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Abstract

In Pd-catalyzed C–N cross-coupling reactions, α-branched secondary amines are difficult coupling 

partners and the desired products are often produced in low yields. To provide a robust method for 

accessing N-aryl α-branched tertiary amines, new catalysts have been designed to suppress 

undesired side reactions often encountered when these amine nucleophiles are used. These 

advances enabled the arylation of a wide array of sterically encumbered amines, highlighting the 

importance of rational ligand design in facilitating challenging Pd-catalyzed cross-coupling 

reactions.
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Tertiary, N-aryl α-branched amines are frequently found as structural components of 

pharmaceutically relevant compounds and biologically active natural products (Figure 1).[1] 

Although Pd-catalyzed carbon–nitrogen (C–N) cross-coupling would provide an efficient 

means of accessing this valuable class of compounds, the use of α-branched secondary 

amine nucleophiles has seen only limited success and in many instances low yields of the 

desired product are obtained.[2] Other methods for preparing tertiary N-aryl α-branched 

amines rely on the addition of an amine to an aryne[3] or nucleophilic aromatic 

substitution.[4] While effective, these methods typically have a narrow substrate scope or 

result in a mixture of regioisomeric products.[3] Copper-catalyzed electrophilic amination 

has also been utilized,[5] with a recent report by Lalic demonstrating its effectiveness for the 

arylation of sterically hindered secondary O-benzoyl hydroxylamine electrophiles.[5b] 

Despite these advances, there remains no general method for the direct arylation of α-

branched secondary amines. Therefore, we sought to develop a catalyst system capable of 

cross-coupling sterically encumbered secondary amines.
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The development of a highly effective catalyst system for the arylation of α-branched 

secondary amines must address the specific challenges presented by these coupling partners. 

Their poor nucleophilicity as a consequence steric hindrance can lead to slower rates of 

amine transmetalation, resulting in the competitive reaction of the alkoxide base and 

formation of the corresponding aryl tert-butyl ether (ArOtBu) (V, Figure 2). Additionally, β-

hydride elimination may occur from the intermediate Pd(II)-amido complex[6,7] (IV, Figure 

2) leading to the formation of the reduced arene (VI, Figure 2). In this regard, the supporting 

ligand for the palladium catalyst must be carefully designed in order to facilitate the 

preferential formation of the desired aryl amine while suppressing side reactions.

We began our investigation by examining the effect of the supporting ligands on the 

efficiency of the catalyst system for the reaction shown in Table 1.[8] RuPhos(L1)-based 

catalyst systems have been demonstrated to be highly effective for the cross-coupling of 

secondary amines,[9] including some cases of reactions between sterically demanding 

coupling partners.[2a,2c] However, when RuPhos precatalyst P1 was used in the reaction of 

2-bromo-p-xylene (1a) and 2-ethylpiperidine (1b) only a 10% yield of the desired product 

was obtained (Table 1, entry 1). Other biaryl phosphine ligands such as XPhos (L2) and 

BrettPhos (L3) have also been used for promoting Pd-catalyzed C–N bond formation.[9] 

Nevertheless, these catalyst systems (P2 and P3, respectively) proved to be inefficient in 

facilitating the desired transformation (Table 1, entries 2–3). In all cases, the major 

byproduct was the reduced arene, which presumably arises as a result of β-hydride 

elimination.[10]

Given these results, we turned to CPhos (L4, Table 1), which has been demonstrated to 

suppress β-hydride elimination in Pd-catalyzed Negishi cross-coupling reactions.[11] Indeed, 

CPhos precatalyst P4 produced aryl amine 1c in improved yield, although the reduced arene 

remained the major product (Table 1, entry 4).

In the proposed catalytic cycle, the β-hydride elimination pathway competes with reductive 

elimination from the Pd(II)-amido intermediate (IV, Figure 2). We thus envisoned that using 

a less electron-rich biaryl phosphine ligand would increase the rate of C–N reductive 

elimination.[12] A less electron-rich biaryl phosphine ligand could also increase the rate of 

transmetalation (amine binding and deprotonation, Figure 2) by rendering the Pd(II) 

intermediates II and III more electrophilic (Figure 2).[13] Based on this hypothesis, we 

examined a catalyst system utilizing the ligand L5 (P5, Table 1).[14,15] The use of 

precatalyst P5 dramatically increased the yield of 1c along while decreasing the amount of 

reduced arene formed (Table 1, entry 5). Following these results, we changed the 

phosphorus substituents from phenyl to 3,5-bis(trifluoromethyl)phenyl groups to provide 

ligand L6 (P6, Table 1); this led to additional improvement in the yield and further 

diminished the formation of the reduced arene (Table 1, entry 6). To achieve additional 

improvements in catalyst performance, we incorporated methoxy groups in the 3 and 6 

positions of the biaryl framework (Table 1) as these groups are known to increase the rate of 

reductive elimination from Pd(II) complexes.[16] This modification produced L7 (P7), 

which provided the most efficient catalyst system for the transformation (Table 1, entry 

7).[17]
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Precatalyst P7 was found to enable a wide variety of C–N cross-coupling reactions with α-

branched secondary amines (Scheme 1). Hindered cyclic secondary amines were found to be 

well-tolerated, including in reactions with aryl halides containing ortho-substituents (2a, 2c, 

