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OPTIMAL CONTROL PROBLEMS WITH MIXED AND PURE
STATE CONSTRAINTS∗

A. BOCCIA† , M. D. R. DE PINHO‡ , AND R. B. VINTER§

Abstract. This paper provides necessary conditions of optimality for optimal control problems,
in which the pathwise constraints comprise both “pure” constraints on the state variable and “mixed”
constraints on control and state variables. The proofs are along the lines of earlier analysis for
mixed constraint problems, according to which Clarke’s theory of “stratified” necessary conditions is
applied to a modified optimal control problem resulting from absorbing the mixed constraint into the
dynamics; the difference here is that necessary conditions which now take into account the presence
of pure state constraints are applied to the modified problem. Necessary conditions are given for a
rather general formulation of the problem containing both forms of the constraints, and then these are
specialized to problems having special structure. While combined pure state and mixed control/state
problems have been previously treated in the literature, the necessary conditions in this paper are
proved under less restrictive hypotheses and for novel formulations of the constraints.
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1. Introduction. The Pontryagin maximum principle (PMP), dating from the
1950s, is a cornerstone of optimal control theory [16]. In its original form, the PMP
provides necessary conditions that a solution x(.) : [a, b] → R

n to a controlled
differential equation (called a state trajectory) and the associated control function
u(.) : [a, b] → R

m minimize a cost function, subject to (s.t.) a pathwise constraint on
the control function u(.),

u(t) ∈ U(t) for all t ∈ [a, b],

and to a constraint on the endpoints of x(.),

(x(a), x(b)) ∈ E ,

in which U(t) ⊂ R
m, a ≤ t ≤ T , and E ⊂ R

n × Rn are given sets. The PMP
features an absolutely continuous function p(.) (the costate trajectory) that satisfies a
differential equation, called the costate equation (or a related differential inclusion, if
the data is nonsmooth) and boundary conditions called the transversality conditions.
Information is then provided about the optimal control of the following nature: the
Hamiltonian evaluated along the optimal state trajectory and costate trajectory is
maximized at the minimizing control function, pointwise in time.

In subsequent research into extensions to take into account pathwise constraints
also for state trajectories, it was soon recognized that different techniques were re-
quired to deal with the following two types of constraints:
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3062 A. BOCCIA, M. D. R. DE PINHO, AND R. B. VINTER

1. mixed control/state constraints

(1.1) φ1(t, x(t), u(t)) ≤ 0 and φ2(t, x(t), u(t)) = 0 ;

2. pure state constraints h(t, x(t)) ≤ 0.
They involve the given functions φ1(., ., .) and φ2(., ., .) and the given function h(., .),
respectively.

In the mixed control/state constraints literature, typified by [14], [9], and [11],
the aim is usually to show that the constraint can be accommodated, under a suitable
constraint qualification, by means of Lagrange multipliers, namely suitably bounded
measurable functions ζ1(.) and ζ2(.) on [a, b]. The modified PMP is, once again,
expressed in terms of an absolutely continuous costate trajectory p(.). It takes the
form of the original PMP, in a restricted sense, when the cost is modified by the
addition of the term∫ b

a

φ1(t, x(t), u(t)) · ζ1(t)dt +
∫ b

a

φ2(t, x(t), u(t)) · ζ2(t)dt,

together with “complementary slackness” conditions. (These conditions are “re-
stricted” in the sense that the Hamiltonian is maximized along the optimal state
trajectory x̄(.), not over U(t) but over the smaller set U(t) ∩ {u′ : φ1(t, x̄(t), u′) ≤
0 and φ2(t, x̄(t), u′) = 0}.)

Implicit in the derivation of this modified PMP is the notion that, under a suitable
“constraint qualification,” the mixed constraints can be absorbed into the dynamic
constraint in such a way that the hypotheses on the dynamic constraint invoked in
the original PMP continue to be satisfied; application of the original PMP to the
reformulated optimal control problem, with an “absorbed” dynamic constraint, yields
the desired, modified, necessary conditions.

It might be thought that the theory of necessary conditions for pure state con-
straints “h(t, x(t)) ≤ 0” could simply be subsumed into that for mixed state con-
straints by setting φ1(t, x, u) = h(t, x). But this is not possible (if we are to use the
proof techniques referred to above) because, when φ1(t, x, u) does not depend on u(.),
the constraint qualification is violated, in consequence of which the mixed constraint
cannot be used to eliminate control variable components and thereby generate an
equivalent optimal control problem to which standard versions of the PMP can be
applied. This is the reason why “pure” state constraints have been treated separately
from “mixed control/state constraints,” and it accounts for the fundamentally differ-
ent nature of modifications to the PMP that have been derived for optimal control
problems with pure state constraints: the modified PMP, in the pure state constraints
case, is formulated in terms of a “measure multiplier” and a, possibly discontinuous,
costate trajectory q(.) that is of bounded variation. Papers rigorously treating pure
state constraints and involving a discontinuous costate trajectory originated in the
1960s and 1970 with the independent work of Dubovitskii and Milyutin [10] and
Warga [20]; for references to earlier literature, see, for example, [19]. Necessary con-
ditions to cover the combined occurrence of the two types of constraints were derived
by Dmitruk [11] and other members of the Dubovitskii–Milyutin school (see [12] for
an overview of this work) and also by Makowski and Neustadt [14].

A breakthrough in the development of new tools for tackling a variety of differ-
ently structured optimal control problems, with nonsmooth data, was the publication
of Clarke’s paper [4], the centerpiece of which was “stratified” necessary conditions
for optimal control problems, whose dynamic constraint took the form of a differen-
tial inclusion. Clarke’s paper introduced a new, and very useful, way of capturing
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MIXED AND PURE STATE CONSTRAINTS 3063

the requisite Lipschitz continuity–like properties of the differential inclusion for the
validation of the Euler–Lagrange inclusion, and related necessary conditions, namely
the “bounded slope” hypothesis. Subsequently, Clarke and de Pinho [5] examined
the implications of these tools for “mixed constraint problems.” The authors pro-
vided necessary conditions for very general formulations of mixed constraint problems
by showing that these conditions could be reduced to the optimal control problems
treated in [4], by absorbing the mixed constraints into the dynamic constraint in such
a way that the bounded slope hypothesis continued to be satisfied. The results in [5]
improve on many earlier-derived mixed constraint conditions, as described in detail
in [5, sect. 8]—in some respects even when attention is restricted to problems with
smooth data. However the presence of pure state constraints is excluded from the
necessary conditions in [5, pp. 4503–4504]:

. . . the bounded slope condition excludes unilateral state constraints. . .
It is well-known that in the presence of such constraints, necessary
conditions of the type given. . . fail, and that their appropriate exten-
sions involve measures and adjoint arcs p that are discontinuous.

The aim of our paper is to provide extensions of the necessary conditions for mixed
control/state constraints problems of [5] to allow also for pure state constraints. A
key tool is the set of stratified necessary conditions of [1], which generalize the main
necessary conditions in Clarke’s paper, to allow for unilateral state constraints. The
proof technique for deriving necessary conditions and applying them to optimal con-
trol problems with both mixed control/state and pure state constraints is to reduce the
problems to ones involving pure state constraints alone by absorbing the mixed con-
straints into the dynamic constraint and applying the stratified pure-state-constraint
necessary conditions of [1].

The necessary conditions for combined mixed control/state and pure state con-
straints in this paper reduce to the main necessary conditions in [5] and [6] for mixed
constraints alone (both in a general setting and when the mixed constraint has explicit
representations including those of [6]), following removal of the pure state constraint.
Clarke and de Pinho [5, sect. 8] give details of how their necessary conditions improve
on earlier necessary conditions, with regard to hypotheses on the mixed state con-
straint data. These improvements are all the more evident in this paper, since the
framework is broadened to include pure state constraints. On the other hand, this
paper extends the earlier necessary conditions involving both mixed constraints and
pure state constraints in [11] and [14] by allowing nonsmooth data, by adopting a
very general formulation of the mixed constraints of the form (x(t), v(t)) ∈ S(t, w(t))
involving the controls (u = (v, w)) and states x in place of a collection of functional
equality and inequality constraints, and by permitting general endpoint constraints.

This paper treats only optimal control problems with mixed constraints that are
“regular” in the sense that they separate into a constraint satisfying the bounded
slope condition, a pure control constraint, and a pure state constraint. It fails to
provide conditions for problems with mixed constraints that do not decompose in this
way, for example, |x|2 + |u|2 ≤ 1. Necessary conditions for such problems have been
studied by Milyutin and coworkers. For an overview, references to this work, and
some open questions, see [12].

We mention that the “stratified” necessary conditions in this paper are expressed
in terms of an arbitrary radius multifunction R(t), in place of the balls ˙̄x(t) + r(t)B
involving the radius function r(t), as in [5]. This extra degree of generality in these
necessary conditions for the general formulation of the optimal control problem of
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3064 A. BOCCIA, M. D. R. DE PINHO, AND R. B. VINTER

section 2 simplifies the application of these conditions to take into account more
structured formulations of the problem in section 3, as compared with the analysis in
[6].

