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ABSTRACT
Cilkprof is a scalability profiler for multithreaded Cilk computa-
tions. Unlike its predecessor Cilkview, which analyzes only the
whole-program scalability of a Cilk computation, Cilkprof collects
work (serial running time) and span (critical-path length) data for
each call site in the computation to assess how much each call site
contributes to the overall work and span. Profiling work and span
in this way enables a programmer to quickly diagnose scalability
bottlenecks in a Cilk program. Despite the detail and quantity of
information required to collect these measurements, Cilkprof runs
with only constant asymptotic slowdown over the serial running
time of the parallel computation.

As an example of Cilkprof’s usefulness, we used Cilkprof to di-
agnose a scalability bottleneck in an 1800-line parallel breadth-first
search (PBFS) code. By examining Cilkprof’s output in tandem
with the source code, we were able to zero in on a call site within
the PBFS routine that imposed a scalability bottleneck. A minor
code modification then improved the parallelism of PBFS by a fac-
tor of 5. Using Cilkprof, it took us less than two hours to find and
fix a scalability bug which had, until then, eluded us for months.

This paper describes the Cilkprof algorithm and proves theoreti-
cally using an amortization argument that Cilkprof incurs only con-
stant overhead compared with the application’s native serial run-
ning time. Cilkprof was implemented by compiler instrumentation,
that is, by modifying the LLVM compiler to insert instrumenta-
tion into user programs. On a suite of 16 application benchmarks,
Cilkprof incurs a geometric-mean multiplicative overhead of only
1.9 and a maximum multiplicative overhead of only 7.4 compared
with running the benchmarks without instrumentation.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; I.6.6 [Simulation and Modeling]: Simula-
tion Output Analysis
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1. INTRODUCTION
When a Cilk [10,16,27] multithreaded program fails to attain lin-

ear speedup when scaling up to large numbers of processors, there
are four common reasons [14]:
Insufficient parallelism: The program contains serial bottlenecks

that inhibit its scalability.

Scheduling overhead: The work that can be done in parallel is too
fine grained to be worth distributing to other processors.

Insufficient memory bandwidth: The processors simultaneously
access memory (or a level of cache) at too great a rate for the
bandwidth of the machine’s memory network to sustain.

Contention: A processor is slowed down by simultaneous interfer-
ing accesses to synchronization primitives, such as mutex locks,
or by the true or false sharing of cache lines.

Performance engineers can benefit from profiling tools that identify
where in their program code these problems might be at issue, as
well as eliminate consideration of code that does not have issues
so that the detective work can be properly focused elsewhere. This
paper introduces a scalability profiler, called Cilkprof, which can
help identify the causes of insufficient parallelism and scheduling
overhead in a Cilk multithreaded program.

Cilkprof builds on the approach taken by Cilkview [14], which
quantifies the parallelism of a program under test using work-span
analysis [8, Ch. 27]. The work is the total time of all instructions
executed by a computation. We denote the work by T1, because
it corresponds to the time to execute the computation on a single
processor. The span is the length of a critical path — a longest
(in time) path of dependencies — in the computation. We denote
the span by T∞, because it conceptually corresponds to the time to
execute the computation on an infinite number of processors. The
parallelism, denoted T1/T∞, is the ratio of a computation’s work to
its span. Parallelism bounds the maximum possible speedup that a
computation can obtain on any number of processors. To achieve
linear speedup and minimize the overhead of Cilk’s randomized
work-stealing scheduler [5], a Cilk computation should exhibit am-
ple parallelism, that is, the parallelism of the computation should
exceed the number of processors by a sufficient margin [10], typi-
cally a factor of 10. Cilkview measures the work and span of a Cilk
computation and reports on its parallelism.

To help programmers diagnose scalability bottlenecks, Cilkview
provides an API to control which portions of a Cilk program should
be analyzed. This API allows a programmer to restrict Cilkview’s



analysis by designating “start” and “stop” points in the code, simi-
larly to the how the programmer can measure the execution time
of various portions of a C program by inserting gettimeofday
calls. Using this API, however, requires the programmer to man-
ually probe portions of the code, which can be cumbersome and
error prone for large and complex code bases, such as code bases
that contain recursive functions.

In contrast, Cilkprof profiles the parallelism, much as gprof [13]
profiles execution time. Unlike gprof, however, which uses asyn-
chronous sampling, and Cilkview, which uses dynamic binary in-
strumentation using Pin [29], Cilkprof uses compiler instrumenta-
tion (see, for example, [31,32]) to gather detailed information about
a Cilk computation. Conceptually, during a serial run of an instru-
mented Cilk program, Cilkprof analyzes every call site — every
location in the code where a function is either called or spawned.
It determines how much of the work and span of the overall com-
putation is attributable to the subcomputation that begins when the
function invoked at that call site is called or spawned and that ends
when that function returns. Cilkprof calculates work and span in
terms of processor cycles, but it can also use other measures such
as execution time, instruction count, cache misses, etc. Cilkprof’s
analysis allows a programmer to evaluate the scalability of that call
site — the scalability of the computation attributable to that call
site — and how it affects the overall computation’s scalability.

Although we implemented Cilkprof to analyze Cilk Plus [16]
programs, in principle, the same tool could be implemented for
any of the variants of Cilk, including MIT Cilk [10] or Cilk Arts
Cilk++ [27]. More generally, the Cilkprof algorithm could be
adapted to profile any parallel program whose span can be com-
puted during a serial execution. Because Cilkprof runs on a serial
execution of the program under test, it does not capture variations
in work and span that may occur in a nondeterministic program.

Cilkprof can help Cilk programmers quickly identify scalability
bottlenecks within their programs. We used Cilkprof to analyze
an 1800-line parallel breadth-first search code, called PBFS [28].
After about two hours of poring over Cilkprof data, we were able
to identify a serial bottleneck within PBFS, fix it, and confirm that
our modification improved parallelism by a factor of 5. Cilkprof
allowed us to eliminate insufficient parallelism as the code’s scala-
bility bottleneck and, thereby, to focus on the real bottleneck, which
is memory bandwidth. Section 8 describes this case study.

Efficiently computing the work and span of every call site is
harder than it may appear. Suppose that we measure the execu-
tion time of every strand — sequence of serially executed instruc-
tions that contain no parallel control. Although smaller than the
total number of executed instructions, these data would be huge for
many parallel applications, with space rivaling T1, the normal serial
running time of the program being analyzed. The data thus cannot
reasonably be stored for later analysis, and the computation must
be performed on the fly. Because a strand’s execution affects all the
call sites on the call stack, a naive strategy could potentially blow
up the running time to as much as Θ(DT1), where D is the maxi-
mum depth of the call stack. Of course, if a function f calls another
function g, then the profile for f must include the profile for g. We
could therefore compute local profiles for each function and update
the parent with the profile of the child whenever a child returns,
but this strategy could be just as bad or worse than updating each
function on the call stack. If the profile contains S call sites, each
function return could involve Θ(S) work, blowing up the running
time to as much as Θ(ST1). Furthermore, even if one computed the
work with these methods, computing the span, which is similar to
computing the longest path in a directed acyclic graph, would add
considerable complexity to the computation.

By using an amortized prof data structure to represent profiles
and a carefully constructed algorithm, Cilkprof computes work
and span profiles with remarkable alacrity. Theoretically, Cilkprof
computes the profiles in O(T1) time and O(DS) space, where T1 is
the work of the original Cilk program, D is the maximum call-stack
depth, and S is the number of call sites in the program. In practice,
the overheads are strikingly small. We implemented Cilkprof by in-
strumenting a branch of the LLVM compiler that contains the Cilk
linguistic extensions [19]. On a set of 16 application benchmarks,
Cilkprof incurred a geometric-mean multiplicative slowdown of
1.9 and a maximum slowdown of 7.4, compared to the uninstru-
mented serial running times of these benchmarks.

Cilkprof’s measurements seem ample for debugging scalabil-
ity bottlenecks. Naturally, the Cilkprof instrumentation introduces
some error into measurements of the program under test. Cilkprof
compensates by subtracting estimates of its own overhead from the
work and span measurements it gathers in order to reduce the ef-
fects of compiler instrumentation. Generally, it suffices to measure
the parallelism of a program to within a binary order of magnitude
in order to diagnose whether the program suffers from insufficient
parallelism [14]. The overhead introduced by Cilkprof instrumen-
tation appears to deliver work and span numbers within this range.
Moreover, if one considers the errors in work and span to be simi-
larly biased, the computation of their ratio, the parallelism, should
largely cancel them.

