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Quantum transport in disordered systems is studied using a polaron-based master equation. The
polaron approach is capable of bridging the results from the coherent band-like transport regime
governed by the Redfield equation to incoherent hopping transport in the classical regime. A
non-monotonic dependence of the diffusion coefficient is observed both as a function of temperature
and system-phonon coupling strength. In the band-like transport regime, the diffusion coefficient
is shown to be linearly proportional to the system-phonon coupling strength and vanishes at zero
coupling due to Anderson localization. In the opposite classical hopping regime, we correctly recover
the dynamics described by the Fermi’s Golden Rule and establish that the scaling of the diffusion
coefficient depends on the phonon bath relaxation time. In both the hopping and band-like transport
regimes, it is demonstrated that at low temperature, the zero-point fluctuations of the bath lead to
non-zero transport rates and hence a finite diffusion constant. Application to rubrene and other organic
semiconductor materials shows a good agreement with experimental mobility data. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4918736]

I. INTRODUCTION

Quantum transport in disordered systems governs a host
of fundamental physical processes including the efficiency of
light harvesting systems, organic photovoltaics, conducting
polymers, and J-aggregate thin films.1–14 However, our theo-
retical understanding of these processes is still lacking in many
cases. At the most basic level, one may describe the energy
transport as a quantum diffusion process occurring in a system
that is influenced by both static disorder and thermal fluctua-
tions. Theories based on Fermi’s Golden Rule (FGR), i.e., the
Marcus or Förster rate expressions, are often used to study the
transport properties of disordered organic systems, but only in
very few cases, such as the transport in organic crystals, do the
dynamics reside in a regime that is amenable to perturbative
treatments.15 More commonly, the coupling between the exci-
tonic system and the environment is neither large nor small
so that these perturbative treatments often yield qualitatively
incorrect results. This is particularly true in the case of bio-
logical light harvesting complexes which are among the most
efficient energy transporting systems currently known.

Recently, we used the Haken-Strobl model16 and an ap-
proximate stochastic Schrödinger equation17 to study the en-
ergy transport processes in one-dimensional disordered sys-
tems. However, the Haken-Strobl model represents a vast
simplification of the true dynamics that is applicable only
in the high temperature Markovian limit, while the approx-
imate stochastic Schrödinger equation is only valid in the
weak system-phonon coupling regime and fails to correctly
reproduce the classical hopping dynamics at high temperature.
Here, we present a complete characterization of the transport

a)Electronic address: jianshu@mit.edu

properties over the entire range of phonon bath parameters
through the development of an efficient and accurate secular
polaron-transformed Redfield equation (sPTRE). In contrast
to many standard perturbative treatments, the sPTRE allows
one to treat systems that are strongly coupled to the phonon
baths. Furthermore, the sPTRE is still very accurate even if the
system and bath are not strongly coupled provided that the bath
relaxation time is sufficiently short.18,19 This approach allows
us to explore many interesting features of the dynamics that
were previously inaccessible.

In the high temperature, incoherent regime, we recover the
known scaling relations of hopping transport that are obtained
from FGR. If the bath relaxation time is fast, then the diffu-
sion constant, D, decreases with temperature as T−1 as was
found in the previous Haken-Strobl analysis. However, as the
bath relaxation time slows, the FGR reduces to the Marcus
rates, and the temperature scaling of the diffusion constant
transitions to D ∝ T−1/2. However, these relations hold only
in the high-temperature/strong-coupling limit where the dy-
namics is incoherent. As the temperature or system-bath coupl-
ing decreases, quantum coherence begins to play a role and
the FGR results quickly break down, leading to a significant
underestimation of the true transport rate. In the sufficiently
weak damping regime, the sPTRE results reduce to those of
band-like transport governed by the standard secular Redfield
equation (sRE), wherein the diffusion coefficient can be shown
to increase linearly with the system-phonon coupling strength.
The sRE rates also demonstrate that transport occurs—even at
zero temperature—provided that the system-phonon coupling
is finite, due to the dephasing interactions from the phonon
bath.

This paper is organized as follows. We describe the
sPTRE used to compute the diffusion coefficient in an infinite,

0021-9606/2015/142(16)/164103/7/$30.00 142, 164103-1 © 2015 AIP Publishing LLC
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disordered one-dimensional chain in Sec. II. In the following
Sec. III, the numerical results are presented and compared with
the results from standard sRE and FGR approaches in the weak
and strong coupling regimes, respectively. The limiting results
allow for the accurate determination of the respective scaling
relations of the diffusion coefficient in each case. The sPTRE is
used to study some common organic semiconductor materials
in Sec. IV. Finally, we conclude with a summary of the results
in Sec. V.