Finally, at the suggestion of a reviewer, we comment on key differences between
our proof techniques and the Dubovitskii/Milyutin scheme applied to control/state
constraint problems as summarized, for example, in [12]. In the latter literature, the
necessary conditions are deduced from an abstract Lagrange multiplier rule for an ab-
stract optimization problem on Banach spaces, involving constraints associated with
the original dynamic constraint, with the endpoint constraints, and with the mixed
constraint (each parameterized by a control function). The constraint associated with
the original dynamic constraint is expressed in terms of a mapping from W 1,1 to L1.
It is straightforward to show that this mapping is “regular” (i.e., Fréchet differentiable
and surjective) as required for the application of the abstract multiplier rule; it gives
rise to a Lagrange multiplier in L∞ = (L1)∗, which, in consequence of the multiplier
rule conditions, can be represented by an absolutely continuous function (in the case
of no pure state constraints), interpreted as the costate trajectory. The endpoint
constraints translate into transversality conditions via the abstract multiplier rule.
The troublesome constraint is the mixed constraint which, in the abstract framework,
gives rise to a constraint function with range space in L∞. The Lagrange multiplier
associated with this constraint is an element in the topological dual space (L∞)∗. An
important step in the application of the Dubovitskii/Milyutin scheme in this context
is to show that, under a constraint qualification (positive linear independence of the
gradients of the “mixed” constraint functional w.r.t. the control variable), this ele-
ment can be represented by a point in the predual space L∞; this point appears as a
Lagrange multiplier for the mixed constraint in the final statement of the necessary
conditions. The proof techniques used in this paper (and in the related paper [6]), in
contrast, circumvent altogether the difficulties associated with the fact that the nat-
ural space for the mixed constraint Lagrange multiplier is in the difficult-to-deal-with
space (L∞)∗; this is achieved by using the constraint qualification (now manifesting
itself as the “bounded slope” condition) at the beginning of the proof, to justify elim-
inating the mixed constraint by absorbing it into the dynamic constraint, instead of
at the end of the proof to refine the consequences of the application of the abstract
Lagrange multiplier. The dynamic constraint (in our framework) now becomes a
differential inclusion, but, with the help of nonsmooth analysis, this can be simply
accommodated in the necessary conditions via a costate function, corresponding to
the straightforward manner in which the differential equation constraint is dealt with
in the Dubovitskii/Milyutin scheme. Advantages of our approach are simplicity (at
least in avoiding consideration of the (L∞)∗ as a multiplier space) and that it permits
consideration of nonsmooth data. An advantage of the Dubovitskii/Milyutin scheme
is that it can be also used to derive necessary conditions for “irregular” problems,
namely problems for which the pathwise constraints do not separate into a pure state
constraint and a mixed control/state constraint satisfying the bounded slope condition
(see, e.g., [12]).

Notation. The Euclidean norm of a vector x ∈ R
n is |x|. B indicates the closed

unit ball in R
n, and the distance function of a point x ∈ R

n from a set A ⊂ R
n is

defined as

dA(x) := inf{|x− y| : y ∈ A} .

The convex hull of the set A is written coA. Given a multifunction F (.) : Rn � R
k,

we denote by GrF (.) the graph of F (.).
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MIXED AND PURE STATE CONSTRAINTS 3065

L1( [a, b] ; Rn ) and L∞( [a, b] ; Rn ) have their usual meanings as spaces of in-
tegrable and essentially bounded, measurable n-vector valued functions on [a, b].
W 1,1( [a, b] ; Rn ) denotes the space of absolutely continuous functions x : [a, b] → R

n,
equipped with the norm

‖x‖W 1,1 := |x(a)|+
∫ b

a

|ẋ(t)| dt .

We write L1 in place of L1([a, b];Rn), etc., when no ambiguity arises. NBV +[a, b]
denotes the space of nondecreasing, real-valued functions μ(.) on [a, b] of bounded
variation, vanishing at the point a and right continuous on (a, b). The total variation
of a function μ(.) ∈ NBV +[a, b] is written ||μ||T.V.. As is well known, each point
μ(.) ∈ NBV +[a, b] defines a Borel measure on [a, b]. This associated measure is also
denoted μ. We denote by supp the support of the measure μ.

We make use of some constructs from nonsmooth analysis, described in detail,
for example, in [7, 19]: given a closed set E ⊂ R

n and x ∈ E, the proximal normal
cone of E at x is

NP
E (x):={ζ ∈ R

n : ∃ ε > 0 and M > 0 s.t. ζ·(y−x) ≤ M |x−y|2 for all y ∈ E∩(x+εB)}.

The limiting normal cone of E at x is

NL
E (x) :=

{
lim
i→∞

ζi : ζi ∈ NP
E (xi) and xi ∈ E for all i, and xi → x

}
.

The Clarke normal cone of E at x is NC
E (x) := coNL

E (x). If E is convex, the three
normal cones coincide with the normal cone of convex analysis, and are writtenNC

E (x).
More generally, a set E is said to be regular at x ∈ E if NL

E(x) = NC
E (x).

The Clarke tangent cone of E at x is the polar set of the limiting normal cone,
i.e.,

TC
E (x) := {η ∈ R

n | 〈η, ζ〉 ≤ 0 for all ζ ∈ NL
E (x)} .

Given a lower semicontinuous function f(.) : R
n → R ∪ {+∞} and a point x ∈

dom f(.) := {x ∈ R
n | f(x) < +∞}, the proximal subdifferential of f(.) at x is the

set

∂P f(x) :=

{
ζ ∈ R

n : ∃ σ > 0 and ε > 0 such that for all y ∈ x+ εB
f(y)− f(x) ≥ 〈ζ, y − x〉 − σ|y − x|2

}
.

The limiting subdifferential of f(.) at x is

∂Lf(x) :=
{
lim
i→∞

ζi : ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)
}

.

In the case where f(.) is Lipschitz continuous on a neighborhood of x, we define
the Clarke generalized gradient ∂Cf(x) := co ∂Lf(x). We say that f(.) is strictly
differentiable at x if f(.) is Frêchet differentiable at x and Lipschitz continuous on a
neighborhood of x and if {∇f(x)} = ∂Cf(x) . When the function f(.) depends on two
variables (x, y) we write ∂Cf(., ȳ)(x̄) to denote the Clarke generalized gradient of the
function x → f(x, ȳ) at x̄.

D
ow

nl
oa

de
d 

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3066 A. BOCCIA, M. D. R. DE PINHO, AND R. B. VINTER

2. Necessary conditions for a general problem. Consider the following op-
timal control problem:

(P)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize J(x(.), u(.)) := �(x(a), x(b)) +
∫ b

a
Λ(t, x(t), u(t)) dt

over processes (x(.), u(.)) such that

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [a, b],

u(t) = (v(t), w(t)), w(t) ∈ W (t) a.e. t ∈ [a, b],

(x(t), v(t)) ∈ S(t, w(t)) a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

(x(a), x(b)) ∈ E .

The data for this problem comprises integers n > 0, m > 0, mv ≥ 0, and mw ≥ 0 such
that m = mv +mw; functions �(., .) : R

n × R
n → R, Λ(., ., .) : [a, b]× R

n × R
m → R,

f(., ., .) : [a, b]× R
n × R

m → R
n, and h(., .) : [a, b]× R

n → R; and sets S ⊂ R
1+n+m,

E ⊂ R
n × R

n, and W ⊂ R
1+mw . (In relation to the sets W and S, we interpret

the multifunctions W (t) := {w : (t, w) ∈ W}, S(t, w) := {(x, v) : (t, x, (v, w)) ∈ S},
S(t, x) = {u : (t, x, u) ∈ S}, etc.)

A process is a pair of functions (x(.), u(.)), in which x(.) is a W 1,1([a, b];Rn)
function and u(.) = (v(.), w(.)) : [a, b] → R

m is a measurable function, satisfying
ẋ(t) = f(t, x(t), u(t)) and w(t) ∈ W (t) a.e. A process (x(.), u(.)), in which x(.) and
u(.) satisfy the constraints of (P) and for which t → Λ(t, x(t), u(t)) is integrable, is
called a feasible process.

As in [4], we consider local minimizers for problem (P), w.r.t. a given “radius
multifunction” R(.) in the following sense.

Definition 2.1.

(a) A multifunction R(.) : [a, b] � R
m is called a radius multifunction if R(t) is

a nonempty, open, convex set for each t and there exists r0 > 0 such that
r0B ⊂ R(t) a.e.

(b) Given a radius multifunction R(.) : [a, b] � R
m, a feasible process (x̄(.), ū(.))

for (P) is said to be a W 1,1 local minimizer w.r.t. R(.) if there exists ε > 0
such that

J(x(.), u(.)) ≥ J(x̄(.), ū(.))

over all the feasible processes (x(.), u(.)) satisfying

‖x− x̄‖W 1,1 ≤ ε and u(t) ∈ R(t) a.e.

If R(t) ≡ R
m, we simply say that (x̄(.), ū(.)) is a W 1,1 local minimizer.

We shall invoke the following hypotheses, in which (x̄(.), (ū(.) = (v̄(.), w̄(.)))) is a
given feasible process. For some ε > 0,

(H1) �(., .) is Lipschitz continuous on a neighborhood of (x̄(a), x̄(b)). E is closed.
W and S are L × Bm′

measurable subsets of [a, b]× R
mw and [a, b]× R

m+n,
respectively, where L × Bm′

denotes the product σ-algebra of L and Bm′
,

in which L denotes the Lebesgue subsets of [a, b] and Bm′
denotes the Borel

subsets of Rm′
for m′ = mw or m+ n.

