial basis to guide future development of 

rational methodologies for the study of synergistic compound combinations in ABC-

DLBCL lymphomas, providing further insight about relevant pathways that may be 

exploited in synergy experiments.

Despite these advances, there is ample room for both algorithm and evaluation metric 

improvements. For instance, none of the methods achieved near-optimal predictive power. 

Indeed, even though this challenge shows that current methodologies can perform 

significantly better than chance, there is still a large gap between ground truth (PC-index = 

0.90) and the best prediction algorithms (PC index = 0.61). Methodological improvements 

are thus still required and could be achieved by several approaches, including (i) testing 

additional or more complex hypotheses about the mechanistic basis for compound synergy; 

(ii) generating larger perturbational profile data sets, for instance, using more concentrations 

and time points, to assess both early and late response to compound perturbation; (iii) 

exploring methodologies that better exploit the time-dependent nature of perturbational 

profiles; (iv) measuring complementary, context-specific molecular profiles, such as 

proteomic and epigenomic landscapes, to perform cross-data modality integrative analyses; 

(v) further integrating different methods within a unified framework; and (vi) addressing 

synergy, additivity and antagonism using distinct conceptual frameworks and hypotheses.

Compound synergy and antagonism were assessed only at the IC20 concentration of 

individual compound, using the excess over Bliss additivity. In future challenges, however, 

synergy may need to be tested over a wider range of concentrations and using additional 

methodologies (e.g., isobolograms). Results from gold standard data and predictions from 

top teams suggests that while designing new synergy experiments, it is important to make a 

larger selection of mechanistically diverse small molecules (targeted and pleiotropic) to 

compensate for the small number of potentially synergistic pathways.

Our findings suggest that DREAM challenges can provide a valuable mechanism to 

accelerate the development of predictive models for combination therapy, by providing an 

objective platform for the identification of model strengths and limitations through unbiased 

evaluations of model performance.

METHODS

Methods and any associated references are available in the online version of the paper.

Bansal et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2015 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ONLINE METHODS

Cell culture and compound treatment

The OCI-LY3 diffuse large B-cell lymphoma (DLBCL) cell line was obtained from 

University Health Network (Toronto, Canada) and was cultured under standard conditions 

(37 °C in humidified atmosphere, with 5% CO2) in IMDM supplemented with 10% FCS. 

Each compound was titrated in the OCI-LY3 cell line in a 20-point titration curve. Cell 

viability following compound treatment was determined using the CellTiter-Glo (Promega 

Corporation). An IC20 value for each compound was calculated by using Dose Response Fit 

and Calculate ECx components from the Pipeline Pilot Plate Data Analytics collection. For 

compounds in which more than 20% viability reduction could not be reached, a default 

concentration of 100 μM was used. For generation of GEPs, the OCI-LY3 cells were seeded 

in tissue culture–treated 96-well plates at a density of 50,000 cells per well (100 μl) and 

treated at the IC20 concentrations of each of the compounds at 24 h and 48 h. In the assay, 

three time points (6, 12 and 24 h) were analyzed for gene expression profiling. All profiles 

were generated in triplicate biological replicates except DMSO-treated samples which were 

hybridized in octuplicate as they were used as internal controls for each time point. To 

confirm viability data at each step, identical plates were produced and cell viability assessed 

using the CellTiter-Glo reagent (Promega Corporation).

Gene expression profiling

Total RNA was isolated with the Janus automated liquid handling system (PerkinElmer Inc.) 

using the RNAqueous-96 Automated Kit (Ambion), quantified by NanoDrop 6000 

spectrophotometer and quality checked by Agilent Bioanalyzer. 300 ng of each of the 

samples with RIN value >7 was converted to biotinylated cRNA with the Illumina 

TotalPrep-96 RNA Amplification Kit (Ambion) using a standard T7-based amplification 

protocol and hybridized on the Human Genome U219 96-Array Plate (Affymetrix). 

Hybridization, washing, staining and scanning of the array plates were performed on the 

GeneTitan Instrument (Affymetrix) according to the manufacturer’s protocols.