Cilkprof as described herein does not have a sophisticated user
interface. The current Cilkprof “engine” simply dumps the com-
puted profile to a file in comma-separated-value format suitable
for inputting to a spreadsheet. We view the development of a com-
pelling user interface for Cilkprof as an open research question.

This paper makes the following contributions:
• The Cilkprof algorithm for computing the work and span at-

tributable to each call site in a program, which provably operates
with only constant overhead.
• The prof data structure for supporting amortized Θ(1)-time up-

dates to profiles.
• An implementation of Cilkprof which runs with little slowdown

compared to the uninstrumented program under test.
• Two case studies — parallel quicksort and parallel breadth-first

search of a graph — demonstrating how Cilkprof can be used to
diagnose scalability bottlenecks.
This remainder of this paper is organized as follows. Section 2 il-

lustrates how the profile data computed by Cilkprof can help to ana-
lyze the scalability of a simple parallel quicksort program. Sections
3 and 4 describe how the Cilkprof algorithm works and proves that
Cilkprof incurs Θ(1) amortized overhead per program instruction.
Section 5 presents an implementation of the prof data structure and
shows that profile statistics can be updated in Θ(1) amortized time.
Section 6 describes the profile of work and span measurements that
Cilkprof computes for a Cilk program. Section 7 overviews the im-
plementation of Cilkprof and analyzes its empirical performance.
Section 8 describes how Cilkprof was used to diagnose a scalabil-
ity bottleneck in PBFS. Section 9 discusses Cilkprof’s relationship
to related work, and Section 10 provides some concluding remarks.

2. PARALLEL QUICKSORT
This section illustrates the usefulness of Cilkprof by means of

a case study of a simple parallel quicksort program coded in Cilk.
Although the behavior of parallel quicksort is well understood the-
oretically, the profile data computed by Cilkprof allows a program-
mer to diagnose quicksort’s partitioning subroutine as serial bottle-
neck without understanding the theoretical analysis.



1 int partition(long array[], int low , int high) {
2 long pivot = array[low + rand(high - low)];
3 int l = low - 1;
4 int r = high;
5 while (true) {
6 do { ++l; } while (array[l] < pivot);
7 do { --r; } while (array[r] > pivot);
8 if (l < r) {
9 long tmp = array[l];

10 array[l] = array[r];
11 array[r] = tmp;
12 } else {
13 return (l == low ? l + 1 : l);
14 } } }

16 void pqsort(long array[], int low , int high) {
17 if (high - low < COARSENING) {
18 // base case: sort using insertion sort
19 } else {
20 int part = partition(array , low , high);
21 cilk_spawn pqsort(array , low , part);
22 pqsort(array , part , high);
23 cilk_sync;
24 } }

26 int main(int argc , char *argv []) {
27 int n;
28 long *A;
29 // parse arguments
30 // initialize array A of size n
31 pqsort(A, 0, n);
32 // do something with A
33 return 0;
34 }

Figure 1: Cilk code for a parallel quicksort that sorts an array of 64-bit
integers. The variable COARSENING is a constant defining the maximum
number of integers to sort in the base case. We used COARSENING=32.

Cilk multithreaded programming
Figure 1 shows the Cilk code for a quicksort [15] program that has
been parallelized using the Cilk parallel keywords cilk_spawn and
cilk_sync. The cilk_spawn keyword on line 21 spawns the re-
cursive pqsort instantiation following it, allowing it to execute in
parallel with its continuation, that is, with the statements after the
spawn. Spawning pqsort on line 21 allows this pqsort instan-
tiation to execute in parallel with the recursive call to pqsort on
line 22. In principle, the call to pqsort on line 22 could also have
been spawned, but since the continuation of that call does nothing
but synchronize the children, spawning the call would not increase
the parallelism and would increase the overhead. When the pro-
gram control encounters a cilk_sync statement — the function
syncs — all spawned children must finish before the execution can
proceed. The cilk_sync on line 23 ensures that the computation
performed by the spawn on line 21 finishes before pqsort returns.

Parallel quicksort’s scalability profile
Quicksort provides a good example to illustrate what Cilkprof does,
because quicksort’s behavior is well understood theoretically. With
high probability, pqsort performs Θ(n logn) work to sort an array
of n elements. The call to partition in line 20 performs Θ(n)
work to partition an array of n elements and is a major contributor
to the critical path of the computation, precluding pqsort from ex-
hibiting more than O(logn) parallelism. (For a similar analysis of
merge sort, see [8, Ch. 27.3].) A more careful analysis — one that
pays attention to the constants hidden inside the big-Oh — indi-
cates that on an array of 10 million elements, pqsort exhibits a par-
allelism of approximately ln106 = 16. To achieve linear speedup,
however, a program should exhibit substantially more parallelism
than there are processors on the machine [10]. This quicksort pro-
gram has too little parallelism to keep more than a few processors
busy.

Suppose that we did not already know where the serial bottleneck
in the code in Figure 1 lies, however. Let us see how we can use
Cilkprof to discover that partition is the main culprit.

Figure 2 presents an excerpt of the data Cilkprof reports from
running pqsort on an array of 10 million 64-bit integers, cleaned
up for didactic clarity. (We have not yet implemented a user inter-
face for Cilkprof, which we view as an interesting research prob-
lem.) Cilkprof computes two “profiles” for the computation: an
“on-work profile” and an “on-span profile.” Each profile contains
a record of work and span data for each call site in the computa-
tion. A record in the on-work profile accumulates work and span
data for every invocation of a particular call site in the computa-
tion. A record in the on-span profile accumulates work and span
data only for the invocations of a particular call site that appear on
the critical path of the computation. Section 6 describes precisely
what work and span values each record stores and how Cilkprof
accommodates recursive functions.

Let us explore the data in Figure 2 to see what these data tell us
about the scalability of this quicksort code. The on-work profile
shows us that the work and span of the computation is dominated
by line 31, the instantiation of pqsort from main. The “T1/T∞ on
work” value for this line tells us that this call to pqsort exhibits a
parallelism of only 5.6, even less than the 16-fold parallelism that
our analysis predicted. To see why this call to pqsort exhibits poor
parallelism, we can examine what different call sites contribute to
the span of the computation.

Let us start by examining Cilkprof’s “local T∞ on span” data.
Conceptually, the “local T∞ on span” for a call site s that calls or
spawns a function f specifies how much of the span comes from
instructions executed under s, not including instructions executed
under f’s call sites. For the quicksort code in Figure 1, we can ob-
serve two properties of these “local T∞ on span” data. First, the sum
of the “local T∞ on span” values for the three call sites in pqsort
(lines 20, 21, and 22) and the call to pqsort from main (line 31)
equals the “T∞ on work” value for the call to pqsort from main.
These four call sites therefore account for the entire span of line 31.
Second, the “local T∞ on span” of line 20 accounts for practically
all of the span of line 31, indicating that line 20 is the parallelism
bottleneck for the instantiation of pqsort from main.

What else does Cilkprof tell us about line 20? The “T1/T∞ on
span” for line 20 shows that all instances of this call site on the criti-
cal path are serial. Consequently, parallelizing this call site is key to
improving the parallelism of the computation. From examining the
code, we therefore conclude that we must parallelize partition
to improve the scalability of pqsort, as we expect from our un-
derstanding of quicksort’s theoretical performance. Cilkprof’s data
allows the serial bottleneck in quicksort to be identified without
prior knowledge of its analysis.

3. COMPUTING WORK AND SPAN
This section describes how Cilkprof computes the work and span

of a Cilk computation. Cilkprof’s algorithm for work and span is
based on a similar algorithm from [14]. After defining some useful
concepts, we describe the “work-span” variables used to perform
the computation. We give the algorithm and describe the invari-
ants it maintains. We show that on a Cilk program under test that
executes in T1 time and has stack depth D, Cilkprof’s work-span
algorithm runs in O(T1) time using O(D) extra storage. Section 4
will extend this work-span algorithm to compute profiles.

