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Abstract— We present a novel and time-efficient method for 

intracoronary lumen detection which produces three-dimensional 

(3D) coronary arteries using Optical Coherence Tomographic 

(OCT) images. OCT images are acquired for multiple patients and 

longitudinal cross-section (LOCS) images are reconstructed using 

different acquisition angles. The lumen contours for each LOCS 

image are extracted and translated to 2D cross-sectional images. 

Using two angiographic projections the centerline of the coronary 

vessel is reconstructed in 3D and the detected 2D contours are 

transformed to 3D and placed perpendicular to the centerline. To 

validate the proposed method, 613 manual annotations from 

medical experts were used as gold standard. The 2D detected 

contours were compared to the annotated contours and the 3D 

reconstructed models produced using the detected contours were 

compared to the models produced by the annotated contours. Wall 

shear stress (WSS), as dominant hemodynamics factor, was 

calculated using computational fluid dynamics and 844 

consecutive 2-mm segments of the 3D models were extracted and 

compared to each other. High Pearson’s correlation coefficients 

were obtained for the lumen area (r=0.98) and local WSS (r=0.97) 

measurements, while no significant bias with good limits of 

agreement was shown in the Bland-Altman analysis. The 

overlapping and non-overlapping areas ratio between experts’ 

annotations and presented method was 0.92 and 0.14, respectively. 

The proposed computer-aided lumen extraction and 3D vessel 

reconstruction method is fast, accurate and likely to assist in a 

number of research and clinical applications. 

Index Terms— Lumen detection, Optical Coherence 

Tomography, 3D reconstruction 

I. INTRODUCTION 

oronary angiography is the conventional method for 

assessing artery wall morphology [1], it produces two-

dimensional (2D) images which depict the arterial lumen and is 

widely used by the physicians. However, it offers unreliable or 

no information about the arterial wall structure (i.e. thickness 

and plaque) [2]. In contrast, optical coherence tomography 

(OCT) [3], [4] is an invasive imaging modality which provides 
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high resolution cross sectional images of the arterial wall 

morphology with utmost resolution. OCT uses light to capture 

micrometer-resolution allowing vessel visualization in high 

analysis: lateral and axial resolution: 20-90 μm and 12-18 μm, 

respectively [5]. This unique imaging resolution has made OCT 

the method of choice in accessing high risk lesions in coronary 

arteries, i.e. high-risk plaque characteristics [6] and in 

performing accurate lumen measurements [7]. OCT is ideally 

used to depict and quantify the composition of the superficial 

atherosclerotic plaques as its limited tissue penetration restricts 

deeper imaging (maximum depth: 1.5-2.0 mm) [8]. Although 

recent attempts were made to detect the media-adventitia border 

[9], this structure is rarely detectable by OCT and the entire 

plaque cannot be defined. Moreover, OCT does not provide 

information regarding the curvature of the vessel. Therefore 

several 3D coronary reconstruction methods have been 

developed which combine angiography and intravascular 

imaging [10]–[14]  

Extraction of a 3D centerline path is the foundation of all 3D 

OCT reconstruction methods [11] differing primarily in the 

computer-aided lumen detection [10]–[14] that they use. 

Lumen detection methods are time consuming, limiting the use 

of 3D modeling when fast and accurate diagnoses are required, 

and while assumptions of circularity allow rapid analysis non-

realistic models are produced. Traditionally, OCT lumen 

detection [15], [16] was performed manually which is a time 

consuming process and sensitive to intra- and inter-observer 

variability. These drawbacks led to the implementation of 

automated and semi-automated methodologies detecting only 

the lumen border of the vessel [17]–[21] or detecting the lumen 

border and estimating the plaque area of the vessel [22]. The 

first lumen detection methodologies were presented by 

Tanimoto et al. [17] and Sihan et al. [18]. They applied edge 

detection algorithms to automatically segment the lumen border 

by processing two dimensional (2D) cross sectional DICOM 
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OCT images. Their methods had excellent agreement when 

compared to commercially available software (CURAD vessel 

analysis, CURAD BV, Wijk bij Duurstede, The Netherlands). 