Experimental determination of synergy

For each compound, IC20 was determined assessed from 20-point titration curves (as 

described above) at 60 h following compound treatment by measuring cell viability and 

generating a dose-response curve. Each compound combination was then tested at the 

respective IC20 (or 100 μM) concentration of the individual compounds in five replicates. 

All compounds and combinations are diluted in DMSO, with a final DMSO concentration of 

0.4%. Cells were placed at a density of 2,000 cells per well in 384-well plates, and 

compounds were added at 12-h intervals after seeding by compound transfers of serially 

diluted compounds. Assay plates were then incubated for 60 h followed by addition of 25 μl 

of CellTiter-Glo (Promega Corp.) at room temperature. Plates were read on the Envision 

(PerkinElmer Inc.) using enhanced luminescence protocol.
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Data processing

All gene expression samples were quality controlled and normalized with the RMA 

normalization method using Bioconductor package in R. The baseline genetic profile of the 

OCI-LY3 cell line was obtained from reference18 and was processed using the CBS 

algorithm, as published47. The final segmentation file was filtered for any germline 

aberrations between 1.74 and 2.3 and segments with less than eight markers. Segments with 

aberrations less than 1.74 or greater than 2.3 were assigned as deleted and amplified, 

respectively.

Excess over Bliss as a measurement for synergy

The Bliss additivism (or Bliss independence) model48 predicts that if compound Dx and Dy, 

with experimentally measured fractional inhibitions fx and fy, have an additive effect, then 

the expected fractional inhibition, fxy, induced by their combination should be:

Excess over Bliss is determined by computing the difference in fractional inhibition induced 

by compound combination, fz, and the expected fractional inhibition, fxy

A compound pair for which eob ≈ 0 has an additive behavior, whereas a compound pair 

with positive (or negative) eob values has synergistic (or antagonistic) behavior. We used 

propagation of errors using s.e.m. of fractional inhibitions to compute the s.e.m. of eob.

Resampled spearman correlation

To assess that the ranking of participants is not biased by our scoring methods, we used 

another independent approach to score all participants. This method assumed that the 

experimental measurements of the mean excess over Bliss for a given compound pair is 

noisy, following a normal distribution, N(μ,σ), with mean, μ, equal to the mean EOB and 

s.d., σ, equal to the s.e.m. of excess over Bliss. For every compound pair, i, we randomly 

sample a possible measurement of the mean EOBi from the distribution associated with that 

compound pair N(μi, σi), resulting in a new sampled observed score for all compound pairs 

. We compute a Spearman correlation between these new sampled 

EOB values and the predicted EOB ranks to generate scorrrand. We repeat this step 10,000 

times creating 10,000 different scorrrand and finally calculate an average over all 10,000 

scorrrand to assign a final score, scorr, to each participant.

P-value estimation

We assessed the statistical significance of scores generated by both probabilistic c-index and 

resampled Spearman correlation methods by assigning a P-value to each score. To compute 

a P-value we generated 10,000 random predictions and scored them independently using 

PC-index and scorr resulting in the generation of an empirical null distribution (PC-indexnull 
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and scorrnull). We used this empirical null distribution to estimate P-values for each 

participant, which are calculated as the fraction of scores in the null distribution higher than 

the participant’s score

Leave-one-out test

To ensure that participant ranktings were robust, we calculated a score for each participant 

by systematically removing one compound and considering 13 compounds for scoring and 

assigning them new ranks. This resulted in 14 different tests for each participant, each after 

removing one of the 14 compounds. In the end each team was assigned 14 ranks based on its 

performance using the remaining 13 compounds.

