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Abstract 
  
 Our elastic model of ErAs disordered GaAs/AlAs superlattices exhibits a local 
thermal conductivity maximum as a function of length due to exponentially suppressed 
Anderson-localized phonons.  By analyzing the sample-to-sample fluctuations in the 
dimensionless conductance, !, the transition from diffusive to localized transport is 
identified as the crossover from the multi-channel to single-channel transport regime 
! ≈ 1.  Single parameter scaling is shown to hold in this crossover regime through the 
universality of the probability distribution of ! that is independent of system size and 
disorder strength. 
 
 Investigations of phonon transport have invalidated Fourier’s law at the 
nanoscale [1–3].  As the length scale becomes smaller than the phonon mean free path, 
phonons ballistically propagate across the sample with a probability of order unity.  If the 
essential heat carrying phonon modes, populated at a given temperature, are ballistic, the 
thermal conductivity of the material should scale linearly with the length of 3-d systems.  
This coherent transport regime was verified in GaAs/AlAs superlattices (SLs) at 
temperatures up to 150K  [4].  In this coherent transport regime, the introduction of 
disorder can greatly impact phonon transport through elastic scattering.  
 In his seminal work, Anderson predicted that sufficiently strong disorder could 
localize waves and completely suppress coherent transport [5].  Although originally 
intended for electron transport described by the tight-binding Schrödinger equation, the 
essential concept has been applied to classical electromagnetic and acoustic wave 
equations owing to the fact that Anderson localization stems from interference  [6–10].  
In contrast to photonic materials, which can be essentially non-interacting, phononic 
systems which describe thermal transport require low temperatures to mitigate phase 
breaking phonon-phonon interactions.  Unfortunately, since Rayleigh scattering scales as 
~ω4, significant localization can only exist at higher frequencies; consequently, the low 
temperatures required for coherent transport may not populate these high frequency 
localized phonons to a significant enough degree to influence thermal transport.  This 
difficulty is demonstrated in the numerical study of isotope-disordered nanotubes  [11].   
 The problems with observing localization in three dimensions are further 
compounded by a critical level of disorder required for strong localization  [12].  Owing 
to the work of John, who suggested that disordered 3-d photonic crystals should localize 
light near band edge frequencies  [8], we were motivated to find an appropriate analogy 
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for phononic crystals.  Recently, thermal measurements have demonstrated decreasing 
thermal conductivity as a function of length in GaAs/AlAs superlattices with embedded 
ErAs nanoparticles  [13].  Anderson localization is the implied mechanism for this trend 
since the exponentially suppressed phonon conductance outweighs the linear scaling of 
ballistic modes.      
 In this work, we report numerical results obtained from the non-equilibrium 
Green function (NEGF) [14,15] and Landauer-Büttiker transport formalism [16] for 
GaAs/AlAs superlattices with ErAs nanoparticles.  The primary finding is the transition 
from ballistic to localized transport as temperature and system size are varied.  At very 
low temperatures (~1K), the populated modes are ballistic; consequently, the thermal 
conductivity exhibits linear size dependence.  As the temperature increases, localized 
modes become populated, resulting in a decreasing thermal conductivity with increasing 
length.  The calculated localization lengths for normal incidence phonons further 
corroborate the importance of phonon localization at intermediate frequencies.  
Additionally, the statistics of the dimensionless conductance [17] can be used to infer the 
diffusive or localized behavior of a given phonon mode  [18].  We found that at length 
scales corresponding to the transition from diffusive to localized transport, the probability 
distribution of the dimensionless conductance, g, develops non-analytic behavior around 
g ≈ 1  [19,20], suggesting transport governed by a single-channel  [21–23]. 
 The coherent phonon transport problem in this work concerns the transmission of 
phonons, whose spectrum is governed by ordered, semi-infinite GaAs leads, through 
disordered GaAs/AlAs superlattices (Fig. 1).  The quasi 1-D geometry has a transverse 
area of 3a × 3a = 1.7 nm × 1.7 nm and a period length of 10a, where the lattice constant a 
= 5.66Å is chosen to be an average of the lattice constants of GaAs and AlAs.  Periodic 
boundary conditions in the transverse direction are imposed; consequently, a k-mesh of 
10×10 ensures converged transmission of thermal phonons.  The SL interatomic force 
constants (IFCs), obtained through Density Functional Perturbation Theory  [24], are an 
average of bulk GaAs and AlAs IFCs. Disorder is introduced by perturbing the mass 
terms of the dynamical matrix, leaving the IFCs unaffected.  Interfacial roughness is 
implemented by randomizing the Ga and Al atoms within one unit cell of the interface.  
ErAs particles with diameter 2a are generated randomly at the interfaces with area 
concentrations of integer multiples of 2.38%, which corresponds to ~1 nanoparticle every 
10 periods.  The thermal conductivity of a disordered SL of length L coupled to GaAs 
leads, depicted in Fig. 1, can be written as ! = !