In a similar attempt Tsantis et al. [19] used 2D cross sectional 

DICOM OCT images to segment the lumen border and to detect 

stent struts, and were as accurate and robust as manual 

segmentation performed by experts. Ughi et al. [20] and Ahn et 

al. [21] segmented the lumen border by processing the A-lines 

of the OCT equipment (2D OCT in polar coordinates) to detect 

stent struts as well as manual annotation by experts. Using the 

same data input Athanasiou et al. [22] detected the lumen 

borders and estimated plaque area. 

These methods can sufficiently detect the OCT lumen border 

in 2D OCT images, yet none of the methods can be applied in 

real time and none of them can take into consideration the 

vessels’ spatial continuity when detecting the lumen border; 

they can only make border approximation in segments having 

branches by using the lumen of the preceding and succeeding 

frame. Lost therefore is the contiguity between numerous 

consecutive contour segments in a sequence of several 

branched frames. The spatial coherence of the lumen cannot be 

fully represented by 2D-cross sectional OCT images or by using 

only the preceding and succeeding frame; the lumen border in 

several sequential frames having side branches is not visible 

and often disrupted by several artifacts. Therefore, the literature 

methods cannot sufficiently estimate all the branches in the 

arterial segments. Furthermore, the spatial continuity in 2D-

cross sectional OCT images can be interrupted by several 

artifacts, such as those generated by residual blood inside the 

lumen area or tip of the catheter [23]. When residual blood is 

present in the OCT image most of the algorithms recognize as 

lumen border the residual blood and produce erroneous lumen 

results. The inaccurate lumen detection results are transferred 

to the 3D geometry of the coronary artery as errors are 

constantly propagated in multi-steps methodologies [24]. To 

overcome these drawbacks the lumen area must be detected by 

a faster and more anatomically correct intracoronary illustration 

which will represent the sequential area of the OCT pullback.  

We present a novel method for fast and reliable border 

detection and 3D reconstruction using OCT images. The 

method uses as input 2D cross sectional OCT images, produces 

longitudinal cross-section (LOCS) images of the artery at 

different angles, which represent more accurately the sequential 

area of the OCT pullback, and detects the lumen using the 

LOCS. The lumen contours are extracted for each 2D cross-

sectional image, are placed onto a 3D path and produce 3D 

coronary models. 

II. MATERIALS AND METHODS 

A. Image acquisition 

OCT acquires individual reflected A-lines representing the 

optical energy as a function of time [25]. Each A-line of the 

same arteria segment is sequentially stored in a 2D matrix 

(𝐼𝑚𝑎𝑡𝑟𝑖𝑥) with each line corresponding to an acquisition angle 

of the optical probe. The 2D matrix is the representation of the 

2D cross section image in polar coordinates 𝐼(𝑟, 𝜃), with r 

representing the range dimension and 𝜃 the acquisition angle, 

which are then converted to Cartesian coordinates (𝐼(𝑖, 𝑗)) with 

𝑖 = 𝑟𝑐𝑜𝑠𝜃 and 𝑗 = 𝑟𝑠𝑖𝑛𝜃 and stored (Fig. 1 a, b). 

The Longitudinal cross sectional (LOCS) images represent 

the traverse sections of the vessel and are constructed from 2D 

OCT cross-sectional images (Cartesian). The pixels that 

correspond to the cross-section lines of four different angles (0°, 

45°, 90° and 135°, Fig. 1 c, d) for each 2D image were 

sequentially stored and reconfigured to construct the LOCS 

image. For the 𝑁 2D images of the OCT pullback, with each 

image having dimensions of 𝐿 × 𝐿, four different LOCS images 

are constructed having dimensions 𝑁 × 𝐿 (Fig. 2). 