II. THEORY

The total Hamiltonian in the open quantum system for-
malism is given by (we set ~ = 1 throughout the paper)

Htot = Hs + Hb + Hsb, (1)

where the three terms represent Hamiltonians of the sys-
tem, the phonon bath, and system-bath coupling, respec-
tively. The system is described by a tight binding, Anderson
Hamiltonian Hs =


n ϵn |n⟩⟨n| +m,n Jmn|m⟩⟨n|, where |n⟩

denotes the site basis and Jmn is the electronic coupling
between site m and site n. Here, we only consider one dimen-
sional systems with nearest-neighbor coupling such that Jmn

= J(δm,n+1 + δm+1,n). The static disorder is introduced by
taking the site energies, ϵn, to be independent, identically
distributed Gaussian random variables characterized by their
variance σ2

n = ϵnϵn. The overline is used throughout to denote
the average over static disorder. We assume that each site is
independently coupled to its own phonon bath in the local ba-
sis. Thus, Hb =


nk ωnkb†

nk
bnk and Hsb =


nk gnk |n⟩⟨n|(b†nk

+ bnk), where ωnk and b†
nk
(bnk) are the frequency and the

creation (annihilation) operator of the k-th mode of the bath
attached to site n with coupling strength gnk, respectively.

Applying the polaron method to study the dynamics of
open quantum systems was first proposed by Grover and Sil-
bey.20 This approach has gained a renewed attention due to
the recent interest in energy transfer in light harvesting sys-
tems21–23 and has been extended to study non-equilibrium
quantum transport.24 In this work, we will use a variant of the
polaron based master equation which has the same structure as
the popular Redfield equation.

In the polaron technique, the unitary transformation oper-

ator, eS = e

nk

gnk
ωnk

|n⟩⟨n |(b†
nk
−bnk), is applied to the total Hamil-

tonian

Htot = eSHtote−S = Hs + H̃b + Hsb, (2)

where Hs =


n ϵn |n⟩⟨n| +m,n κmnJmn|m⟩⟨n|, Hsb =


n,m

Jmn|m⟩⟨n|Vmn, and Hb = Hb =


nk ωnkb†
nk

bnk. The
electronic coupling is renormalized by a constant,

κmn = e
− 1

2

k



g 2
mk

ω2
mk

coth(βωmk/2)+ g 2
nk

ω2
nk

coth(βωnk/2)
, with the in-

verse thermal energy β = 1/kBT . The bath coupling oper-

ator now becomes Vmn = e

k

gmk
ωmk

(b†
mk
−bmk)e−


k

gnk
ωnk

(b†
nk
−bnk)

− κmn, and is constructed such that its thermal average is zero,
i.e., trb[Vmne−βHb] = 0. Additionally, we assume the coupling
constants are identical across all sites gnk = gk. Motivated by
its relevance in quantum dots and light harvesting systems, we
choose a super-Ohmic spectral density,25–27 J(ω) = π


k g

2
k

δ(ω − ωk) = γω3e−ω/ωc, where γ is the dissipation strength
and ωc is the cut-off frequency.

A detailed derivation of sPTRE is given in Appendix A,
here we only summarize the main results. A perturbation
approximation is applied in terms of the transformed system-
bath coupling leading to a sPTRE for the transformed reduced
density matrix, ρs,

dρνν(t)
dt

=

ν′

Rνν,ν′ν′ρν′ν′(t), (3)

dρµν(t)
dt

= (−iωνµ + Rµν,µν)ρµν(t), ν , µ, (4)

where the Markov and secular approximations have also been
employed. The Greek indices denote the eigenstates of the
polaron transformed system Hamiltonian, i.e., Hs|µ⟩ = Eµ |µ⟩
and ωµν = Eµ − Eν. The Redfield tensor, Rµν,µ′ν′, describes
the phonon-induced relaxation and can be expressed as

Rµν,µ′ν′ = Γν′ν,µµ′ + Γ
∗
µ′µ,νν′

− δνν′

κ

Γµκ,κµ′ − δµµ′

κ

Γ
∗
νκ,κν′, (5)

Γµν,µ′ν′ =


mnm′n′
JmnJm′n′⟨µ|m⟩⟨n|ν⟩⟨µ′|m′⟩⟨n′|ν′⟩

×Kmn,m′n′(ων′µ′), (6)

where Kmn,m′n′(ω) is the half-Fourier transform of the bath
correlation function

Kmn,m′n′(ω) =
 ∞

0
eiωt⟨Vmn(t)Vm′n′(0)⟩Hb

dt (7)

and ⟨Vmn(t)Vm′n′(0)⟩Hb
= trb[e−βHbVmn(t)Vm′n′(0)]/trb[e−βHb].