!
ℏ!
!!

�

!
!" !,!
!" ! ! !", where A is the 

transverse area, ω is the phonon frequency,  f is the Bose-Einstein distribution, T is the 
temperature, g is the dimensionless conductance after averaging over the first Brillouin 
zone, and …  corresponds to a configuration averaged quantity.  The dimensionless 
conductance can be expressed as ! ! = !!"[!!!!!!!] . !!,! = !(!!,! − !!,!! ) 
corresponds to the absorption rate of the leads, !!,!  is the self-energy due to the 
interaction of the disordered region with the leads, and ! is the Green function of the 
disordered region.  The self-energies are computed through a real-space decimation 
technique [25], while the Green function matrix elements connecting the two ends are 
recursively solved by the Dyson equation  [26].   
 At low temperatures, when inelastic scattering is negligible, disorder introduces 
two length scales, the elastic mean free path, lmfp, and the localization length, ξ.  At 



system sizes L < lmfp, the ballistic regime is characterized by a dimensionless conductance 
independent of system size, i.e. phonons propagate across the sample with unity 
probability.  When lmfp and ξ are well separated, the diffusive regime, !!"# ≪ ! ≪ !, 
exhibits power law decay ! ! ∝ !!! .  As the length scale reaches deep into the 

localized regime, ! ≪ !, the dimensionless conductance behaves as ! ! ∝ !!
!
!.  The 

dimensionless conductance of Fig. 2(a) shows evidence of phonon transport in all three 
regimes.  At frequencies below ~0.5 THz the dimensionless conductance is independent 
of system sizes up to 100 period lengths (~560 nm).  Above this frequency threshold, 
!!"#  becomes the relevant length scale.  At a phonon frequency of ~1.5 THz, the 
conductance transitions from power law to exponential decay, signifying the onset of 
significant phonon localization. 

To put the frequency intervals associated with ballistic, diffusive, and localized 
transport on a more quantitative footing, !!"# and ξ are calculated for frequencies up to 6 
THz.  From the relationship 〈! ! 〉 = !(!)(1+ !

!!"#
)!!  [27], a linear fit to !

!!"#
=

!(!)
〈!(!)〉 − 1 can be used to obtain !!"# , where !(!) is the number of phonon modes 
transmitted in the superlattice without ErAs and interface roughness.  In a similar fashion, 
! = !!

〈!"!!(!)〉  is calculated from the configuration average of 1680 nm systems.  
Additionally, under the assumption of weak isotropic scattering, the Thouless 
relationship, !!!!"#$%% ∝ !(!)!!"#, provides a qualitative estimate of the length scale 
over which diffusive transport occurs in quasi 1-D geometries.  Fig. 2(b) illustrates the 
frequency dependence of !!"#, ξ, and the localization length obtained from the Thouless 
relationship.  The frequencies 0.5 THz and 1.5 THz correspond to the regime where !!"# 
and ξ is on the order of ~102 nm, respectively.  Although !!"# and ξ are proportional to 
each other, the Thouless relationship !!!!"#$%% ≈ 2(! ! + 1)!!"#   [28,29] primarily 
holds for frequencies below 1.5 THz.  Additionally, the Thouless relationship fails when 
the mean free path drops near band edges.  The strong disorder (!!"