AUC and precision/sensitivity analyses

We estimated the significance of predicting synergistic and antagonistic compound pairs 

using the area under the receiver operating characteristic curve (AUC), which was called the 

sensitivity versus specificity analysis in the main text. To compute the AUC for synergistic 

predictions, first we sort the predictions of each participant from the most to the least 

synergistic (predicted list). Second, from the gold standard, we define the compound pairs 

that are synergistic and antagonistic. To identify such compound pairs we computed the 

signal to noise ratio (snr) of each compound pair, defined as the ratio of the mean excess 

over Bliss (EOB) over the s.e.m. of EOB. We defined any compound pair as synergistic if 

its mean EOB was positive and its snr is greater than 2, which yielded 16 synergistic 

compound pairs. Similarly, a compound pair is defined to be antagonistic if its EOB is 

negative and its snr is greater than 2, yielding 36 antagonistic compound pairs. The rest of 

the pairs are considered to be additive. From the predicted list, we select the top i predictions 

and calculate the true positive rate (TPRi) and false-positive rate (FPRi). To estimate the 

TPRi and FPRi, we calculate the number of true positives (TPi), defined as the number of 

correct synergistic pairs in the top i predictions, the number of false positives (FPi), defined 

as number of false synergistic predictions in the top i predictions, the number of true 

negatives (TNi), defined as the number of correct nonsynergistic compound pairs predicted 

below the top i predictions and the number of false negatives (FNi), defined as the number 

of synergistic compound pairs predicted below the top i predictions.

Finally, TPRi and FPRi are calculated as

We varied i from 1 to 91 and plotted the TPRi (or sensitivity) versus FPRi (or 1–specificity) 

to generate the receiver operating characteristic (ROC) curve. Finally, we calculated area 

under the ROC curve using a trapezoidal method to integrate the ROC curve. The AUC for 
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antagonistic compound pairs is estimated by ranking predictions from the most to the least 

antagonistic and by selecting the true antagonistic compound pairs from the gold standard.

The precision/sensitivity analysis was performed as follows. After sorting the predictions of 

each participant from the most to the least synergistic, we compute the precision of 

synergistic predictions as the fraction of synergistic compound pairs in the top 16 

predictions, that is

Similarly, precision for antagonistic compound pairs was calculated by sorting the 

predictions of each participant from the most to least antagonistic and computing the 

fraction of antagonistic compound pairs in the top 36 predictions. Sensitivity is defined as 

the number of TP (true positives) divided by the total number of positives, P (e.g., 

synergistic or antagonistic drug pairs). Because we selected the top P drug pairs to compute 

precision, our calculation of precision coincides with the evaluation of sensitivity.

Cross-validated ensemble models

To build ensemble models using predictions from different methods, we averaged the rank 

for each compound pair predicted by all models being aggregated, and re-ranked the 

compound pairs according to the average rank. To evaluate the merits of aggregation, we 

used a model-selection assessment approach. We randomly divided all compound pairs into 

three subsets of equal sizes and used the first group, S1, for sorting the models from the best 

to worst performance, the second group, S2, to estimate the number of models to combine to 

attain best performance, and, finally, the third group, S3, for an unbiased test of the 

individual or aggregate models. We repeated this process 1,000 times to evaluate the 

statistical significance of the differences between aggregate versus individual performance. 

More precisely, in the ith split (where i is varied from 1 to 1,000), we compute the PC-index 

for each participant using the compound pairs in S1i, and based on their performance, create 

a team list T1i ordered from best to worst performing teams. Next we aggregate the k best 

methods in T1i and use subset S2i to compute the PC-index (using the compound pairs in 

S2i), PC2ik, and vary k from 1 to 31. We identify k* such that PC2ik ≥ PC2ik for all k, giving 

us the number of participants whose aggregate gives the maximum PC-index (in S2i). 

Finally, using S3i, we compute the PC-index, PC3ik*, to determine the performance of top k* 

participants identified in the previous step but using the compound pairs in subset S3i. In 

this way, subsets S1 were used to determine which models to add cumulatively, subsets S2 

were exclusively required for determining the optimal number of methods to achieve 

maximum performance and subsets S3 were solely used to estimate an unbiased 

performance of the aggregate that was eventually reported in Figure 4. For assessing a 

comparable single method performance, we chose the best performer determined on S1 and 

evaluated its performance on S3.
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Area under the recall curve (AURC)

For each compound, the area under the recall curve, AURC, is generated by first calculating 

the fraction of the 13 combinations that the chosen compound can participate in, contained 

in the top i compound pairs, ranked from the most synergistic to the most antagonistic pairs. 

