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ABSTRACT  

Single photon emitters play a central role in many photonic quantum technologies[1, 2]. A promising 

class of single photon emitters consists of atomic color centers in wide-bandgap crystals, such as 

diamond[3, 4] silicon carbide[5] and hexagonal boron nitride[6]. However, it is currently not possible 

to grow these materials as sub-micron thick films on low-refractive index substrates, which is 
necessary for mature photonic integrated circuit technologies. Hence, there is great interest in 

identifying quantum emitters in technologically mature semiconductors that are compatible with 

suitable heteroepitaxies. Here, we demonstrate robust single photon emitters based on defects in 

gallium nitride (GaN), the most established and well understood semiconductor that can emit light 
over the entire visible spectrum. We show that the emitters have excellent photophysical properties 

including a brightness in excess of 500×103 counts/s. We further show that the emitters can be 
found in a variety of GaN wafers, thus offering reliable and scalable platform for further 

technological development. We propose a theoretical model to explain the origin of these emitters 

based on cubic inclusions in hexagonal gallium nitride. Our results constitute a feasible path to 
scalable, integrated on-chip quantum technologies based on GaN. 
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MAIN TEXT 

III-nitrides are widely used in solid state lighting[7], high-frequency and high-power 

electronics[8, 9] and laser technologies[10]. In particular, gallium nitride (GaN) features 

advantageous optical and electronic properties such as non-linear second order susceptibility[11], 

spontaneous and piezoelectric polarization[12], biocompatibility[13] and a direct, wide bandgap[14, 

15]. Thus, GaN is increasingly used as platform for photonic integrated circuits (PIC)[16, 17] 

including waveguides[18], microdisk cavities[19-21], and photonic crystals[22-24]. In addition, GaN is 

the basis of a multi-million dollar efficient lighting industry underpinned by mature 

nanofabrication and growth technologies[25, 26].  

In this work, we report room temperature (RT), bright, stable single photon emitters (SPEs) 

in GaN films that do not require any post-growth sample treatments. The emitters are defects that 

are optically active in the visible/near-infrared (NIR) spectral range, and the zero-phonon lines 

(ZPL) span a wide range of wavelengths. They were found in five GaN wafers that have different 

doping types and levels, and are grown on various substrates using Metal Organic Chemical Vapor 

Deposition (MOCVD), the most common commercially viable technique for the growth of device-

grade GaN. The pervasiveness of the SPEs in different GaN samples demonstrates that our finding 

are not limited to a rare defect found in select few ultrapure samples. 

To identify and characterize the SPEs, we analyzed 5 GaN samples grown on sapphire and 

silicon carbide (SiC). Sample A consists of a 4 µm thick Magnesium (Mg)-doped GaN film grown 

on sapphire. For clarity, we present an optical image and an atomic force microscope (AFM) scan 

of Sample A in Figure 1(a-b), while a summary of the structural characterization of the other 

samples is provided in the supporting information (table S1). The crystalline quality of the GaN 

samples was evaluated by X-ray diffraction (XRD) measurements, confirming their single crystal 

nature (see table S2). For all samples, surface roughness is below 1 nm (see table S1, S2).   

The spectroscopy measurements on all samples were performed using a scanning confocal 

microscope (microscope objective with numerical aperture 0.9) with green laser excitation 

(532nm) focused to a laser spot with a diameter of ~ 400 nm. Figure 1c shows a representative 60 

µm X 60 µm fluorescence map with localized, bright spots labeled E1-E8, corresponding to 

isolated emission spots in Sample A. This map is obtained from a 1 cm2 sample using an excitation 
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power of 300 µW (measured before the microscope objective). An analysis of other regions of 

sample A indicate an average of 1 emitter per 25	���.  

Figure 1d summarizes fluorescence scans of GaN Samples B-E, which consist of the layer 

structures shown in the insets. Sample B was grown on sapphire, C and D on sapphire overgrown 

with different GaN/InGaN epilayers, and Sample E was grown on SiC (see supporting information 

for details). The circles in Figure 1d indicate SPEs. Isolated bright spots were found in each 

sample, though the density varied across the samples. We note that the samples were chosen 

randomly, with no specific growth requirements, to ascertain the widespread presence of SPEs in 

epitaxial GaN.  

