
MIT Open Access Articles

Valid Two-Step Identification-Robust Confidence Sets for GMM

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Andrews, Isaiah. “Valid Two-Step Identification-Robust Confidence Sets for GMM.” The 
Review of Economics and Statistics (June 2017) © 2018 by the President and Fellows of Harvard 
College and the Massachusetts Institute of Technology

As Published: http://dx.doi.org/10.1162/REST_A_00682

Publisher: MIT Press

Persistent URL: http://hdl.handle.net/1721.1/115063

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/115063


VALID TWO-STEP IDENTIFICATION-ROBUST
CONFIDENCE SETS FOR GMM

Isaiah Andrews*

Abstract—In models with potentially weak identification, researchers often
decide whether to report a robust confidence set based on an initial assess-
ment of model identification. Two-step procedures of this sort can generate
large coverage distortions for reported confidence sets, and existing pro-
cedures for controlling these distortions are quite limited. This paper
introduces a generally applicable approach to detecting weak identification
and constructing two-step confidence sets in GMM. This approach con-
trols coverage distortions under weak identification and indicates strong
identification, with probability tending to 1 when the model is well
identified.

I. Introduction

IN contexts where weak identification is a concern, empiri-
cal researchers in economics frequently calculate statistics

intended to measure identification strength. If these statistics
indicate that identification is not “too” weak, researchers
proceed as usual and calculate nonrobust confidence sets;
if weak identification is detected, researchers may calcu-
late identification-robust confidence sets, look for a different
specification, or simply decide not to report results. The latter
two approaches can lead to enormous coverage distortions
for reported confidence sets, so here I focus on the case
where researchers use the first-step identification assessment
to decide between reporting robust and nonrobust confidence
sets.

We can view such procedures as two-step confidence
sets, where the first step assesses identification strength and
the second step reports a confidence set chosen based on
this assessment. Such two-step procedures underlie many of
the applications of identification-robust methods in empir-
ical practice, where robust confidence sets are often com-
puted only after researchers observe evidence suggestive
of weak identification.1 Unless carefully constructed, such
procedures can undermine coverage guarantees for robust
techniques and result in very poor performance for reported
confidence sets.
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1 Of the 38 empirical papers calculating robust tests or confidence sets
based on Moreira (2003) who themselves have over twenty citations (based
on a Google Scholar search on March 4, 2014), for example, 35 report
first stage F-statistics, 33 have a first-stage F smaller than fifteen in some
specification, and 29 have a first-stage F smaller than ten.

Using the results of Stock and Yogo (2005), one can show
that in the linear IV model with homoskedastic errors, two-
step confidence sets based on the first stage F-statistic ensure
bounded coverage distortions. Stock and Yogo’s results do
not apply to linear IV models with heteroskedastic, clus-
tered, or serially correlated data, however, much less to
nonlinear models. Indeed, even in the linear IV model
with heteroskedasticity, two-step confidence sets based on
the first-stage F-statistic can exhibit enormous coverage
distortions.2

To bridge this gap between empirical practice and the
theoretical econometric literature, this paper introduces a
widely applicable method for constructing two-step con-
fidence sets with controlled coverage distortions. In cases
where the model is well identified, and thus nonrobust con-
fidence sets are reliable, the proposed method indicates
this and reports nonrobust confidence sets with probabil-
ity tending to 1. The idea behind this approach is simple:
in well-identified models, many different test statistics are
asymptotically equivalent local to the true parameter value.
Using this equivalence, for any γ > 0, we can construct
identification-robust confidence sets with coverage 1−α−γ,
which are contained in the usual nonrobust level 1 − α con-
fidence set with probability tending to 1 if the model is well
identified. A natural way to gauge identification is thus to
check if this containment occurs. I show that the resulting
two-step confidence sets have coverage at least 1 − α − γ.
Moreover, I note that rather than picking a bound γ on cov-
erage distortion ex ante, researchers can report robust and
nonrobust confidence sets, along with a distortion cutoff γ̂.
Readers whose tolerance for distortion is less than γ̂ should
focus on the robust confidence set, while readers with a
higher tolerance for distortion can focus on the nonrobust
confidence set.

To implement my approach in (linear or nonlinear) gen-
eralized method of moments (GMM) models, I extend the
results of Kleibergen (2005) and Chaudhuri and Zivot (2011)
and derive identification-robust test statistics that are locally
asymptotically equivalent to conventional test statistics in
well-identified models for tests of both, the full GMM
parameter vector and lower-dimensional parameters. I then
construct identification-robust confidence sets by combin-
ing these statistics with the S statistic of Stock and Wright
(2000) using the linear combination approach discussed
by I. Andrews (2016). For lower-dimensional parameters,
these confidence sets are based on the projection method,
but the choice of test statistic limits the efficiency loss in
well-identified models.

2 For demonstration of this point in simulation, see section C of the
supplementary appendix.
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2 THE REVIEW OF ECONOMICS AND STATISTICS

The next section introduces my approach for combin-
ing robust and nonrobust procedures to construct two-step
confidence sets with bounded coverage distortions in gen-
eral models. Section III discusses particular confidence sets,
which can be used to implement this approach in GMM,
while section IV details the steps needed for implementation
and derives results for the nonlinear Euler equation model
of Hansen and Singleton (1982). Proofs of all results stated
in the paper are given in the appendix; the proof of an auxil-
iary lemma, details, and additional results for the empirical
application and simulation results for the linear IV model
are given in the supplementary appendix.

II. Valid Two-Step Confidence Sets

Throughout the paper, I suppose that we observe a sam-
ple of size T drawn from distribution FT (β0, ψ0) , where
β ∈ B ⊆ R

p is finite dimensional while ψ ∈ Ψ is poten-
tially infinite dimensional. I assume we are interested in
constructing a confidence set for the parameter β, treating
ψ as a nuisance parameter. The distribution FT need not
be explicitly specified, so this accommodates both paramet-
ric and semiparametric models, including moment condition
models estimated using GMM. While the primary focus of
this paper will be on GMM models, for this section, nothing
is gained by limiting attention to GMM, so I do not impose
this restriction.

As noted above, when researchers are concerned that
conventional inference procedures may be unreliable due
to weak identification, they often assess the identification
status of the model based on some statistic or collection
of statistics. I consider the case where a researcher wants
to report an identification-robust confidence set if this ini-
tial step indicates weak identification, but will otherwise
report a nonrobust confidence set. To formally describe the
resulting confidence set, following D. Andrews and Cheng
(2012), I represent the first-stage identification diagnos-
tic using an identification category selection (ICS) statistic
φICS ∈ {0, 1}, where φICS = 0 is interpreted as evidence of
strong identification and φICS = 1 is interpreted as evidence
of weak identification. The rule-of-thumb for the first-stage
F-statistic in linear IV, for example, indicates weak iden-
tification when the first-stage F-statistic is smaller than 10
and so can be represented as φICS = 1 {F < 10}. Denot-
ing the robust and nonrobust confidence sets by CSR and
CSN , respectively, the procedure described above yields the
two-step confidence set CS2:

CS2 =
{

CSN if φICS = 0
CSR if φICS = 1

. (1)

I will be interested in the probability that this two-
step confidence set covers the true parameter value:
PrT ,(β0,ψ0) {β0 ∈ CS2} .

A. Sequential and Asymptotic Coverage Probability

The finite-sample coverage probability PrT ,(β0,ψ0){β0 ∈
CS2} is typically difficult to analyze directly. I thus fol-
low the usual approach and instead consider the limiting
coverage probability as the sample size grows. While the tra-
ditional justification of nonrobust tests (see, e.g., Newey &
McFadden, 1994) considers point-wise asymptotic approx-
imations where we fix (β0, ψ0) and take the sample size
T to infinity, the weak identification literature following
Staiger and Stock (1997) has shown that these approxima-
tions may be quite misleading in contexts with potential
identification failure. To derive alternative approximations,
this literature instead models parameters as drifting with the
sample size, so the true parameters in the sample of size
T are

(
β0,T , ψ0,T

)
. More recently, the literature on robust

inference has focused on asymptotic coverage, defined as
the lower limit of the minimal finite-sample coverage prob-
ability. Formally, the asymptotic coverage probability of
CS is

ACP (CS) = lim inf
T→∞ inf

(β0,ψ0)∈B×Ψ
PrT ,(β0,ψ0) {β0 ∈ CS} .

