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This paper demonstrates the compensation of the intrinsic positive charges in Al2O3 gate dielectric

by fluorine ions in GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-

HEMTs). Negatively-charged fluorine ions diffused into the oxide from the AlGaN barrier during

the 250 �C atomic layer deposition compensate the intrinsic positive charge present in the Al2O3.

This compensation is key to control the threshold voltage (Vth) of enhancement-mode (E-mode)

transistors. A comprehensive analytical model for the Vth of fluorinated MOS-HEMTs was

established and verified by experimental data. This model allows the calculation of the different

charge components in order to optimize the transistor structure for E-mode operation. Using the

proposed charge compensation, the Vth increases with gate dielectric thickness, exceeding 3.5 V for

gate dielectrics 25 nm thick. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4815923]

AlGaN/GaN high-electron-mobility transistors

(HEMTs) have great potential for the next generation of

power electronics. Standard AlGaN/GaN HEMTs are

depletion-mode (D-mode) devices. However, enhancement-

mode (E-mode) HEMTs with a threshold voltage (Vth)

� 3 V1 are highly desirable to simplify circuit design and to

enable fail-safe operation2 in power electronics. In order to

achieve this, E-mode metal-oxide-semiconductor HEMTs

(MOS-HEMTs) have been developed by combining a MOS

gate structure with various techniques, including gate-

recess,3,4 dual-gate integration,2 tri-gate structure,5 fluorine

plasma treatment,6 among others. In addition, the use of a

gate oxide suppresses the gate leakage,2,5,7 improves the

two-dimensional electron gas (2-DEG) transport characteris-

tics7 and device stability,8 and should also facilitate a more

positive Vth by capacitance modulation.9 However, the gate

oxide in GaN MOS-HEMTs has been shown recently to

affect the Vth not only as a result of the lower gate capaci-

tance of the increased gate-to-channel spacing, but also

through interface and bulk charges/traps.10 It has been shown

that the Vth in GaN MOS-HEMT structures hardly increases,

in fact sometimes it decreases, with the deposition of a thick

Al2O3 gate oxide,11 due to the presence of positive interface

charges11,12 and positive oxide bulk charges.13 This has

become a great challenge in the design of high-Vth E-mode

MOS-HEMTs.1 There is, therefore, a need for developing a

technology to compensate the positive charges in the MOS

structure.

In this work, we study the incorporation of fluorine ions

in the gate dielectric of E-mode fluorinated MOS-HEMTs,

and its impact on the threshold voltage modulation by the

gate oxide thickness. A Vth higher than 3.5 V and an increase

in Vth with increasing gate oxide thickness has been demon-

strated experimentally. A comprehensive analytical model

has also been proposed to quantify the contribution of differ-

ent charges and fluorine effects to the high Vth of MOS-

HEMTs and justify the experimental data. Detailed analysis

of capacitance-voltage (C-V) and secondary-ion mass spec-

trometry (SIMS) measurements were used to clarify the ori-

gin of the different charges in the proposed model. These

results support the use of fluorine and other charge-

compensating ions in the gate dielectric layer to fabricate

high-performance E-mode MOS-HEMTs.