Since the system is disordered and we are mainly interested in
the long time dynamics, the Markov and secular approxima-
tions do not incur a significant loss of accuracy. Comparison
of the dynamics computed with and without these approxi-
mations shows little discrepancy (see Appendix A). It should
be noted that the transformed reduced density matrix, ρs, is
different from the reduced density matrix in the original frame,
ρs. However, for the transport properties studied here, only the
population dynamics is needed which is invariant under the
polaron transformation since ρnn(t) = ρnn(t).

Numerical Details—The numerical simulations were per-
formed in a one-dimensional chain of 250-300 sites and aver-
aged over 100-500 realizations of static disorder sampled from
a Gaussian distribution with variance σ = 1. The number of
realizations needed for convergence is highly dependent on the
temperature; more samples are needed in the low temperature
regime. The system is initialized with a localized excitation
at the middle of the chain. In the presence of both disor-
der and dissipation, we find empirically that after an initial
transient time that is approximately proportional to J3β/γ,
the mean square displacement, ⟨R2(t)⟩ = n n2ρnn(t), grows
linearly with time, where the origin is defined such that ⟨R2(0)⟩
= 0. Within the timescale of the simulations, the number of
sites is sufficient such that no significant boundary effect is
observed. The diffusion constant, D, can then be defined as
limt→∞ ⟨R2(t)⟩ = 2Dt. The electronic coupling J = 1 sets the
energy scale, and quantities throughout are implicitly stated in
units of J.
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III. RESULTS

We first investigate the effect of the dissipation strength,
γ, on the diffusion constant in Figure 1. A non-monotonic
dependence of D as a function of γ is observed, consistent
with the previous studies using the Haken-Strobl model.16

Without coupling to the bath, there is no macroscopic trans-
port since all the wavefunctions in the one-dimensional disor-
dered system are Anderson localized. Introducing dissipa-
tion destroys the phase coherence that gives rise to localiza-
tion, allowing for transport to occur. Therefore in the weak
coupling regime, increasing γ leads to faster transport as is
readily apparent from the Redfield rates in Eq. (6), and thus
D increases linearly with γ. In the opposite regime of strong
coupling, the coherence generated between sites is quickly
destroyed and the quantum transport reduces to a classical
hopping dynamics between neighboring sites. In this regime,
the dissipation strength effectively acts as classical friction that
impedes the transport28 leading D to behave as a decreasing
function of γ as is observed in Figure 1. The interplay between
static disorder and dissipation thus gives rise to an optimal
dissipation strength for transport. In Figure 1(a), it is seen
that the maximal diffusive rate both increases and shifts to
smaller coupling strengths as the temperature increases since
thermal fluctuations also assist the quantum system to over-
come the localization barriers in the weak coupling regime. For
comparison, we also include the results from the sRE in the
weak coupling regime. For small γ and T , the sRE provides
a reliable description of the transport properties but starts to
breakdown as γ (or T) increases leading to an unphysical D ∝
γ dependence. The breakdown of the sRE has been discussed
by Ishizaki and Fleming for a two-site model29 and by Wu et al.
for Fenna-Matthews-Olson (FMO) complex.30

Figure 1(b) depicts D as a function of γ for different bath
cut-off frequencies. It is found that the large γ scaling of D
is highly dependent on the relaxation time of the bath. For
a fast bath, the rates decrease approximately as 1/γ consis-
tent with our previous analysis of the Haken-Strobl model.16

However, as the bath frequency decreases, a transition from
the 1/γ dependence to 1/

√
γ dependence is observed. This

FIG. 1. The diffusion constant as a function of the dissipation strength,γ. The
dashed lines display the corresponding results from the sRE, while diamond
symbols depict the results of the FGR rates given in Eq. (8). (a) Results for
different temperatures and a fast bath ωc = 3. (b) Results for different cut-off
frequencies and T = 10.