We varied i from 1 to 91 and plotted that fraction versus i to generate the recall curve and 

finally calculated the area under the recall curve using the trapezoidal method. A high area 

under the recall curve is a predictor of the proclivity of a compound toward synergy, 

whereas a low area under the recall curve is a predictor toward antagonism.

Hanley-McNeil method

We estimated the statistical significance of the difference in performance by any two 

methods (i,j) by calculating the significance of the difference in the area under their ROC 

curve using the Hanley and McNeil method49. We calculated this significance separately for 

synergistic and antagonistic predictions. To estimate this significance for any method i, first 

we calculated the area under the ROC curve, Ai, using the trapezoidal method. Next we 

estimated the standard error, SEi, likely to be associated in the estimation of Ai

where

np = number of synergistic or antagonistic compound pairs and nn = 91 − np.

Finally we used the normal cumulative distribution function

to estimate the P-value where ‘erf’ is the error function. Note that this procedure assumes 

independence between the predicted AUC, an assumption that can be violated if there are 

hidden biases in the ordering of the compound pairs.

Compound-pair activity in the MCF7 and LNCAP cell lines

We tested the pairwise combinations of 71 compounds with a proteasome inhibitor MG 132 

and a HDAC inhibitor Trichostatin A (a total of 142 combinations) in the MCF7 breast 

cancer cell line and the LNCAP prostate cell line by using a cell viability assay. For each 

pair of compounds, we performed 16 experiments with four different dosages for each 

compound. To compute the synergy for each pair, we calculated the excess over Bliss score 
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for each of the 16 experiments and took the average of 16 scores as the synergy score for the 

compound pair.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of data sets used in the NCI-DREAM compound-pair activity challenge. (a) Gene 

expression profiles of baseline samples, DMSO-treated and 14 single compound–treated 

samples are generated at three different time points (6, 12 and 24 h) and two different 

compound concentrations (IC20 at 24 and 48 h, where IC20 is defined as the compound 

concentration that kills 20% of cells). Compound-treated samples were generated in 

triplicate, baseline samples in duplicate and DMSO-treated samples in octuplicate. (b) The 

baseline genetic profile of the OCI-LY3 cell line obtained previously18 was provided to the 

participants. (c) Participants were also provided with the dose-response curve following 

single treatment. The curves were derived from a single-agent treatment of OCI-LY3 for the 

indicated time. X represents IC20 concentration of a compound. (d) Participants were 

required to rank each of the 91 pairwise compound combinations of 14 compounds from the 

most synergistic to the most antagonistic. Any additional data derived by participants 

through analysis of the literature were considered admissible in the challenge. Assays to 

experimentally test compound synergy, even in a limited format, were expressly prohibited.
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Figure 2. 
Gold standard data for evaluation and performance of predictions. (a) The results of excess 

over Bliss for all compound pairs ranked from most synergistic to most antagonistic. Error 

bars represent the s.e.m. of excess over Bliss, estimated from five experimental replicates. 

The solid gray line at excess over Bliss equals 0 and represents a line over and below which 

compound pairs are generally considered synergistic and antagonistic, respectively. (b) PC-

index for all participants grouped by the kind of data or information used by their method. 

There is no apparent correlation between the final score with the kind of data or information 

used. AI, additional information other than pathway information used; DRC, dose-response 

curve used; GEP, gene expression profile used; PW, pathway information used. The rank of 

each team is reported on the top of the bar. The gray line represents random performance. 

The y axis on right shows the PC-indexnorm where PC-index is normalized to have a score 

between 0 and 1. *FDR ≤ 0.20; **FDR ≤ 0.05. (c) Box plot showing the median, quartile 

and range of ranks for each team in leave-one-out test. All teams are sorted by their PC-

index. Teams are color coded with the kind of data or information used by their methods.
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Figure 3. 
The DIGRE model. (a) Biological hypotheses of the DIGRE model submitted by the best-

performing team. The combined compound effect for compounds A and B is hypothesized 

to result from the compound-induced genomic residual effect. If cells were treated by 

compounds A and B sequentially, the genomic changes induced by compound A will further 

contribute to the effect induced by compound B. Here, fX denotes the percentage of cells 

killed by compound X and fB+A′ represents the cell viability reduction after B treatment, 

following the transcriptional changes induced by A. Based on this hypothesis, the estimation 

of the combinatorial compound effect (ZB+A′) reduces to the estimation of the compound-

induced genomic residual effect (fB+A’) (Supplementary Note 2). (b) Workflow of DIGRE. 