The HEMT structure used in this work was a commer-

cial wafer grown on a 6 in. Si substrate by metal-organic

chemical vapor deposition. It consists of a 3 nm GaN cap/

18 nm Al0.26Ga0.72 N/1.2 lm i-GaN/2.8 lm buffer/p-type Si

(111) substrate. The device fabrication starts with mesa iso-

lation and Ti/Al/Ni/Au ohmic contact formation. Then the

gate region of the devices was treated by CF4 plasma in an

electron-cyclotron-resonance (ECR) reactive ion etching

(ECR-RIE) system at an ECR power of 150 W and an RF

power of 20 W for three different times: 150 s, 160 s, and

170 s. These three plasma times introduce enough fluorine

ions into the transistor structure to convert devices from

depletion mode to enhancement mode, without severe

2-DEG mobility degradation and channel damage. The 3 nm

GaN cap and the top 10 to 11.5 nm of the Al0.26Ga0.72 N

layer were etched by the CF4 plasma (150 s to 170 s), as

measured by atomic force microscopy (Figure 1(a)). The

etching depth was further verified by C-V and SIMS meas-

urements (details shown in Figure 4). This etching is consist-

ent with previous reports.14,15 After CF4 plasma treatment,

the surface of the gate region was cleaned through a two-step

process: a UV-ozone step at 260 �C for 10 min, followed by

an HCl clean for 1 min. Al2O3 gate dielectrics with thickness

of 8 nm, 15 nm, 20 nm, and 25 nm were then deposited by

atomic layer deposition (ALD) at 250 �C. A Ni/Au gate elec-

trode was then deposited covering the fluorinated region.

Finally, the samples were annealed at 400 �C for 5 min in N2

ambient to heal potential channel damage and activate the

fluorine ions.6 Transistors with a source-gate spacing of

1.5 lm, gate length of 3 lm and gate-drain spacing of 9 lm

(Figure 1(b)), as well as circular MOS diodes with aa)Electronic mail: yhzhang@mit.edu
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diameter of 180 lm were fabricated in the same sample. In

addition to the fluorinated devices, transistors and diodes

with identical geometry and layer but without the fluorina-

tion step were also fabricated as a reference (standard).

Figures 2(a) and 2(b) show the transfer characteristics of

standard and 150 s-plasma-treated MOS-HEMTs with differ-

ent gate oxide thickness. In the literature, many different

methods to extract the threshold voltage have been proposed,

including transconductance extrapolation5 and current

extrapolation under linear16 and saturation2,3,17 operating

conditions. However, these methods could suffer from uncer-

tainties, since the current or transconductance characteristics

can deviate from ideal straight line behavior in the threshold

region.17 Thus, in this work, a constant-current method,

widely used for MOSFETs17 and HEMTs,18 was adopted to

extract and compare the Vth of different devices. Here, the

Vth is defined as the gate voltage when drain current reaches

10 lA/mm at Vds¼ 1 V in the subthreshold region.18 The

transistor Vth defined in this way was found to be independ-

ent of Vds (measured from Vds¼ 1 V to Vds¼ 10 V) and con-

sistent with the capacitance turn-around point extracted from

C-V curves of MOS diodes10 (A typical C-V curve of the flu-

orinated MOS diodes is shown in Figure 4(a)).

The Vth of MOS-HEMTs as a function of oxide thick-

ness for four fluorine treatment times (0, 150, 160, and 170 s)

is summarized in Figure 3. As can be seen, a Vth that

increases with gate oxide thickness was achieved for fluori-

nated MOS-HEMTs. This is opposite to the behavior of

E-mode devices fabricated through gate recess, where the Vth

hardly increases as the gate dielectric thickness is increased

due to the fixed positive charges in Al2O3.1

The Vth dependence with oxide thickness and fluorine

time in the fluorinated devices is far from linear, indicating a

comprehensive analytical Vth model, including different

charges and fluorine effect quantitatively is needed. By mod-

ifying the electrostatic Vth model for a standard MOS-

HEMT,10 the Vth for fluorinated MOS-HEMTs can be

expressed as

Vth ¼
Ub

q
� DEc

q
� Uf

q
� qt2

ox

2eox
nox �

qtox

eox
QAl2O3=AlGaN

� q
tox

eox
þ tb

eAlGaN

� �
QAlGaN=GaN � uFluorine; (1)

where Ub is the metal barrier height for Ni on Al2O3 (i.e.,

3.5 eV10,12), DEc is the conduction band offset between

Al2O3 and GaN (i.e., 2.1 eV10,12), Uf is the conduction band

distance from the Fermi-level in GaN (�0.2 eV10). t is the

thickness, e is the permittivity, and the subscripts ox and b
refer to the oxide (Al2O3) and barrier layer (AlGaN), respec-

tively. nox is the average oxide bulk charge (per unit vol-

ume). QAl2O3=AlGaN and QAlGaN=GaN are the interface charge

density at the Al2O3/AlGaN interface (more details below)

and the AlGaN/GaN-channel interface (þ7� 1012 cm�2,

estimated by gated-Hall measurements of the 2-DEG sheet

charge density).

quFluorine is the conduction band shift induced by the flu-

orine plasma treatment. It has been reported that the main

contributing factor to this band shift is not the change in the

surface potential, but rather the negative fixed charges due to

fluorine ions inside AlGaN/GaN heterostructures.18,19 In this

FIG. 2. The transfer characteristics of

standard (a) and F-treated (b) MOS-

HEMTs as a function of the gate oxide

thickness. In the F-treated devices, the

CF4 plasma was applied for 150 s.