2e, 2g, and 2i, Scheme 1). Lower yields were obtained in the more sterically encumbered 

cases,[18] where formation of the reduced arene byproduct was observed. Acyclic α-

branched amines could also be efficiently arylated (2b and 2h, Scheme 1). Previously, the 

arylation of diisopropylamine via Pd-catalyzed C–N cross-coupling has resulted in very low 

yields,[2f,20] presumably due to its steric hindrance. By using P7, however, diisopropylamine 

was successfully arylated in 65% yield (2h, Scheme 1), although additional equivalents of 

amine and base were necessary to favor formation of the desired product.[21,22]

We were interested in applying the developed conditions to the amination of heteroaryl 

halides due to their presence in many pharmaceutically relevant compounds.[2] However, 

our initial attempts to utilize activated heteroaryl electrophiles (3a, 3b, and 3c, Scheme 2) 

resulted in low yields and the formation of significant amounts of the corresponding 

ArOtBu.[23,24] Through systematic ligand modification[25] we found that ligand L8 (P8, 

Scheme 2) provided higher yields in these cases. With all other substrates, P7 was again 

very effective in producing high yields of the desired product. In certain instances, the use of 

additional equivalents of the amine was necessary to further deter the formation of the 

ArOtBu (3a, 3g, and 3i, Scheme 2). Additionally, a trace of the epimerized product was 

observed in cases where cis-2,6-dimethylpiperidine (3g, Scheme 2) or an enantiomerically 

enriched amine was used (3h and 3i, Scheme 2). Despite these considerations, the combined 

substrate scope using precatalysts P7 and P8 allows for efficient cross-coupling of a wide 

variety of challenging α-branched secondary amines with different heteroaryl halides 

(Scheme 2).

In summary, we have developed two new catalyst systems for the arylation of sterically 

demanding α-branched secondary amines. Notably, the unprecedented levels of reactivity in 

C–N cross-coupling reactions with these amines are achieved due to the ability of the new 

precatalysts to suppress both the β-hydride elimination pathway and arylation of the 

alkoxide base. Overall, this work highlights the potential of rational ligand design to 

modulate catalyst behavior and ultimately facilitate the cross-coupling of sterically 

demanding amine coupling partners.
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Figure 1. 
Selected examples of biologically active compounds containing tertiary N-aryl α-branched 

amines.[1]
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Figure 2. 
Proposed catalytic cycle and potential challenges presented by sterically hindered α-

branched secondary amine nucleophiles.
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Scheme 1. 
Scope of C–N cross-coupling reactions using P7. Reaction conditions: aryl halide (1.0 

mmol), amine (1.2 mmol), NaOtBu (1.4 mmol), 2 mol % P7, 0–2 mol % L7, CPME (2 mL), 

60–80 °C, 6–16 h. Yields are of isolated products, average of two runs. [a] 1:49 cis:trans 

isomers of the arylated amine. Determined by GC analysis of the crude reaction mixture. 2% 

reduction, 4% ArOtBu. [b] 9% ArOtBu. [c] 27% reduction, 6% ArOtBu [d] 22:1 cis:trans 

isomers of the arylated amine. Determined by GC analysis of the crude reaction mixture. [e] 

28% reduction. [f] K3PO4 (6.0 mmol) used as base. [g] 34% reduction. [h] Amine (9.6 

mmol), NaOtBu (10.8 mmol), 7% reduction, 9% ArOtBu. [i] 37% reduction.
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Scheme 2. 
The scope of C–N cross-coupling reactions with heteroaryl halides and hindered secondary 

amines. Reaction conditions: aryl halide (1.0 mmol), amine (1.2 mmol), NaOtBu (1.4 

mmol), 2–3 mol % P7 or P8, 0–2 mol % L7 (used only with P7), CPME (2 mL), 60–80 °C, 

16 h. Yields are of isolated products, average of two runs. [a] Amine (2.4 mmol), NaOtBu 

(2.8 mmol). [b] 9% reduction, 8% ArOtBu. [c] 2% reduction, 3% ArOtBu. [d] 13% 

reduction. [e] Amine (3.6 mmol), NaOtBu (4.2 mmol); 20:1 cis:trans isomers of the arylated 

amine product. Determined by GC analysis of the crude reaction mixture. [f] Starting amine 

ee: 99% ee; Product ee: 98% ee. [g] Amine (2.4 mmol), NaOtBu (2.8 mmol), dioxane (2 

mL); 24% ArOtBu, 6% reduction; Starting amine ee: ≥97% ee; Product ee: 83% ee.
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Table 1

Supporting Ligand Evaluation.[a]

Entry Precatalyst Conversion Reduction Yield

1 P1 100% 68% 10%

2 P2 100% 85% 15%

3 P3 37% 15% 2%

4 P4 100% 53% 27%

5 P5 100% 18% 77%

6 P6 94% Trace 85%

7 P7 100% Trace 93%[b],[c]

[a]
Reaction conditions: 1a (0.25 mmol), 1b (0.30 mmol), NaOtBu (0.35 mmol), 2 mol % precatalyst, CPME (0.5 mL), 80 °C, 1 h. Conversion, C–

N cross-coupling, and reduction product yields were measured by GC analysis of the crude reaction mixture using dodecane as the internal 
standard.

[b]
The reaction also produced 6% of the corresponding ArOtBu.

[c]
Isolated yield: 89% (1 mmol scale, average of two runs).

CPME = cyclopentyl methyl ether.
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