Definitions
Let us first define some terms. The program under test is a Cilk
binary executable containing a set I of instructions. Some of the
instructions in I are functions — they can be called or spawned



On work On span

Line T1 T∞ T1/T∞ T1 T∞ T1/T∞ Local T1 Local T∞

20 408,150,528 408,150,528 1.0 141,891,291 141,891,291 1.0 141,891,291 141,891,291
21 741,312,781 116,591,841 6.4 597,298,216 98,119,730 6.1 4,340 3,823
22 761,041,165 125,360,000 6.1 691,808,220 118,447,199 5.8 7,068 6,682
31 790,518,060 141,902,681 5.6 790,518,060 141,902,681 5.6 885 885

Figure 2: A subset of the data that Cilkprof reports for running the quicksort code in Figure 1 to sort an array of 10 million random 64-bit integers. The “on
work” columns come from Cilkprof’s on-work profile, which considers all instantiations in the computation, and the “on span” columns come from Cilkprof’s
on-span profile, which only considers instantiations that fall on the critical path. For each call site, the “T1 on work” column gives the sum of the work of all
invocations of that call site, and the “T∞ on work” column gives the sum of the spans of those invocations. The “T1/T∞ on work” column gives the parallelism
of each call site, as computed from the “T1 on work” and “T∞ on work” values for that call site. The “T1 on span,” “T∞ on span,” and “T1/T∞ on span” columns
are similar to their on-work counterparts, but consider only invocations on the critical path of the computation. The “local T1 on span” column contains, for
each call site, the cumulative work of all invocations of that call site on the critical path, excluding all work in children of the instantiated function. The “Local
T∞ on span” column is similar, except that it presents the cumulative span. All times are measured in nanoseconds.

— and some are call sites — they call or spawn a function. The
(mathematical) function ϕ maps a call site to the function in which
the call site resides.

When the program is executed serially, it produces a sequence
XI of executed instructions. The function σ : XI → I indicates
which instruction i ∈ I was executed to produce a given executed
instruction xi ∈ XI. A contiguous subsequence of instructions in XI
is called a trace. For a given executed call site xi ∈ XI, the trace of
xi, denoted Trace(xi), is the contiguous subsequence of XI starting
with xi’s successor — the first instruction of the executed function
that was called or spawned — and ending with the corresponding
return from the executed function.

For simplicity, assume that work and span are measured by
counting instructions. It is straightforward to adapt the Cilkprof
algorithm to measure work and span in terms of processor cycles,
execution time, or even cache misses and other measures. The work
of a trace T , denoted Work(T), is the number of instructions in T .
The span of a trace T , denoted Span(T), is the maximum num-
ber of instructions along any path of dependencies from the first
instruction in T to the last instruction in T .

Work-span variables
Cilkprof measures the work and span of a Cilk computation in a
manner similar to the Cilkview algorithm [14]. As Cilkprof serially
executes the Cilk program under test, it computes the work and
span of each instantiated function.

For each instantiated function F , four work-span variables are
maintained in a frame for F on a shadow stack which is pushed
and popped in synchrony with the function-call stack. The work
variable F.w corresponds to the work on the trace of F executed
so far. The remaining three span variables are used to compute
the span of F . Conceptually, Cilkprof maintains a location u in F
which is initially set to the beginning of F , but as the execution
of F proceeds, is set to the cilk_spawn instruction that spawned
whichever child of F realizes the largest span of any child encoun-
tered so far since the last cilk_sync. The location u is not ex-
plicitly maintained, however, but the values of the three variables
reflect its position in F . Specifically, the three span variables are
defined as follows:
• The prefix F.p stores the span of the trace starting from the first

instruction of F and ending with u. The path that realizes F.p is
guaranteed to be on the critical path of F .

• The longest-child F. ` stores the span of the trace from the start
of F through the return of the child that F spawns at u.

• The continuation F.c stores the span of the trace from the con-
tinuation of u through the most recently executed instruction
in F .

F spawns or calls G:
1 G.w = 0
2 G.p = 0
3 G. ` = 0
4 G. c = 0

Called G returns to F :
5 G.p += G. c
6 F.w += G.w
7 F. c += G.p

Spawned G returns to F :
8 G.p += G. c
9 F.w += G.w

10 if F. c+G.p > F. `
11 F. ` = G.p
12 F.p += F. c
13 F. c = 0

F syncs:
14 if F. c > F. `
15 F.p += F. c
16 else
17 F.p += F. `
18 F. c = 0
19 F. ` = 0

F executes an instruction:
20 F.w += 1
21 F. c += 1

Figure 3: Pseudocode for Cilkprof’s work-span algorithm. For simplicity,
this pseudocode computes work and span by incrementing the work and
continuation at each instruction, rather than by any of several more efficient
methods to compute instruction counts.

The work-span algorithm
Figure 3 gives the pseudocode for the basic Cilkprof algorithm for
computing work and span. At any given moment during Cilkprof’s
serial execution of the program under test, each nonzero work-span
variable z holds a value corresponding to a trace, which we define
as the trace of the value and denote by Trace(z). The pseudocode
maintains three invariants:

INVARIANT 1. The trace of the value in a variable is well de-
fined, that is, it is a contiguous subsequence of XI.

INVARIANT 2. If z is a work variable, then z=Work(Trace(z)).

INVARIANT 3. If z is a span variable, then z = Span(Trace(z)).

These invariants can be verified by induction on instruction count
by inspecting the pseudocode in Figure 3. For example, just before
G returns from a spawn, we can assume inductively that G.p and
G.c hold the spans of their traces. At this point, the trace of G.p
starts at the first instruction of G and ends with u, traversing all
called and spawned children in between. The trace of G.c starts at
the continuation of u and continues to the current instruction, also
traversing all called and spawned children in between. Thus, they
have explored the entire trace of G between them. Consequently,
when line 8 executes, the trace of G.p becomes the entire trace of
G, and G.p becomes Span(()G.p, maintaining the invariants. Other
code sequences succumb to similar reasoning.

Performance
The next theorem bounds the running time and space usage of
Cilkprof’s algorithm for computing work and span.



LEMMA 4. Cilkprof computes the work and span of a Cilk com-
putation in O(T1) time using O(D) space, where T1 is the work of
the Cilk computation and D is the maximum call-stack depth of the
computation.

PROOF. Inspection of the pseudocode from Figure 3 reveals that
a constant number of operations on work-span variables occur at
each function call or spawn, each sync, and each function return in
the computation. Consequently, the running time is O(T1). Since
there are 4 work-span variables in each frame of the shadow stack,
the space is O(D).

4. THE BASIC PROFILE ALGORITHM
This section describes the basic algorithm that Cilkprof uses to

compute profiles for a Cilk computation. We first introduce the ab-
stract interface for the prof data structure, whose implementation
is detailed in Section 5. We show how to augment the work-span
algorithm to additionally compute profiles for the computation. We
analyze Cilkprof under the assumption, borne out in Section 5, that
the prof data structure supports all of its methods in Θ(1) amor-
tized time. We show that Cilkprof executes a Cilk computation in
O(T1) time, where T1 is the work of the original Cilk computation.

The prof data structure
As it computes the work and span of a Cilk computation, Cilkprof
updates profiles in a prof data structure, which records work and
span data for each call site in the computation. Let us see how
Cilkprof computes these profiles, in terms of the abstract interface
to the prof data structure. Section 5 describes how a prof can be
implemented efficiently.

The prof data structure is a key-value store R that maintains a
set of key-value pairs 〈s,v〉 as elements, where the key s is a call
site and the value v is a record containing a work field v.work and
a span field v.span. The following methods operate on prof’s:
• INIT(R): Initialize prof R to be an empty profile, deleting any

key-value pairs stored in R.
• UPDATE(R,〈s,v〉): If no element 〈s,v′〉 already exists in R, store
〈s,v〉 into R. If such an element exists, store 〈s,v′+ v〉, where
corresponding fields of v′ and v are summed.

• ASSIGN(R,R′): Move the contents of prof R′ into R, deleting
any old values in R, and then initialize R′.

• UNION(R,R′): Update the prof R with all the elements in the
prof R′, and then initialize R′.

• PRINT(R): List all the key-value pairs in the prof R, and initial-
ize R.

We shall show in Section 5 that each of these methods can be im-
plemented to execute in Θ(1) amortized time.