(H2) h(., .) is upper semicontinuous, and there exists kh > 0 such that

|h(t, x′)− h(t, x)| ≤ kh|x′ − x|

for all t in [a, b] and all x′, x ∈ x̄(t) + εB.
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(H3) For each (x, v) ∈ R
n×R

mv , f(., x, (v, .)) and Λ(., x, (v, .)) are L×Bmw measur-
able. For a.e. t ∈ [a, b] and every w ∈ W (t) the functions (x, v) �→ f(t, x, v, w)
and (x, v) �→ Λ(t, x, v, w) are Lipschitz continuous on a neighborhood of

((x̄(t) + εB)×R(t, w)) ∩ S(t, w),

where R(t, w) := {v : (v, w) ∈ R(t)}. The Lipschitz constants, which may
depend on t and w, can be chosen to be L × Bmw measurable functions. We
denote these Lipschitz constants by the symbols kfx(t, w), k

f
v (t, w), k

Λ
x (t, w),

and kΛv (t, w); thus,

|Λ(t, x1, v1, w)− Λ(t, x2, v2, w)| ≤ kΛx (t, w)|x1 − x2|+ kΛv (t, w)|v1 − v2| ,
|f(t, x1, v1, w) − f(t, x2, v2, w)| ≤ kfx(t, w)|x1 − x2|+ kfv (t, w)|v1 − v2|

for any (x1, v1) and (x2, v2) in a neighborhood of ((x̄(t) + εB)×R(t, w)) ∩
S(t, w) and w ∈ W (t), a.e. t ∈ [a, b].

(BS) (bounded slope condition) The set S(t, w) is closed for each w ∈ W (t), a.e.
t ∈ [a, b]. There exists a measurable function kS(.) such that, given any
w ∈ W (t) and (x, v) ∈ ((x̄(t) + εB)×R(t, w)) ∩ S(t, w), we have

(α, β) ∈ NP
S(t,w)(x, v) ⊂ Rn × R

mv =⇒ |α| ≤ kS(t)|β|, a.e. t ∈ [a, b] ,

and kS(t) ≥ k0 > 0, a.e., for some k0 > 0.
There follows a set of necessary conditions for a feasible process to be a W 1,1 local

minimizer w.r.t. R(.), a given radius multifunction. For λ0 ≥ 0 define the Hamiltonian

Hλ0

(t, x, v, w, p) := p · f(t, x, v, w) − λ0 Λ(t, x, v, w) .

Theorem 2.2 (general necessary conditions). Let R(.) be a radius multifunc-
tion, and let (x̄(.), ū(.) = (v̄(.), w̄(.))) be a W 1,1 local minimizer w.r.t. R(.). Assume
hypotheses (H1)–(H3) and (BS) are satisfied. Assume also that

(2.1) kfx(t, w̄(t)), kΛx (t, w̄(t)), kS(t)[k
f
v (t, w̄(t)) + kΛv (t, w̄(t))] are integrable

and

(2.2) ∃ η > 0 such that ū(t) + ηkS(t)B ⊂ R(t) for a.e. t ∈ [a, b].

Then there exists a multiplier set (p(.), μ(.), λ0) ∈ W 1,1 × NBV +[a, b] × R
+ and a

μ-integrable function m(.) : [a, b] → R
n such that

(a) λ0 + ‖p(.)‖L∞ + ‖μ‖T.V. = 1,

(b) (−ṗ(t), 0) ∈ ∂C Hλ0

(t, ., ., w̄(t), q(t))(x̄(t), v̄(t)) −NC
S(t,w̄(t))(x̄(t), v̄(t)) a.e.,

(c) m(t) ∈ co ∂>
x h(t, x̄(t)) μ-a.e. and supp{μ} ⊂ {t : h(t, x̄(t)) = 0},

(d) (q(a),−q(b)) ∈ λ0∂L�(x̄(a), x̄(b)) +NL
E(x̄(a), x̄(b)),

(e) for any u = (v, w) ∈ R(t) ∩ S(t, x̄(t)) such that w ∈ W (t),

Hλ0

(t, x̄(t), ū(t), q(t)) ≥ Hλ0

(t, x̄(t), u, q(t)) a.e. t ∈ [a, b].

Here,

(2.3) q(t) :=

{
p(t) +

∫
[a,t]

m(s)μ(ds) if t ∈ (a, b],

p(a) if t = a,
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S(t, x) = {(v, w) : (t, x, (v, w)) ∈ S} (consistent with earlier notation), and ∂>
x h(t, x)

is the set

∂>
x h(t, x) :=

{
lim

(ti,xi)→(t,x)
∇h(ti, xi) : ∇h(ti, xi) exists and h(ti, xi) > 0 for each i

}
.

A proof of Theorem 2.2 is given in section 4. These conditions are expressed in
terms of the function q(.) that is right continuous on (a, b). The assertions of the
theorem remain the same if q(.) is replaced by the function q′(.), which coincides with
q(.) at the end-times, and which, at interior points t ∈ (a, b), is left continuous and
given by q′(t) = p(t) +

∫
[a,t)

m(s)μ(ds), as in [19].

Comments.
(i) The requirement that kS(.) in (BS) satisfies kS(t) ≥ k0, for some k0 > 0, is

essential. The minorization condition might seem superfluous because, if it is
violated, we can always arrange (BS) to be satisfied by addition of a positive
constant. But this ignores the fact that kS(.) is also required to satisfy the
condition ū(t) + ηkS(t) ⊂ R(t), and addition of a positive constant to kS(.)
might result in violation of this latter condition. A simple counterexample
can be constructed along the lines of [1, Ex. 1] illustrating that the assertions
of Theorem 2.2 are in general false if the minorization condition is omitted.

(ii) Because the necessary conditions (a)–(e) are invariant under positive scaling
of the Lagrange multipliers (λ0, p(.), μ), they can be replaced by equivalent
conditions, in which (a) now takes the form λ0 + ‖p(.)‖L∞ + ‖μ‖T.V. > 0.
This alternative form is convenient in some applications.

(iii) In the formulation (P) of the optimal control problem, we interpret “(x(t), v(t))
∈ S(t, w(t)) a.e.” as a mixed control/state constraint, as in the previous work
of Clarke and Pinho [5]. This description of the constraint reduces to the
standard mixed constraint description (1.1), in the form of a set of functional
inequality and equality constraints, when the data does not depend on w,
so that we can identify u with the control component v alone, and S(t) (no
longer dependent on w) is chosen to be

(2.4) S(t) := {(x, u) : φ1(t, x, u) ≤ 0 and φ2(t, x, u) = 0} .

While the special case (2.4) covers most applications involving mixed con-
trol/state constraints, the more general description “(x(t), v(t)) ∈ S(t, w(t))”
is a useful starting point for formulating hypotheses under which necessary
conditions of optimality may be derived for a wide variety of problems.

(iv) The pure state constraint description “h(t, x(t)) ≤ 0” of problem (P), involv-
ing the function h(t, x), which is upper semicontinuous and uniformly Lips-
chitz w.r.t. the x variable, has been widely employed since its introduction
in [3] because of its versatility. We recall that it covers multiple functional
state inequality constraints of the type hi(t, x(t)) ≤ 0, i = 1, . . . , ks, which
can be accommodated by setting h(t, x) := maxi hi(t, x), and it subsumes
constraints imposed on a given closed subset I ⊂ [a, b] of the time interval, of
the form

x(t) ∈ A(t) for all t ∈ I,

in which A(.) : [a, b] → R
n is a given upper semicontinuous multifunction,

taking values closed subsets. In this case we choose

h(t, x) :=

{
dA(t)(x) if t ∈ I,
−1 otherwise .
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MIXED AND PURE STATE CONSTRAINTS 3069

(v) Following [11] and [5], we have partitioned the control variable as u = (v, w);
each of the components v and w will have a different status, regarding the hy-
potheses that are imposed on them for the derivation of necessary conditions.
The purpose here is to capture within a single framework (thereby achiev-
ing greater generality) problems involving a simple set inclusion constraint
on the control w(t) ∈ W (t), problems in which the control/state variables
(x, v) are required to satisfy, say, pathwise functional equality and inequality
constraints, and a combination of such problems. A version of the theorem,
valid for the case mw = 0, is obtained by eliminating, in an obvious way,
all references to the w variable in the theorem statement and accompanying
hypotheses. Likewise, a version valid for the case mv = 0 is obtained by
removing all references to the v variable.

(vi) Theorem 2.2 extends [5, Thm. 3.2] to allow for the presence of additional
pure state constraints. Notice that, as in [5], Theorem 2.2 incorporates in-
formation about the dependence of the Hamiltonian on the control, along a
minimizing state trajectory and costate trajectory both in the form of the
extended costate inclusion (cf. [8]) and the Weierstrass condition (conditions
(b) and (e) of the theorem). Earlier necessary conditions for problem (P), in-
volving both pure and mixed constraints, for problems with nonsmooth data
and for which “bounded slope” type hypotheses on the mixed constraint are
invoked, appear in [2]. Our necessary conditions, embodied in Theorem 2.2,
broadly confirm the assertions of [2, Thm. 2] (the convergence analysis in [2],
justifying the costate inclusion, is incomplete) and extend them in numerous
respects. The conditions in this paper allow for a more general description
of the mixed constraint (not just one involving mixed equality and inequality
constraints as in [2]) and for partitioned control variables u = (v, w) in which
much weaker hypotheses are imposed on the data regarding w dependence
and for “stratification” (i.e., minimizers w.r.t. a radius multifunction). In
our applications of the necessary conditions in the next section, we also allow
noncompact control constraint sets.