!!"
= 6.2)  and 

anisotropy stemming from the superlattice structure are potential causes for the failure of 
the Thouless relationship at higher frequencies  [30].  Furthermore, since GaAs reservoirs 
are coupled to the superlattice, some phonon modes in the ordered system will still be 
scattered due to contact resistance, i.e. ! !  should be calculated using ordered 
GaAs/AlAs superlattice reservoirs.  The most notable feature of !!"# and ξ is the strong 
departure from Rayleigh behavior at 1.5 THz when both values suddenly drop two orders 
of magnitude.  Since 1.5 THz corresponds to the fifth band edge in the zone-folded 
Brillouin zone representation, the low group velocities leads to resonant 
scattering  [8,31,32].  Beyond 1.5 THz, !!"# hovers around one period length.  This is a 
sensible value since a 23.8% area density corresponds to, on average, one nanoparticle 
every period in our simulated domain.   
 Unlike the conduction problem in electronic systems, where carriers within kBT of 
the Fermi energy primarily contribute to transport, phonon thermal conduction includes 
both sub-THz and THz contributions.  Due to this broadband nature, the conduction 
within our simulated systems will consist of a combination of ballistic, diffusive, and 
localized modes.  If the localized contribution to thermal conductivity is too small, as in 



the case of Savic et. al  [11], the effects of interference merely corrects the lim!→� !(!) 
behavior.  In other words, !(!) will still be monotonically increasing with increasing 
length (in the absence of inelastic scattering) since the growing contributions from 
ballistic modes outweigh the decreasing contributions from localized modes.  As 
localized transport becomes more significant,!!(!) will display a local maximum as a 
function of length then asymptote to a lower bulk value as the localized modes become 
completely suppressed.  Observing the latter trend in experiments [13] is a much stronger 
implication of Anderson localization because small corrections to the bulk thermal 
conductivity can be attributed to underestimated long-range disorder or anharmonicity. 
 The difficulty in observing localized phonon contributions to thermal transport 
stems from the fine-tuning of the temperature.  At temperatures below this threshold, the 
populated modes will be predominantly of the ballistic and diffusive type, resulting in 
conventional length dependence.  When the temperature is too high, the anharmonic 
mean free path, !!"! ∝ !!! , approaches ξ, leading to classical Ohmic behavior as 
interference effects become negligible.  To validate our phase-preserving transport 
models, we compare our system sizes and localization lengths to the anharmonic mean 
free paths computed for ordered GaAs/AlAs superlattices in [13].  Calculations 
performed up to 100K ensure !!"!(!) is greater than L and ξ up to phonon frequencies 
of 4 THz, which constitutes 91% and 99.9% of the accumulated thermal conductivity for 
! = 140nm and ! = 560 nm, respectively.   

Calculations performed at 1K depict linear scaling of the thermal conductivity for 
lengths up to 560 nm for various levels of nanoparticle densities and justify the transition 
from ballistic to diffusive transport as T increases.  !(!), shown in Fig. 3, is calculated 
for T = 10K and T = 100K and ErAs  interfacial area density of 2.38% and 23.8%.  At 
10K, both levels of disorder obey similar scaling behaviors, implying transport governed 
predominantly by ballistic and diffusive phonons.  Here, the diffusive scattering is caused 
by momentum randomization due to elastic scattering, since phase breaking anharmonic 
processes have much larger mean free paths.  At 100K there is a clear departure in the 
behavior of the low nanoparticle concentration and the high nanoparticle concentration 
superlattices.  While the 2.38% sample monotonically increases to a bulk thermal 
conductivity, the 23.8% sample exhibits a maximum thermal conductivity at L = 112 nm.  
The ratio of the maximum thermal conductivity to the value calculated for L = 560 nm is 
~2.1.  Although the simulations are limited to small transverse dimensions, increasing the 
size of the ErAs nanoparticles should enhance this ratio.  Larger nanoparticles should be 
able to reduce the frequency where !!"# saturates to the approximate lower bound of 
Lperiod, thus enabling significant localization for even lower frequency phonons.   