To discuss my results, it is helpful to have compact
notation for discussing limiting coverage under particular
sequences of parameter values. In particular, let

ξ0 = {(
β0,T , ψ0,T

)}∞
T=1 ∈ Ξ = Π∞

T=1 (B × Ψ) (2)

denote a sequence of true parameter values, with Ξ the
space of all such sequences. Define the sequential cover-
age probability of confidence set CS under the sequence of
true parameter values ξ0 as the lower limit of the coverage
probability under ξ0:

SCP (CS, ξ0) = lim inf
T→∞ PrT ,ξ0

{
β0,T ∈ CS

}
= lim inf

T→∞ PrT ,(β0,T ,ψ0,T)

{
β0,T ∈ CS

}
.

Likewise, define the sequential coverage probability of con-
fidence set CS under the set of sequences Ξ̃ ⊂ Ξ as the
minimal sequential coverage probability under ξ0 ∈ Ξ̃,

SCP
(
CS, Ξ̃

) = inf
ξ0∈Ξ̃

SCP (CS, ξ0) .

Note that sequential coverage probability under Ξ as defined
in equation (2) is simply the asymptotic coverage probability

SCP (CS, Ξ) = ACP (CS) .

We can use sequential coverage to formalize what we
mean by “robust” and “nonrobust” confidence sets. In partic-
ular, I assume we consider two sets of parameter sequences,
ΞS and ΞW , which I will refer to as “strong” and “poten-
tially weak” (or for brevity, simply “weak”), respectively. I
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assume that the nonrobust confidence set CSN has sequential
coverage at least 1 − α under strong identification

SCP (CSN , ΞS) ≥ 1 − α, (3)

but I impose no restriction on the performance of this con-
fidence set under weak identification. By contrast, I assume
that the robust confidence set CSR has coverage at least 1−α

under both weak and strong identification:

SCP (CSR, ΞS ∪ ΞW )

= min {SCP (CSR, ΞS) , SCP (CSR, ΞW )} ≥ 1 − α.
(4)

Thus, the robust confidence set CSR is more robust than CSN

in the sense that it has correct sequential coverage for a larger
set of sequences.

Example: Linear IV. To illustrate the different notions
of limiting coverage described, consider the linear IV model
with a single endogenous regressor. The model, written in
reduced form, is

Y = Zπβ + V1,

X = Zπ + V2,

for Z a T × k matrix of instruments, X a T × 1 vector of
endogenous regressors, Y a T × 1 vector of outcome vari-
ables, and V1 and V2 both T ×1 vectors of residuals, where I
assume that E

[
V1,tZt

] = E
[
V2,tZt

] = 0 for Zt the transpose
of row t of Z . For simplicity I assume that either there are
no exogenous regressors or that any such regressors have
already been partialed out.3 The nuisance parameter ψ in
this context will index both the first-stage parameter π and
the joint distribution of (Z , V1, V2) .

Conventional (strong-instrument, point-wise) asymptotic
approximations correspond to fixing

(
β0,T , ψ0,T

) = (β0, ψ0)

at some value with π0 	= 0 and taking T to infinity. Thus,
if we define ΞS to be a set of such sequences, the usual
Wald confidence sets have correct sequential coverage under
ΞS. By contrast, the weak instrument asymptotics consid-
ered by Staiger and Stock (1997) set π0,T = 1√

T
π∗, while

uniform asymptotic results for confidence sets, like those
of D. Andrews and Guggenberger (2017), allow arbitrary
sequences of values

(
β0,T , π0,T

) ∈ B × Π ⊆ R
1 × R

k .
Both the results of Staiger and Stock (1997) and those of
D. Andrews and Guggenberger (2017) also allow drifting
sequences of distributions for (Z , V1, V2) . If we define ΞW

to be a set of sequences satisfying the assumptions of Staiger
and Stock (1997), then all the identification-robust confi-
dence sets discussed in the weak instruments literature have
correct sequential coverage under ΞW . If we take ΞW to be
the set of all sequences Ξ over a base parameter space B×Ψ,

3 That is, for exogenous controls W and initial data
(
Ỹ , X̃, Z̃ , W

)
, Y =

MW Ỹ , X = MW X̃, Z = MW Z̃ , where MW = I − W (W ′W)
−1 W ′.

then, as noted in D. Andrews and Guggenberger (2017),
commonly used robust confidence sets will have correct
sequential coverage (and thus correct uniform asymptotic
coverage) under appropriate restrictions on Ψ.

Defining strong and weak sequences. As the discussion
suggests, even in the linear IV model, one may potentially
define ΞW in a number of ways. Indeed, this reflects the state
of the literature, where a number of devices have been used to
model weak identification, including the drifting parameter
asymptotics considered in Staiger and Stock (1997) and D.
Andrews and Cheng (2012), and the drifting moment con-
dition asymptotics considered in Stock and Wright (2000)
and Chaudhuri and Zivot (2011). The goal of this paper is to
show how, given a definition of weak identification and cor-
responding robust confidence sets, one may construct a two-
step confidence set with bounded coverage distortions. While
I will generally take ΞS to consist of conventional pointwise
asymptotic sequences, with

(
β0,T , ψ0,T

) = (β0, ψ0) fixed,
my construction does not depend on the definition of ΞW .
Indeed, since results in the literature assume different def-
initions of ΞW , it is helpful to leave the definition of ΞW

flexible in this section, though in the next section, I impose
assumptions on ΞW to derive robust confidence sets for
GMM models.

B. Coverage Bounds for Two-Step Confidence Sets

The coverage assumptions (3) and (4) for CSN and CSR

imply an initial bound on the sequential coverage of CS2:

Lemma 1. Under equations (3) and (4),

a. SCP (CS2, ΞW ) ≥ 1 − α − supξ0∈ΞW
lim supT→∞× PrT ,ξ0 {φICS = 0}.

b. SCP (CS2, ΞS) ≥ 1−α−min
{
α, supξ0∈ΞS

lim supT→∞
× PrT ,ξ0 {φICS = 1} }

.

These bounds are tight in the sense that one cannot obtain a
sharper bound without additional conditions on the behavior
of (CSN , CSR, φICS). In particular, without further restric-
tions, the sequential coverage of CS2 under ΞW may be
arbitrarily close to 0.

To construct φICS yielding such additional restrictions, I
observe that a number of asymptotic simplifications arise
in well-identified models. As I show for GMM models in
the next section, we can often construct preliminary robust
confidence sets CSP (γ) with coverage 1 − α − γ, which are
contained in the nonrobust confidence set CSN with probabil-
ity tending to 1 when the model is well identified. Formally,
I assume:

Assumption 1. We have a preliminary confidence set
CSP (γ) such that:

a. SCP (CSP (γ) , ΞW ) ≥ 1 − α − γ.
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b. PrT ,ξ0 {CSP (γ) ⊆ CSR} = 1 for all T and ξ0 ∈ Ξ.
c. infξ0∈ΞS lim infT→∞ PrT ,ξ0 {CSP (γ) ⊆ CSN} = 1.

This assumption requires the existence of a preliminary
confidence set that (a) has sequential coverage at least
1 − α − γ when identification is weak, (b) is contained in
CSR with probability 1, and (c) is contained in CSN with
probability tending to 1 under strong identification. While
this might seem quite demanding, in the next section I con-
struct confidence sets CSP (γ) that satisfy these conditions
in GMM. Such a preliminary confidence set allows a natural
pretest for identification strength; however, since if we see
that CSP (γ) is not contained in CSN , this suggests that the
model may not be well identified.