Profiles
What profiling data does Cilkprof compute? Consider a call site s.
During a serial execution of the program, the function ϕ(s) con-
taining s may call or spawn a function (or functions, if the target of
the call or spawn is a function pointer) at s. Let OW be the set of
executed call sites for which xi ∈ OW implies that σ(xi) = s. For
each xi ∈ OW, recall that Trace(xi) is the set of instructions exe-
cuted after the call or spawn at the call site until the corresponding
return. Intuitively, the work-on-work for s is the total work of all of
these calls, which is to say∑

xi∈OW

Work(Trace(xi)) ,

and the span-on-work for s is∑
xi∈OW

Span(Trace(xi)) .

The work-on-span and span-on-span for s are similar, where the
sum is taken over OS, the set of instructions along the span of the
computation for which xi ∈ OS implies that ϕ(xi) = s. These def-
initions are inadequate, however, for recursive codes, because two
instantiations of s on the call stack cause double counting. Rather
than complicate the explanation of the algorithm at this point, let
us defer the issue of recursion until Section 6 and assume for the
remainder of this section that no recursive calls occur in the execu-
tion, in which case these profile values for s are accurate.

Cilkprof computes these profile values for all call sites in the
program by associating a prof data structure with each work-span
variable in Figure 3. For a variable z, let z.prof denote z’s prof, let
z.prof [s].work denote the value of the work field for a call site s∈ I
in the profile data for z, and let z.prof [s].span denote the value of
z.prof ’s span field for s.

The Cilkprof algorithm
As Cilkprof performs the algorithm in Figure 3, in addition to com-
puting the work and span, it also updates the prof associated with
each work-span variable. First, just before each of lines 6 and 9,
Cilkprof executes

UPDATE(G.w.prof ,〈s, [work : G.w, span : G.p]〉)
UPDATE(G.p.prof ,〈s, [work : G.w, span : G.p]〉) .

In addition, Cilkprof performs the following calculations, where y
and z denote two distinct variables in the pseudocode:
• Whenever the pseudocode assigns y = 0, Cilkprof also executes

INIT(y.prof ).
• Whenever the pseudocode assigns y = z, Cilkprof also executes

ASSIGN(y.prof ,z.prof ).
• Whenever the pseudocode executes y += z, Cilkprof also exe-

cutes UNION(y.prof ,z.prof ).
As a point of clarification, executing lines 20–21 causes no addi-
tional calculations to be performed on prof data structures, because
1 is not a variable.

Correctness
Recall that each work-span variable z in Figure 3 defines a trace
Trace(z). For each variable z and call site s ∈ I, Cilkprof maintains
the invariant

z.prof [s].work =
∑

xi∈Trace(z):σ(xi)=s

Work(Trace(xi))

and a similar invariant for z.prof [s].span. One can verify by in-
duction on instruction count that the Cilkprof algorithm maintains
these invariants.

Analysis of performance
The next theorem bounds the running time and space usage of
Cilkprof. This analysis assumes that all prof methods execute in
Θ(1) amortized time and that a single prof occupies O(S) space,
where S is the number of call sites in the Cilk computation. Sec-
tion 5 shows how prof can achieve these bounds.

THEOREM 5. Cilkprof executes a Cilk computation in O(T1)
time using O(DS) space, where T1 is the work of the Cilk com-
putation, D is the maximum stack depth of the computation, and S
is the number of call sites in the computation.

PROOF. By Lemma 4, the work-span algorithm contributes neg-
ligibly to either time or space, and so it suffice to analyze the contri-
butions due to method calls on the prof data structure. Inspection
of the pseudocode from Figure 3, together with the modifications to
make it handle profiles, reveals that a constant number of operations



on work-span variables occur at each function call or spawn, each
sync, and each function return in the computation. Returning from
a function causes a constant number of method calls on the prof
to be performed, and each operation on a variable induces at most
a constant number of method calls on its associated prof, each of
which takes Θ(1) amortized time, as Theorem 6 in Section 5 will
show. Consequently, each operation performed by Cilkprof to com-
pute the work and span incurs at most constant overhead, yielding
O(T1) for the total running time of Cilkprof.

The space bound is the product of the maximum depth D of func-
tion nesting and the maximum size of a frame on the shadow stack.
Each frame of the shadow stack contains 4 work-span variables
and their associated prof data structures, each of which has size at
most S. Thus, since the size of a frame on the shadow stack is O(S),
the total space is O(DS).

5. THE PROF DATA STRUCTURE
This section describes how the the prof data structure employed

by Cilkprof is implemented. We first assume that the number of
call sites is known a priori. We investigate the problems that arise
when implementing a prof as an array or linked list, and then we
see how a hybrid implementation can achieve Θ(1) amortized time
for all its methods. We then remove the assumption and extend
prof to the situation when call sites are discovered dynamically on
the fly while still maintaining a Θ(1) amortized time1 for each of
its methods.

The basic data structure
To simplify the description of the implementation of the prof data
structure, assume for the moment that Cilkprof magically knows a
priori the number S of call sites in the computation. The compiler
sets up a global hash table h mapping each call site s to a distinct
index h(s) ∈ {0,1, . . . ,S−1}.

The prof data structure is a hybrid of two straightforward im-
plementations: an array and a list. Separately, each implementation
would use too much time or space, but in combination they yield
the desired space and time.

The array implementation represents a prof R as a size-S array
R.arr[0 . .S−1]. In this implementation, the INIT method allocates
a new size-S array R.arr and zeroes it, costing Θ(S) time. The call
UPDATE(R,〈s,v〉) updates the entry with R.arr[h(s)] + v (where
+ performs fieldwise addition on the work and span fields of the
records), taking only Θ(1) time. UNION(R,R′) iterates through the
entries of R′ and updates the corresponding entries in R, zeroing
R′ as it goes, costing Θ(S) time. Finally, ASSIGN(R,R′) iterates
through the arrays copying the elements of R′ to R, zeroing R′ as it
goes, also costing Θ(S) time. The inefficiency in the array imple-
mentation is due to the Θ(S)-time methods.

The list implementation represents a prof R as a linked list R. ``
that logs updates to the elements stored in R. The linked list R. `` is
a singly linked list with a head and a tail pointer to support Θ(1)-
time concatenation. The INIT, UPDATE, and UNION functions
are implemented using straightforward Θ(1)-time linked list oper-
ations. The INIT method first deallocates any previous linked list,
freeing the entries of R. `` in Θ(1) amortized time, because each en-
try it frees must have been previously appended by UPDATE. Then
INIT allocates an empty linked list with NULL head and tail point-
ers. Calling UPDATE(R,〈s,v〉) appends a new linked-list element to
R. `` containing 〈s,v〉. Performing UNION(R,R′) concatenates the
linked lists R. `` and R′. ``, and sets R′. `` to an empty linked list.

1Technically, the bound is Θ(1) expected time, because the implementation
uses a hash table, but except for this one nit, the amortized bound better
characterizes the performance of the data structure.

INIT(R)

1 Free R.arr
2 Free R. ``
3 R. `` = /0
4 R.arr = /0

ASSIGN(R,R′)

5 INIT(R)
6 R. `` = R′. ``
7 R.arr = R.arr
8 R′. `` = /0
9 R′.arr = /0

_FLUSHLIST(R)

10 if R.arr == /0
11 R.arr = new Array(S)
12 for 〈s,v〉 ∈ R. ``
13 R.arr[h(s)] += v
14 Free R. ``

UPDATE(R,〈s,v〉)
15 if R.arr , /0
16 R.arr[h(s)] += v
17 else APPEND(R. ``,〈s,v〉)
18 if |R. ``|== S
19 _FLUSHLIST(R)

UNION(R,R′)

20 if R.arr , /0
21 if R′.arr , /0
22 for i = 0 to S−1
23 R.arr[i] += R′.arr[i]
24 Free R′.arr
25 else R.arr = R′.arr
26 CONCATENATE(R. ``,R′. ``)
27 if |R. ``| ≥ S
28 _FLUSHLIST(R)
29 R′.arr = /0
30 R′. ll = /0

PRINT(R)

31 _FLUSHLIST(R)
32 for i = 0 to S−1
33 Output R.arr[i]
34 INIT(R)

Figure 4: Pseudocode for the methods of the prof data structure, including
a helper routine _FLUSHLIST. A prof R consists of a linked-list component
R. `` and an array component R.arr. The linked list R. `` is a singly linked
list with a cardinality field to keep track of the number of elements in the
list and a head and tail pointer to enable Θ(1)-time list concatenation.