It is instructive to consider how this ratio should change if one were to include 
anharmonicity.  As the system transitions from diffusive transport to localized transport 
as T increases, the ratio should grow from unity to some maximum value.  As T is 
increased further, phase breaking interactions should delocalize phonons, decreasing this 
ratio back to unity  [33].  The temperature associated with the onset of a local thermal 
conductivity maximum is determined by the calculation of !(!) for different values of L, 
as shown in Fig. 4.  At ~18K, anomalous length dependence causes the 560 nm 
superlattice thermal conductivity to become smaller than the shorter superlattices. As the 
temperature increases to ~40K, the 560 nm superlattice becomes as thermally insulating 
as the 11.2 nm superlattice. 



 Up until this point, our calculations were primarily concerned with 
configurationally averaged values of !  or ln!(!) .  While these sorts of averaging 
procedures provide insight into ergodic systems, strongly localized waves are not 
exposed to the multitude of disorder configurations that extended waves interact with 
over the same period of time.  Additionally, the transition from diffusive to localized 
transport, for a given phonon frequency, can be made more explicit by analyzing the 
statistics of the dimensionless conductance.  In the diffusive regime, the probability 
distribution of the dimensionless conductance, ![! ! ], is Gaussian with a variance of 
order unity [18].  Physically this universal conductance fluctuation [34] corresponds to 
interference opening or closing a single conductance channel.  The connection to 
quantized conductance channels can be made complete by identifying ! = !"[!!!!!!!] 
with the dimensionless conductance  ! = 2!"[!!!] , where t is the transmission 
coefficient matrix which couples ingoing and outgoing waves  [17,35].  The Hermitian 
matrices being traced over can be diagonalized; consequently, the trace can be written as 
! = !!! , where !! are the transmission eigenvalues  [36].  Due to the non-vanishing 
moments of the distribution of !"[!!!], the transmission eigenvalues are bimodally 
distributed around 0 and 1  [23].  The number of open phonon channels in the diffusive 
coherent transport regime can be expressed as!!!"" ≈ ! !!"#

! .  The power law decay in 
the diffusive regime can be interpreted as the closing of quantized channels as L 
increases. 
 When ! ≈ 1 , phonon conduction enters the single-channel regime.  The 
exponential decay of this channel’s transmission eigenvalue with increasing L 
corresponds to the localization length, ξ.  Deep in the localized regime ! ≪ 1, ! is 
characterized by a log-normal distribution and relative fluctuations !!"#[!" ! ]

〈!"!(!)〉! ∝ !!! .  
Specifically, the magnitude and scaling of the fluctuations, and hence the distribution, of 
ln !  only depends upon 〈ln ! 〉 ≈ −! !, which is conventionally referred to as single 
parameter scaling [12].  Our calculations corroborate the log-normal statistics, single 
parameter scaling, and self-averaging properties of P[ln ! ] originally demonstrated 
in  [18].   

Our work extends the statistical analysis to the transition from the many-channel 
diffusive transport regime to the single-channel localized transport regime.  Because of 
the transition from Gaussian statistics to log-normal statistics, the distribution ! !  
should be asymmetric for! ! ≈ 1  [20].  Fig. 5 shows the asymmetric distribution around 
! ! ≈ 1 .  The transition between different statistics ultimately manifests as a kink in the 
probability distribution.  This non-analytical behavior has been studied in quasi 1-D 
wires  [19] described by the Dorokov-Mello-Pereyra-Kumar equation  [21,37].  Although 
not discussed, this behavior is also present in the histograms for the 210 nm (8,0) SWNTs 
for ! =1020 cm-1 in  [18].  

In order to demonstrate single parameter scaling for! ! ≈ 1, three different 
disordered superlattices are tuned to have values of !  within 1% of each other by 
choosing the appropriate values of L, ω, and disorder concentration.  The first two 
configurations are superlattices with 2.38% and 4.76% ErAs interfacial density and 
interfacial roughness.  The third configuration is a superlattice with interfacial roughness 
but without ErAs.  The three probability distributions of Fig. 5 show excellent overlap.  