FIG. 1. (a) Atomic force microscope image of the gate region in a HEMT

structure after 150 s CF4 plasma treatment. The depth profile of the cutline

reveals an etched depth of �13 nm. (b) Schematic of the fabricated E-mode

MOS-HEMT by fluorine plasma treatment.
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work, uFluorine is assumed to be the result of only negative

fluorine charges. If we set the origin of the x axis (x ¼ 0) at

the Al2O3/AlGaN interface as shown in Figure 1(b), then

uFluorine can be expressed as

uFluorine ¼
ðtb

0

q
tox

eox
þ x

eAlGaN

� �
nFðxÞdx

þ
ðtbþtGaN

tb

q
tox

eox
þ tb

eAlGaN

þ x

eGaN

� �
nFðxÞdx

¼ qtox

eox

ðtbþtGaN

0

nFðxÞdxþ uðFÞ ¼ qtox

eox
QðFÞ þ uðFÞ;

(2)

where nFðxÞ is the effective fluorine negative charge density

(per unit volume) in the AlGaN and GaN; QðFÞ is defined as

a fluorine equivalent interface charge (per area) located at

the AlGaN/Al2O3 interface calculated by integration of the

fluorine negative charge in the bulk GaN and AlGaN; quðFÞ
is defined as a constant band bending only dependent on den-

sity of fluorine charge and distribution, but independent of

the gate oxide thickness. By incorporating Eq. (2) into Eq.

(1), we get

Vth ¼
Ub

q
� DEc

q
� Uf

q
� qtb

eAlGaN

QAlGaN=GaN � uðFÞ

� q

eox
½QAlGaN=GaN þ QAl2O3=AlGaN þ QðFÞ�tox

� qnox

2eox
t2ox: (3)

Equation (3) indicates that Vth can be described by a quad-

ratic polynomial of the gate oxide thickness tox with the con-

stant term and the first-order term directly dependent on

fluorine plasma time. This relationship was verified by the

excellent parabolic fitting achieved to the experimental Vth

vs. tox for fluorinated MOS-HEMTs with different fluorine

plasma time, as shown in Figure 3. On the other hand, a simi-

lar analytical model10 without the fluorine-related terms was

adopted to fit the experimental results on standard MOS-

HEMTs. An excellent agreement between model and experi-

ments was also achieved in this case, as shown in Figure 3.

The schematic charge distribution and energy band diagram

of the fluorinated MOS-HEMTs were shown in Figure 4.

The fluoride-induced band bending qjuðFÞj, total equivalent

Al2O3/nitride interface charges (QAl2O3=AlGaN þ QðFÞ for flu-

orinated MOS-HEMTs and QAl2O3=GaN for standard MOS-

HEMTs) and average oxide bulk charge nox derived from fit-

ting the model to the experimental results are summarized in

Table I.

As shown in Table I, a large positive charge QAl2O3=GaN

was found at the oxide/nitride interface in standard MOS-

HEMTs, which is consistent with previous reports.10–12 In

fluorinated MOS-HEMTs, negatively-charged fluorine ions

inside the AlGaN/GaN layers, Q(F), compensated the effect

of positive interface charge, QAl2O3=AlGaN, making the equiv-

alent total interface charge QAl2O3=AlGaN þ QðFÞ become

negative.

The interface charge (QAl2O3=AlGaN or QAl2O3=GaN) has

three different components:10,11,20,21 (1) the sum of sponta-

neous and piezoelectric polarization charges, QP; (2) the

contribution of the negatively charged oxide/AlGaN inter-

face traps, Qit; and, (3) the positively-charged ionized

FIG. 3. Vth of standard and fluorinated MOS-HEMTs with the gate oxide

thickness of 8 nm, 15 nm, 20 nm, and 25 nm by 150 s, 160 s, and 170 s fluo-

rine plasma treatment measured in experiments (dots) and fitted by analyti-

cal models (dashed lines).