  
(a) (b) 

  
(c) (d) 

Fig. 1: (a) The polar 2D data grayscale image (A-lines image), (b) its 

corresponding Cartesian 2D cross-sectional image, (c) the cross-section lines of 

the four different angles (0°, 45°, 90° and 135°) in the 2D data grayscale image 

and (d) its corresponding 2D cross-sectional image. 

B. Lumen detection 

Detection of the borders of the LOCS images enable 

identification of the lumen which is further augmented by a 

smoothing filter [26] applied to the LOCS images and then by 

using K-means algorithm [27]. 

B.1 Bilateral filtering  

Bilateral [26] non-linear filters are, like Gaussian filters, 

smoothing but, use of pixel differences in intensity preserves 

edges and reduces image noise. The intensity values of each 

pixel of the image is replaced by a weighted average of the 

intensities values from the neighborhood pixels, similar to 

Gaussian convolutions. The key idea of bilateral filtering is that 

it focuses not only on geographic proximity but intensity 

representation – i.e. a pixel should not only be a neighbor of the 

central pixel in a kernel that represents a local intensity, but 

should have similar intensity to be able to influence the value 

of the central pixel.  

The bilateral filter is defined as: 
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𝐼′(𝑥) =
1

𝑊𝑝
∑ 𝐼(𝑥𝑖)𝑓𝑟(‖𝐼(𝑥𝑖) −𝑥𝑖∈𝑊

𝐼(𝑥)‖)𝑔𝑠(‖𝑥𝑖 − 𝑥‖), 
(1) 

where 𝑊𝑝 is the normalization factor: 

𝑊𝑝 = ∑ 𝑓𝑟(‖𝐼(𝑥𝑖) − 𝐼(𝑥)‖)𝑔𝑠(‖𝑥𝑖 − 𝑥‖𝑥𝑖∈𝑊 ), (2) 

𝐼′ is the filtered image, 𝐼 is the initial image, 𝑥 are the 

coordinates of the central pixel that its value is replaced and 𝑊 

is the window mask (neighborhood of the central pixel). 

Parameters 𝑓𝑟 and 𝑔𝑠 are the range Gaussian kernel for 

smoothing differences in intensities and the spatial Gaussian 

kernel for smoothing differences in coordinates. 
 

 
Fig. 2: The four constructed LOCS images one for each angle: 0°, 45°, 90° and 

135° (grayscale images) using all the 2D cross-sectional images (colored 

images-top). 

B.2 K-means algorithm 

K-means [27] is an unsupervised learning algorithm able to 

solve a clustering problem [28]. The algorithm follows a simple 

procedure to classify the given data to a fixed a priori clusters 

𝑘. K-means aims to partition a given a set of 𝑀 observations 

{𝑥1, 𝑥2, … , 𝑥𝑀}, into a fixed number of 𝑘 clusters 𝑆 =
(𝑆1, 𝑆2, . . . , 𝑆𝑘) and minimizes the within cluster sum of 

squares: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑆

∑ ∑ ‖𝑥ℎ − 𝜇𝜅‖2
𝑥ℎ∈𝑆𝑘

𝑘
ℎ=1 , (3) 

where 𝜇𝜅 is the mean of points in 𝑆𝑘. 

We examined cases of two to four clusters and concluded that 

two clusters are sufficient to differentiate the vessel from 

lumen/background pixels with precision. 

B.3 Lumen representation 

Once the K-means algorithm is applied to the four LOCS 

images the lumen border of the LOCS (𝐼𝐿𝑂𝐶𝑆
𝜃 ) images is 

detected. For each 𝐼𝐿𝑂𝐶𝑆
𝜃   image we scan the middle row of the 

image, defining and connecting the non-zero pixels in the row 

which is half of a length of the 𝐼𝐿𝑂𝐶𝑆
𝜃  to the left and then to the 

right (Fig. 3). 