Similarly, PRINT operates in Θ(1) amortized time. The inefficiency
in this implementation is space. Because every call to UPDATE al-
locates space for an update, the linked list uses space proportional
to the total number of updates, which, for a Cilk computation with
work T1, is Θ(T1) space.

The hybrid implementation that Cilkprof actually uses repre-
sents a prof R using both an array R.arr and a linked list R. ``.
Figure 4 gives the pseudocode for the prof methods. Conceptually,
UPDATE and UNION use the linked list R. `` to handle elements un-
til R. `` contains at least S updates. At this point, the elements in
R. `` are updated into the array R.arr, the linked list R. `` is emp-
tied, and UPDATE and UNION use the array R.arr to handle future
operations.

Intuitively, by combining the linked-list and array implementa-
tions, the prof data structure R enjoys the time efficiency of the
linked list implementation with the space efficiency of the array im-
plementation. Because UPDATE and UNION move elements from
R. `` into R.arr when R. `` contains at least S elements, R occupies
O(S) space. By initially storing elements in a linked list, the prof
data structure can avoid performing an expensive UNION operation
until it can amortize that expense against the elements that have
been inserted. The following theorem formalizes this intuition.

THEOREM 6. The prof data structure uses at most Θ(S) space
and supports each of INIT, ASSIGN, UPDATE, UNION, and PRINT
in Θ(1) amortized time.

PROOF. The time bound follows from an amortized analysis
carried out using the accounting method [8, Ch. 17]. The amor-
tization maintains the following invariants.

INVARIANT 7. Each linked-list element carries 2 tokens of
amortized time.

INVARIANT 8. Each array A carries |A| tokens of amortized
time.

We analyze each of the prof methods in turn.



A call to INIT(R) takes Θ(1) time to free R.arr and spends 1
token on each element in R. `` to cover the cost of freeing that el-
ement. Then INIT performs Θ(1) operations in Θ(1) time to reini-
tialize the data structure, for a total of Θ(1) amortized time.

A call to ASSIGN is Θ(1) time plus a call to INIT, for a total
amortized time of Θ(1).

The helper routine _FLUSHLIST(R) is called only when its
linked list R. `` attains at least S elements. The routine may spend
Θ(S) time to create a new array of size S, the entries of which
are initialized to 0. This routine can use 1 token from each ele-
ment in R. `` to transfer that element’s update to R.arr, free that
element, transfer the element’s other token to R.arr, and cover
the Θ(1) real cost to initialize one entry of R.arr. Consequently,
_FLUSHLIST takes Θ(1) amortized time and produces an array
R.arr with |R. ``| ≥ S = |R.arr| tokens, maintaining Invariant 8.

A call to UPDATE(R,〈s,v〉) exhibits one of three behaviors. First,
if the call executes line 16, then it takes Θ(1) real time. Otherwise,
the call executes line 17, which is charged Θ(1) real time plus 2
amortized time units to append a new linked-list element with 2
tokens onto R. `` while maintaining Invariant 7. At this point, if
|R. ``|= S, then line 19 calls _FLUSHLIST, which costs Θ(1) amor-
tized time. Thus, UPDATE takes Θ(1) amortized time in every case.

A call to UNION(R,R′) uses the tokens on R′.arr to achieve a
Θ(1) amortized running time. If the call executes lines 22–24, then
each iteration charges 1 token from R′.arr to cover the Θ(1) real
cost to update an entry in R.arr with an entry in R′.arr. Lines
22–24 therefore take Θ(1) amortized time. Line 26 takes Θ(1)
time to concatenate two linked lists, and the analysis of lines 27–30
corresponds to that for lines 18–19 of UPDATE. The amortized cost
of UNION is therefore Θ(1).

A call to PRINT(R) executes _FLUSHLIST in line 31 in Θ(1)
amortized time, and spend the S available tokens in R.arr to pay
for sequencing through all the elements of R. Adding in the cost to
call INIT in line 34 gives Θ(1) total amortized cost of printing.

The space bound on a prof data structure R follows from ob-
serving that the array R.arr occupies Θ(S) space, and only line 17
in UPDATE and line 26 in UNION increase the size of the linked-list
R. `. Because lines 18–19 in UPDATE and lines 27–30 in UNION
move the elements of R. `` into R.arr once the size of R. `` is at
least S, the linked list R. `` never contains more than 2S elements,
and R therefore occupies O(S) total space.

Discovering call sites dynamically
Let us now remove the assumption that the number S of call sites is
known a priori. To handle call sites discovered dynamically as the
execution unfolds, Cilkprof tracks the number S of unique call sites
encountered so far. Cilkprof maintains the global hash table h using
table doubling [8, Sec. 17.4], which can resize the table as it grows
while still providing amortized Θ(1) operations. When Cilkprof
encounters a new call site s, it increments S and stores h(s) = S−1,
thereby mapping the new call site to the new value of S−1.

We must also modify the helper function _FLUSHLIST. First,
line 15 must check whether the size of the existing array matches
the current value of S, rather than simply checking if it exists. If a
new array is allocated, in addition to the linked-list elements being
transferred to the new array, the old array elements must also be
transferred. At the end, the old array must be destroyed.

We must also modify the UPDATE and UNION methods to en-
sure that both UPDATE and UNION maintain the same invariants in
their amortization as stated in the proof of Theorem 6. Thus, the
changes do not affect the asymptotic complexity of the prof data
structure. Specifically, line 15 in the pseudocode for UPDATE must
be modified as in _FLUSHLIST to check whether the size of the

1 int fib(int n) {
2 if (n < 2) return n;
3 int x, y;
4 x = cilk_spawn fib(n-1);
5 y = fib(n-2);
6 cilk_sync;
7 return (x + y);
8 }

10 int main(int argc , char *argv []) {
11 int n, result;
12 // parse arguments
13 result = fib(n);
14 return 0;
15 }

Figure 5: Cilk pseudocode for a recursive program to compute Fibonacci
numbers.

main()	  

fib(4)	  

1	   2	  

fib(3)	  

fib(2)	  

fib(1)	  

fib(1)	  

fib(0)	  

fib(2)	  

fib(1)	   fib(0)	  

1	  

1	  

1	   2	  2	  

2	  

Figure 6: An invocation tree for the recursive Fibonacci program in Fig-
ure 5. Each rounded rectangle denotes a function instantiation, and an edge
between tow rounded rectangles denotes the upper instantiation invoking
the lower. The circled labels 1 and 2 on edges identify the call sites on lines
4 and 5, respectively, in the code in Figure 5.

existing array matches the current value of S. With this change, a
call to UPDATE adds a record to the linked list whenever the array
is too small, even if the array already stores some records. Lines
20–25 in the pseudocode for UNION must also be modified to copy
the elements of the smaller array into the larger.

6. THE PROFILE
This section describes the profile that Cilkprof computes. Al-

though Section 4 describes how Cilkprof can measure the work and
span of each call site assuming the program contains no recursive
functions, in fact, Cilkprof must handle recursive functions with
care to avoid overcounting their work and span. We define the “top-
call-site,” “top-caller,” and “local” measurements that Cilkprof ac-
cumulates for each call site, each of which we found to be easy to
compute and useful for analyzing the contribution of that call site
to the work and span of the overall program. We describe how to
compute these measures.

A Cilkprof measurement for a call site s consists of the follow-
ing values for a set of invocations of s:
• an execution count — the number of invocations of s accumu-

lated in the profile;
• the call-site work — the sum of the work of those invocations;
• the call-site span — the sum of the spans of those invocations.
Cilkprof additionally computes the parallelism of s as the ratio of
s’s call-site work and call-site span.



If programs contained no recursive functions, Cilkprof could
simply aggregate all executions of each call site, but generally, it
must avoid overcounting the call-site work and call-site span of
recursive functions. Of the many ways that Cilkprof might accom-
modate recursive functions, we have found three sets of measure-
ments of a call site, called the “top-call-site,” “top-caller,” and “lo-
cal” measurements, to be particularly useful for analyzing the par-
allelism of Cilk computations. These measurements maintain the
basic algorithm’s performance bounds given in Theorems 5 and 6
while also handling recursion.