(Step 1) The genomic or transcriptome changes induced by two compounds are compared. 

The similarity score is refined by using pathway information and an external training data 

set. (Step 2) A mathematical model incorporates the similarity score and the dose-response 

curves to estimate the compound-induced genomic residual effect. (Step 3) A combined 

score is estimated for each of the two possible sequential orders of treatment and finally the 

synergistic score is estimated as the average combined score obtained by two possible 

sequential orders of treatment. (c) Key ingredients of the DIGRE model.
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Figure 4. 
Community predictions. (a) Bee Swarm plot showing the performance of ensemble models 

and single best model, inferred from over 1,000 different three-set splits (S1/S2/S3) of the 

91 drug pairs in the challenge. The first set S1 was used to determine an order of 

performance. The second set S2 was used to choose the optimal number of top methods to 

aggregate to attain best performance of the aggregate. Finally, the last set S3, which was not 

used to choose the order of aggregation or the optimal number of predictions to aggregate, 

was used to determine the performance of the best method (according to set S1) and of the 

“wisdom of crowds” aggregate. The latter is consistently better than the former. (b) Average 

and standard error over the 1,000 splits shown in a of the PC-index as computed in set S3 of 

individual teams (blue) and aggregates of the top-performing teams (red). The order of the 

teams in the x axis was determined according to set S1, but the performance was evaluated 

in set S3. The gray solid line represents random performance. Error bar represents the s.e.m. 

of the PC-index.
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Figure 5. 
Synergistic and antagonistic gold standard and predictions. (a) Activity of compound pairs 

after discretizing the gold standard data into three states based on signal-to-noise ratio for 

excess over Bliss. Red, synergistic; yellow, additive; blue, antagonistic. (b) Area under the 

ROC (AUC) for synergistic (red) and antagonistic (blue) compound pairs. Teams are ranked 

by their performance in the challenge. WoC, performance of the “wisdom of crowds.” Black 

horizontal dashed line shows the average performance of random predictions. *FDR ≤ 0.20; 

**FDR ≤ 0.05. (c) Precision and sensitivity for synergistic (red) and antagonistic (blue) 

compound pairs. Horizontal dashed line in red and blue shows random performance for 

synergistic and antagonistic compound pairs, respectively. WoC, performance of the 

“wisdom of crowds.” Teams are ranked by their performance in the challenge. *P ≤ 0.05; 

**FDR ≤ 0.20.
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Table 1

Summary of methods and data used by each participant

Rank PC-index Summary Data type used

Similarity in compound activity leads to synergy

2a 0.60518 Identified a set of core genes defined by statistically significant DEGs in at least one compound 
treatment and used these genes to estimate interaction score by calculating number of overlapping 
genes, taking direction of regulation into account.

GD

4a 0.57529 Computed a Pearson correlation between gene expression profiles of two compounds using genes 
DEGs in at least one compound treatment.

G

7a 0.56219 Used support vector machine, trained using chemical properties, chemogenomic profiling and gene-
expression data of a set of synergistic fungicidal compounds13.

GA

8a 0.5507 Designed a scoring function that combines target and transporter information of each compound, 
DEGs, their t-score and the number of common DEGs between two compounds38,39.

GDA

9a 0.5327 Used the rank-aggregation method to combine results obtained from compound-pair similarity using 
correlation, common compound affected pathways, set of common compound-gene interactions (from 
ChEMBL), compound-genes interaction for one compound that are significantly affected by other 
compounds and compound pairs in the same clinical trial40,41.

GPDA

11a 0.52848 Determined cell viability by predicting activation of biological pathways in response to a single 
compound treatment and combined this with dose-response curves42.