After detecting the lumen in the four LOCS images the 

detected lumen points are translated to their corresponding 

points in the 2D cross sectional images. The final lumen is 

detected for each 2D cross sectional image by iterating on the 

number of 𝑁 images. For each of the four LOCS images with 

dimensions 𝑁 × 𝐿, we find the two border points of the specific 

row and place the point of the detected borders onto the 2D 

OCT image with dimensions 𝐿 × 𝐿 (Fig. 4-a, b). The result of 

the algorithm is a 2D OCT image including 8 points which 

represent the points of the lumen border (Fig. 4-b). To detect all 

the points of the lumen border a cubic spline function is applied 

to these points (Fig. 4-c). A B-spline curve [29] is a parametric 

curve defined as a linear combination of 𝑉 control points with 

𝑈 knots: 

𝑏(𝑈) = ∑ 𝐷𝛼,𝑝(𝑈)𝑉𝑎
𝜆
𝑎=1 , (4) 

where:  

𝑝: is the degree of the B-spline, 𝐷𝑎,𝑝 : is the basic B-spline 

function defined by the Cox-de Boor recursion formula: 

𝐷𝛼,0(𝑈) = {
1 𝑖𝑓 𝑈𝑎 ≤ 𝑈 ≤ 𝑈𝑎+1

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
, when 𝑝 = 0 (5) 

and: 

𝐷𝛼,𝑝(𝑈) =
𝑈 − 𝑈𝑎

𝑈𝑎+𝑝 − 𝑈𝑎

𝐷𝛼,𝑝−1(𝑈) + 

𝑈𝑎+𝑝+1−𝑈

𝑈𝑎+𝑝+1−𝑈𝑎+1
𝐷𝛼+1,𝑝−1(𝑈),  when 𝑝 > 0. 

(6) 

 

 
Fig. 3: The lumen detection in a LOCS image: (a) initial LOCS image, (b) 

filtered LOCS image, (c) segmented using K-means LOCS image showing the 

scan direction for the detection of non-zero pixels and (d) the connected non-
zero pixels which represent the LOCS lumen borders. 

C. 3D reconstruction 

To reconstruct the arteries we used a previously developed 

method [11] and extracted the vessel 3D centerline using two 

different angiographic projections. The centroid of each lumen 

border was calculated and the 2D lumen borders were placed 

perpendicular to the 3D path. The centroid 𝐶(𝐶𝑖 , 𝐶𝑗) of each 

lumen border having 𝑙  number of pixels, is defined as: 

𝐶𝑖 =
1

6𝐴
∑ (𝑖𝑞 + 𝑖𝑞+1)(𝑖𝑞𝑗𝑞+1 − 𝑖𝑞+1𝑗𝑞)𝑙−1

𝑞=1 , (7) 

𝐶𝑗 =
1

6𝐴
∑ (𝑖𝑞 + 𝑖𝑞+1)(𝑖𝑞𝑗𝑞+1 − 𝑖𝑞+1𝑗𝑞)𝑙−1

𝑞=1 , (8) 

where 𝐴 is the lumen area defined as: 

𝐴 =
1

2
∑ (𝑖𝑞𝑗𝑞+1 − 𝑖𝑞+1𝑗𝑞)𝑙−1

𝑞=1 . (9) 

Their relative axial displacement and the absolute orientation 

of the first OCT frame were estimated by using the side 

branches of the artery [11]. 𝑀 (𝑀 ≠ 𝑒𝑣𝑒𝑛) equidistant points 

of each of the 𝑁 contours are extracted clock wisely and a 

triangulation approach is implemented to construct the mesh 

surfaces of the 3D lumen. The 𝑀 contours points (inner/outer 

of two sequential frames are connected to construct a triangle 

mesh. 
 