3. Necessary condition for mixed constraints in explicit form. Theorem
2.2 of the previous section provides necessary conditions for optimal control problems
involving mixed state and control constraints and pure state constraints when the
mixed constraint is captured by the condition

(x(t), u(t)) ∈ S(t) ,

in which S(.) is a given multifunction. Theorem 2.2 can be used as a starting point
for the derivation of necessary conditions, in which the set S(.) is of the form

(3.1) S(t) := {(x, u) ∈ R
n × R

m : φ(t, x, u) ∈ Φ(t) and u ∈ U(t)},

in which φ : [a, b]× R
n × R

m → R
κ and Φ(.) : [a, b] � R

κ is a Lebesgue measurable
multifunction that takes values closed sets. The most widely considered special case of
(3.1) (functional inequality and equality constraints) is that when, for some integers
κ1 ≥ 0 and κ2 ≥ 0 such that κ1 + κ2 = κ, φ(., ., .) is partitioned as φ(., ., .) =
(φ1(., ., .), φ2(., ., .)) into R

κ1 and R
κ2 valued functions, respectively, and

(3.2) Φ(t) ≡
κ1︷ ︸︸ ︷

(−∞, 0]× · · · × (−∞, 0] ×
κ2︷ ︸︸ ︷

{0} × · · · × {0} .
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The idea is to express the conditions directly in terms of φ(., .) and Φ(.), under
hypotheses that generalize earlier conditions governing the u-dependence of φ(x, u)
(classical rank conditions or, more generally, Mangasarian–Fromowitz type conditions
on the gradients of this function, and “surjectivity conditions” originating in the work
of Schwarzkopf [17]). We consider henceforth the following variant of problem (P),
labeled (PS), in which we no longer distinguish block components v and w of the
control variable u, and when we impose both a mixed constraint of the type (3.1), an
implicit control constraint u ∈ U(t) (in which U(.) : [a, b] � R

m), and a pure state
constraint:

(PS)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimize �(x(a), x(b)) +
∫ b

a
Λ(t, x(t), u(t))dt

over processes (x(.), u(.)) satisfying
ẋ(t) = f(t, x(t), u(t)) a.e.,
φ(t, x(t), u(t)) ∈ Φ(t) and u(t) ∈ U(t) a.e.,
h(t, x(t)) ≤ 0 for all t ∈ [a, b],
(x(a), x(b)) ∈ E .

The next theorem provides necessary conditions for optimal control problems involv-
ing mixed constraints formulated as (3.1), under the following hypothesis on the mixed
constraint data, expressed directly in terms of φ(., ., .) and Φ(.):
(H3′) Φ(.) is a Lebesgue measurable multifunction taking values nonempty, closed

subsets of Rκ. U(.) has L×Bm measurable graph and takes values closed sets.
f(t, ., .), Λ(t, ., .) and φ(t, ., .) are Lipschitz continuous on a neighborhood of
(x̄(t) + εB×R(t)) ∩ S(t) for a.e. t ∈ [a, b],

in which (x̄(.)), ū(.)) is the process of interest, and (for a given radius multifunction
R(.)), the following constraint qualification is imposed, in place of the “bounded slope”
condition (BS):
(CQ) There exists a measurable function M(.) : [a, b] → R such that, for every

x ∈ x̄(t) + εB and u ∈ R(t) ∩ U(t) satisfying φ(t, x, u) ∈ Φ(t),

λ ∈ NL
Φ(t)(φ(t, x, u)), (α, β) ∈ R

n × R
m

(α, β) ∈ ∂L (λ · φ)(t, ., .)(x, u) + {0} ×NL
U(t)(u)

}
=⇒ |λ| ≤ M(t)|β| a.e.

Theorem 3.1 (explicit mixed constraints conditions I). Let (x̄(.), ū(.)) be a W 1,1

local minimizer for (PS), w.r.t. some radius multifunction R(.). Assume that, for
some ε > 0, hypotheses (H1), (H2), (H3′), and (CQ) are satisfied. Assume also that

kfx(t), k
Λ
x (t), M(t)kφx(t)[k

f
u(t) + kΛu (t)] are integrable

and there exists η > 0 such that ū(t) + ηM(t)kφx(t)B ⊂ R(t) a.e.
Then there exists a multiplier set (p(.), μ, λ0) ∈ W 1,1×NBV +×R

+ and a bounded
μ-measurable function m(.) : [a, b] → R

n for which all the assertions of Theorem 2.2
are valid, when (PS) is interpreted as a special case of (P), in which the w component
of the control is absent (write u for v) and S(t) is as defined in (3.1).

If in addition φ(t, ., .) is strictly differentiable at (x̄(t), ū(t)) and U(t) and Φ(t)
are regular at ū(t) and at φ(t, x̄(t), ū(t)), respectively, a.e. t ∈ [a, b], then the costate
inclusion condition (b) in Theorem 2.2 can be replaced by
(3.3)
(−ṗ(t), 0)∈∂C{q(t)·f(t, ., .)−λ0Λ(t, ., .)−〈λ(t), φ(t, ., .)〉}(x̄(t), ū(t))−{0}×NC

U(t)(ū(t))a.e.,

in which λ(.) : [a, b] → R
κ is some measurable function that satisfies

(3.4) λ(t) ∈ NC
Φ(t)(φ(t, x̄(t), ū(t))) a.e.
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Furthermore, for M(.) as in (CQ),

|λ(t)| ≤ M(t){|q(t)|kfu(t) + λ0kΛu (t)} a.e.

A proof of Theorem 3.1 is given in section 5.
Comments.
(i) As we have earlier observed, the standard formulation of mixed constraints,

in the form of a combination of functional equality and inequality constraints,
is captured by choosing φ(., ., .) and Φ(.) according to (3.1) and (3.2). In this
case, the necessary conditions of Theorem 3.1 take a familiar form, involving
a multiplier function λ(.) = (λ1(.), λ2(.)), partitioned into multiplier func-
tions associated with the inequality constraint, λ1(.), and with the equality
constraint, λ2(.). If the data is smooth, condition (3.3) becomes the costate
equation with added multiplier terms

−ṗ(t) = q(t) · fx(t, x̄(t), ū(t))− λ1(t) · φ1
x(t, x̄(t), ū(t))−λ2(t) · φ2

x(t, x̄(t), ū(t))

(as, for example, in [9]) and (3.4) is simply the complementary slackness
condition, relating to the inequality constraint multiplier λ1(.):

λ1
i (t) ≥ 0 and φ1

i (t, x̄(t), ū(t)) < 0 =⇒ λ1
i (t) = 0 for i = 1, . . . , κ1 a.e.

(ii) Necessary conditions for nonsmooth optimal control problems with mixed
constraints formulated as φ(t, x(t), u(t)) ∈ Φ(t) and in which constraint qual-
ification (CQ) is invoked are given in [5]. Theorem 2.2 extends [5, Thm. 4.3]
to allow also for the presence of a pure state constraint (h(t, x(t)) ≤ 0).

Typically in the earlier mixed constraints literature, when Φ(.) is given by (3.2),
necessary conditions are derived under hypotheses on gradients of the function φ(t, x, u)
w.r.t. the u variable, which ensure satisfaction of hypothesis (CQ). An exception is
the set of necessary conditions due to Schwarzkopf [17], [18] in which hypotheses im-
posed on the gradients of φ are replaced by a convexity hypothesis on the generalized
velocity sets involved, together with a surjectivity hypothesis on the mixed constraint
functional φ(., ., .).

The next theorem provides necessary conditions for optimal control problem (PS),
involving both a mixed constraint and an implicit control constraint under the fol-
lowing regularity hypotheses on the data (labeled (H3′′) and replacing (H3′)) and
the hypotheses imposed on the mixed constraint data (labeled (SC) “Schwarzkopf
condition”), which retain the character of the hypotheses in [17]:
(H3′′) (a) The function (t, u) �→ (f(t, x, u), φ(t, x, u)) is L×Bm measurable for each

x. U(.) has L × Bm measurable graph. Φ(.) is a Lebesgue measurable
multifunction taking values nonempty, closed subsets of Rk.

(b) There exists a function kf (.) ∈ L1 such that for every u ∈ U(t) the
function f(t, ., u) is Lipschitz continuous with Lipschitz constant kf (t)
on x̄(t) + εB a.e.

(c) There exists a constant kφ such that for a.e. t and every u ∈ U(t), the
function φ(t, ., u) is Lipschitz continuous with Lipschitz constant kφ on
x̄(t) + εB, and this function is strictly differentiable at x̄(t).

(SC) There exists an integrable function r(.) and a constant δ > 0 such that the
multifunction

Ur(t) := {u ∈ U(t) : |f(t, x̄(t), u)| ≤ r(t) a.e.}
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satisfies

(3.5) φ(t, x̄(t), ū(t)) + δB ⊂ φ(t, x̄(t), Ur(t))− T η
t a.e.,

where, for each t, T η
t is a subset of Rκ satisfying

T η
t ⊂ ∩

z∈Sη
t

(
TC
Φ(t)(z)

)
in which

Sη
t := {z ∈ Φ(t) : |z − φ(t, x̄(t), ū(t))| ≤ η × (1 + dr(t))}

for some η > 0. Here dr(.) is the (possibly infinite-valued) function

(3.6) dr(t) := 2 · sup{|φ(t, x̄(t), u)| : u ∈ Ur(t)} .