GPD

12a 0.52779 Used score combining overlap of gene expression signatures of individual compound treatments and 
cell line-specific signature derived from external datasets, taking direction of regulation into account.

GA

14a 0.51854 Constructed probable pathways connecting compound targets and DEGs and used the Jaccard score 
based on gene co-occurrences in these pathways.

GPA

15a 0.51624 Used weighted Euclidean distance, weighted by activity of each compound. GD

31a 0.41993 Computed correlation between gene expression profiles of two compounds using genes DEGs in at 
least one compound treatment.

G

Dissimilarity in compound activity leads to synergy

5a 0.56637 Computed the Manhattan distance between pathways significantly enriched by each compound. GP

6a 0.56495 Designed a geometric-based score using the number of significant DEGs, the number of common 
DEGs between two compounds, the correlation between their gene expression profile and the dose-
response curve.

GD

18a 0.50653 Applied the Pareto ranking strategy using compound activity as well as chemical and target 
similarity43.

GA

19a 0.50501 Built a model that measures the effect on each of the 15 core signaling pathways by considering the 
number of significant DEGs, the number of common DEGs between two compounds and the direction 
of regulation.

GP

20a 0.49602 Built a cooperative score by combining the number of significant DEGs, the number of common 
DEGs between two compounds and the correlation between weighted gene expression profiles.

G

24a 0.46791 Identified a set of core genes defined by statistically significant DEGs in at least one compound 
treatment and used these genes to estimate interaction score by calculating the number of overlapping 
genes, taking direction of regulation into account.

G

25a 0.45415 Estimated deviation between correlation using gene expression profile and correlation using GO terms 
enriched by two compounds and used that as a measure of synergy.

GP

26a 0.44467 Built a model combining the IC20 concentration of two compounds and the correlation between their 
gene expression profiles.

G

Combination of similarity and dissimilarity in compound activity leads to synergy

1a 0.61303 Drug Induced Genomic Residual Effect (DIGRE) model (see main text). GPDA

3a 0.59981 Drug Induced Genomic Residual Effect (DIGRE) model (see main text; different cut-off for feature 
selection).

GPDA

21a 0.48988 Estimated the similarity between compound pairs using DEG’s and pathway information and 
combined this similarity with dose-response curves.

GPDA
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Rank PC-index Summary Data type used

29a 0.42992 Linear interpolation between two dose points on dose-response curve using similarity between each 
compound pair, calculated by overlap of DEGs.

GPDA

Complex synergistic relationship

10a 0.52974 Used expression of genes, identified from the public dataset whose expression are correlated with 
overall survival, to predict cell viability.

GDA

13a 0.51952 Used OCI-LY3 virtual baseline created from The Cellworks proprietary Tumor Cell Technology, 
trained using the known mode of actions of the compounds44.

GPDA

16a 0.50927 Built a model linking gene expression and cell viability. Used predicted gene expression profile after a 
compound combination in this model to infer the cell viability of compound pairs.

GD

17 0.50703 Identified potential effective targets by comparing expression profiles of effective and ineffective 
compounds and computed the sum of log-odd ratio for each compound pair under the naïve Bayes 
assumption.

G

22a 0.48568 Built a bagged regression trees model using features obtained from known synergistic and antagonistic 
compound pairs from published literature45.

NA

23a 0.47183 Used expression of genes, identified from the public dataset whose expression are correlated with 
overall survival, to predict cell viability.

GDA

27a 0.44346 Used the Bayesian estimation of temporal regulation and the nearest template prediction algorithm 
with cosine distance to associate significantly DEGs between pairs of drugs46.

GD

28a 0.43479 Predicted expression profile after the treatment with 2 compounds using ANOVA based liner 
regression and built a model linking gene expression and cell viability.

GD

30 0.42297 Used model trained using target and chemical structure of known compound combinations in cancer 
therapy along with protein-protein interactions.

GPA

All methods are categorized into four groups based on distinct hypotheses used by various teams. G, gene expression profile; A, additional 
information not provided in the challenge; D, dose-response curve; P, pathway.

a
Detailed method description is available in the Supplementary Note 2. The summary reported in this table was obtained directly from the 

participants.
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