In addition to being intuitively reasonable, this approach
to assessing identification implies several good properties
for the resulting two-step confidence sets. Formally, this
approach corresponds to the ICS statistic:

φICS (γ) = 1 {CSP (γ) 	⊆ CSN} . (5)

For this choice of ICS statistic, the two-step confidence set
CS2 = CS2 (γ) as defined in equation (1) contains the pre-
liminary confidence set CSP (γ) by construction, and thus has
coverage at least 1−α−γ under weak identification. More-
over, CS2 (γ) coincides with CSN with probability tending
to 1 when the model is well identified. Formally:

Theorem 1. Under assumption 1, together with equa-
tion (3), for φICS as defined in equation (5), the two-step
confidence set CS2 (γ) has the following properties:

a. SCP (CS2 (γ) , ΞW ) ≥ 1 − α − γ.
b. SCP (CS2 (γ) , ΞS) ≥ 1 − α.
c. infξ0∈ΞS lim infT→∞ PrT ,ξ0 {CS2 (γ) = CSN} = 1.

Further, supξ0∈ΞS
lim supT→∞ PrT ,ξ0 {φICS (γ) = 1} = 0.

Thus, given a preliminary confidence set satisfying assump-
tion 1, we can easily construct two-step confidence sets with
coverage at least 1−α−γ. A natural question then is how we
ought to choose γ. The next section shows that by reporting
results appropriately the choice of γ can be left to the reader.

C. Reporting Results

The discussion has assumed a fixed maximal coverage
distortion γ. In practice, however, different readers may be
comfortable with different levels of distortion, so it may be
preferable to report both robust and nonrobust confidence
sets, together with some indication of the reliability of the
nonrobust confidence set.

To this end, let us specify some minimal value of γ,
γmin ≥ 0. Suppose that for γ ≥ γmin, we can define a fam-
ily of preliminary robust confidence sets CSP (γ) that are
decreasing in γ in the sense that

CSP (γ̃) ⊆ CSP (γ) for all γ̃ ≥ γ.

Further, let us assume CSP (γmin) ⊆ CSR, so that the full
family of preliminary confidence sets is contained in our
robust confidence set. Define γ̂ to be the smallest value such
that CSP (γ̂) ⊆ CSN ,

γ̂ = min {γ ≥ γmin : CSP (γ) ⊆ CSN} .

γ̂ is the smallest distortion γ such that φICS (γ) will indicate
strong identification in this realization of the data.4 Hence I
will refer to γ̂ as the distortion cutoff. Note that by theorem 1,
γ̂ →p γmin under strong identification.5

Suppose that rather than reporting the two-step confidence
set CS2 (γ), we instead report (CSN , CSR, γ̂) . A reader who
adopts the rule of focusing on CSN when γ̂ ≤ γ and on CSR

when γ̂ > γ is then effectively constructing the two-step
confidence set,

CS2 (γ) =
{

CSN if γ̂ ≤ γ

CSR if γ̂ > γ
=

{
CSN if φICS (γ) = 0
CSR if φICS (γ) = 1

,

which is the same as CS2 (γ) based on φICS (γ) as in equation
(5). Thus, it follows immediately from theorem 1 that this
confidence will have asymptotic coverage at least 1 − α − γ

under both weak and strong identification. Thus, by reporting
(CSN , CSR, γ̂) we provide the ingredients to construct a vari-
ety of two-step confidence sets and supply more information
than reporting CS2 (γ) alone.

III. Two-Step Confidence Sets for GMM

The two-step procedures described require three inputs:
the nonrobust confidence set CSN , the robust confidence set
CSR, and the family of preliminary confidence sets CSP (γ).
To discuss concretely how to construct these confidence sets,
I consider models identified by moment equalities and esti-
mated by GMM and provide sufficient conditions to apply
theorem 1.

I consider a GMM model with a k-dimensional con-
tinuously differentiable moment condition gt (θ) that has
mean 0 when the m-dimensional parameter θ is equal to its
true value θ0,T . In the linear IV model already discussed,
for example, gt (θ) = Zt (Yt − Xtθ) . To reflect the fact
that we are frequently interested in inference on a lower-
dimensional function of model parameters, I suppose we

4 If CSP (γ) 	⊆ CSN for all γ ∈ [
γmin, 1 − α

]
, define γ̂ = 1 − α.

5 Taking γmin = 0 allows the widest possible range of values for γ̂. How-
ever, this choice may sometimes result in undesirable properties for CSR,
as in the GMM case discussed below, so it is helpful to allow γmin > 0.
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are interested in inference on a p-dimensional parameter
( p ≤ m) β = f (θ) for f a continuously differentiable function
such that ∂

∂θ′ f
(
θ0,T

)
has full rank for all T . For example, we

may be interested in constructing a confidence set for the
ith element of the structural parameter vector and so take
f (θ) = θi. Note that we may also take f (θ) = θ, in which
case θ = β, and we are conducting inference on the full
parameter vector.

Let gT (θ) = 1
T

∑
t gt (θ) be the sample average of gt (θ),

and let Σ̂g, Σ̂θg, and Σ̂θ be consistent estimators for

Var
(√

TgT (θ)
)

, Cov
(√

Tvec
(

∂
∂θ′ gT (θ)

)
,
√

TgT (θ)
)

, and

Var
(√

Tvec
(

∂
∂θ′ gT (θ)

))
, respectively. I assume we have

some estimator θ̃ for θ which under strong identification is
first-order equivalent to

θ̂ = arg min
θ

gT (θ)′ Ω̂ (θ) gT (θ) (6)

for Ω̂ (θ) a symmetric positive-definite weighting matrix,
which I assume converges uniformly in probability to a
full-rank matrix-valued function Ω (θ) under strong iden-
tification.6 Estimators θ̃ in this class include one-step GMM,
efficiently and inefficiently weighted two-step GMM, con-
tinuously updating GMM, and many others.

The most common nonrobust confidence set for β0 =
f (θ0) is based on the Wald statistic,

W (β) = T · (
f
(
θ̃
) − β

)′
Σ̂−1

β̃

(
f
(
θ̃
) − β

)
, (7)

for Σ̂β̃, an estimator for the asymptotic variance of
√

T β̃ =√
Tf

(
θ̃
)
. Under strong-instrument asymptotics, β̃ is

√
T con-

sistent for θ0, and the Wald statistic diverges to infinity
outside

√
T neighborhoods of the true parameter value.

Unfortunately, when identification is weak, the distribu-
tion of the Wald statistic W (β) depends on nuisance parame-
ters, making construction of identification-robust confidence
sets based on this statistic challenging in most models. To
avoid these issues while constructing CSR and CSP (γ) sat-
isfying our requirements, I proceed in two steps. First, I
seek analytically simple test statistics that are locally asymp-
totically equivalent to W (β) in the well-identified case.
Second, I exploit the simple form of these statistics to create
identification-robust analogs that remain locally equivalent
to W (β) when the model is well identified.

To obtain analytically simpler analogs of the Wald statis-
tic W (β), note that section 9 of Newey and McFadden
(1994) establishes that conventional GMM estimators are
asymptotically equivalent to one-step estimators with start-
ing values in a

√
T neighborhood of the true parameter value.

Formally, define the one-step estimator with initial value
θ as

6 By “first-order asymptotic equivalence,” I mean that
√

T
(̂
θ − θ̃

) →p 0
under ξ0 ∈ ΞS .

θ̄ (θ) = θ −
(

∂

∂θ
gT (θ)′ Ω̂ (θ)

∂

∂θ
gT (θ)

)−1

× ∂

∂θ
gT (θ)′ Ω̂ (θ) gT (θ) .

θ̄ (θ) is first-order asymptotically equivalent to θ̃ under strong
identification provided the initial value θ lies in a

√
T -

neighborhood of θ0.7 Analogously, we can interpret β̄ (θ) =
f (θ) + ∂

∂θ
f (θ)

(
θ̄ (θ) − θ

)
as a one-step estimator for β,

where we have linearized the function f around θ. Thus,
in well-identified models, we can construct Wald statistics
based on β̄ (θ), and they will be first-order asymptotically
equivalent to W ( f (θ)) local to the true value of θ. Conse-
quently, if we can find identification-robust versions of these
one-step Wald statistics, then we can use these to construct
CSR and CSP (γ).