(Notice that a possible choice of T η
t in (SC) is T η

t = {0}. But other choices are
possible, such as that discussed in comment (i) below, that make condition (3.5) less
restrictive.)

Define the extended Hamiltonian by

Hλ0

(E)(t, x, u, p, λ) = Hλ0

(t, x, u, p)− 〈λ, φ(t, x, u)〉.

Theorem 3.2 (explicit mixed constraints conditions II). Let (x̄(t), ū(t)) be a
W 1,1 local minimizer for (PS). Assume, for some ε > 0, that (H1), (H2), (H3′′), and
(SC) are satisfied. Assume also the following:

(C) {(f(t, x, u),Λ(t, x, u), φ(t, x, u)) : u ∈ U(t)} is convex, for all x ∈ x̄(t) + εB,
a.e. t ∈ [a, b].

Then there exists a multiplier set (p(.), μ, λ(.), λ0), in which (p(.), μ, λ0) ∈ W 1,1×
NBV + × R

+ and λ(.) : [a, b] → R
κ is an integrable function, such that

(a) λ0 + ‖p‖L∞ + ‖μ‖T.V. = 1.

(b) −ṗ(t) ∈ ∂CH
λ0

(E)(t, ., ū(t), q(t), λ(t))(x̄(t)) a.e.

(c) m(t) ∈ co ∂>
x h(t, x̄(t)) μ-a.e. and supp{μ} ⊂ {t : h(t, x̄(t)) = 0}.

(d) (q(a),−q(b)) ∈ λ0∂L�(x̄(a), x̄(b)) +NL
E(x̄(a), x̄(b)).

(e) Hλ0

(E)(t, x̄(t), ū(t), q(t), λ(t)) ≥ Hλ0

(E)(t, x̄(t), u, q(t), λ(t)) for all u ∈ U(t) a.e.,

in which q(.) is defined by (2.3) and λ(t) ∈ NC
Φ(t)(φ(t, x̄(t), ū(t))) a.e.

If the “convexity” hypothesis (C) is replaced by the following:
(C+L) There exists σ0 > 0 such that, for a.e. t ∈ [a, b], Φ(t) and U(t) are closed,

convex sets, U(t) ⊂ σ0B, and φ(t, x, .) is an affine function, i.e.,

φ(t, x, u) := θ0(t, x) +

m∑
k=1

uiθi(t, x)

for some functions θi(t, x) : [a, b]× R
n → R

κ, i = 0, . . . ,m,

then the above assertions remain valid, except that (b) is replaced by (3.3) and the
“extended” Weierstrass condition (e) is replaced by the weaker Weierstrass condition
of Theorem 2.2, namely,

Hλ0

(t, x̄(t), ū(t), q(t)) ≥ Hλ0

(t, x̄(t), u, q(t))

for all u ∈ U(t) ∩ {u′ : φ(t, x̄(t), u′) ∈ Φ(t)}, a.e. t ∈ [a, b] .

A proof of Theorem 3.2 is given in section 5.
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Comments.
(i) Necessary conditions for nonsmooth optimal control problems with mixed

constraints, under Schwarzkopf type surjectivity hypotheses, are given in
[6]. Theorem 3.2 extends [6, Thm. 3.2] to allow also for pure state con-
straints. Even when the pure state constraint is absent, Theorem 3.2 refines
[6, Thm. 3.2], because the condition (3.5) in hypothesis (SC) now involves
the set T η

t . In the most common case when Φ(.) is given by (3.2) (mixed
equality and inequality constraints), we can choose

T η
t =

κ1︷ ︸︸ ︷
(−∞, 0]× · · · × (−∞, 0] ×

κ2︷ ︸︸ ︷
{0} × · · · × {0} .

With this choice, condition (3.5) becomes

(3.7)

(φ1, φ2)(t, x̄(t), ū(t)) + δ · (B × B)

⊂(φ1, φ2)(t, x̄(t), Ur(t))+([0,+∞)×· · ·×[0,+∞))× ({0}×· · ·× {0}) .

In the special case when the equality constraint (φ2(t, x(t), u(t)) = 0) is ab-
sent, condition (3.7) is simply the Slater type condition: there exists δ > 0 and
a measurable function u(.) such that u(t) ∈ Ur(t) and φ1

i (t, x̄(t), u(t)) ≤ −δ
a.e.
Notice that the analogous hypothesis in [6, Thm. 3.1] can be interpreted
as (SC) when we take T η

t = {0}; that is, it replaces (3.7) with the more
restrictive hypothesis

(φ1, φ2)(t, x̄(t), ū(t)) + δ · (B× B) ⊂ (φ1, φ2)(t, x̄(t), Ur(t)) .

The possibility of invoking less restrictive hypotheses, expressed in terms of
the tangent cone of Φ(t), is discussed in [6, sect. 3].

(ii) Theorems 2.2, 3.1, and 3.2 provide three sets of necessary conditions that
result from bringing together the pure-state-constraint necessary conditions
of [1] and the techniques of [6] for treating mixed control/state constraints
by absorbing them into the dynamic constraint. Similar extensions can be
achieved for all the sets of necessary conditions in [6], and elsewhere, for dif-
ferent formulations of optimal control problems involving mixed control/state
constraints, to allow for the presence of state constraints, including differen-
tial algebraic formulations and calculus of variations formulations.

(iii) Theorem 3.2 under hypothesis (C+L) partially answers an open question
raised in [6, p. 608] regarding the validity of Theorem 3.2 without convexity
hypotheses on the extended velocity set.

4. Proof of Theorem 2.2. The proof is an adaptation of the proof of [5,
Thm. 2.1], to allow for the presence of state constraints and for the more general
radius multifunction here considered. The idea is to reformulate problem (P) as a
differential inclusion optimal control problem with state constraints by absorbing the
mixed constraint into the dynamics. We apply known necessary conditions to the
reformulated problem and express these necessary conditions directly in terms of the
data for the original problem (P). The main difference is that we make use of the
necessary conditions in [1, Cor. 2.2] for “pure” state constrained problems, in place
of the necessary conditions for pure state constraint free problems employed in [5].
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Observe at the outset that we can, without loss of generality, restrict our attention
to the case when the integral cost is absent, since the full statement can be derived
from the special case when L(., ., .) ≡ 0 by means of standard state augmentation
techniques. We can modify the Lipschitz constants to ensure that kfx(., w) is positive
valued and kS(t) ≥ 1 a.e., without violating the hypotheses. We can assume, finally,
that the following hold:

(A1) For every t ∈ [a, b], W (t) is a finite set.
(A2) There exist an integrable function C(.) : [a, b] → R such that, for a.e. t ∈ [a, b]

and w ∈ W (t),

(x, v) ∈ (x̄(t) + εB)×R(t, w) ∩ S(t, w) =⇒
|kfx(t, w)−kfx(t, w̄(t))|+kS(t)|kfv (t, w)−kfv (t, w̄(t))|+|f(t, x, (v, w))− ˙̄x(t)| ≤ C(t).

Reductions to special cases, involving hypotheses (A1) and (A2), introduced in [3],
are now standard in the derivation of necessary conditions (see [3, p. 201 et seq.] or
[19, Lem. 6.3.1]). Justification for using them depends on introducing finite, inner
approximations of the sets W (t) and robustness properties of the necessary conditions
under limit taking: the “state constraint” necessary conditions here considered have
the required robustness properties for this procedure to apply.

Let (x̄(.), ū(.)) be a W 1,1 local minimizer for (P) w.r.t. the radius multifunction
R(.). Define

(4.1) k(t) := max
w∈W (t)

kfx(t, w) + kS(t)× max
w∈W (t)

kfv (t, w) and c(t) := k(t)/kS(t) ,

which are integrable by (2.1) and (A2) and since kS(t) ≥ 1, and let F (., .) be the
multifunction

(4.2) F (t, x) := {(f(t, x, u), r(t, u)) : u = (v, w), (x, v) ∈ S(t, w), w ∈ W (t)},

in which r(t, u) := c(t)(u − ū(t)).
We remark that F (t, x) is nonempty for all x ∈ x̄(t) + εB, a.e. t ∈ [a, b] following,

if required, a reduction in the size of ε > 0. This is because we can deduce from
the bounded slope condition (BS) and (2.2), with the help of [4, Thm. 3.5.2], that
S(t, x, w) is nonempty for all w ∈ W (t), x ∈ x̄(t)+ε′B, a.e. t ∈ [a, b] (for some suitably
small ε′ > 0).

Consider the following optimal control problem in which the dynamics are mod-
eled as a differential inclusion:

(P′)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimize �(x(a), x(b))

over (x(.), z(.)) ∈ W 1,1 satisfying

(ẋ(t), ż(t)) ∈ F (t, x(t)) a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

(x(a), x(b)) ∈ E, z(a) = 0 .

With the help of measurable selection theory, we can show that the feasible F -
trajectory (x̄(t), z̄(t) ≡ 0) is a W 1,1 local minimizer w.r.t. the radius multifunction:

RF (t) := R
n × c(t) (R(t)− ū(t)) .

