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Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity
tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy
conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering
realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in
modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large
phase space due to the slow simulation time required for accurate results. We use density functional theory in
connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered
porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing
the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances
between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous
materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.
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I. INTRODUCTION

The efficient and inexpensive conversion of heat directly
into electricity is a long-sought goal with enormous potential in
the clean-energy technology landscape [1,2]. The engineering
of thermoelectric materials, however, is particularly challeng-
ing because of the interrelation of key physical properties
constituting the thermoelectric figure of merit ZT, defined
as ZT = T σS2

κ
where σ is the electrical conductivity, κ is

the lattice thermal conductivity, S is the Seebeck coefficient,
and T the temperature. Nanostructuring offers a powerful
way to decouple the electrical and thermal transport. In
most semiconductors, the numerator of ZT, also referred to
as “power factor,” is maximized at relatively high carrier
concentrations, so the dominant electron mean free path (MFP)
can be as small as a few nanometers [3]. Conversely, phonons
may have much larger MFPs, even on the order of microns
[4]. Properly engineered nanostructures are therefore able
to scatter phonons more effectively than electrons. Porous
materials offer a highly tunable platform thanks to their great
degree of structural tunability including pore size, shape, and
arrangement, as well as the potential for controllable uniform
thin films, high temperature resilience, and robust contacts.
As an example, the thermal conductivities of nanoporous
Si have been measured in many studies with the common
finding of a strong suppression of thermal transport, leading
to a significant improvement in experimentally measured ZT
[5–12]. On the computational level, several models based on
the Boltzmann transport equation (BTE) also have shown
low thermal conductivities and revealed significant features of
phonon-boundary scattering and fundamental thermal trans-
port in nanoporous materials [13–15]. Preliminary attempts
aiming at tuning thermal conductivity in nanoporous Si have
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shown that, even within ordered configurations and with pores
of the same size, the pattern of the pores can have a large
influence on the resulting thermal transport [16]. Although
aligned configurations offer a robust platform for control-
lable experiments, pore disorder is unavoidable, especially at
smaller length scales [17]. Recent Monte Carlo calculations
[18,19] investigated thermal transport in disordered porous
materials with circular pores and concluded that the density of
pores along the heat flux direction has a significant influence on
thermal conductivity. In this paper, we expand on this concept
by developing a method that identifies the actual set of pores
representing the highest local resistance to phonon transport.
To this end, we use the recently developed first-principles
BTE solver [20] to perform thermal transport calculations in
random-pore configurations with pores of circular and square
shapes. Then, we establish a correlation between the phonon
suppression and the pore arrangement within a given config-
uration, leading to the identification of the pores constituting
the phonon bottleneck. Upon introducing a simple descriptor
representing the strength of this collection of pores, we find a
correlation between such a parameter and the effective thermal
conductivity κeff . This work can be potentially used to estimate
the degree of phonon suppression in realistic nanoporous
samples while avoiding the computational burden of solving
the BTE.

II. PHONON BOLTZMANN TRANSPORT EQUATION

Our computational approach is based on our recent imple-
mentation of the BTE for phonons, which under the relaxation
time approximations, reads as [15]

�ŝ(�) · ∇T (r,�,�) + T (r,�,�)

= γ

∫
K(�′)
�′2 < T (r,�′,�′) > d�′, (1)
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FIG. 1. Normalized magnitude of thermal flux for the (a) AC, (b) AS, (c) DC and (d) DS cases. The temperature gradient is imposed along
the x-direction. Phonons prefer to travel in the spaces between the pores, as highlighted by the red areas. In all the configurations the pores
arrangement is periodic in both x and y directions. The blue line represents the phonon bottleneck.

where K(�) is the bulk MFP distribution, T (r,�,�) is the
temperature associated to phonons with MFP � and direction,
ŝ, denoted by the solid angle �, γ = [

∫
K(�)/�2d�]

−1
,

and < · > is an angular average. The RHS of Eq. (1) is the
effective lattice temperature, a quantity describing the average
phonon energy. The term K(�) is obtained by using harmonic
and anharmonic forces in connection with density functional
theory [4,21]. The spatial discretization of Eq. (1) is achieved
by the finite-volume (FV) method. The simulation domain
is discretized by means of an unstructured mesh, generated
by GMSH [22]. The phonon BTE requires the solid angle
discretization to account for different phonon directions. We
use the discrete ordinate method (DOM), a technique that
solves the BTE for each phonon direction independently
and then combines the solutions by an angular integration

[23]. As Si is a nongray material, i.e., has a broad MFP
distribution, we need to discretize the MFP space, as well.
We reach convergence with 30 MFPs (uniformly distributed
in log space) and 576 phonon directions. The algorithm is
detailed in Ref. [24]. The overall solution of Eq. (1) requires
solving the BTE thousands of times, leading to an increase
in the computational time. However, our solver has been
conveniently parallelized and each configuration takes only
a few minutes with a cluster of 32 nodes.