A. Robust Confidence Sets

Unfortunately, when identification is weak, even Wald
statistics based on β̄ (θ) behave irregularly. In particular,
as Kleibergen (2005) noted, under weak identification, the
Jacobian ∂

∂θ
gT (θ) is asymptotically random and correlated

with the moment condition gT (θ) , with the result that
the distribution of β̄

(
θ0,T

)
is nonstandard and depends on

unknown parameters.
Happily, the relatively simple structure of β̄

(
θ0,T

)
allows

adaptation of the approach of Kleibergen (2005) to address
these issues. To eliminate asymptotic dependence between
the moment conditions and their Jacobian ∂

∂θ
gT (θ0), Kleiber-

gen (2005) orthogonalizes the Jacobian with respect to the
moment conditions. Define

DT (θ) =
[

∂

∂θ1
gT (θ) − Σ̂θ1g(θ)Σ̂g(θ)

−1gT (θ),

... ,
∂

∂θm
gT (θ) − Σ̂θmg(θ)Σ̂g(θ)

−1gT (θ)

]
,

where Σ̂θig(θ) is the k × k block of Σ̂θg(θ) corresponding
to θi. One can show that DT

(
θ0,T

)
will be asymptotically

uncorrelated with gT
(
θ0,T

)
even when identification is weak,

while DT
(
θ0,T

)
is asymptotically equivalent to ∂

∂θ
gT

(
θ0,T

)
when identification is strong. If we then define

θ∗ (θ) = θ − (
DT (θ)′ Ω̂ (θ) DT (θ)

)−1
DT (θ)′ Ω̂ (θ) gT (θ)

and β∗ (θ) = f (θ) + ∂
∂θ

f (θ) (θ∗ (θ) − θ) to be the analogs
of θ̄ and β̄, which replace ∂

∂θ
gT (θ) by DT (θ), then this sub-

stitution makes no difference (asymptotically) in the well-
identified case, while the Wald statistic based on β∗ (

θ0,T
)

will be robust to weak identification. For

M (θ) = Ω̂ (θ) DT (θ)
(
DT (θ)′Ω̂ (θ) DT (θ)

)−1 ∂

∂θ′ f (θ)
′,

7 This is shown formally in the proof of lemma 2 in the supplementary
appendix.
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this test statistic (which following Kleibergen, 2005, I label
a K statistic) is

KΩ,f (θ) = T · (
β∗ (θ) − f (θ)

)′ (
M (θ)′ Σ̂g(θ)M (θ)

)−1

× (
β∗ (θ) − f (θ)

)
.

To derive the limiting distribution of KΩ,f
(
θ0,T

)
, I make the

following assumptions:

Assumption 2. For all ξ0 ∈ ΞW ∪ ΞS, under ξ0 we have
that for JT ,ξ (θ) = ET ,(βT ,ψT )

[
∂

∂θ′ gT (θ)
]

,

1√
T

T∑
t=1

(
gt(θ0,T )

vec
(

∂
∂θ′ gt(θ0,T ) − JT ,ξ0

(
θ0,T

)))
→d

(
ψg

ψθ

)

∼ N

(
0,

(
Σg Σgθ

Σθg Σθ

))
where Σg is positive definite and(

Σg Σgθ

Σθg Σθ

)

= lim
T→∞ VarT ,ξ0

(
1√
T

T∑
t=1

(
gt(θ0,T )

vec
(

∂
∂θ′ gt(θ0,T )

)))
.

Assumption 3. We have estimators Σ̂g
(
θ0,T

)
, Σ̂θg

(
θ0,T

)
,

and Σ̂θ

(
θ0,T

)
, which converge in probability to fixed Σg,

Σgθ, and Σθ under all ξ0 ∈ ΞW ∪ΞS. Further, Ω̂
(
θ0,T

) →p Ω

for a nonstochastic symmetric positive-definite limit Ω.

Assumption 4. For all ξ0 ∈ ΞW ∪ΞS, there exist sequences
of full-rank normalizing matrices Λ1,T and Λ2,T of dimen-
sion m × m and p × p, respectively, such that

a. DT (θ) Λ1,T →d D for a Gaussian random matrix D
that is full rank almost surely but whose variance may
be degenerate

b. Λ2,T
∂

∂θ′ f
(
θ0,T

)
Λ1,T → F for a full-rank matrix F

Further, the elements of Λ1,T are of order O
(√

T
)

.8

Assumption 2 requires that the moment function and
its Jacobian be jointly asymptotically normal. Assump-
tion 3 requires that (a) we have consistent estimators for
the various terms appearing in the asymptotic variance
of

(
gT

(
θ0,T

)
, ∂

∂θ
gT

(
θ0,T

))
and (b) the weighting matrix

Ω̂
(
θ0,T

)
be consistent for some well-behaved limit. Assump-

tion 4 is more opaque but can easily be verified in many
leading cases. For example, Kleibergen (2005) considers the
case where

√
TJT ,ξ0 converges to a finite matrix J , in which

8 That is, they are bounded above in absolute value by C
√

T for some
constant C.

case we can take Λ1,T = √
TIm and Λ2,T = 1√

T
Ip. More

broadly, this assumption holds under the commonly used
weakly identified GMM embedding of Stock and Wright
(2000). In essence, this assumption requires the existence of
a pair of normalizations for DT and ∂

∂θ′ f
(
θ0,T

)
such that both

of these terms converge to well-behaved limits.9
Given these assumptions, both KΩ,f

(
θ0,T

)
and the differ-

ence S
(
θ0,T

) − KΩ,f
(
θ0,T

)
between KΩ,f

(
θ0,T

)
and the S

statistic of Stock and Wright (2000),

S(θ) = T · gT (θ)′ Σ̂g (θ)−1 gT (θ) , (8)

have a well-behaved limiting distribution even under weak
identification:

Theorem 2. Under assumptions 2, 3, and 4, under all ξ0 ∈
ΞW ,

(
KΩ,f

(
θ0,T

)
, S

(
θ0,T

) − KΩ,f
(
θ0,T

)) →d
(
χ2

p, χ2
k−p

)
and KΩ,f

(
θ0,T

)
and S

(
θ0,T

) − KΩ,f
(
θ0,T

)
are asymptotically

independent.

If we take Ω̂ (θ) to be the efficient GMM weighting matrix,
KΩ,f (θ) simplifies to the K statistic of Kleibergen (2005)
when we test the full parameter vector, while for f (θ), which
selects a subvector of θ (e.g., the first parameter alone),
KΩ,f is numerically equal to the LMeff statistic proposed by
Chaudhuri and Zivot (2011). Thus, this result is a natural
generalization of the results of those papers to allow nonlin-
ear functions f of the parameters and inefficient weighting
matrices (Ω̂ (θ) 	= Σ̂g (θ)−1).

For the case where we consider hypotheses on the full
parameter vector f (θ) = θ and use the efficient weighting
matrix, the results of D. Andrews and Guggenberger (2017)
establish a parameter space on which the conclusion of the-
orem 2 holds uniformly. It seems likely that an analogous
result might be available for the more general case consid-
ered here under suitable conditions. Given such uniformity
results, one could define ΞW to be the set Ξ of all sequences
on the appropriate base parameter space and the remainder
of the analysis would proceed unchanged. Since my focus is
on translating valid robust confidence sets to valid two-step
confidence sets rather than on establishing uniform asymp-
totic validity for robust confidence sets, however, I do not
pursue such an extension here.

9 These assumptions are stronger than necessary. In particular, using sub-
sequencing arguments as in D. Andrews, Cheng, and Guggenberger (2011)
one can relax all of these assumptions to require only that for any sub-
sequence

(
β0,T(n), ψ0,T(n)

)
of a sequence ξ0 ∈ ΞW ∪ΞS , there exists a further

sub-sequence along which the stated conditions hold.
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B. Localizing the Confidence Set

Given the results of theorem 2, we can construct robust
confidence sets for β = f (θ). In particular, define

CSK ,θ = {
θ : KΩ,f (θ) ≤ χ2

p,1−α

}
CSK = {

f (θ) : θ ∈ CSK ,θ
}

=
{
β : min

θ:β=f (θ)
KΩ,f (θ) ≤ χ2

p,1−α

}
.