(Note that the “extra” state variable z is introduced into the dynamic constraint
(ẋ, ż) ∈ F of (P′) in order to derive stratified necessary conditions involving the
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radius multifunction R(.).) The hypotheses are satisfied under which the necessary
conditions of [1, Cor. 2.2] are valid, w.r.t. the W 1,1 local minimizer (x̄(.), z̄(.) ≡ 0).
The key conditions to check, regarding the required properties of F (., .), are the
bounded slope condition (with reference to the radius multifunction RF (.)), which is
here conveniently expressed in the following form: for some possibly readjusted ε > 0
and some k(.) ∈ L1 such that for any x ∈ x̄(t)+εB and u ∈ R

m s.t. (f(t, x, u), r(t, u)) ∈
F (t, x) ∩RF (t),

(4.3) (α, (β, τ)) ∈ NP
Gr F (t,.)(x, f(t, x, u), r(t, u)) ⊂ R

n × R
n × R

m

=⇒ |α| ≤ k(t)|(|β| + |τ |) a.e.

and the following compatibility condition: there exists η > 0 such that

(4.4) ( ˙̄x(t), 0) + ηk(t)B ⊂ RF (t) a.e.

Condition (4.4) is satisfied when k(.) is chosen according to (4.1), and since (ū(t) +
ηkS(t)B) ⊂ R(t). This permits us to conclude

( ˙̄x(t), 0)+ηk(t)B ⊂ ( ˙̄x(t), 0)+η (Rn × c(t)kS(t)B) ⊂ R
n×c(t)(R(t)−ū(t)) = RF (t) a.e.

as required. Condition (4.3) is also satisfied, in view of the following lemma.

Lemma 4.1. Fix w ∈ W (t) and (x, v) ∈ ((x̄(t) + εB) ×R(t, w)) ∩ S(t, w), where,
consistent with our notation, R(t, w) := {v : (v, w) ∈ R(t)}. Take any (α, β, τ) ∈
R

n × R
n × R

m such that (α, β, τ) ∈ NL
GrF (t,.)(x, f(t, x, v, w), r(t, v, w)). Then,

|α| ≤ k(t)(|β|+ |τ |) a.e.

Furthermore,

(α, 0) ∈ ∂L {−〈β, f(t, ., ., w)〉 − 〈τ, r(t, ., w)〉 + 2k(t)[|β|+ |τ |]dS(t,w)(., .)}(x, v).

This lemma in proved in [5]. (The proof of [5, Prop. 9.1] covers the case when the
w-control is absent and the analysis on [5, pp. 4522–4523] extends the estimates to
allow for w-dependent data.) Notice we have taken advantage of the supplementary
hypothesis “kS(t) ≥ 1” to simplify the estimates in [5, Prop. 9.1]. We deduce from
[1, Cor. 2.2] the following information: there exist an absolutely continuous function
p(.) ∈ W 1,1([a, b];Rn), λ0 ≥ 0, μ(.) ∈ NBV +[a, b] and a μ-integrable function m(.)
such that

(i) λ0 + ‖p‖L∞ + ‖μ‖T.V. = 1;

(ii) ṗ(t) ∈ co
{
η : (η, q(t), 0) ∈ NL

GrF (t,.)(x̄(t), ˙̄x(t), 0)
}

a.e.;

(iii) (q(a),−q(b)) ∈ λ0∂L�(x̄(a), x̄(b)) +NL
E(x̄(a), x̄(b));

(iv) for any (e1, e2) ∈ R
n × R

m such that (e1, e2) ∈ F (t, x̄(t)) ∩RF (t),

〈q(t), ˙̄x(t)〉 ≥ 〈q(t), e1〉+ 〈p0, e2〉 a.e. t ∈ [a, b];

(v) m(t) ∈ co ∂>
x h(t, x̄(t)) μ-a.e. and supp{μ} ⊂ {t : h(t, x̄(t)) = 0},

in which q(.) : [a, b] → R
n is as defined in (2.3). By condition (ii) and Lemma 4.1,

(η, 0) ∈ ∂L{−〈q(t), f(t, ., ., w̄(t))〉 + 2k(t)|q(t)|dS(t,w̄(t))(., .)}(x̄(t), v̄(t)).

(Note that the costate associated with the z variable is identically zero and so drops
out of the above conditions.) Reviewing these conditions, we see that the proof of the
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theorem will be complete if we can show that condition (iv) implies the Weierstrass
condition (e) and that condition (ii) implies the costate inclusion (b). But (iv) tells
us that

〈q(t), ˙̄x(t)〉 ≥ 〈q(t), f(t, x̄(t), u)〉

for a.e. t and all u = (w, v) such that (x̄(t), v) ∈ S(t, w), w ∈ W (t), and

(f(t, x̄(t), u), r(t, u)) ∈ RF (t) = R
n × c(t)(R(t) − ū(t)).

This is precisely condition (e) expressed in terms of the radius multifunction R(.), since
this last condition can be equivalently stated as “c(t)(u − ū(t)) ∈ c(t)(R(t) − ū(t)),”
i.e., “u ∈ R(t)” since c(t) > 0, a.e.

Finally, we look at the implications of (ii). Using the facts that ∂C = co ∂L and,
given two Lipschitz functions f and g, we have ∂C (−f) = −∂C f and ∂C(f + g) ⊂
∂Cf + ∂Cg, we conclude
(4.5)
(−ṗ(t), 0)∈∂C {〈q(t), f(t, ., ., w̄(t))〉}(x̄(t), v̄(t))−∂C{2k(t)|q(t)|dS(t,w̄(t))(., .)}(x̄(t), v̄(t)),

which implies condition (b) in the theorem statement, since the Clarke general-
ized gradient is positively homogeneous and, for fixed t, ∂CdS(t,w̄(t))(x̄(t), v̄(t)) ⊂
NC

S(t,w̄(t))(x̄(t), v̄(t)).

5. Proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Problem (PS) is a special case of (P), in which the w
component of the control variable is absent (we identify v with u) and S(t) = {(x, u) :
φ̃(t, x, u) ∈ Φ̃(t)}, in which

φ̃(t, x, u) = (φ(t, x, u), u) and Φ̃(t) = Φ(t)× U(t) .

Proving the first part of the theorem requires us to confirm that the data for the special
case satisfies the hypotheses of Theorem 2.2, with reference to theW 11 local minimizer
(x̄(.), ū(.)) and radius multifunction R(.). We attend only to the verification of the
key “bounded slope” hypothesis (BS) of Theorem 2.2, with the above identification
of S(t). A straightforward refinement of the analysis in [5, Proof of Prop. 4.2] (to
take into account the special structure of φ̃(., ., .) and Φ̃(.)) permits us to deduce the
following: under the hypotheses of Theorem 3.1, for a.e. t, and (x, u) ∈ S(t) such that
x ∈ x̄(t) + εB, u ∈ R(t), the relation (α, β) ∈ NP

S(t)(x, u) implies

(5.1) |α| ≤ M(t)kφx(t)|β| ,

where M(t) is as in hypothesis (CQ); furthermore, for a.e. t ∈ [a, b] there exists
λ ∈ NL

Φ(t)(φ(t, x, u)) such that

(5.2) (α, β) ∈ ∂L〈λ, φ(t, ., .)〉(x, u) + {0} ×NL
U(t)(u).

We deduce from property (5.1) that (BS) is indeed satisfied, when we identify kS(t) =
M(t)kφx(t).

Now suppose that φ(t, ., .) is strictly differentiable at (x̄(t), ū(t)) and that U(t)
and Φ(t) are regular at ū(t) and at φ(t, x̄(t), ū(t)). Making use of relation (5.2) which,
at the point (x, u) = (x̄(t), ū(t)), becomes (by strict differentiability and regularity)

(α, β) ∈ ∇〈λ, φ(t, ., .)〉(x, u) + {0} ×NC
U(t)(u) ,
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and also the sum rule for Clarke generalized gradients, we see that the costate inclusion
(b) of Theorem 2.2 can be replaced by

(−ṗ(t), 0)∈∂C{q(t)·f(t, ., .)−λ0Λ(t, ., .)−〈λ(t), φ(t, ., .)〉}(x̄(t), ū(t))−{0}×NC
U(t)(ū(t))

for some function λ(.), a.e. t. (The function λ(.) can be chosen to be measurable.)
We have arrived at the costate inclusion of Theorem 3.1. Finally, note that any
(ζ1, ζ2) ∈ ∂C{q(t)·f(t, ., .)−λ0Λ(t, ., .)}(x̄(t), ū(t)) satisfies |ζ2| ≤ |q(t)|kfu(t)+λ0kΛu (t).
Examination of the adjoint inclusion in combination with hypothesis (CQ) yields the
estimate

|λ(t)| ≤ M(t)
(
|q(t)|kfu(t) + λ0kΛu (t)

)
a.e.

Note that the regularity hypothesis of the sets U(t) and Φ(t) at ū(t) and at φ(t, x̄(t), ū(t))
a.e. is required in order to make use of hypothesis (CQ).