The walls of the pores are assumed diffusive, a condition
that translates into

Tb = −
∫
�+

∫
(K(�)/�)T (r,�,�)ŝ(�) · n̂ d�d�∫
�−

∫
(K(�)/�)ŝ(�) · n̂ d�d�

, (2)
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where �− and �+ are the solid angle for incoming and
outgoing phonons with respect to the contact with normal
n̂. Once Eq. (1) is solved, thermal flux is computed via J(r) =
3
∫

K(�)/� < T (r,�,�)ŝ(�) > d�. The effective thermal
conductivity is obtained by using Fourier’s law, i.e., κbte =
(L/�T )

∫
hot < J(r,�,�) · n̂ > dS, where �T = 1 K is the

applied temperature and K is the distance between the hot
and cold contacts (or the size of the unit cell). To focus on
phonon size effects, we normalize the thermal conductivity
by its diffusive value, i.e., κeff = κbte(κbulk/κfourier), where
κfourier is the thermal conductivity computed by the diffusive
heat equation and κbulk = 156 Wm−1 K−1 is the bulk thermal
conductivity [25]. Our approach has been validated against
experiments on porous silicon [6,26] and, more recently, on
silicon labyrinths [27].

III. ALIGNED AND RANDOM PORES

We first compute thermal transport in aligned configura-
tions, which we will refer to as “aligned circular” (AC) and
“aligned square” (AS). The unit cell comprises a single pore
and is a square with size L = 10 nm. Heat flux is enforced
by applying a difference of temperature �T = 1 K along the
x direction. The porosity is fixed at φ = 0.25, and periodic
boundary conditions are applied throughout. The computed
values for κeff are in both cases around 10 Wm−1 K−1,
considerably lower than κbulk. The magnitude of heat flux,
shown in Fig. 1(a) and in Fig. 1(b) for AC and AS, respectively,
indicates that phonon travel mostly near the spaces between
pores perpendicular to the applied temperature gradient.

For random-pore (or disordered) configurations, the size of
the unit cell is chosen to be L = 40 nm, four times as large
as that for the aligned cases, in order to generate significant
disorder in the pores arrangement. Sixteen nonoverlapping
pores are randomly placed while keeping the porosity fixed to
φ = 0.25, thus allowing a direct comparison with the aligned
counterparts. We note that the material is still periodic in
that pores crossing the border of the unit cell are repeated
in the adjacent unit cells. We compute κeff for two hundred
arrangements, one hundred for each shape, which we refer to
as “disordered circle” (DC) and “disordered square” (DS).
The magnitude of thermal flux for two configurations is
shown in Fig. 1(c) and Fig. 1(d), respectively. We note

FIG. 2. (a) Example of a first-neighbor map. Each pore in the unit
cell is uniquely labeled. The bottleneck is highlighted by the orange
line and, in (b), is represented by an elementary circuit, or cycle.

that the formation of high-flux regions is irregular as it
depends on the pore configuration. According to Fig. 3(a)
and Fig. 3(b), respectively, the DC and DS cases are found to
have average κeff values 15% and 30% lower than that of their
aligned counterparts. Intuitively, the combined effect of small
bottleneck and vanishing view factor significantly lowers κeff .
In the next section, we will analyze in detail the correlation
between the pores arrangement and κeff .

IV. IDENTIFICATION OF A DESCRIPTOR

In previous work [16], we reported that κeff in nanoporous
materials is dictated by the view factor and the pore-pore
distances. We note that the view factor is a geometrical
feature that describes the ability of a ray to travel across
the simulation domain without intercepting the pores [28]. In
random-pore configurations, the view factor vanishes because
of the disordered pores blocking all the direct paths. It is
natural, therefore, to speculate whether the average pore-pore
distance in the disordered configurations is correlated with κeff .
However, after a regression analysis, we conclude that unlike
for the ordered case, such a parameter has only a marginal role
for the disordered systems. In fact, rigorously speaking, only
the interpore spaces perpendicular to heat flux matter. In order
to identify the phonon bottleneck we then analyze the pores
configuration in terms of graphs.