 

 

Frames: 1-N
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90°

45°
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b
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Fig. 4: (a) The four different LOCS images, their corresponding detected lumen 

borders (white) and the 𝑛 (𝑛 ∈ [0 𝑁]) row of the LOCS images corresponding 

to the 𝑛 frame of the OCT pullback and to one of the four angles (0°-yellow 

row, 45°-green row, 90°-red row and 135°-white row). (b) The 𝑛𝑡ℎ 2D OCT 

image having 8 points which correspond to 𝑛𝑡ℎ the row of each LOCS image. 

(c) The cubic spline function applied to the 8 points representing the lumen 

border of the 2D OCT image. 

III. DATASET 

For the current study we analyzed clinical data from 11 

patients who underwent optical coherence tomography (OCT) 

and interventional X-ray (angiography) for the treatment of 

coronary artery disease. All images were acquired by a 

commercial Fourier Domain OCT system (C7-XRTM OCT 

Intravascular Imaging System, St. Jude Medical, St. Paul, 

Minnesota) and by a commercial interventional X-ray system 

(Philips Medical Systems, Amsterdam, Netherlands) at Heart 

Institute of University of São Paulo (São Paulo, Brazil). 

Intracoronary nitroglycerine was initially administrated and the 

OCT catheter (C7 Dragonfly, St. Jude Medical, St. Paul, 

Minnesota) was advanced through a “0.014”guidewire to the 

distal target vessel. OCT images were acquired using a pullback 

speed of 20 mm/s during intra-coronary blood displacement by 

a contrast media injection (Iodixanol 320, Visipaque™, GE 

Health Care, Ireland) through the guiding catheter. All images 

were digitally stored for offline evaluation and subsequent stent 

and vessel analysis. 613 images were extracted randomly from 

11 OCT pullbacks (one for each patient) and contours were 

annotated manually by expert clinicians blinded to patient 

information excluding images having artifacts as saturation, 

foldover and pixel proximity [23]. The distal marks of the 

catheter were visible only on 6 of the 11 angiographic pairs of 

images, and these were used to reconstruct the 3D arterial 

models. 

IV. RESULTS 

2D lumen detection 

To examine the method’s degree of correlation with experts 

lumen annotations we computed Pearson’s correlation 

coefficients between the method’s results and the experts 

annotations, performed Bland-Altman analysis and calculated 

the positive predictive value (𝑃𝑃𝑉). As true positive values 

(𝑇𝑃) we denote the common area detected by the method and 

annotated by the experts. As false positive (𝐹𝑃) values we refer 

to the area detected by the method and not by the experts and as 

false negative (𝐹𝑁) the area annotated by the expert and not 

detected by the method. Additionally, the ratio of overlapping 

and non-overlapping areas between the method and experts 

annotations was computed. The ratio of overlapping areas 

(sensitivity) was defined as: 

𝑅𝑜𝑣𝑒𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (10) 

and of non-overlapping areas as: 

𝑅𝑛𝑜𝑣𝑒𝑟 =
𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁
. (11) 

There was an excellent correlation between the areas detected 

by the method and annotated by experts (R2=0.96) (Fig. 5). 

Pearson’s correlation coefficient was 0.95, 𝑅𝑜𝑣𝑒𝑟  (sensitivity) 

and 𝑅𝑛𝑜𝑣𝑒𝑟  values were 0.92 and 0.14, respectively (Table 1). 

The reported high correlation coefficients demonstrate that the 

proposed method can detect the same lumen area with experts 

while the high 𝑅𝑜𝑣𝑒𝑟  (0.92) confirms that the lumen area is 

detected on the same location with the annotated lumen area. 

However an important finding is the low 𝑅𝑛−𝑜𝑣𝑒𝑟  (0.14) which 

indicates that our method does not overestimate the detected 

lumen; an overestimation (𝐹𝑃 > 𝐹𝑁) of the detected lumen can 

give high 𝑅𝑜𝑣𝑒𝑟  and high 𝑅𝑛−𝑜𝑣𝑒𝑟 . Having low 𝑅𝑛𝑜𝑣𝑒𝑟  and high 

𝑅𝑜𝑣𝑒𝑟  indicates that the detected lumen borders have the similar 

perimeter and shape to the annotated borders. 