 

 

Figure 1. Defects in GaN wafers. a) Optical microscope image of Sample A, a 4 µm Mg- doped 

GaN film grown on sapphire by MOCVD. The scale bar is 10 µm. b) 10 µm ⅹ 10 µm AFM image 

of Sample A. The surface roughness is < 1nm. The scale bar is 2 µm. c) 60 µm ⅹ 60 µm confocal 

fluorescence scan of Sample A obtained using a 300 µW excitation laser. The scale bar is 5 µm. 

d) 40 µm ⅹ 40 µm confocal fluorescence scans of Samples B-E: i) 2 µm, undoped GaN, ii) 0.5 

µm, Mg-doped GaN on 13.2 µm, Si-doped GaN, iii) GaN LED structure, iv) 1.2 µm, undoped 

GaN. Samples B-D are grown on sapphire. Sample E is grown on silicon carbide. The white circles 

indicate localized emitters. Insets: schematic diagrams of Samples A-E. 
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Below, we provide a detailed analysis of sample A and show representative data from the other 4 

samples. As shown in Figure 2a, the RT photoluminescence (PL) spectra from emitters E1-E5 

show distinct ZPL wavelengths of 640 nm, 657 nm, 681 nm, 703 nm and 736 nm, respectively. 

All spectra are obtained with the same excitation power of 100 µW, while all second-order 

correlation measurements were carried out using a laser power of 50 µW. The 696 nm 

luminescence peak corresponds to the ruby CrAl
0 emission and is present in all spectra taken from 

the samples grown on sapphire. Additional representative RT spectra from Sample A are provided 

in the supporting information (Figure S2).  

The histogram in Figure 2b shows the ZPL wavelength distribution of 93 emitters in Sample A. 

This histogram bin width is 10 nm as small differences in peak position can be caused by strain 

variations throughout the sample[27]. However, the ZPL wavelengths span 180 nm, suggesting a 

different primary mechanism for the broad distribution seen in Figure 2b. A likely mechanism is 

proposed below. 

The histogram in Figure 2c summarizes the RT ZPL line width distribution of 96 emitters in 

Sample A, with a median full width at half maximum (FWHM) of ~ 5 nm. Fits of the ZPL peak 

shape reveal an asymmetry caused by a low energy tail which may be caused by coupling to 

phonons. The ZPLs are narrower than the RT line width of the NV[28] center in diamond and 

comparable to other defects in diamond (e.g. the SiV[29] and the Cr-related[30]). 

Photon emission statistics were analyzed using a Hanbury Brown and Twiss (HBT) 

interferometer. The spots E1-E5 in Sample A (see Figure 1c and 2a) are SPEs, where the second 

order autocorrelation measurement (��(	

at zero delay time	(	 = 0
 shows that ��(0
 <0.5. 

Spots E6-E8 also exhibit antibunching, but the ��(0
 values exceed 0.5, indicating that they are 

small ensembles of 2-4 emitters (��(	
 measurement from all 8 spots are shown in Figure S3).    

Figure 2d shows spectra and autocorrelation measurements from typical emitters in Samples 

B-E. Data from additional emitters found in these samples is provided in the Supporting 

Information (Figures S4-S7).   

To confirm that the observed fluorescence is indeed from the GaN films, three pieces of 

Sample A were etched using chlorine reactive ion etching (RIE) to depths of 300 nm, 4 µm and 6 

µm. Subsequent PL analyses show that the emitters were still present after the 300 nm etch process, 
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but no localized florescence was observed if the 4 µm GaN epilayer was completely removed by 

the etch process. This confirms that the emitters do indeed originate from GaN.   

 

 

Figure 2. Single emitter photon emitters in GaN. a) Room temperature spectra from emitters E1-
E5 (shown in Figure 1c) reveal distinct ZPL wavelength of 640 nm, 657 nm, 681 nm, 703 nm and 

736 nm. The peak at 696 nm is the CrAl
0 emission from the sapphire substrate. b) Histogram of the 

zero phonon line wavelength distribution and c) the corresponding FWHM distribution measured 

from emitters in sample A. d) Typical PL spectra and g2 measured from emitters in Samples B-E. 
 

All the emitters that were investigated are bright and do not exhibit blinking or bleaching. 