Top-call-site measurements
Conceptually, the “top-call-site” measurement for a call site s ag-
gregates the work and span of every execution of s that is not a
recursive execution of s. Formally, an executed call site xs ∈ I is
a top-call-site invocation if no executed call site xi ∈ I exists such
that

xs ∈ Trace(xi)∧σ(xs) = σ(xi) .

Cilkprof’s top-call-site measurement for s aggregates all top-call-
site invocations of s.

An executed call site can be identified as a top-call-site invoca-
tion from the computation’s invocation tree. Consider the example
invocation tree in Figure 6 for the parallel recursive Cilk program
in Figure 5. Each edge in this tree corresponds to an invocation —
an executed call site that either calls or spawns a child — and the
labels on edges denote the corresponding call site. From Figure 6,
we see that the executed call site spawning fib(3) is a top-call-
site invocation, because no other execution of line 4 appears above
fib(3) in the invocation tree. The spawning of fib(2) by fib(3)
is not a top-call-site invocation, however, because fib(3) appears
above fib(2) in the tree.

Cilkprof’s top-call-site measurements are useful for assessing
the parallelism of each call site. The ratio of the call-site work
over the call-site span from a call site’s top-call-site data gives the
parallelism of all nonrecursive executions of that call site in the
computation, as if the computation performed each such call site
execution in series. This parallelism value can be particularly help-
ful for measuring the parallelism of executed call sites that occur
on the critical path of the computation.

In a function containing multiple recursive calls, however, such
as the fib routine in Figure 5, the top-call-site measurements are
less useful for comparing different call sites’ relative contributions.
For example, consider the top-call-site work and span values in Fig-
ure 7, which Cilkprof collected from running the code in Figure 5.
As Figure 7 shows, the top-call-site work values for the recursive
fib invocations on line 4 and line 5 are similar to that of the call to
fib on line 13, and the top-call-site span values of these recursive
invocations exceed that of line 13.

These large top-call-site measurements occur because the mea-
surement aggregates multiple top-call-site executions of a call site
under the same top-level call to fib. For example, as the invoca-
tion tree in Figure 6 shows, the invocations of fib(1) from fib(3),
fib(2) from fib(4), and fib(0) from fib(2) under fib(3) are
all top-call-site invocations for line 5. Similarly, the invocations of
fib(3) from fib(4) and of fib(1) from fib(2) under fib(4)
are both top-call-site invocations for line 4.

Top-caller measurements
In contrast to top-call-site measurements, the “top-caller” measure-
ment for a call site s conceptually aggregates the work and span of
every execution of s from a nonrecursive invocation of its caller.
Formally, an executed call site xs ∈ I is a top-caller invocation if

1 void mm(double *C, double *A, double *B,
2 size_t dim , size_t n) {
3 if (n < COARSENING) {
4 return base(C, A, B, dim , n);
5 }
6 #define X(M,r,c) (M + (r * dim + c)*(n/2))
7 cilk_spawn mm(X(C,0,0), X(A,0,0), X(B,0,0),
8 dim , n/2);
9 cilk_spawn mm(X(C,0,1), X(A,0,0), X(B,0,1),

10 dim , n/2);
11 cilk_spawn mm(X(C,1,0), X(A,1,0), X(B,0,0),
12 dim , n/2);
13 mm(X(C,1,1), X(A,1,0), X(B,0,1),
14 dim , n/2);
15 cilk_sync;
16 // spawn remaining recursive mm calls
17 }

19 int main(int argc , char *argv []) {
20 double *C, *A, *B;
21 int n;
22 // parse arguments
23 // initialize C, A, and B
24 mm(C, A, B, n, n);
25 return 0;
26 }

Figure 8: Cilk pseudocode for a divide-and-conquer parallel matrix-
multiplication program. The recursive mm routine in this program calls the
function base in its base case. The variable COARSENING is a fixed constant
defining the maximum size of matrices to multiply in the base case.

no executed call site xi ∈ I exists such that

xs ∈ Trace(xi)∧ϕ(σ(xs)) = ϕ(σ(xi)) .

Cilkprof’s top-caller measurement for a call site s aggregates all
top-caller invocations of s.

Like top-call-site invocations, top-caller invocations can be iden-
tified from the computation’s invocation tree. Once again, consider
the code in Figure 5 and its example invocation tree in Figure 6.
The invocation producing fib(3) is a top-caller invocation, be-
cause no instantiation of fib exists above fib(4), the function in-
stantiation containing this invocation, in the tree. The invocation
producing fib(1) under the right child of fib(4) is not a top-
caller invocation, however, because fib(4) is an instantiation of
fib above the instantiation fib(2) that contains this invocation.
The top-caller invocations that occur in the invocation tree in Fig-
ure 6, therefore, are from main() to fib(4) and from fib(4) to
each of its children.

Top-caller measurements can be useful for comparing call sites
in the same function. The top-caller measurements in Figure 7, for
example, show that the ratio of the aggregate work of the top-caller
invocations of lines 4 and 5 is 279,094,680/171,229,726 ≈ 1.63,
which is approximately the golden ratio φ = (1+

√
5)/2 ≈ 1.61.

This relationship makes sense, because fib(n) theoretically incurs
Θ(φ n) work.

The top-caller measurements provide no information for call
sites that are never reached from a top-level instantiation of
a function, however. Consider the divide-and-conquer matrix-
multiplication program in Figure 8 and its invocation tree illustrated
in Figure 9. As Figure 9 shows, the function base called in the base
case of mm is never called by the top-caller invocation of mm from
main. Consequently, as the top-caller measurements in Figure 10
for this program show, Cilkprof measures the top-caller call-site
work and span values for base to be 0. From these top-caller val-
ues, one cannot conclude that most of the computation of mm, in
fact, occurs under calls to base.

Local measurements
The local measurement for a call site aggregates a “local work”
and a “local span” for every execution of that call site. The local
work of an executed call site xs ∈ I is the work in Trace(xs) minus



Top-call-site Top-caller Local

Line T1 T∞ T1/T∞ T1 T∞ T1/T∞ T1 T∞ T1/T∞

4 450,321,639 113,267 3,975.8 279,094,680 39,643 7,040.2 150,281,850 150,281,850 1.0
5 450,307,915 250,302 1,799.1 171,229,726 14,688 11,657.8 121,330,045 86,699,953 1.4

13 450,325,186 40,331 11,165.7 450,325,186 40,331 11,165.7 780 688 1.1

Figure 7: Work and span values in the on-work profile Cilkprof collects for running the recursive Fibonacci program in Figure 5 to compute fib(30). All
times are measured in nanoseconds.

Top-call-site Top-caller Local

Line T1 T∞ T1/T∞ T1 T∞ T1/T∞ T1 T∞ T1/T∞

4 185,830,187 185,830,187 1.0 0 0 — 185,830,187 185,830,187 1.0
7 77,417,401 22,010,873 3.5 23,473,633 405,947 57.8 195,079 177,786 1.1
9 77,475,639 21,983,150 3.5 23,384,174 411,099 56.9 183,232 168,249 1.1

11 77,440,990 21,988,390 3.5 23,403,194 402,281 58.2 187,472 169,541 1.1
13 77,262,499 21,853,710 3.5 23,378,967 387,880 60.3 110,374 97,656 1.1
24 187,150,784 803,122 233.0 187,150,784 803,122 233.0 1,563 957 1.6

Figure 10: Work and span values in the on-work profile Cilkprof produces for running the divide-and-conquer matrix multiplication code in Figure 8 to
multiply two 512×512 matrices of doubles. All times are measured in nanoseconds.
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mm()	  
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Figure 9: An invocation tree for the matrix-multiplication program in Fig-
ure 8. Each rectangle denotes a function instantiation, and an edge from
one rectangle to a rectangle below it denotes the upper invocation calling
the lower.

the work in the traces of the functions that xs invokes. By ignor-
ing the contributions of its children, the local work and local span
values for all executions of a call site can be aggregated without
overcounting executed instructions in recursive calls.

The local measurements call sites are often useful for examining
functions invoked in the base case of a recursive routine. The local
measurements for mm in Figure 10, for example, make it clear that
most of the total work of the call to mm from main occurs in calls
to base. Furthermore, as we observed in the quicksort example in
Section 2, these local work and span values can effectively identify
which functions contribute directly to the span of the computation.