CSK ,θ collects the set of values θ where KΩ,f (θ) falls below
a χ2

p critical value, and so will cover θ0,T with probabil-
ity tending to α by theorem 2. CSK then takes the image
of the initial confidence set CSK ,θ under f (·) to construct
a confidence set for f (θ). This is known as the projection
method and ensures correct (albeit potentially conservative)
coverage for f

(
θ0,T

)
.

It may seem reasonable to consider CSK as the basis
for CSR and CSP (γ). In particular, as noted (and estab-
lished formally in the supplementary appendix), KΩ,f (θ) is
asymptotically equivalent to W ( f (θ)) local to θ0,T in the
well-identified case, and we can construct the nonrobust
Wald confidence set in a manner analogous to CSK :

CSN ,θ = {
θ : W ( f (θ)) ≤ χ2

p,1−α

}
,

CSN = {
f (θ) : θ ∈ CSN ,θ

} = {
β : W (β) ≤ χ2

p,1−α

}
. (9)

Unfortunately, however, the confidence set CSK is not
in general asymptotically equivalent to the confidence set
CSN -based W (β), either globally or locally. For global
equivalence, Kleibergen (2005) showed that for β = θ

and Ω̂ (θ), the efficient weighting matrix, KΩ,f (θ), can be
interpreted as a score statistic based on the continuously
updating GMM objective function. In overidentified mod-
els, this statistic is thus equal to 0 at any critical point of the
continuously updating GMM objective. Similar issues arise
more broadly, and even in well-identified models, confidence
sets based on KΩ,f (θ) are not necessarily consistent for θ0,T .
Thus, since Wald confidence sets are consistent when β is
well identified, we see that CSN and CSK are not globally
equivalent. When β = θ, one can show that CSN and CSK are
equivalent on

√
T neighborhoods of the true parameter value,

but when β = f (θ) is of lower dimension, even this local
equivalence fails, because while the test statistics W ( f (θ))

and KΩ,f (θ) are asymptotically equivalent local to θ0,T , the
minimization in the definition of CSK means that this does
not suffice to imply local equivalence of CSN and CSK .

To construct robust confidence sets satisfying the require-
ments of assumption 1, it is thus insufficient to use the
statistic KΩ,f (θ) alone. Instead, I combine this statistic with
the S statistic as defined in equation (8). The S statistic
diverges to infinity outside

√
T -neighborhoods of θ0,T in

well-identified models, so considering this statistic limits
attention to regions of the parameter space on which KΩ, f (θ)

is asymptotically equivalent to W ( f (θ)). In the case where

β = θ and we use the efficient weighting matrix, I. Andrews
(2016) establishes a number of desirable properties for tests
based on linear combinations,

KΩ,f (θ) + a · S (θ) , (10)

so here I consider test statistics of this form.10

Let H (x; a, k, p) be the cumulative distribution func-
tion for a (1 + a) × χ2

p + a × χ2
k−p distribution and

H−1 (1 − α; a, k, p) the 1 − α quantile of this distribution.11

For a given value of γ, let a (γ) solve

H−1 (1 − α − γ; a (γ) , k, p) = χ2
p,1−α

for χ2
p,1−α the 1 − α quantile of a χ2

p distribution. Define the
preliminary robust confidence set through

CSP,θ (γ) = {
θ : KΩ,f (θ) + a (γ) × S (θ) < χ2

p,1−α

}
CSP (γ) = {

f (θ) : θ ∈ CSP,θ (γ)
}

=
{
β : min

θ:β=f (θ)

(
KΩ,f (θ) + a (γ) × S (θ)

)
< χ2

p,1−α

}
. (11)

Analogously, define the robust confidence set

CSR,θ = {
θ : KΩ,f (θ) + a (γ) × S (θ)

≤ H−1 (1 − α; a (γ) , k, p)
}
,

CSR = {
f (θ) : θ ∈ CSR,θ

}
=

{
β : min

θ:β=f (θ)

(
KΩ,f (θ) + a (γ) × S (θ)

)
≤ H−1 (1 − α; a (γ) , k, p)

}
. (12)

Theorem 2 implies that CSP (γ) has sequential coverage
probability at least 1 − α − γ under both ΞW and ΞS, while
CSR has sequential coverage at least 1 − α, as desired.

Corollary 1. Under the conditions of theorem 2,

SCP (CSP (γ) , ΞW ∪ ΞS) ≥ 1 − α − γ,

SCP (CSR, ΞW ∪ ΞS) ≥ 1 − α.

Thus, since CSP (γ) ⊆ CSR by construction, these choices
satisfy assumptions 1.1 and 2. Hence, to apply theorem 1,
all that remains is to give sufficient conditions for assump-
tion 1.3.

10 Note that here I consider linear combination statistics of the form K (β)+
a · S (β) while I. Andrews (2016) considers statistics of the form (1 − ã) ·
K (β) + ã · S (β). For a = ã/(1 − ã), the level 1 − α confidence sets based
on these two definitions are equivalent. I use the formulation in this paper
rather than that in I. Andrews (2016) to simplify the expression for CSP (γ)
below.

11 Note that by (1 + a) × χ2
p + a × χ2

k−p, I mean the distribution for the
linear combination of χ2 variables.
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The role of a×S (θ). The term a×S (θ) in equation (10)
serves two conceptually distinct purposes. First, it overcomes
the issue discussed at the start of this section and ensures that
confidence sets based on the linear combination statistic (10),
including both CSP (γ) and CSR, will be consistent in the
strongly identified case. Second, since CSP (γ) is formed by
comparing these linear combination statistics to a χ2 critical
value, the value a is also tied to the coverage distortion γ of
this preliminary confidence set. There are alternative ways to
construct CSP (γ) that avoid this one-to-one link between a
and γ, but since in constructing CSP (γ), we want both a > 0
and γ > 0, setting a = a (γ) avoids introducing additional
free parameters and so is a natural choice.

C. Asymptotic Results under Strong Identification

We next establish conditions under which the confidence
sets CSR and CSP (γ), along with the Wald confidence set
(9), satisfy assumption 1. To this end, I impose standard
conditions for the consistency of θ̂:

Assumption 5. For all ξ0 ∈ ΞS the following conditions
hold:

a. gT (θ) →p limT→∞ ET ,ξ0

[
gT (θ)

]
uniformly over the

compact parameter space Θ for θ, and limT→∞∥∥ET ,ξ0

[
gT (θ)

]∥∥ is uniformly bounded.
b. ET ,ξ0

[
gT (θ0)

] = 0 ∀T .
c. Ω̂ (θ) →p Ω (θ) uniformly over Θ for Ω(θ) continu-

ous and everywhere positive definite with a uniformly
bounded maximal eigenvalue and minimal eigenvalue
bounded away from 0.

d. For all ε > 0 there exists δ > 0 such that(
lim

T→∞ ET ,ξ0

[
gT (θ)

])′
Ω (θ)

×
(

lim
T→∞ ET ,ξ0

[
gT (θ)

])
< δ

only if ‖θ − θ0‖ < ε.

Assumption 5a requires that the sample average of the
moment condition gT (θ) be uniformly close to its mean in
large samples, while assumption 5c requires that the weight-
ing matrix be well behaved. Assumptions 5b and 5d are
identification conditions, which ensure that the population
objective function is small if and only if evaluated in a neigh-
borhood of the true parameter value, and assumption 5d will
fail in contexts where weak or partial identification issues
arise. Provided these conditions hold, standard arguments
yield the consistency of θ̂. Next, I consider an assumption
yielding asymptotic normality of θ̂.

Assumption 6. The following conditions hold for all
ξ0 ∈ ΞS:

a. θ0 belongs to the interior of Θ.

b. gT (θ) and Ω̂ (θ) are almost surely continuously differ-
entiable on some open ball B(θ0) around θ0.

c. For

J(θ) = lim
T→∞ JT ,ξ0 (θ) = lim

T→∞ ET ,ξ0

[
∂

∂θ′ gT (θ)

]
,

J(θ) is continuous at θ0, GT (θ) = ∂
∂θ′ gT (θ) →p J(θ)

uniformly on B(θ0), and J (θ0) is full rank.

d. supθ∈B(θ0)

∥∥∥ ∂vec(Ω̂(θ))
∂θ′

∥∥∥ = Op(1).

e. Σ̂g(θ) →p Σg(θ) uniformly on B (θ0), and Σg (θ) =
limT→∞ VarT ,ξ0(

√
TgT (θ)) is continuous in θ and

everywhere positive-definite on B (θ0).