!  is thus determined to be an appropriate scaling variable [38].  The universal 
distribution implies that the scaling of the dimensionless conductance is independent of 
the ~1 nm ErAs correlation length, phonon frequency, disorder strength, and nanoparticle 
concentration.  Furthermore, the majority of the modes should obey single parameter 
scaling since they lie within the bands of the superlattice without interfacial roughness or 
nanoparticles  [39,40].  One should note, however, that the localization lengths 
corresponding to the configurations of Fig. 5 are ~10μm.  Interfacial mixing and low 
nanoparticle concentrations are not a strong enough source of disorder to demonstrate the 
anomalous thermal conductivity maximum depicted prior. 

In conclusion, the authors of this work investigated the coherent phonon transport 
through GaAs/AlAs superlattices with randomly embedded ErAs nanoparticles.  Unlike 
the case of isotope disordered nanotubes, which exhibit localization at the highest phonon 
frequencies, the nanoparticle size and extremely large mass mismatch in our systems 
allows for significant localization at phonon frequencies pertinent to thermal transport.  
At temperatures large enough to significantly populate ~ 1.5 THz phonons, the thermal 
conductivity develops a local maximum as a function of length for large enough disorder 
concentrations.  For low disorder concentrations and temperatures, the thermal 
conductivity monotonically increases to its asymptotic bulk value.  By computing the 
probability distribution of the dimensionless conductance, the diffusive and localized 
regimes can be identified with multi-channel and single-channel transport, respectively.  
The transition between these two regimes is shown to occur when ! ≈ 1, indicated by 
an asymmetric distribution and non-analytic behavior around ! ! ≈ 1 .  The probability 
distribution is shown to depend only on ! , denoting a universal scaling behavior that is 
independent of the microscopic details of disorder. 
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FIG. 1 Diagram of an ErAs disordered GaAs/AlAs superlattice connected to semi-
infinite GaAs leads.  An infinitesimal temperature difference dT establishes a net phonon 
flux across the disordered region. 
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FIG. 2 (a) Configuration averaged dimensionless conductance, ! , versus phonon 
frequency, !, for GaAs/AlAs superlattices with 23.8% ErAs interfacial coverage.  The 
blue line corresponds to the dimensionless conductance of a 560 nm ordered GaAs/AlAs 
superlattice.  20 configurations were used for the averaging procedures for ! ≥ 140!nm 
while 40 configurations were used for ! = 56!nm.  Inset:  Rescaled axes to show the 
relative difference in dimensionless conductance between the ordered and disordered 
superlattices. (b) The phonon mean free path (blue circles), localization length (red 
squares), and Thouless length (yellow crosses) versus frequency for normal incident 
phonons (!! = 0).  200 configurations were computed to obtain the expected values !  
and ln!(!)  in order to fit !!"# and !, respectively. 
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FIG. 3 Normalized thermal conductivity versus length of GaAs/AlAs superlattices with 
2.38% and 23.8% ErAs interfacial coverage for T = 10K and T = 100K.  Each curve is 
normalized by its respective value at 560 nm.  Anderson localization leads to the local 
thermal conductivity maximum at L = 112 nm for the 23.8% interfacial disordered 
configurations at 100K. 
 

 
FIG. 4 Thermal conductivity versus temperature of GaAs/AlAs superlattices with 23.8% 
ErAs interfacial coverage for various lengths.  The crossing of the curves of ! !  
corresponds to the onset of appreciable localized phonon transport with increasing !. 
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FIG. 5 Computed probability distribution of the dimensionless conductance for three 
different disordered superlattices.  Circles correspond to superlattices with 0% ErAs, 
interfacial roughness, ! = 935  nm, ! = 1.93  THz, and ! = 2.1×10!  configurations.  
Crosses correspond to superlattices with 2.38% ErAs, interfacial roughness, ! = 1120 
nm, ! = 1.52! THz, and ! = 1.5×10!  configurations.  Diamonds correspond to 
superlattices with 4.76% ErAs, surface roughness, ! = 577 nm, ! = 1.52 THz, and 
! = 3.2×10! configurations. 
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