FIG. 2. The diffusion constant as a function of temperature. (a) Results for
different values of dissipation strength and a fast bath ωc = 3. The inset
shows the diffusion constant calculated with the sRE near zero temperature
and γ = 0.01. (b) Results for different cut-off frequencies and a constant
reorganization energy of

 ∞
0

J (ω)
ω = 1.08. The diamond symbols depict the

results of the FGR rates as given by Eq. (8).

can be rationalized by noting that in the high temperature and
strong damping regime, the dynamics are incoherent and can
be described by classical hopping between nearest neighbors.
Then, the hopping rate between sites m and n is accurately
determined from FGR,

kF(∆mn) = J2
mnκ

2
mn Re

 ∞

−∞
dt ei∆mnt[eg (t) − 1] (8)

and

g(t) = 2
 ∞

0

dω
π

J(ω)
ω2


coth

βω

2
cosωt − i sinωt


, (9)

where ∆mn = ϵm − ϵn is the activation barrier and Jmn is
the electronic coupling. In the slow bath limit, the above
expression reduces to the Marcus rate kM(∆) ≈ π

2 J2


β

γω3
c

e
− β(π∆−4γω3

c)2
16πγω3

c which captures the correct 1/
√
γT dependence

of the rate. Defining the energy transfer time as the inverse
of the rate, τF(∆) = 1/kF(∆), static disorder can be introduced
by averaging τF(∆) over the Gaussian distribution of static dis-
order: τF =


P(∆)τF(∆)d∆ where P(∆) = 1

σ′
√

2π
e−∆

2/2σ′2 and

FIG. 3. Time evolution of the probability distribution profiles for γ = 0.02,
ωc = 3 and (a) high temperature, T = 50, or (b) low temperature T = 1. The
diffusion constant is 2D ≈ 1.1 in both cases. The inset (c) shows the low
temperature wavelike population profile at t = 2 in linear scale. The inset (d)
shows the respective mean-squared displacements ⟨R2(t)⟩ for T = 1 (solid)
and T = 50 (dashed).
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TABLE I. The mobility (in cm2/Vs) of organic semiconductor materials calculated with different methods at
~ωc = 62 meV, T = 300 K, σ = 111.6 meV, and the respective electronic coupling, J , and reorganization energy,
λ =

 J (ω)
ω . The experimental values of the mobility are taken from Refs. 38 and 39.

J (meV) λ (meV) µsPTRE µRedfield µFGR µexperiment

Rubrene 95.73 146 11.1 41.2 0.33 3–15
Pentacene 90.69 92 0.73 2.0 0.045 0.66–2.3
PBI-F2 2.4 213 2.2×10−5 1.2×10−3 2.0×10−5 . . .
PBI-(C4F9)2 97.7 339 0.61 104 0.25 . . .

σ′2 = ∆2
mn = 2σ2. The disorder-averaged golden rule rate can

then be obtained using kF = 1/τF and is plotted in Figure 1(b).
While it is seen to capture the correct scaling of D in the
overdamped regime, it significantly underestimates the trans-
port in the small and intermediate damping regimes. As the
dynamics becomes more coherent, the classical hopping rate
between sites provides a qualitatively incorrect description of
the transport. In the sufficiently weak dephasing regime, the
dynamics from the sPTRE reduce to those of the standard sRE
(dashed lines in Figure 1(b)).

While the γ dependence of D provides many physical
insights, the temperature dependence is more experimentally
accessible and is presented in Figure 2. Similar to the γ depen-
dence, D exhibits a non-monotonic dependence of T and the
high T scaling is sensitive to the cut-off frequency of the bath,
as shown in Figure 2(b). At high temperature, we observe D
decreases as 1/

√
T for a slow bath as predicted by the Marcus

theory, while for a fast bath, we recover the Haken-Strobl
scaling of 1/T . The system-bath coupling strengths shown in
Figure 2(a) lie to the right of the maxima in Figure 1. Hence, D
decreases as γ increases in the high temperature regime. In the
opposite low temperature regime, the intermediate coupling
results shown in Figure 2(a) are beyond the reach of the sRE.
Thus, D does not increase at a rate proportional to γ as might
be expected. However, the results here also do not agree with
the Marcus formula where one would expect the transport rate
to decrease as 1/

√
γT , but instead the diffusion constants are

nearly independent of γ. This low temperature, intermediate
coupling regime is not adequately described by either of the
perturbative methods. At zero temperature, quantum fluctua-
tions from the thermal environment are still present to destroy
the Anderson localization and allow for transport to occur,
albeit at a very slow rate. This leads to a small but finite value
of D as seen in the inset of Figure 2(a).