To this end, we first compute the pores first-neighbor map,
as elaborated in the following. A given periodic configuration
has a finite set of pores P = {P0,P1, . . . PN−1}, where N is
the number of pores. Given two pores Pα and Pβ , we define
them to be neighbors if, when moving Pα toward Pβ , there
is no collision with the surrounding pores. The intersection
among polygons is computed by the package PyClipper [29].
After repeating this procedure for all pore pairs, we obtain
a first-neighbor map as shown in Fig. 2(a). We then build
the set of edges E = {E0,E1, . . . EM−1}, where M is the
number of edges. Each edge connects two neighbor pores,
say Pα and Pβ , and points toward increasing y coordinates,
i.e., Pα is connected to Pβ only if (Cβ − Cα) · y > 0, where
Cn is the circumcenter of the pore Pn. The resulting path,
G(P,E), is directed in that its edges are unidirectional. We
define a path in G(P,E) as a sequence of vertices pμν = {v0 =
μ,v1, . . . vK−1 = ν} such that {vk,vk+1} ∈ E for 0 � k <

K − 1, where K is the length of the path. An elementary circuit
is a path where the only repeating vertexes are the first and the
last ones, i.e., μ = ν. In a complete directed graph, the number
of distinct elementary circuits, simply referred to as cycles, is

S =
N−1∑
i=1

(
N

N − i + 1

)
(N − i)!, (3)

which grows faster than 2N . Although in our case G(P,E)
is not complete, the number of cycles can easily reach
a few thousand. Here we identify all possible cycles by
using Johnson’s algorithm, which has a time bound O((N +
M)(C + 1)) [30], where C is the number of cycles. As the pores
are identified uniquely within the unit cell, every pore shares
the same label with its periodic counterpart. Consequently,
the first and last nodes of a cycle, although having the same
identifier, belong to two different unit cells. For our purposes,
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FIG. 3. Distribution of κeff for the (a) DC and (b) DS cases. The straight, horizontal lines represent the aligned counterparts. Distribution
of g for the (c) DC and (d) DS cases. The vertical lines refer to the bottleneck for the aligned cases.

we select only cycles whose extreme nodes share the same
y coordinate, as exemplified in Fig. 2(b). By doing so, we
guarantee that the cycles are perpendicular to heat flow and,
therefore, are suitable for the identification of a descriptor of
thermal conductivity, as explained in the next section.

To identify the bottleneck for each configuration we develop
the following algorithm:

(1) For each cycle, {C} = C0,Cs . . . CS−1, we compute
the interpore distance of its constituting pores, {R} =
R0,Rk . . . RK−1. Then, we compute the sum of such distances,
i.e., Ds = ∑

k Rk .
(2) From the previous point, we have the set {D} =

D0,Ds . . . DS−1. The bottleneck is then g = min{D}.
The phonon bottleneck is the smallest of the sum of pore-

pore distances among all the cycles in a configuration. The
effectiveness of g in describing nanoscale thermal transport in
such structures can be estimated by the Spearman correlation
rank (rs), a quantity that indicates how two variables are
monotonically correlated to each other [31]. The first step in
computing rs is ranking the values for κeff and g and collecting
the result via the vectors K and G, respectively. Then, we
compute

rs = 1 − 6
∑n

i (Gi − Ki)

n(n2 − 1)
, (4)

where n = 100 is the number of simulations for each shape.
For both DC and DS cases, we obtain a significant Spearman
correlation (higher than 0.63), suggesting that g can be used
as a good descriptor. We use this knowledge to understand the

κeff distributions for the DC and DS cases in relation to the
aligned cases. According to simple geometric considerations,
the bottleneck for the aligned cases is simply gAC = 4L(1 −
2
√

φ/π ) = 17.44 nm and gAS = 4L(1 − √
φ) = 20 nm. As

shown in Fig. 3(c), for DC, the average g is around gAC ; for
DS, almost all the configurations have g smaller than that of
AS [as shown in Fig. 3(d)], due to the square edges. These
results reflect the relative trend in κeff between the aligned
and disordered cases, corroborating the use of g as a valid
descriptor for thermal transport. Moreover, we note that most
of the bottlenecks have a number of pores (∼6–7) higher than
that of their aligned counterparts (4). This result confirms that
smaller κeff , within configurations with the same porosity, can
be achieved with anisotropic pore lattices, where the density
of pores is higher along the Cartesian direction orthogonal to
the applied temperature gradient [18,19]. The introduction of
a simple descriptor can be used to estimate the ranking of κeff

among different samples with disordered pores, supporting
experiments on realistic materials [8,17].

V. CONCLUSION

In summary, by performing calculations of thermal trans-
port in disordered porous materials we have quantified the
effect of the randomness in pore arrangement on the thermal
conductivity. Furthermore, we have devised a method to
identify the set of special pores composing the phonon
bottleneck, potentially empowering experimentalists with a
simple tool to assess thermal conductivity in disordered porous
materials.
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