Proof of Theorem 3.2. We first confirm the assertions of the theorem, excluding
the final assertion. Accordingly assume (C), in addition to the preceding hypotheses
in the statement of Theorem 3.2. Following [6], we obtain, as a corollary to The-
orem 2.2, necessary conditions for a special case of (P), in which the data is affine
w.r.t. the control variable. These necessary conditions are used, subsequently, to de-
rive necessary conditions for problem (PS) under the Schwarzkopf type surjectivity
hypothesis in place of a constraint qualification such as (CQ), governing the mixed
constraint data. The difference is that our analysis takes as a starting point the state
constrained necessary conditions of Theorem 2.2 of this paper in place of the state
constraint free conditions of [6, Thm. 3.2]. The special case of (P) that we need to
consider is as follows:

(P′′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize �(x(a), x(b)),

ẋ(t) =

N∑
i=0

ci(t)g
i(t, x(t)), a.e. t ∈ [a, b],

N∑
i=0

ci(t)θ
i(t, x(t)) ∈ Φ(t), c ∈ Σ, a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

(x(a), x(b)) ∈ E.

Here gi(., .) : [a, b] × R
n → R

n and θi(., .) : [a, b] × R
n → R

κ (for i = 0, . . . , N),
�(., .) : Rn × R

n → R, h(., .) : [a, b] × R
n → R are given functions, and Φ ⊂ R × R

κ,
Σ ⊂ R

N+1, E ⊂ R
n × R

n are given sets.
To fit (P′′) into the framework of problem (P) (when the control variable u is not

partitioned, i.e., u = (v, w) comprises only the variable v, which we write here as c),
we take the dynamic constraint to be ẋ(t) = f(t, x(t), c(t)), with

f(t, x, c) =

N∑
i=0

cig
i(t, x),

and the sets S(t) in the “mixed constraint” (x(t), c(t)) ∈ S(t) to be

S(t) = {(x, c) : (φ(t, x, c), c) ∈ Φ(t)× Σ} ,
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in which

φ(t, x, c) =

N∑
i=0

ciθ
i(t, x) .

Lemma 5.1. Let (x̄(.), c̄(.)) be a W 1,1 local minimizer for (P′′) w.r.t. the radius
multifunction R(t) = c̄(t) + RB a.e. for some R > 0. Assume that for some ε > 0,
the following hypotheses are satisfied:

(L1) �(., .) is Lipschitz continuous on a neighborhood of (x̄(a), x̄(b)). The function
h(., .) satisfies hypothesis (H2). E is closed. Σ is a compact, convex set.

(L2) The functions gi(., .) and θi(., .) are L×Bn measurable. There exist an inte-
grable function kg(.) and a constant kθ such that gi(t, .) and θi(t, .) are Lip-
schitz continuous on x̄(t) + εB, a.e. t ∈ (a, b), i = 0, . . . , N . t → gi(t, x̄(t)) is
integrable and θi(t, .) is strictly differentiable at x̄(t) for a.e. t ∈ [a, b]. Φ(.) is
a Lebesgue measurable multifunction taking values nonempty, closed subsets
of Rκ.

(BS′) There exists a constant M > 0 such that, for a.e. t ∈ [a, b], the following
condition is satisfied: given any x ∈ x̄(t) + εB, c ∈ Σ ∩ (c̄(t) +RB) such that
φ(t, x, c) ∈ Φ(t), λ ∈ NC

Φ(t)(φ(t, x, c)), and γ ∈ NC
Σ (c), we have

(5.3) β = (λ · θ0(t, x), . . . , λ · θN (t, x)) + γ =⇒ |λ| ≤ M |β|.

Then there exist p(.) ∈ W 1,1, λ0 ≥ 0, μ(.) ∈ NBV +[a, b], a μ-integrable function
m(.) ∈ ∂>

x h(t, x̄(t)) μ-a.e., and an integrable function λ : [a, b] → R
κ satisfying λ(t) ∈

NC
Φ(t)(φ(t, x̄(t), c̄(t))) such that

(i) (p(.), λ0, μ) �= (0, 0, 0);
(ii) −ṗ(t) ∈ ∂C{〈q(t), f(t, ., c̄(t))〉 − 〈λ(t), φ(t, ., c̄(t))〉}(x̄(t)) a.e.;
(iii) 〈q(t), f(t, x̄(t), c̄(t))〉 − 〈λ(t), φ(t, x̄(t), c̄(t))〉

≥ 〈q(t), f(t, x̄(t), c)〉 − 〈λ(t), φ(t, x̄(t), c)〉 for all c ∈ Σ, a.e.;
(iv) (q(a),−q(b)) ∈ λ0∂L�(x̄(a), x̄(b)) +NL

E(x̄(a), x̄(b))
in which

q(t) :=

{
p(t) +

∫
[a,t] m(s)μ(ds) if t ∈ (a, b],

p(a) for t = a .

The lemma is proved as [6, Cor. 2.2], in the special case where there are no state
constraints, by showing that the data for problem (P′′), regarded as a special case
of P, satisfies the hypotheses of the state constraint free version of Theorem 2.2 and
by applying the necessary conditions of this theorem to (P′′). The analysis in [6]
transcribes directly and without alteration, when the full version of Theorem 2.2 is
substituted for the state constraint free version, to furnish a proof of the lemma.

We are now ready to prove Theorem 3.2. Consider a W 1,1 local minimizer
(x̄(t), ū(t)) for (PS) under the hypotheses of Theorem 3.2. We notice immediately
that we can assume, without loss of generality, that φ(t, x̄(t), ū(t)) ≡ 0, since replac-
ing φ(t, x, u) by φ(t, x, u) − φ(t, x̄(t), ū(t)) and Φ(t) by Φ(t) − φ(t, x̄(t), ū(t)) ensures
that this condition is satisfied, yet this modification has no effect on the assertions
of the theorem or validity of the hypotheses under which it applies. The use of
state augmentation techniques permits us to restrict our attention to the case when
Λ(., ., .) ≡ 0.

Write ei, i = 1, . . . , κ, for the canonical basis vectors of Rκ. In consequence of
(SC), there exist controls u+

i (.) and u−
i (.) (we can choose them to be measurable)
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such that

φ(t, x̄(t), u+
i (t))− φ(t, x̄(t), ū(t)) ∈ δei + T η

t ,(5.4)

φ(t, x̄(t), u−
i (t)) − φ(t, x̄(t), ū(t)) ∈ −δei + T η

t ,(5.5)

|f(t, x̄(t), u+(t))− f(t, x̄(t), ū(t))| ≤ r(t) + | ˙̄x(t)|,
|f(t, x̄(t), u−(t))− f(t, x̄(t), ū(t))| ≤ r(t) + | ˙̄x(t)|

for i = 1, . . . , κ, where r(.), δ, and T η are the same as in hypothesis (SC). In view of
hypothesis (H3′′), we can further arrange, by reducing the size of ε > 0 if necessary,
that
(5.6)
|φ(t, x, u+

i (t))−φ(t, x̄(t), u+
i (t))|≤ δ/(12κ), |φ(t, x, u−

i (t))−φ(t, x̄(t), u−
i (t))|≤ δ/(12κ)

and

(5.7) |φ(t, x, ū(t))− φ(t, x̄(t), ū(t))| ≤ δ/(12κ)

for all x ∈ x̄(t) + εB, j = 1, . . . , κ, a.e.
Fix any d > 0 and define

Ud(t) := {u ∈ U(t) : |(f(t, x̄(t), u)− f(t, x̄(t), ū(t)), φ(t, x̄(t), u))| ≤ 1/d},
h′(t, p, λ, u) := 〈p, f(t, x̄(t), u)− f(t, x̄(t), ū(t))〉 − 〈λ, φ(t, x̄(t), u)〉,
Hd(t, p, λ) := sup{h′(t, p, λ, u) : u ∈ Ud(t)}.

Let {(pj, λj) | j = 2κ+ 1, . . . , Nd} be a collection of vectors in B such that

(5.8) B ⊂ ∪
j

(
(pj , λj) + d2B

)
.

We can choose measurable controls vj(.), j = 2κ+1, . . . , Nd, with values in Ud(.) and
satisfying

Hd(t, pj , λj)− d < h′(t, pj , λj , vj(t)) a.e.

Consider now problem (P′′) when Φ(.), �(., .), h(.), and E are as in problem (PS),

g0(t, x) := f(t, x, ū(t)), θ0(t, x) = φ(t, x, ū(t)),
gi(t, x) :=f(t, x, u+

(i+1)/2(t))−f(t, x, ū(t)), θi(t, x)=φ(t, x, u+
(1+i)/2(t))−φ(t, x, ū(t)),

i= 1, 3, . . . , 2κ− 1,
gi(t, x) :=f(t, x, u−

i/2(t))− f(t, x, ū(t)), θi(t, x) = φ(t, x, u−
i/2(t))− φ(t, x, ū(t)),

i = 2, 4, . . . , 2κ,
gi(t, x) := f(t, x, vi(t)) − f(t, x, ū(t)), θi(t, x) = φ(t, x, vi(t)) − φ(t, x, ū(t)),

i = 2κ+ 1, . . . , Nd ,

and

Σ :=

{
c = (c0, . . . , cNd

) : c0 = 1, ci ≥ 0, i = 1, 2, . . . , Nd, and

Nd∑
1

ci ≤ 1

}
.