In addition to the steady state transport properties, it is also
useful to explore the dynamics of noisy, disordered systems.
Figure 3 displays the average population probability distri-
bution at high and low temperatures for an initial excitation
located at the center of the disordered chain. The tempera-
tures are selected such that the diffusion constants in Fig-
ures 3(a) and 3(b) are approximately the same, 2D ≈ 1.1.
In the high temperature case, the coherence is quickly de-
stroyed by dissipation, no wavelike motion is observed in the
time scale plotted. While the population distribution appears
exponential at short times—which is a signature of Anderson
localization—the exponential behavior quickly transitions to a
Gaussian profile indicating the onset of the diffusive regime.
The population dynamics at low temperature in Figure 3(b)

is qualitatively different. At short times, thedistribution near
the center of the chain (Figure 3(c)) displays wavelike motion
characteristic of free-particle dynamics while the tails decay
exponentially. The wavelike motion disappears at intermediate
times but the localization peak near the center persists. Al-
though the exponential tail eventually disappears, the transi-
tion of the population distribution to a Gaussian form is slow
and takes place long after a reliable estimate of D can been
obtained

(⟨R2⟩ ∝ t
)
, as shown in inset of the Figure 3(d).

IV. APPLICATIONS

It is interesting to compare estimates of the transport
properties in real material systems from the sPTRE with the
approximate FGR and sRE rates that are often assumed to hold.
For example, predictions of the charge mobility, µ = eD

kBT
, of

several commonly used organic semiconductors are presented
in Table I. The parameters are taken from Ref. 31 and we
use the 1D model described in Secs. II and III to model the
charge transport along the direction with the largest electronic
coupling. Despite using a vastly simplified model (1D instead
of 3D), the mobility calculated with the sPTRE is in reasonable
agreement with the available experimental values for rubrene
and pentacene. In these two materials, the electronic couplings
are comparable to the reorganization energies, a regime that
is beyond the validity of both the sRE and the FGR. As a
result, the sRE leads to a substantial overestimation of the
mobility and the commonly used FGR leads to a significant
underestimation because of the neglect of quantum coherence.
For PBI-F2 and PBI-(C4F9)2, the mobilities calculated with the
sPTRE and FGR are similar in magnitude. This is due to the
fact that the reorganizational energies are significantly larger
than the electronic couplings, quantum coherence is quickly
destroyed, and transport occurs via hopping mechanism be-
tween two neighboring sites. In this regime, FGR is sufficient
to model the transport properties.

V. CONCLUSION

We have developed a polaron-transformed Redfield equa-
tion to systematically study the transport properties of disor-
dered systems in the presence of quantum phonon modes
and established scaling relations for the diffusion coefficients
at both limits of the temperature and system-bath coupling
strength. The results presented here constitute one of the first
studies of quantum transport in extended disordered systems
over the complete range of phonon bath parameters. The
sPTRE provides a general framework to establish a unified
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understanding of the transport properties of a wide variety of
systems including light-harvesting complexes, organic photo-
voltaics, conducting polymers, and J-aggregate thin films.
Finally, the polaron transformation employed in this paper is
limited to spectral densities that decay faster than ω2 at ω → 0
(e.g., a super-ohmic spectrum employed in this paper) since the
correlation function contains a ω−2 divergence. This problem
can be circumvented by employing a variational version of
the polaron technique that performs an optimized, partial
polaron displacement by minimizing the system-plus-bath free
energy.32,33
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APPENDIX A: DERIVATION OF THE POLARON-
TRANSFORMED MASTER EQUATION

The total Hamiltonian of the system and the bath is

Htot = Hs + Hb + Hsb,

=

n

ϵn |n⟩⟨n| +

m,n

Jmn|m⟩⟨n| +

n


k

ωnkb†
nk

bnk

+

n


k

gnk |n⟩⟨n|(b†nk + bnk), (A1)

where |n⟩ denotes the site basis, ϵn is the site energy, and
Jnm is the electronic coupling between site n and site m. Each
site is independently coupled to its own phonon bath in the
local basis. The variable ωnk and operator b†

nk
(bnk) are the

frequency and the creation (annihilation) operator of the k-th
mode of the bath attached to site n with coupling strength gnk,
respectively.