Figure 3a shows the saturation behavior of emitter E2 with a ZPL wavelength of 657 nm obtained 

using two different methods[31]. In the first method, the saturation data are corrected for 

background and fitted with power model (red points and line) of the form,  

                                          � = ��
�

������
   ,                                                  (1)  

where ���� is the saturation power and �� is the corresponding photon detection rate. Fitting the 

background-corrected data with Equation (1) yields a maximum intensity �� of 501×103 counts/s 

at a saturation power of 930 µW. This intensity value is comparable with other single emitters in 

bulk materials.  
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      Alternatively, the single photon emission rate can be estimated using g2 – corrected data[31]. At 

an excitation power of 50 µW, Emitter E2 yields an antibunching dip at zero-delay time 

(����
� (	 = 0
) of 0.331. The normalized ����

� (	
 can be corrected for background using[31]: 

                              ����
� (	
 = ��

�(	
�� + 1 − ��                                                  (2) 

 

where ��
�(	
 is the pure antibunching function and ρ is the ratio of single photon emission rate (!) 

to total count rate ("). Ideally, antibunching of a SPE such as E2 satisfies the condition 

��
�(	 = 0
 = 0, and the expression ! = "(1 − ����

� (	 = 0

#/� follows from Equation (2). 

Substituting experimental values for " and ����
� (	 = 0) at different excitation powers, the single 

photon emission rate (!) is determined for E2. Figure 3a (blue dots) shows single the photon 

emission rate of E2 versus excitation power. Fitting this curve with the power model defined by 

Equation (1), a single photon emission rate of 203 x 103 counts/s is obtained at saturation power 

of 313 µW. Other SPEs studied in this workyield similar values for ���� and �� (possible variations 

arise from excitation power dependent absorption cross-sections of different emitters). Both 

methods independently confirm the brightness of these emitters. A detailed analysis of the emitter 

photophysics and an estimate of the quantum efficiency are provided in the supporting 

information.  

Photostability of the SPEs is studied by recording PL intensity versus time under continuous 

wave excitation. Figure 3b shows an example obtained from emitter E2 using an excitation power 

of 3 mW over 10 minutes of continuous acquisition. All the emitters studied in this work were 

stable and did not exhibit blinking or bleaching under our experimental conditions.    
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Figure 3. Power dependent and low temperature optical characteristics of the emitters. a) 
Fluorescence intensity of emitter E2 as a function of excitation power. The background-corrected 

saturation curve (red) yields a maximum intensity of 501 kCounts/s at a saturation power of 930 
µW. The g2-corrected saturation curve (blue) yields a lower bound on the maximum single photon 

emission rate of 203 kCounts/s at a saturation power of 313 µW. b) Long term fluorescence 
stability of emitter E2. The emission intensity was measured using a time bin of 50 ms. The emitter 

did not show any evidence of blinking or bleaching during the course of the experiments. c) PL 
spectrum from an emitter in Sample A acquired at 3.5 K. The peak at 693 nm is from the sapphire 

substrate. d) Temperature dependence of the ZPL position (black) and FWHM (blue).  
 

We now proceed to characterize the SPEs at cryogenic temperatures. Figure 3c shows a PL 

spectrum from a SPE at ~4 K. The emitter ZPL has a FWHM of 0.98 nm corresponding to a Huang-

Rhys factor of 0.46 (defined by S=-ln (Izpl/Itot) where Izpl (Itot) is the ZPL (total) integrated PL 

intensity[32]). We did not observe spectrometer-limited linewidths and the broadening is most likely 

caused by coupling to phonons or ultrafast spectral diffusion. Figure 3d shows the ZPL 
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wavelength and FWHM measured as a function of temperature between 3.5 K and 80 K. Unlike 

other solid-state emitters that have monotonic T5, T3, T7 or exponential dependencies on 

temperature[33-35], the emitters in GaN exhibit an unusual ‘S-shaped’ dependence, suggesting that 

the emitters are not simple atomic defect centers, but have an alternate origin. Furthermore, the 

broad spectral spread of ZPL wavelengths across individual wafers and between wafers suggests 

that the emitters are associated with growth defects rather than a particular impurity (such as the 

NV defect in diamond).  