3D reconstruction 

To examine the accuracy of the method in constructing 3D 

models the volume and the Hausdorff Distance (HD) of the 

arteries produced using the lumen borders detected by the 

proposed method (method model) were compared to the ones 

annotated by the experts (experts model) (Fig. 6). The measured 

volume of the method’s models is similar to the experts’ 

models, while the maximum, mean and root mean square 

(RMS) HD specify that the produced 3D models are practically 

matching (Table 1).  

To further examine the usability of the method’s model, blood 

flow simulations were performed in all models and the wall 

shear stresses (WSS) were calculated and compared. Steady 

incompressible blood flow was simulated solving the Navier-

Stokes equations in a coupled finite volume Solver (ANSYS 

CFX, Canonsburg, PA, USA). The shear-thinning behavior of 

blood was considered modeling it as a non-Newtonian fluid 

with density of 1060 𝑘𝑔/𝑚3 and shear dependent dynamic 

viscosity following the Carreau model [30], [31]: 
𝜇−𝜇∞

𝜇𝛰−𝜇∞
= [1 + (𝜆 ∙ �̇�)2] (𝑛−1)/2, (12) 

where �̇� is the shear rate, 𝜇𝛰 = 0.25 𝑘𝑔 𝑚. 𝑠⁄  and 𝜇∞ =
0.0035 𝑘𝑔 𝑚. 𝑠⁄  are the blood viscosities at infinite and zero 

shear rates, and 𝜆 = 25 𝑠 and 𝑛 = 0.25 values are Carreau 

135o

450

900

00

a

b c
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parameters [32]. Volumetric flow rate at the inlet was set to 0.95 

𝑚𝐿/𝑠 [33] while the outlet boundary was extended (to 

minimize the numerical noise of boundary condition) and set to 

zero pressure. Sensitivity analysis was performed on the 

boundary conditions by considering ±10 % and ±20 % change 

in the inlet mass flow and showed no significant change in the 

acquired results. After mesh independency was ensured, the 

numerical equations were solved on appropriately-fine grid till 

the residuals of variables were reduced bellow 10-7 of their 

initial values and mass balance was monitored in parallel. 
 

 
(a) 

 
(b) 

Fig. 5: (a) Correlation plot and (b) Bland-Altman plots for the lumen areas 

estimated by our method and experts annotations. 

To apply a direct quantitative comparison between the WSS 

calculated in the two models, perpendicular planes (segments) 

where created for all the models. Each 3D reconstructed 

coronary artery was divided into consecutive 0.2-mm segments 

[13] along the 3D luminal centerline, and the average local 

WSS was assessed. A total of 844 segments were available for 

analysis and resulted to an excellent correlation between the 

WSS calculated by the method’s and experts’ models 

(R2=0.95). The overall similarity in the WSS distribution 

between the pair of models (method-experts) (Fig. 7, Fig. 8) 

emphasizes that the presented method permits accurate 

evaluation of local WSS distribution and patient’s 

hemodynamics in general.  
 

 
Fig. 6: Volume comparison of the 3D arteries produced using expert 

annotations and algorithm’s lumen detection. 

Application 

To assess and visualize the detected lumen borders and 3D 

reconstruct the arteries, an in-house tool was developed using 

MATLAB (r2016a, The MathWorks Inc., Natick, MA). C++ 

code was implemented and executed using Matlab’s MEX 

libraries to speed up the proposed method. The time complexity 

of the proposed methodology for detecting the lumen borders 

in an OCT pullback (270 frames) is ~ 120 seconds using a core 

i7 desktop computer with 64 GB of RAM. This time can be 

reduced even more if the LOCS images are constructed during 

the pullback acquisition in the catheterization lab. To assess, 

reconstruct and visualize the 3D centerline, we used a 

previously developed tool using C# [34]. The reconstruction 

process after selecting the two angiograms is ~ 60 seconds.  