Applying the polaron transformation,

eS = e

nk

gnk
ωnk

|n⟩⟨n |(b†
nk
−bnk), to the total Hamiltonian, we

obtain

Htot = eSHtote−S = Hs + Hb + Hsb, (A2)
Hs =


n

ϵn|n⟩⟨n| +

m,n

κmnJmn|m⟩⟨n|, (A3)

Hb = Hb =

n


k

ωnkb†
nk

bnk, (A4)

Hsb =

m,n

Jmn|m⟩⟨n|Vmn, (A5)

where the electronic coupling is renormalized by the con-

stant, κmn = e
− 1

2

k

g 2
mk

ω2
mk

coth(βωmk/2)− 1
2

k

g 2
nk

ω2
nk

coth(βωnk/2)
and

β = 1/kBT . Tildes are used to denote operators in the polaron
frame. The bath coupling operator now becomes Vmn

= e

k

gmk
ωmk

(b†
mk
−bmk)e−


k

gnk
ωnk

(b†
nk
−bnk) − κmn. The bath coupl-

ing term is constructed such that its thermal average is zero,
trb[Vmne−βHb] = 0. Assuming the coupling constants are iden-
tical across all sites gnk = gk and introducing the spectral den-
sity J(ω) = π


k g

2
k
δ(ω − ωk), the renormalization constant

can then be written as κ = κmn = e−
 ∞

0
dω
π

J (ω)
ω2 coth(βω/2). Here,

we use a super-Ohmic spectral density J(ω) = γω3e−ω/ωc

where γ is the dissipation strength and ωc is the cut-off
frequency.

To derive the master equation, let us first introduce the
Hubbard operator Xνµ = |ν⟩⟨µ|, where |ν⟩ is the eigenstate
of the transformed system Hamiltonian: Hs |ν⟩ = Eν |ν⟩. The
system reduced density matrix element can be conveniently
obtained using the relation ρµν(t) = trs+b[ρs+b(0)Xνµ(t)], as
will be done later. The Heisenberg equation of the Hubbard
operator is given by

dXνµ(t)
dt

= i[H0(t),Xνµ(t)] + i[Hsb(t),Xνµ(t)], (A6)

where H0 = Hs + Hb is the free Hamiltonian. We can write the
second term as

[Hsb(t),Xνµ(t)] = U†(t) [Hsb,Xνµ] U(t), (A7)

where the evolution operator is U(t) = e−i Htot t. We then use
Kubo’s identity34 to expand U(t) perturbatively in terms of
Hsb,

U(t) ≈ e−i H0t


1 − i

 t

0
dsH sb(s)


, (A8)

where hats over the operators are used to denote operators
in the interaction picture, O(t) = ei H0tOe−i H0t. Inserting the
expansion into Eq. (A7) and keeping terms up to second order
in Hsb, the Heisenberg equation, Eq. (A6), becomes

dXνµ(t)
dt

= i[H0(t),Xνµ(t)] + i[H sb(t), Xνµ(t)]

−
 t

0
ds [H sb(s), [H sb(t), Xνµ(t)]]. (A9)

We multiply the initial condition, ρs+b(0), to the RHS of
Eq. (A9) and perform a total trace of both the system and
bath, obtain an equation governing the dynamics of the system
reduced density matrix elements,

dρµν(t)
dt

= −iωµνρµν(t) −
 t

0
ds trs+b

×
([H sb(s), [H sb(t), Xνµ(t)] ]ρs+b(0)

)
,

(A10)

where ωµν = Eµ − Eν. Assuming factorized initial conditions,
ρs+b(0) = ρs(0) ⊗ e−βHb

tr[e−βHb] and substituting the expression of
Hsb into Eq. (A10), we finally have the master equation after
some manipulations,

d ρ̃µν(t)
dt

= −iωµν ρ̃µν(t) +

µ′ν′

Rµν,µ′ν′(t) ρ̃µ′ν′(t), (A11)

where the Redfield tensor, Rµν,µ′ν′(t), describes the phonon-
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induced relaxation. It can be expressed as

Rµν,µ′ν′(t) = Γν′ν,µµ′(t) + Γ∗µ′µ,νν′(t) − δνν′

κ

Γµκ,κµ′(t)