Point defect agglomeration during growth of wurtzite GaN can lead to the formation of 

stacking faults (SF) with varying widths spanning a few angstrom to 10 nm[36, 37]. Figure 4a is a 

schematic illustration of a 5-bilayer cubic inclusion in a 12-bilayer slab of wurtzite GaN, forming 

stacking faults. Consequently, localized cubic inclusions introduce a quantum well for conduction 

band electron due to the narrower band gap of cubic GaN relative to wurtzite GaN. The cubic 

inclusion is surrounded by the spontaneously polarized wurtzite matrix, resulting in electronic 

states with a localized electric field[38, 39]. These electronic states with a strong electric field act as 

effective triangular quantum well structures, altering the local optical properties of GaN[39-41] 

The presence of SFs and their role in the observed quantum emissions is supported by the 

observed “S-shaped” temperature dependence of the ZPL wavelength seen in Figure 3d. The ZPL 

blue-shifts as T is increased from 10 K to 30 K, and red-shifts as T is increased beyond 30 K. This 

has been reported previously for band edge excitons in c- and a-plane grown GaN[42-44], where the 

blue shift is explained by an exciton transition from a shallower energy level of conduction band 

quantum wells to holes in the valance band. It can occur due to carrier reshuffling within the 

stacking faults by virtue of lattice strain or location of extrinsic atoms in the vicinity of a stacking 

fault[42]. The red shift at temperatures greater than 30 K can arise from thermal activation of 

additional bilayers, allowing deeper quantum-well-potential-bound exciton transitions[45, 46]. An 

alternative explanation for the red shift is a delocalization of holes in the valance band and 

recombination with stacking-fault-bound electrons[42, 47]. 

Similarly, we attribute the antibunched photon emissions reported here to the radiative 

recombination of an exciton bound to a point defect that resides inside or next to a stacking fault. 

In our model, the hole is tightly localized to the defect site whereas the electron is loosely bound 

by a Coulomb interaction introduced by the localized hole in the optically allowed lowest-energy 

excited state of the point defect. This localization modifies the stacking fault’s triangular potential 
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profile acting on the electron as illustrated in Figure 4b. We solve a quasi-one-dimensional 

Hamiltonian of this potential[48] where we applied fundamental material parameters of wurtzite 

and cubic GaN such as the band gaps, band alignments, effective masses of the hole and electron, 

dielectric constants, and steepness of the triangular well caused by spontaneous polarization. The 

resulting calculated energy of the exciton is assumed to be the ZPL energy of the emitter. 

 

 

Figure 4. Numerical wavelength calculations: a) Schematic illustration of stacking faults 
generated by a cubic inclusion in wurtzite GaN. b) Location of the exciton in the cubic inclusion 

which spans 5 bilayers and is shown in a total slab of 12-bilayers of GaN. The potentials applied 
to the electron and the hole are the conduction band minimum (green curve) and valence band 
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maximum (purple cuve), respectively. The hole (red circle on the valence band maximum) is 
pinned by a point defect, while the electron is delocalized across the inclusion according to the 

density profile shown in blue. c) Wavelength distribution, spanning 600 to 705 nm, based on model 

Hamiltonian GaN parameterized calculations for a defect arrangement along the cubic inclusion 
shown in Figure 4b. 

 
By fixing the thickness of the cubic inclusion to 5 bilayers and setting the localization 

potential of the hole so that the latter yields a ZPL wavelength of 680 nm for the point defect in 

pure wurtzite GaN, our simulation gives rise to the spectral spreading between 600 nm and 705 

nm (see Figure 4c) if point defects are distributed uniformly between -4 nm to 4 nm with respect 

to the middle of the cubic inclusion. The calculated binding energy, i.e., the Coulomb-coupling in 

the corresponding exciton depends on the actual location of the point defects and goes up to 35 

meV. The relative signal intensities are weighted according to the thermal stability of the excitons 

at room temperature for each defect location that lead to the final ZPL distribution of the emitters 

in Figure 4c. The modeling results are in good agreement with the experimental data, both in terms 

of ZPL energies and ZPL distribution. More information about the modelling is given in the 

supporting information.  

It is important to note that the observed emitters are different from GaN or InGaN quantum 

dots, which have been isolated and shown to exhibit quantum emissions[49, 50]. Those sources 

operate predominantly at cryogenic temperatures, and originate from crystal size confinement of 

the QDs. 

To conclude, we show that GaN is a promising host of bright SPEs in the visible and near 

infrared spectral ranges. In particular, we demonstrated that these emitters are prevalent in a broad 

range GaN films grown on sapphire and SiC substrates. Low-temperature studies and subsequent 

Hamiltonian parametrized calculations suggest that the quantum emitters are defects localized in 

close proximity to an extended stacking fault formed due to a cubic inclusion. The model suggests 

that generation and, potentially, control of the emitter wavelengths may be possible by intentional 

introduction of cubic layers in the GaN growth process. Even at the current stage, the highly 

photostable SPEs offer a compelling opportunity for scalable nanophotonic devices and quantum 

information science based on an industrially and commercially important semiconductor material. 
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