To assess the ability of the proposed method to overcome the 

literature limitations we implemented the lumen detection 

method of the literature which reported the highest sensitivity 

(0.99) [22]. This method [22] was applied to our dataset using 

the same desktop computer. Using the literature [22] method 

the reported time complexity for an OCT pullback (270 frames) 

is ~ 1080 seconds while the following scores were reported: 

sensitivity 0.91, PPV=0.93, non-overlapping area: 0.14, r=0.95, 

and R2=0.9. Although the 2D results are comparable with our 

method (Table 1) there are significant larger differences in the 

lumen areas (Fig. 9) which are propagated into the 3D 

reconstruction step and create defective 3D coronary models 

and incorrect WSS values (Table 1, Fig. 10).  

V. DISCUSSION 

In this work, we present a computer-aided luminal border 

detection and 3D reconstruction method for the analysis of the 

OCT lumen borders in 2D and 3D mode. OCT images are 

acquired and the LOCS images are reconstructed using 

different acquisition angles. The lumen contours for each LOCS 

image are extracted and translated to 2D cross-sectional images.  
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(a) 

 
(b) 

Fig. 7: (a) Correlation plot and (b) Bland-Altman plots for the wall shear stress 

estimated by our method and experts. 
 
 

 

TABLE I 

VALIDATION RESULTS SUMMARY AND COMPARISON WITH THE LITERATURE 
a 

  N r R2 𝑅𝑜𝑣𝑒𝑟 𝑅𝑛𝑜𝑣𝑒𝑟 PPV 

P
ro

p
o

se
d

 m
et

h
o

d
 

2D 

(area) 
613 0.98 0.96 0.92 0.14 0.93 

3D 

(WSS) 
844 0.97 0.95 - - - 

3D 
(HD) 

Average maximum:0.38 mm ± 0.19 
Average mean: 0.053 mm ± 0.19 

Average RMS: 0.073 ± 0.27 

Time complexity: ~ 120 seconds/OCT pullback 

P
re

v
io

u
s 

m
et

h
o
d

 [
2

2
] 2D 

(area) 
613 0.93 0.96 0.91 0.14 0.93 

3D 
(WSS) 

844 0.84 0.71 - - - 

3D 
(HD) 

Average maximum:0.51 mm ± 0.25 
Average mean: 0.087 mm ± 0.13 

Average RMS: 0.13 ± 0.84 

Time complexity: ~ 1080 seconds/OCT pullback 

a HD: Hausdorff Distance, N: number of samples, r: Pearson’s Correlation, 
R2: Determination coefficient, 𝑅𝑜𝑣𝑒𝑟:Overlapping area, 𝑅𝑛𝑜𝑣𝑒𝑟: Non-
overlapping area, PPV: Positive predictive value. 

 
Fig. 8: Representative three-dimensional (3D) reconstructed models using the 

annotated (middle) and the proposed method detected lumen contours (right). 
The models are color-coded by wall shear stress (WSS) values (left). 

 
Fig. 9: Histogram with a Gaussian fit for the difference in lumen areas between 
the annotations - proposed method (green) and the annotations - literature [22] 

method (blue). 
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Fig. 10: Ability of the proposed method on correcting existing methods 
drawbacks: three-dimensional (3D) reconstructed model using (a) the 

annotated, (b) the proposed method, and (c) the literature method [22] lumen 

contours highlighted with red color on the OCT images. The literature method 
[22] fails to detect the lumen contour in areas having artifacts (d): the presented 

OCT image (a, b, c: top and d) has residual blood inside the catheter tip and the 

lumen area. 
 

 
(a) (b) (c) 

Fig. 11: Application examples of the proposed method and literature method 
showing the ability of our method in detecting more accurately the lumen 

border in segments having branches  (middle and bottom image sets) and 

residual blood artifacts (top image set): (a) annotated images, (b) the result of 
the proposed method, and (c) the result of the literature’s method [22]. The 

lumen contours are highlighted with red.  