The local parallelism of a call site s — the ratio of the local work
and local span of s — does not accurately reflect the parallelism
of s, however. As Figure 10 shows, by excluding the work and
span contributions of each executed call site’s children, most local-
parallelism values are close to 1, even for call sites such as line 24
which exhibit ample parallelism.

The top-call-site, top-caller, and local measurements for a call
site s each measure qualitatively different things about s. Each of
these measurements seems to be useful for analyzing a parallel pro-
gram in different ways. An interesting open question is whether

there are other measurements that are as useful as these three for
diagnosing scalability bottlenecks.

7. EMPIRICAL EVALUATION
To implement Cilkprof, we modified a branch [19] of the LLVM

[26] compiler that supports Cilk Plus [16] to instrument function
entries and exits, as well as calls into the Cilk runtime from the
program to handle cilk_spawn and cilk_sync statements. A Cilk
program is compiled with the modified compiler produces a binary
executable that executes the Cilkprof algorithm as a shadow com-
putation. On a suite of 16 benchmark programs, we compared the
Cilkprof running time of each benchmark with the benchmark’s se-
rial running time compiled with the unmodified compiler, both exe-
cutions using optimization level -O3. Compared with this “native”
serial execution, Cilkprof incurs a geometric-mean multiplicative
slowdown of 1.9 and a maximum slowdown of 7.4.

Results
We compared the running time of Cilkprof on each benchmark to
the native serial running time of the benchmark, that is, the running
time of the benchmark when compiled with no instrumentation. We
ran our experiments on a dual-socket Intel Xeon E5-2665 system
2.4 GHz 8-core CPU’s having a total of 32 GiB of memory. Each
processor core has a 32 KiB private L1-data-cache and a 256 KiB
private L2-cache. The 8 cores on each chip share the same 20 MiB
L3-cache. The machine was running Fedora 16, using a custom
Linux kernel 3.6.11.

To study the empirical overhead of Cilkprof, we compiled a
suite of 16 application benchmarks, as Figure 11 describes. The
mm, quicksort, and fib benchmarks correspond to the Cilk pseu-
docode in Figures 8, 1, and 5, respectively. The pbfs benchmark
is a parallel breadth-first search code that implements the PBFS al-
gorithm of [28]. We converted the dedup and ferret benchmarks
from the PARSEC benchmark [3, 4] to use Cilk linguistics and a
reducer_ostream (which is part of Cilk Plus) for writing output.
The leiserchess program performs a parallel speculative game-
tree search using Cilk. The hevc benchmark is a 30,000-line im-
plementation of the H265 video encoder and decoder [22] that we
parallelized using Cilk. The remaining benchmarks are the same
benchmarks included in the Cilk-5 distribution [10].

Figure 11 presents our empirical results. As the figure shows,
the Cilkprof implementation incurs a geometric mean slowdown of
1.9× on these benchmarks compared to the uninstrumented ver-



sion of the benchmark. Furthermore, the maximum multiplicative
overhead we observed on any benchmark was 7.4.

Optimizations
The implementation contains several optimizations:
• For basic timing measurements, we chose to use a cycle counter

to measure blocks of instructions, rather than naively increment-
ing a counter for every instruction executed, as in the basic pseu-
docode from Figure 3. (We also adjust the measured numbers to
compensate for the time it takes Cilkprof to execute the instru-
mentation.)

• For a function F with no cilk_spawn’s, the implementation
maintains only the prefix span variable F.p to store the span of
F , rather than all 3 span variables.

• If a function G calls F , then the implementation sets the prof
data structure for F.p to be the prof data structure for either
G.p, if G has no outstanding spawned children when it calls F ,
or G.c, otherwise.

• When the span variable associated with a prof data structure R is
set to 0, the implementation simply clears the nonempty entries
of the array R.arr, rather than freeing its memory.

• The implementation maintains the set of nonempty entries in
each prof data structure array in order to optimize the processes
of combining and clearing those entries.

These optimizations reduced Cilkprof’s overhead on the fib
benchmark by a factor of 5 and its overhead on the leiserchess
benchmark dropped by a factor of 9.

At the risk of losing some information, Cilkprof declines to in-
strument inlined functions, which, in Intel Cilk Plus, cannot spawn.
To do so, we modified LLVM such that, when it inlines a function,
it removes the instrumentation for the inlined version of that func-
tion. When this program runs with Cilkprof, therefore, the work of
the inlined function influences the work and span of its parent, but
it will not create a separate entry in the profile Cilkprof produces.

We feel that this optimization is reasonable because inlined func-
tions are typically unlikely to be scalability bottlenecks on their
own. For example, the compiler often inlines C++ object methods
to extract or set fields of that object, which the programmer wrote to
provide a convenient abstraction in the program code, but which the
compiler can often implement with a handful of data movement in-
structions in the caller. If Cilkprof instruments such a function, then
Cilkprof incurs overheads to measure and record very few instruc-
tions. The cost of instrumenting such functions therefore seems to
outweigh the benefits to scalability analysis.

We examined Cilkprof’s overhead when inlined functions are in-
strumented on the application benchmarks. For all benchmarks ex-
cept lu, leiserchess, collision, and hevc, Cilkprof incurred
less than 2 times the overhead it incurred when inlined functions in
that benchmark were not instrumented. On the leiserchess and
collision benchmarks, however, instrumenting inlined functions
increased Cilkprof’s overhead by a factor of 8–10. Both of these
benchmarks make extensive use of small functions that simply get
or set fields of an object, which are particularly light weight when
inlined. Although this optimization does not affect every bench-
mark, it can dramatically improve Cilkprof’s performance on the
benchmarks it does affect.

8. CASE STUDY: PBFS
One of our first successes with Cilkprof2 came when diagnosing

a parallelism bottleneck in PBFS, an 1800-line parallel breadth-
2Actually, the original case study used the (much slower) Cilkprof Pin-
tool [18] we built in collaboration with Intel. Since the data from this
early experiment have since been lost, we recreated the experiment with
our LLVM-based Cilkprof implementation.

first search Cilk program [28]. After just 2 hours of work using
Cilkprof, we were able to identify a parallelism bottleneck in the
PBFS code. Fixing this bottleneck enhanced the parallelism of the
code by a factor of about 5. This section presents our experience
diagnosing a scalability bottleneck in the PBFS code. You should
not need to understand either the PBFS algorithm or its implemen-
tation to follow this case study.

After designing and building PBFS, we observed that the code
failed to achieve linear speedup on 8 processors. For example,
PBFS was achieving a parallel speedup of 4−5 on our Grid3D200
benchmark graph, a 7-point finite-difference mesh generated using
the Matlab Mesh Partitioning and Graph Separator Toolbox [12],
on which PBFS explored 8M vertices and 55.8M edges during a
search of depth 598. A back-of-the-envelope calculation suggested
that the measured parallelism of PBFS should be around 200−400,
ample for 8 processors, if one follows the rule of thumb that a pro-
gram should have at least 10 times more parallelism than the num-
ber of processors for scheduling overhead to be negligible.

We suspected that the scalability of this PBFS code suffered
from insufficient memory bandwidth on the machine. For exam-
ple, when we artificially inflated the amount of computation that
the code performed in the base case of its recursive helper func-
tions, then the code did exhibit linear speedup. The problem with
this test, however, is that it also increased the parallelism of the
code. We ran Cilkview on the original PBFS code to ensure that
insufficient parallelism was not the issue. Cilkview, however, re-
ported that the parallelism of this PBFS code was merely 12, which
is not ample parallelism for 8 processors.

We ran the PBFS code with Cilkprof and examined Cilkprof’s
profiles. The on-work profile showed us that the call to pbfs —
our parallel BFS routine — from main accounted for most of the
work of the program, and that the parallelism of pbfs was small,
just as Cilkview had found. To discover what methods contributed
most to the span, we sorted Cilkprof’s data by decreasing local T∞

on span. Viewing the data from this perspective showed us that
the following three methods contributed the most to the span of the
program overall:

1. First was a call to parseBinaryFile, a serial function that
parses the input graph.

2. Second was a call to the serial Graph constructor to create
the internal data structure storing the graph from the input.

3. Third was a call to pbfs_proc_Node, a function that pro-
cesses a constant-sized array of graph vertices.

Although the top two entries were not called from pbfs, the third
entry for pbfs_proc_Node was called in the base case of the re-
cursive helper methods of pbfs. Comparing the local T∞ on span
of pbfs_proc_Node to the top-caller T∞ of bfs showed us that this
method accounted for 66% of the span of bfs. Furthermore, the
top-call-site parallelism values from Cilkprof showed us that all in-
vocations pbfs_proc_Node were serial.