Making use of the convexity hypothesis (C) in Theorem 3.2 and appealing to mea-
surable selection theory, we can show that (x̄(.), c̄(t) ≡ (1, 0, . . . , 0)) is a W 1,1 local
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minimizer w.r.t. the constant radius multifunction c̄(t)+RB for any positive constant
R > 0. Following reduction in the size of ε, we can choose R > 0 to satisfy

(5.9) 0 < R < 1 and max{εkφ(1 + 2R), R} < η ,

in which η > 0 is the constant of hypothesis (SC).
Our aim now is to apply the necessary conditions of Lemma 5.1, w.r.t. the mini-

mizer (x̄(.), c̄(.)), for radius multifunction R(.) ≡ RB, checking first that the relevant
hypotheses are satisfied. Consider hypothesis (BS′). Take (x, c) ∈ (x̄(t) + εB) × Σ

such that
∑Nd

i=1 ci < R,
∑Nd

i=0 ciθ
i(t, x) ∈ Φ(t), λ ∈ NC

Φ(t)(φ(t, x, c)), γ ∈ NC
Σ (c), and

(5.10) β = (
〈
λ, θ0(t, x)

〉
, . . . ,

〈
λ, θNd(t, x)

〉
) + γ .

We must show, for a.e. t ∈ [a, b],

(5.11) |λ| ≤ M |β| ,

for some M independent of (x, c) and γ. Notice that γ is a vector of nonpositive

numbers because γ ∈ NΣ(c) and
∑Nd

i=1 ci < 1. Examination of the i = 1 and 2
components of the Nd + 1-vector relation (5.10), in light of (5.4), (5.5), (5.6), and
(5.7), yields

(5.12) β1 = δλ1 + μ1|λ|+ 〈λ, ξ1〉+ γ1 and β2 = −δλ1 + μ2|λ|+ 〈λ, ξ2〉+ γ2

for some numbers μi, γi such that |μi| ≤ δ/6κ and γi ≤ 0 for i = 1, 2, and vectors
ξi ∈ T η

t for i = 1, 2. Notice, however, that in consequence of (5.9),

∣∣∣∣∣
Nd∑
i=0

ciθ
i(t, x)− θ0(t, x̄(t))

∣∣∣∣∣ ≤ εkφ+

(
Nd∑
i=1

ci

)
(2εkφ+dr(t)) ≤ εkφ(1+2R)+Rdr(t)

≤ η · (1 + dr(t))

in which dr(.) is the function in (3.6).
It follows from the definition of T η

t as an intersection of tangent cones to Φ(t)

over base points in the set Sη
t , and the fact that

∑Nd

i=0 ciθ
i(t, x) lies in this set, that

ξi ∈ T η
t ⊂ TC

Φ(t)

(
Nd∑
i=0

ciθ
i(t, x)

)
for i = 1, 2 .

Since λ ∈ NC
Φ(t)(

∑Nd

i=0 ciθ
i(t, x)), we have 〈λ, ξi〉 ≤ 0 for i = 1, 2 . From (5.12) then,

(5.13) β1 = δλ1 + μ1|λ|+ γ̃1 and β2 = −δλ1 + μ2|λ|+ γ̃2 ,

for some γ̃i ≤ 0, i = 1, 2. Adding the two preceding relations gives β1 + β2 =
(μ1 + μ2)|λ|+ γ̃1 + γ̃2. Noting that γ̃i’s are nonpositive, and using the bounds on the
μi’s, we conclude that |γ̃i| ≤ 2|β|+ (δ/3κ)|λ| for i = 1, 2. But then, by (5.13),

|λi| ≤ |β|/δ + (1/6κ)|λ|+ 2|β|/δ + (1/3κ)|λ| = 3|β|/δ + (1/2κ)|λ| for i = 1, 2.

Analogous bounds can be established for λ2, . . . , λ2κ. Summing such bounds over i
yields |λ| ≤ (3κ/δ)|β| + (1/2)|λ|, whence |λ| ≤ (6κ/δ)|β|. We have confirmed (5.11)
with M = (6κ/δ).
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Verification of the remaining hypotheses is straightforward. Applying Lemma 5.1,
we deduce immediately that for some (p(.), λ0, μ) and some integrable λ(.),

λ0 + ‖p‖L∞ + ‖μ‖T.V. = 1,(5.14)

−ṗ(t) ∈ ∂C{〈q(t), f(t, ., ū(t))〉 − 〈λ(t), φ(t, ., ū(t))〉}(x̄(t)) a.e.(5.15)

m(t) ∈ co ∂>
x h(t, x̄(t)) μ-a.e. and supp{μ} ⊂ {t : h(t, x̄(t)) = 0},(5.16)

(q(a),−q(b)) ∈ λ0∂L�(x̄(a), x̄(b)) +NL
E(x̄(a), x̄(b)),(5.17)

in which q(.) is defined by (2.3). Following the analysis, in [6] we deduce from the
Weierstrass condition in the lemma that the “multiplier” λ(.) is bounded according
to

(5.18) |λ(t)| ≤ 12 · (κ2/δ) · ||q(.)||L∞ · (r(t) + | ˙̄x(t)|) .

The Weierstrass condition and (5.8) can also be shown to imply (see [6])

〈q(t), f(t, x̄(t), ū(t))〉 − 〈λ(t), f(t, x̄(t), u)〉
≥ −3d

(
12κ2/δ × (r(t) + | ˙̄x(t)|)(kh + 1) + 1

)
for each u ∈ Ud(t) a.e.(5.19)

(Here, r(.) and δ are as in hypothesis (SC) and kh is as in hypothesis (H2).) Reviewing
(5.14)–(5.19), we see that the assertions of the theorem have been confirmed, except
that the Weierstrass condition (5.19) appears in a restricted, approximate form, in
which U(t) is replace by the subset Ud(t). The final step is to take a sequence di ↓ 0
and, for each i, carry out the preceding analysis, expressing the multipliers (in relations
(5.14)–(5.19)) as (pi(.), λ

0
i , μi, λi). Define qi(.) according to (2.3) (when pi(.) replaces

p(.), etc.). Using the fact that, for a.e. t,

u ∈ U(t) =⇒ u ∈ Ud(t) for all i sufficiently large,

we carry out a standard convergence analysis to confirm the validity of (5.14)–(5.19),
now involving the “full” Weierstrass condition, in terms of multipliers (p(.), μ, λ(.))
and some selection of co ∂>h(t, x̄(t)), where the multipliers are cluster points of pi(.),
etc.; see, e.g., [19]. (Observe that (5.18), implying that the ṗi(.)’s are uniformly
integrably bounded, plays a crucial role here.)

Finally, we need to consider the case when hypothesis (C+L) replaces (C). Let us
assume then that φ(t, x, u) has the special structure φ(t, x, u) :=θ0(t, x)+

∑m
k=1u

iθi(t, x),
and Φ(t) and U(t) are convex sets. The assertions of Theorem 3.2 will follow, in this
case, from an application of Theorem 3.1 to problem (PS), provided, of course, the
relevant hypotheses are satisfied. We attend only to the verification of (CQ), since
satisfaction of the remaining hypotheses is automatic. This requires us to verify the
following claim.

Claim. There exists a constant M > 0 such that for every x ∈ x̄(t) + εB and
u ∈ U(t) such that φ(t, x, u) ∈ Φ(t), we have

λ ∈ NC
Φ(t)(φ(t, x, u)), γ ∈ NC

U(t)(u), β = (λ·θ1(t, x), . . . , λ·θm(t, x))+γ ⇒ |λ| ≤ M |β|

for a.e. t ∈ [a, b].
To accomplish this task, let us take any time t located in the set of full measure

on which relevant conditions are satisfied, and (x, u), (λ, γ), and β with the properties
listed in the above claim. Since γ ∈ NC

U(t)(u) and U(t) is convex,

(5.20) γ · (u′ − u) ≤ 0 for all u′ ∈ U(t) .
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Since φ(t, x̄(t), ū(t)) ∈ Φ(t), λ ∈ NC
Φ(t)(φ(t, x, u)), and Φ(t) is convex,

(5.21) λ · (φ(t, x̄(t), ū(t))− φ(t, x, u)) ≤ 0.

Since, finally, λ ∈ NC
Φ(t)(φ(t, x0, u0)) and ξ ∈ T η

t ⊂ TC
Φ(t)(φ(t, x0, u0)), we have

(5.22) λ · ξ ≤ 0 .

We may assume, without loss of generality, that λ �= 0 (otherwise the claimed
property is true with M = 0). By hypothesis (SC) (in which we may choose Ur(t) ≡
U(t) since U(.) is bounded) there exists u′ ∈ U(t) such that

(5.23) φ(t, x̄(t), ū(t))− λ

|λ|δ = φ(t, x̄(t), u′)− ξ.

By (5.23), (5.20), (5.21), and (5.22), and since β = (λ · θ1(t, x), . . . , λ · θm(t, x)) + γ,
we have

β · (u′ − u) = (λ · θ1(t, x), . . . , λ · θm(t, x)) · (u′ − u) + γ · (u′ − u)

≤ λ · φ(t, x̄(t), u′)− λ · φ(t, x̄(t), ū(t)) + kφε|λ|
≤ −|λ|(δ − kφε).

Reducing the size of ε, if necessary, we can arrange that δ > kφε. (δ is as in hypothesis
(SC) and kφ is as in hypothesis (H3′′)(c).) Since U(t) ⊂ σ0B, we have from the
preceding relation that

|λ| ≤ M |β| ,
with M = 2σ0/(δ − kφε). We have justified the claim, and the proof of the theorem
is complete.
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