Assumption 6a rules out cases where the true parame-
ter value lies near the boundary of the parameter space.
Assumption 6b requires that the moment condition and
weight function both be smooth, while assumptions 6.3 and
6.4 require that their derivatives be well behaved. Finally
Assumption 6e requires that we have a uniformly consistent
estimator for Σg (θ) on a neighborhood of θ0.

Assumptions 2, 5, and 6 together establish assumption 1.3.
Stated formally:

Theorem 3. Under assumptions 2, 5, and 6, for CSP (γ) as
defined in equation (11), CSN as in equation (9), and γ > 0,

inf
ξ∈ΞS

lim inf
T→∞ PrT ,ξ {CSP (γ) ⊆ CSN} = 1.

Thus, we see that for the proposed (CSR, CSP (γ) , CSN),
assumptions 2 to 6 provide sufficient conditions for assump-
tion 1 and allow us to apply theorem 1. Thus, we can
construct two-step confidence sets with bounded sequential
coverage distortions in potentially nonlinear GMM mod-
els. Further, as in section IIC, rather than picking a value
γ, we can instead report

(
CSR, CSN ,γ̂

)
for CSR based on

KΩ,f (θ) + a (γmin) × S (θ).

Linear IV simulations. As a complement to these the-
oretical results, section C of the supplementary appendix
simulates the performance of CSR, CSP (γ), and CS2 (γ)

in the linear IV model with a single endogenous regres-
sor. These simulations confirm the good coverage properties
of these confidence sets in models with both weak and
strong identification. Moreover, in linear IV models with
homoskedastic errors where one can use the results of Stock
and Yogo (2005) to construct two-step confidence sets based
on the first-stage F-statistic, the approach developed here is
found to be competitive and indicates weak identification
substantially less often in some contexts.

IV. Empirical Illustration and User’s Guide

To illustrate the application of the two-step confidence
sets, I revisit the nonlinear Euler equation model of Hansen
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and Singleton (1982). As noted by Hansen, Heaton, and
Yaron (1996) and Stock and Wright (2000), there is evidence
of weak identification in this context, so it is a natural setting
in which to examine the performance of the procedures pro-
posed here. I also detail the steps needed to calculate CSR,
CSN , and γ̂ in practice.

The parameters in this model are θ = (δ, η), which rep-
resent the discount factor and the coefficient of relative risk
aversion, respectively. The moments are

gt (θ) =
(

δ

(
Ct

Ct−1

)−η

Rt − 1

)
Zt

for Ct aggregate consumption in period t, Rt an aggregate
stock return from t − 1 to t, and Zt a vector of instruments.
Following Stock and Wright (2000), I use an extension of
the long annual data set of Campbell and Shiller (1987) and
take the vector Zt to contain a constant, Ct−1/Ct−2 and Rt−1.
(For further discussion of the data, see section B of the sup-
plementary appendix.) As Stock and Wright noted, results in
this context are quite sensitive to the details of the specifica-
tion, and there is evidence of model misspecification. Here, I
follow the CRRA-1 specification of Stock and Wright (2000)
except for covariance matrix estimation, where, unlike Stock
and Wright (2000), I use the Newey and West (1987) covari-
ance estimator with four lags to allow for serial dependence
in ∂

∂θ′ gt (θ) .12

I compute CSR, CSN , and γ̂ for both the full parameter
vector θ and for each parameter separately, corresponding
to three different choices of f (θ): f (θ) = θ, f (θ) = δ,
and f (θ) = η. In all cases, I set α = 5% and γmin = 5%,
so robust confidence sets have coverage at least 95%. The
next section walks through the steps required to implement
my suggested approach for a given f (θ) in detail, while the
following section presents results.13

A. Calculating CSR, CSN , and γ̂

This section details the steps needed to implement the
approach developed above for a given choice of f and
discusses my particular implementation choices in this appli-
cation. Note that when one considers multiple choices of
f (θ), as I do in the nonlinear Euler equation application,
one can economize on computation by running steps 1 to 3
below for all choices of f (θ) at the same time. For exposi-
tional simplicity, however, I assume a fixed choice of f (θ)

in this discussion.

Step 1: Choose weighting matrix and estimator. To
implement this approach, we first need to choose a weight-
ing matrix Ω (θ) to use in estimation, since this choice

12 See Kleibergen (2005) on the importance of allowing for serial
correlation in this setting.

13 Matlab code for performing these calculations with user-specified
moment functions and weighting matrices, as well as for replicat-
ing the results, is available on my website: http://economics.mit.edu
/faculty/iandrews

affects both the robust and nonrobust confidence sets. In this
application, I use the continuously updating GMM estima-
tor of Hansen et al. (1996), which is given by equation (6),
with Ω̂ (θ) = Σ̂ (θ)−1 the efficient weighting matrix. I then
define the Wald statistic, equation (7), where Σ̂β̂ is the usual
GMM variance estimator for f

(
θ̂
)
:

Σ̂β̂ =
(

∂

∂θ
f
(
θ̂
) ∂

∂θ′ gT (θ)′ Σ̂
(
θ̂
)−1 ∂

∂θ′ gT (θ)
∂

∂θ
f
(
θ̂
)′
)−1

.

Step 2: Choose grid of parameter values. To calculate
robust confidence sets, we need to collect the set of all param-
eter values where the identification-robust test statistics fall
below given thresholds. To facilitate these computations, as
is common in the identification-robust inference literature,
we can take a discrete approximation ΘD to the parameter
space. In this application, I consider

θ = (δ, η) ∈ ΘD = {0.6, 0.6025, ..., 1.1}
× {−6 : −5.975, ..., 60} .

Let us label the elements of ΘD as
{
θ1, θ2, ..., θ|ΘD|

}
.14

Step 3: Calculate test statistics. Given a discrete approx-
imation to the parameter space, we next need to calculate our
test statistics at each point in ΘD. For each θi ∈ ΘD, we can
first calculate gT (θi) , Σ̂ (θi), and DT (θi). This suffices to let
us calculate S (θi), as well as KΩ,f (θi), while we can calcu-
late the Wald statistic W ( f (θi)) based on equation (7). Let
us store the values

{
S (θi) , KΩ,f (θi) , W (θi) : θi ∈ ΘD

}
.

Step 4: Calculate a (γmin). Next, we need to determine
the value a (γmin) to use in the construction of the robust
confidence set CSR. By definition, a (γmin) solves

Pr
{
(1 + a (γmin)) × χ2

p + a (γmin) · χ2
k−p ≤ χ2

p,1−α

}
= 1 − α − γmin.

To find this value in practice, we can take independent draws
from χ2

p and χ2
k−p distributions and solve numerically for the

value a, which sets the 1−α−γ quantile of the corresponding
linear combination of these draws to χ2

p,1−α.15

Step 5: Calculate CSR, CSN . Now that we have a (γmin),
we are ready to calculate the confidence sets CSR and CSN .
In particular, we can first calculate the critical value used
to construct CSR, H−1 (1 − α; a (γmin) , k, p), by taking the

14 Rather than considering grids in the parameter space, which will become
computationally daunting when the dimension of the parameter is moder-
ate or high, one could instead use Markov chain Monte Carlo methods
based on the identification-robust test statistics, as suggested by Cher-
nozhukov, Hansen, and Jansson (2009). Given the low dimension of the
parameter space in the present application, however, I focus on the discrete
approximation.

15 All results reported here are based on 1 million simulation draws.
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Figure 1.—Robust and Nonrobust Confidence Sets for Full Parameter Vector θ

The distortion cutoff γ̂ is 10.42%.