These data led us to look more closely at pbfs_proc_Node. We
discovered that this method evaluates a constant-sized array of ver-
tices in the graph. Because the input array has constant size, this
method evaluated the contents of this array serially. In the code,
however, the size of this array was tuned to optimize the insertion
of vertices into the array. The constant size of this array was there-
fore too large for pbfs_proc_Node, causing the serial execution of
pbfs_proc_Node to become a scalability bottleneck.

We parallelized the pbfs_proc_Node function to process its in-
put array in parallel with an appropriate base-case size. We then ran
our modified PBFS code through Cilkprof and sorted the new data
by local T∞ on span to examine the effect of our efforts. We found



Benchmark Input size Description Overhead

mm 2048×2048 matrix Square matrix multiplication 0.99
dedup large Compression program 1.03
lu 2048×2048 matrix LU matrix decomposition 1.04
strassen 2048×2048 matrix Strassen matrix multiplication 1.06
heat 4096×1024×40 spacetime Heat diffusion stencil 1.07
cilksort 10,000,000 elements Parallel mergesort 1.08
pbfs |V |= 8M, |E|= 55.8M Parallel breadth-first search 1.10
fft 8,388,608 Fast Fourier transform 1.15
quicksort 100,000,000 elements Parallel quicksort 1.20
nqueens 12×12 board n-Queens problem 1.27
ferret large Image similarity search 2.04
leiserchess 5.8M nodes Speculative game-tree search 3.72
collision 528,032 faces Collision detection in 3D 4.37
cholesky 2000×2000 matrix, 16000 nonzeros Cholesky decomposition 4.54
hevc 5 frames H265 video encoding and decoding 6.25
fib 35 Recursive Fibonacci 7.36

Figure 11: Application benchmarks demonstrating the performance overhead of the Cilkprof prototype tool. The benchmarks are sorted in order of increasing
overhead. For each benchmark, the Overhead column gives the ratio of its running time with when compiled with the Cilkprof implementation over its running
time without instrumentation. Each ratio is computed as the geometric mean ratio of 5 runs with Cilkprof and 5 runs without Cilkprof. We used a modified
version of the Cilk Plus/LLVM compiler to compile each benchmark with Cilkprof, and we used the original version of the Cilk Plus/LLVM compiler to
compile the benchmarks with no instrumentation. The Cilkprof implementation and benchmark codes were compiled using the -O3 optimization level.

that, although pbfs_proc_Node was still the third-largest contribu-
tor to the span of the program, the local T∞ on span is a factor of 6
larger. Furthermore, the parallelism of pbfs is now 60, a factor of
5 larger than its previous value. Finally, pbfs_proc_Node accounts
for 48% of this span. We also confirmed that reducing the new
base-case size of pbfs_proc_Node can increase the parallelism of
pbfs to 100, at the cost of scheduling overhead.

9. RELATED WORK
This section reviews related work on performance tools for par-

allel programming.
We chose to implement Cilkprof using compiler instrumentation

(e.g., [31, 32]), but there are other strategies we could have used to
examine the behavior of a computation, such as asynchronous sam-
pling (e.g., [13]) and binary instrumentation (e.g., [6, 9, 29, 30]).
Although asynchronous sampling provides low-overhead solutions
for some analytical tools, we do not know of a way to mea-
sure the span of a multithreaded Cilk computation by sampling.
Cilkview [14] is implemented using the Pin binary-instrumentation
framework [29] augmented by support in the Intel Cilk Plus com-
piler [20] for low-overhead annotations [17], and we collaborated
with Intel to build a prototype Cilkprof as a Pintool. Because we
found that this prototype Cilkprof ran slowly, we chose to imple-
ment Cilkprof using compiler instrumentation in order to improve
its performance. In fact, because it uses compiler instrumentation,
the Cilkprof implementation outperforms the existing Cilkview im-
plementation, which only computes work and span for the entire
computation and does not produce profiles of work and span for
every call site as Cilkprof does.

Many parallel performance tools examine a parallel computation
and report performance characteristics specific to that architecture
and execution. Tools like HPCToolkit [1], Intel VTune Ampli-
fier [21], and others [7,25,33] measure system counters and events,
and provide reports based on a program execution. HPCToolkit,
in particular, is an integrated suite of tools to measure and ana-
lyze program performance that sets a high standard for capability
and usability. HPCToolkit uses statistical sampling of timers and
hardware performance counters to measure a program’s resource
consumption, and attributes measurements to full calling contexts.

Other approaches for identifying scalability bottlenecks include
normalized processor time [2] or the more precise parallel idleness
metric [34]. The idea is that, in a work-stealing concurrency plat-

form, if at some particular point in time some worker threads are
idle, then we can assign blame to the function that is running on
the other workers: if that function were more parallel, then the idle
threads would be doing something useful. These are helpful met-
rics for identifying bottlenecks on the current architecture, and an-
swer the question as to whether the program, run on a P-processor
machine has at least P-fold parallelism. But they don’t provide
scalability analysis beyond P processors.

In contrast to all of these applications and approaches, Cilkprof’s
analysis applies to the measured work and span. Work and span
are good metrics for inferring bounds on parallel speedup on ar-
chitectures with any number of processors. A program compiled
for Cilkprof will generate profile information that is generally ap-
plicable, rather than just for the architecture on which it was run.
Additionally, Cilkprof is distinguished in that it uses direct instru-
mentation rather than statistical sampling.

Whereas Cilkprof computes the parallelism of call sites in a par-
allel program, the Kremlin [11, 24] and Kismet [23] tools analyze
serial programs to suggest parallelism opportunities and to predict
the impact of parallelization. Kremlin can suggest which parts of
a serial program might benefit from parallelization. It estimates
the parallelism of a serial program using “hierarchical critical-path
analysis” and connects to a “parallelism planner” to evaluate many
possible parallelizations of the program. Based on its determina-
tion of which regions (loops and functions) of the program should
be parallelized, it computes a work/span profile of the program,
computing a “self-parallelism” metric for each region, which esti-
mates the parallelism that can be obtained from parallelizing that
region separate from other regions. The analysis produces a textual
report as output suggesting which regions should be parallelized.
Kismet, which is a product of the same research group, attempts to
predict the actual speedup after parallelization, given a target ma-
chine and runtime system.

10. CONCLUSION
Our work on Cilkprof has left us with some interesting research

questions. We conclude by addressing issues of Cilkprof’s user
interface, parallelizing Cilkprof, and making Cilkprof functionally
more “complete.”

Chief among the open issues is user interface. How should the
profiles produced by Cilkprof be communicated to a Cilk program-
mer? Although we ourselves used just a spreadsheet to divine im-



portant scalability properties of PBFS, for example, we do not rec-
ommend this method to others. A good UI integrated with the de-
velopment environment would make diagnosing scalability issues
much easier for average programmers.

Even though Cilkprof analyzes parallel programs, it still runs
them serially. As the number of processors grows, it becomes less
and less acceptable to resort to a serial execution. In principle,
nothing precludes Cilkprof from running in parallel, but we have
thus far been unable to create a provably good algorithm. One
problem is that amortization plays havoc with the critical path of
a parallel program. At some cost in programming complexity, we
could deamortize the prof data structures, but it is also tricky to
parallelize the strategies for handling recursion.

Cilkprof offers many opportunities for functional enhancements.
The on-work and on-span profiles seem natural enough, but maybe
there are better alternatives to top call site, top caller, and local pro-
file data. In addition, Cilkprof computes on-span profiles only for
call sites that lie on the global critical path. Sometimes, the critical
path of a computation can be qualitatively different depending on
the size of the program input. For example, two computations A
and B are run in parallel, where the span of A is smaller than the
span of B for small inputs, but the reverse is true for large inputs.
Rather than run at scale, it could be more productive if Cilkprof
were to report span-on-span profiles not just for the global critical
path, but for all critical paths within all functions. Although the
space required might be quadratic in call sites, such a profile would
greatly speed detective work, and the cross-product of sites might
be considerably sparse for many programs. Unfortunately, we do
not yet see a way to calculate such a profile without also blowing
up the overheads significantly.
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