− δµµ′

κ

Γ
∗
νκ,κν′(t). (A12)

The damping rates have the form

Γµν,µ′ν′(t) =


mnm′n′
JmnJm′n′⟨µ|m⟩⟨n|ν⟩⟨µ′|m′⟩⟨n′|ν′⟩

×Kmn,m′n′(ων′µ′, t), (A13)

where Kmn,m′n′(ω, t) is the integrated bath correlation function,

Kmn,m′n′(ω, t) =
 t

0
eiωt⟨Vmn(t)Vm′n′(0)⟩Hb

dω. (A14)

⟨•⟩H denotes the average over the thermal state e−βH/tr[e−βH].
Assuming a short bath correlation time, we can make the
Markov approximation by taking the upper integration limit
to infinity, making the damping rate a half-Fourier transform
of the bath correlation function. The bath correlation function
is given by35

⟨Vmn(t)Vm′n′(0)⟩Hb
= κ2(e−λmn,m′n′φ(t) − 1), (A15)

where λmn,m′n′ = δmm′ − δmn′ + δnn′ − δnm′ and

φ(t) =
 ∞

0

dω
π

J(ω)
ω2


cos(ωt) coth(βω/2) − i sin(ωt) .

(A16)

A few remarks are in place. First, the decoupled initial
condition assumption is generally not true in the polaron frame
since ρs+b(0) is usually a complicated system-bath entangled
state generated by the polaron transformation. This occurs
even if the initial state in the original frame does factorize
as ρs+b = ρs(0) ⊗ ρb(0). Regardless, in most cases, the de-
coupled initial condition is only an approximation. However,
Nazir et al.36 have shown that the error incurred due to the
initial condition is only significant at short times. In this work,
we are mainly interested in the long time dynamics of the
system. Therefore, the accuracy of our results is not consider-
ably affected by the decoupled initial condition approximation.
Second, Eq. (A12) has the same structure as the Redfield
equation commonly used in the magnetic resonance literature.
The only difference is that the damping tensor Γµν,µ′ν′ con-
tains four summations as opposed to two summations in the
standard Redfield equation. In fact, the Redfield equation can
be recovered by following the same prescription as described
above except without applying the polaron transformation.

Within the secular approximation, the evolution of
the diagonal and off-diagonal density matrix elements is
decoupled,

d ρ̃νν(t)
dt

=

ν′

Rνν,ν′ν′ρν′ν′(t); (A17)

d ρ̃µν(t)
dt

= (−iωνµ + Rµν,µν) ρ̃µν(t), ν , µ. (A18)

We compare the results from the above secular polaron
master equation with that of the more accurate time-convolu-
tionless second-order polaron master equation37 without the

secular and Markov approximations for an unbiased two-site
system. The results are plotted in Figure 4. It can the be seen
that the results agree remarkably well for different values of
temperature and coupling strength. This demonstrates that the
secular and Markov approximations made here do not incur a
significant loss of accuracy in our results.

APPENDIX B: STRONG DAMPING LIMIT

Here, we explore the strong system-bath coupling limit
of the sPTRE. In the strong coupling limit, the coherence is

FIG. 4. Time evolution of the population dynamics of the donor (site 1) cal-
culated using the secular polaron master equation as given in Eqs. (A17) and
(A18) (symbols) and the time-convolutionless second-order polaron master
equation used in Ref. 37 (solid lines). The parameters used are ϵ1= ϵ2= 0,
J12= 1, and ωc = 3.
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quickly destroyed by dissipation, thus we only need to consider
the equations of motion of the population, i.e., Eq. (A17).
Additionally, κmn → 0 for large γ, i.e., the eigenbasis of Hs

is also the site basis, |n⟩. As a result, Eq. (A17) becomes the
kinetic equations governing the population dynamics. For a
two site model, it can be written as

d ρ̃11(t)
dt

= R11,11(t)ρ11(t) + R11,22(t)ρ22(t),
d ρ̃22(t)

dt
= R22,11(t)ρ11(t) + R22,22(t)ρ22(t).

(B1)

The transition rate from site 1 to site 2 is given by k12 = R11,22
= 2Re[Γ21,12]. Explicitly,

k12 = 2κ2J2Re
 t

0
dt eiω21t(e2φ(t) − 1), (B2)

where ω21 = ω2 − ω1. The above transition rate is the same as
the prediction from FGR.
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