1 − α quantile of a (1 + a (γmin)) × χ2
p + a (γmin) × χ2

k−p
distribution. The robust confidence set for f (θ) is then

CSR = {
f (θi) : θi ∈ ΘD, KΩ,f (θi) + a × S (θi)

≤ H−1 (1 − α; a (γmin) , k, p)
}
.

Likewise, the nonrobust confidence set is

CSN = {
f (θi) : θi ∈ ΘD, W ( f (θi)) ≤ χ2

p,1−α

}
.

Step 6: Calculate γ̂. Finally, we calculate the distortion
cutoff γ̂. Note that if γmin = 0, then for the discretized
problem we consider here, γ̂ solves

min
θi∈ΘD:W( f (θi))>χ2

p,1−α

KΩ,f (θi) + a (γ̂) × S (θi) = χ2
p,1−α,

since for any γ larger than this,{
θi ∈ ΘD : KΩ,f (θi) + a (γ) × S (θi) ≤ χ2

p,1−α

}
⊆ {

θi ∈ ΘD : W ( f (θi)) ≤ χ2
p,1−α

}
.

Thus, if for any value γmin we define

ã = max
θi∈ΘD

χ2
p,1−α − KΩ,f (θi)

S (θi)
1

{
W ( f (θi)) > χ2

p,1−α

}
,

then for

γ̃ = 1 − α − Pr
{
(1 + ã) × χ2

p + ã · χ2
k−p ≤ χ2

p,1−α

}
,

we see that γ̂ = max {γ̃, γmin} . Hence, given the discretiza-
tion of the parameter space we can easily determine γ̂ from
the quantities calculated above.

Table 1.—Confidence Sets and Distortion Cutoffs γ̂

for Parameters δ and η

Parameter CSR CSN γ̂

δ [0.6, 1.1] [0.867, 0.948] 6.64%
η [−6, −5.3]∪[−1.45, 1.95]∪

[5.25, 35.7] ∪ [54, 60]
[−1.1, 1.95] 6.64%

B. Empirical Results

Figure 1 reports joint confidence sets for the full parameter
vector θ in this application, and table 1 reports marginal con-
fidence sets for the parameters δ and η separately. In all cases,
the robust confidence sets have larger volume than the non-
robust ones. Nonetheless, we see that the distortion cutoff γ̂

is 10.42% for the joint confidence set and just 6.64% for both
marginal confidence sets. Thus, while readers interested in
two-step confidence sets and willing to accept at most a 5%
coverage distortion should focus on the robust confidence
sets in all cases, readers willing to accept a 10% coverage
distortion could use the nonrobust marginal confidence sets
for δ and η.

A notable feature of these results is that the distortion
cutoff γ̂ is the same for the parameters δ and η in this applica-
tion. This results from the fact that the continuously updating
the GMM objective function in this application has a sad-
dle point. Using the results of Kleibergen (2005), one can
show that all optimally weighted KΩ,f statistics are equal to
0 at this saddle point by construction, and γ̂ must be large
enough to ensure that CSP (γ̂) excludes this point. The min-
imal value γ required for this purpose is the same for both δ

and η, however, and in both cases, this value also suffices to
ensure that CSP (γ) is also contained in CSN . Thus, in this
application, γ̂ is the same for both δ and η.

As suggested above, results in this setting are quite sen-
sitive to the specification considered. While our baseline
moments take Rt to be an equity return, if we add moments
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that take Rt to be an interest rate, then as elsewhere in the
consumption-based asset pricing literature (e.g., Lettau &
Ludvigson, 2009) we obtain a much larger estimate of risk
aversion. Moreover, in these specifications, we obtain larger
γ̂, equal to 65.72% and 67.49% for δ and η, respectively.
Details of these results are provided in section B of the
supplementary appendix.

V. Conclusion

This paper develops two-step confidence sets with con-
trolled coverage distortions in GMM models. The particular
implementation I propose is based on generalizations of
the statistics studied by Kleibergen (2005) and Chaudhuri
and Zivot (2011), but there are many other ways one could
construct confidence sets CSR and CSP (γ) satisfying the
requirements of theorem 1, and the comparative perfor-
mance of different choices is an interesting question for
future research. While I have established the validity of the
confidence sets I construct under particular sequences of
parameter values, conditions for uniform asymptotic validity
are an interesting open question.
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APPENDIX

This appendix contains proofs for results stated in the paper. Proofs for
an auxiliary lemma, additional details on the empirical application, and
simulation results for the linear IV model are given in the supplementary
appendix.16

Proof of Lemma 1. To prove equation (1), note that for any ξ0 ∈ Ξ and
any T ,

PrT ,ξ0

{
β0,T ∈ CS2

} ≥ PrT ,ξ0

{
β0,T ∈ CSR

} − PrT ,ξ0 {φICS = 0} .

By equation (4), SCP (CSR, ΞW ) ≥ 1−α, so lemma 1.1 follows immediately
from the definition of sequential coverage probability.

To prove equation (2), note that

PrT ,ξ0

{
β0,T ∈ CS2

}
≥ PrT ,ξ0

{{
β0,T ∈ CSN

} ∩ {
β0,T 	∈ CSR and φICS = 1

}C
}

≥ PrT ,ξ0

{
β0,T ∈ CSN

} − PrT ,ξ0

{
β0,T 	∈ CSR and φICS = 1

}
and

PrT ,ξ0

{
β0,T 	∈ CSR and φICS = 1

}
≤ min

{
PrT ,ξ0

{
β0,T 	∈ CSR

}
, PrT ,ξ0 {φICS = 1}} .

By equation 3, SCP (CSN , ΞS) ≥ 1 − α so

SCP (CS2, ΞS) ≥ 1 − α − sup
ξ0∈ΞS

lim sup
T→∞

min
{
PrT ,ξ0

{
β0,T 	∈ CSR

}
,

PrT ,ξ0 {φICS = 1} }
,

but supξ0∈ΞS
lim supT→∞ PrT ,ξ0

{
β0,T 	∈ CSR

} ≤ α by assumption, implying
the result.

Proof of Theorem 1. To establish equation (1), note that by assumption
1b, PrT ,ξ0 {CSP (γ) ⊆ CSR} = 1 for all T and ξ0 ∈ Ξ. Thus, by the definition
of CS2, PrT ,ξ0 {CSP (γ) ⊆ CS2} = 1 for all T and ξ0 ∈ Ξ. Consequently,
PrT ,ξ0

{
β0,T ∈ CSP (γ)

} ≤ PrT ,ξ0

{
β0,T ∈ CS2 (γ)

}
, so equation (1) follows

immediately from assumption 1a. Equation (2) follows immediately from
lemma lb and assumption 1c. Equation (3) is implied by

sup
ξ0∈ΞS

lim sup
T→∞

PrT ,ξ0 {φICS = 1} = 0,

which is an immediate consequence of assumption 1c.

Proof of Theorem 2. We can rewrite KΩ,f as

KΩ,f (θ) =
T · gT (θ)′Ω̂ (θ) DT (θ)Λ1,T

(
Λ′

1,T DT (θ)′Ω̂ (θ) DT (θ)Λ1,T
)−1

× Λ′
1,T

∂

∂θ′ f (θ)′Λ′
2,T ×

(
Λ2,T

∂

∂θ′ f (θ)Λ1,T
(
Λ′

1,T DT (θ)′Ω̂ (θ) DT (θ)Λ1,T
)−1

× Λ′
1,T DT (θ)′Ω̂ (θ) Σ̂(θ)Ω̂ (θ) DT (θ)Λ1,T

(
Λ′

1,T DT (θ)′Ω̂ (θ) DT (θ)Λ1,T
)−1

× Λ′
1,T

∂

∂θ′ f (θ)′Λ′
2,T

)−1

Λ2,T
∂

∂θ′ f (θ)Λ1,T
(
Λ′

1,T DT (θ)′Ω̂ (θ) DT (θ)Λ1,T
)−1

× Λ′
1,T DT (θ)′ Ω̂ (θ) gT (θ) .