FIG. 4. (a) Schematic charge distribution in the fluorinated MOS-HEMT

based on our analytical models for Vth calculation. (b) Energy band diagram

of the fluorinated MOS-HEMT calculated by using the TCAD simulator—

Silvaco Atlas based on our model.

TABLE I. Fluoride-induced band bending qjuðFÞj, total oxide/semiconduc-

tor interface charges (QAl2O3=AlGaN þ QðFÞ for fluorinated MOS-HEMTs,

QAl2O3=GaN for standard MOS-HEMTs), and average bulk oxide charge nox

as a function of fluorine plasma time for fluorinated and standard MOS-

HEMTs, as derived from the analytical model.

Fluorine plasma

time (s)

qjuðFÞj
(eV)

QAl2O3=AlGaN þ QðFÞ
ðQAl2O3=GaNÞ (cm�2)

nox

(cm�3)

0 0 7.08� 1012 1.1� 1018

150 0.4 �3.46� 1012 �7.1� 1018

160 0.7 �4.12� 1012 �7.1� 1018

170 1.0 �4.78� 1012 �7.1� 1018
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surface donors, Qd. While QP and Qd are difficult to separate

experimentally, Qit can be estimated from the C-V character-

ization of MOS capacitors.10,21,22 Figure 5(a) shows the typi-

cal C-V characteristics of standard and plasma-treated MOS

capacitors. As can be seen, the hysteresis DVth in the C-V
curve of fluorinated MOS capacitor is smaller than the hys-

teresis of a standard MOS capacitor. Using

Qit � CMOS � DVth=q,22 the Qit in fluorinated MOS-HEMTs

was estimated as ��2.3� 1011 cm�2, which is one-order of

magnitude smaller than the total equivalent interface charges

QAl2O3=AlGaN þ QðFÞ shown in Table I, indicating that Qit is

not a major contribution to interface charges. A detailed

analysis for the fluorine passivation of interface states will

be presented in a future paper.

A constant bulk oxide charge, nox ; is sufficient in our

model to get excellent agreement with the experimental data

for fluorinated MOS-HEMTs. This charge density,

�7.1� 1018 cm�3, is much more negative than the intrinsic

bulk oxide charge density revealed in our standard MOS-

HEMTs (þ1.1� 1018 cm�3) or reported by other groups for

ALD-grown Al2O3 on GaN10 and other III-V,13 indicating

the presence of additional charges. The SIMS measurements

shown in Figure 5(b) indicate that these additional charges

are due to fluorine ions diffusing into the gate oxide during

the ALD process at 250 �C. The post-gate annealing at

400 �C almost did not change the fluorine distribution in the

structure. The fluorine ions passivated the intrinsic positive

oxide charges and formed negative charges during high-

temperature ALD and annealing possibly by virtue of the

strong electronegativity of F. If we use the Gaussian charac-

teristics to approximate the fluorine concentration distribu-

tion measured by SIMS, and then the total fluorine ion

amount can be integrated and compared with the average

bulk oxide charge revealed by our model. In this way, the

“activation percentage” of the negatively charged fluorine

ions in Al2O3 gate oxide was estimated to be 40–50%. The

dynamic and microscopic picture of F-induced charge diffu-

sion and incorporation into the oxide still require a more

detailed study.

In conclusion, fluorine ions introduced in the gate

dielectric during the ALD deposition compensate the intrin-

sic positive charge of Al2O3, enabling the accurate control of

Vth by changing the gate oxide thickness. A comprehensive

analytical model for the Vth modulation was proposed and

verified by experimental data to quantitatively study the neg-

ative charge introduced in the dielectric by the fluorination

process. The proposed fluorine plasma treatment before the

ALD gate oxide deposition can be utilized in combination

with other E-mode MOS-HEMT technologies, such as gate

recess, tri-gate, and band engineering, to compensate the

positive charges in the Al2O3 gate dielectric and achieve a

more positive Vth.
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