16 Available at http://economics.mit.edu/faculty/iandrews.
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By Lemma 1 of Kleibergen (2005),
(√

TgT

(
θ0,T

)
,
√

Tvec
(
DT

(
θ0,T

)
− JT ,ξ

))
converges to

(
ψg, ψD

)
, which are mutually independent. By

assumption, the elements of Λ1,T are of order
√

T , so 1√
T
Λ1,T = O (1)

and
(√

TgT

(
θ0,T

)
, DT (θ0,T )Λ1,T

)
are asymptotically independent as well.

In particular,
(√

TgT

(
θ0,T

)
, DT (θ0,T )Λ1,T

)
→d

(
ψg, D

)
where ψg|D ∼

N
(
0, Σg

)
.

We can further rewrite KΩ,f (θ) as

T · gT (θ)′Σ̂g (θ)− 1
2 P

(
Σ̂g (θ)

1
2 Ω̂ (θ) DT (θ)Λ1,T

(
Λ′

1,T DT (θ)′

× Ω̂ (θ) DT (θ)Λ1,T

)−1
Λ′

1,T

∂

∂θ′ f (θ)′Λ′
2,T

)
Σ̂g (θ)− 1

2 gT (θ) .

where P (X) = X (X ′X)
−1 X ′ denotes the projection matrix onto X. By

assumptions 3 and 4 and the continuous mapping theorem,

Σ̂g

(
θ0,T

) 1
2 Ω̂

(
θ0,T

)
DT (θ0,T )Λ1,T

(
Λ′

1,T DT (θ0,T )′Ω̂
(
θ0,T

)
Σ̂g

(
θ0,T

)
× Ω̂

(
θ0,T

)
DT (θ0,T )Λ1,T

)−1
Λ′

1,T

∂

∂θ′ f (θ0,T )′Λ2,T

→d Σ
1
2
g ΩD

(
D′ΩΣgΩD

)−1
F ′

where the sole random component on the right-hand side is D and the
right-hand side has rank p almost surely. Together with the fact that

Σ
− 1

2
g ψg|D ∼ N (0, Ik), this implies by the continuous mapping theorem

that
(
KΩ,f

(
θ0,T

)
, DT (θ0,T )Λ1,T

) →d

(
K̃Ω,f , D

)
, where K̃Ω,f |D ∼ χ2

p, since
conditional on D, K̃Ω,f is a quadratic form in a standard-normal random
vector and a rank-p projection matrix.

One can handle S
(
θ0,T

) − KΩ,f

(
θ0,T

)
in a similar manner. In particular,

note that

S (θ) − KΩ,f (θ) = TgT (θ)′Σ̂g (θ)− 1
2

(
I − P

(
Σ̂g (θ)

1
2 Ω̂ (θ) DT (θ)Λ1,T

× (
Λ′

1,T DT (θ)′Ω̂ (θ) Σ̂g (θ) Ω̂ (θ) DT (θ)Λ1,T

)−1
Λ′

1,T

∂

∂θ′ f (θ)′Λ′
2,T

))
× Σ̂g (θ)− 1

2 gT (θ) .

so

(
KΩ,f

(
θ0,T

)
, S

(
θ0,T

) − KΩ,f

(
θ0,T

)
, DT (θ0,T )Λ1,T

)
→d

(
K̃Ω,f , S̃ − K̃Ω,f , D

)
,

where
(
K̃Ω,f , S̃ − K̃Ω,f

) |D ∼
(
χ2

p, χ2
k−p

)
and

(
K̃Ω,f , S̃ − K̃Ω,f

)
are inde-

pendent conditional on D. Thus
(
K̃Ω,f , S̃ − K̃Ω,f

)
are independent and

distributed
(
χ2

p, χ2
k−p

)
unconditionally as well, which establishes the result.

Proof of Corollary 1. I prove the statement for CSP (γ), since the
statement for CSR follows by the same argument. Define

CSP,θ (γ) = {
θ : KΩ,f (θ) + a (γ) × S (θ) ≤ χ2

p,1−α

}
,

and note that since linear combinations of χ2 random variables are con-
tinuously distributed and KΩ,f (θ) + a × S (θ) = (1 + a) × KΩ,f (θ) + a ×(
S (θ) − KΩ,f (θ)

)
, theorem 2 implies that

lim
T→∞

PrT ,ξ0

{
KΩ,f

(
θ0,T

) + a (γ) × S
(
θ0,T

) ≤ χ2
p,1−α

} = 1 − α − γ.

Thus,

lim
T→∞

PrT ,ξ0

{
θ0,T ∈ CSP,θ (γ)

} = 1 − α − γ.

Note, however, that θ0,T ∈ CSP,θ implies that f
(
θ0,T

) ∈ CSP (γ) . Thus, we
obtain

lim inf
T→∞

PrT ,ξ0

{
θ0,T ∈ CSP,θ (γ)

} ≥ 1 − α − γ,

as desired.

The proof of theorem 3 uses the following lemma, which is proved in
the supplementary appendix.

Lemma 2. Let
{
Aθ,T

}
be a sequence of random sets such that

lim supT→∞ Prξ0 ,T

{
Aθ,T = ∅}

< 1 and supθ∈Aθ,T
‖θ − θ0‖ = Op

(
1√
T

)
(where I define the sup to be 0 if Aθ,T is empty). Under assumptions 2,
5, and 6, under all ξ0 ∈ ΞS,

sup
θ∈Aθ,T

∥∥W ( f (θ)) − KΩ,f (θ)
∥∥ = op(1).

Proof of Theorem 3. For S (θ) as in equation (8), note that Assumption
5 implies that for any ε > 0,

inf
‖θ−θ0‖≥ε

S (θ) →p ∞.

Thus, if we define Aθ,T = {
θ : a (γ) · S (θ) ≤ χ2

p,1−α

}
then supθ∈Aθ,T

‖θ −
θ0‖ = op (1). A mean-value expansion yields that gT (θ) =
gT (θ0) + GT (θ∗) (θ − θ0). Since supθ∈B(θ0)

‖GT (θ) − J(θ)‖ = op(1), and
supθ∈B(θ0)

∥∥Σ̂g(θ) − Σg(θ)
∥∥ = op(1) for an open ball B (θ0) around θ0 as in

assumption 6 and J(θ) and Σg(θ) are continuous in θ,

sup
θ∈Aθ,T

∣∣S (θ) − T (gT (θ0) + J (θ0) (θ − θ0))
′

×Σg (θ0)
−1 (gT (θ0) + J (θ0) (θ − θ0))

∣∣ = op(1).

Thus, for any ε > 0 and for λ the minimal eigenvalue of Σg (θ0)
−1,

PrT ,ξ0

{
inf

θ∈Aθ,T

(
S (θ) − λT ‖gT (θ0) + J (θ0) (θ − θ0)‖2

)
> −ε

}
→ 1.

Since
√

TgT (θ0) = Op(1) by assumption 2, this implies that

supθ∈Aθ,T
‖θ − θ0‖ = Op

(
1√
T

)
. Thus Aθ,T = {

θ : a (γ) × S (θ) ≤ χ2
p,1−α

}
shrinks toward θ0 at rate

√
T .

Next, note that KΩ,f (θ) ≥ 0 by construction, so KΩ,f (θ)+a (γ)×S (θ) ≥
a (γ) × S (θ) and CSP (γ) ⊆ Aθ,T . By standard results on the distribution of
tests for overidentifying restrictions infθ S (θ) →d χ2

k−p, so since

KΩ,f (θ) + a (γ) × S (θ) ≥ KΩ,f (θ) + a (γ) · inf
θ

S (θ)

and by lemma 2 supθ∈Aθ,T

∣∣KΩ,f (θ) − W ( f (θ))
∣∣ = op(1), we obtain that if

k > p, then

PrT ,ξ0

{
inf

θ∈Aθ,T

(
KΩ,f (θ) + a (γ) × S (θ) − W ( f (θ))

)
> 0

}
→ 1,

with the consequence that PrT ,ξ {CSP (γ) ⊆ CSN } → 1, as we
wanted to show. If k = p, then KΩ,f (θ) + a (γ) × S (θ) =
(1 + a (γ)) KΩ,f (θ), and the same conclusion follows from the fact that
supθ∈Aθ,T

∣∣KΩ,f (θ) − W ( f (θ))
∣∣ = op(1).