Using two angiographic projections the centerline of the 

coronary vessel is 3D reconstructed [11] and the detected 2D 

contours are transformed in 3D and placed perpendicular to the 

centerline. Finally the 3D contours are connected together and 

form the 3D arterial surface. The presented method rapidly and 

accurately detects the lumen in all OCT images, provides a 

realistic representation of the 3D complex anatomy of coronary 

arteries, and enables the use of the derived 3D models for blood 

flow simulation and wall shear stress (WSS) computation. 

Although several lumen detection [17]–[22] and 3D 

reconstruction [10]–[12], [35], [36] methods exist, none of them 

is able to create fast and realistic coronary models. Using the 

traditional lumen detection methods, the lumen border is 

detected individually for each frame resulting to several 

limitations: increased computational time, unreliable lumen 

detection in side branches and irrelevant detection in frames 

having artifacts. On the contrary the presented method, 

overcomes these drawbacks by detecting the lumen faster and 

more anatomically correct with respect to vessel’s spatial 

continuity. The extended validation of the presented method 

shows that it can be used to assess the coronary morphology in 

2D and 3D (lumen area: r=0.98, Fig. 6) and to enable the 

functional assessment of the coronary vasculature (WSS: 

r=0.97). The 3D coronary models are widely used to investigate 

the role of hemodynamic factors in predicting clinical events in 

patients with coronary artery disease [37], [38]. Using the 

proposed method, the produced 3D coronary models provide 

reliable coronary representation and luminal size measurements 

while they permit accurate evaluation of the local WSS 

distribution to identify areas exposed to a proatherogenic 

environment, i.e. low WSS values. 

Lumen correlation reported between the areas detected by the 

method and annotated by the experts (lumen area: R2=0.96, r= 

0.98, 𝑅𝑜𝑣𝑒𝑟=0.92 and 𝑅𝑛−𝑜𝑣𝑒𝑟  0.14) makes the method able to 

perform accurate lumen measurements. The fast (120 sec) 

processing of the OCT pullback is of utmost importance as the 

method can potentially be used during real-time OCT 

acquisition in catheterization laboratories. Beyond the lumen 

detection, the proposed method enables fast and accurate (WSS: 

R2=0.95, r= 0.97) 3D coronary representation, overcoming the 

limitations of the current 3D reconstruction methods: increased 

computational time [10]–[12] and use of circular contour [35], 

[36] instead of the lumen contour. Furthermore, the proposed 

method can be used in OCT based studies focusing in 

hemodynamic factors [1], as our findings support the 

application of the method for calculating the local WSS in 

coronary arteries. However, further validation in a large amount 

of dataset is needed, before this methodology can have 

applications in a clinical setting. It should be noted that for the 

present study none of the frames were manually corrected, 

which in clinical practice is always happening; experts tend to 

apply minor changes in the lumen detection algorithms to 

improve the accuracy of their measurements. Nevertheless, the 

comparison results of the proposed method show that any 

required changes are the minimum that can be done compared 

to the literature methods. Finally, a potential integration of our 

methodology with the OCT equipment is likely to increase the 

applicability of the lumen detection method and further 

decrease the computational time. Likewise, the integration of 

the X-ray system with the method will provide sort time 3D 

models in the catheterization lab providing valuable 

information to the clinicians.  

VI. CONCLUSIONS 

The current report, presents a novel computer-aided OCT 

lumen extraction and 3D reconstruction method. Going beyond 

(a) (b) (c)

(d)
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the current literature limitations the proposed method rapidly 

and accurately detects the lumen borders within the spatial 

continuum, and provides a realistic representation of the 3D 

complex anatomy of the coronary arteries. The head-to-head 

comparison of the method 3D coronary models with the 

respective experts’ 3D models of the same arteries for WSS 

assessment demonstrates that the method results in accurate 

calculations of the WSS distribution. Finally, the reduced 

computational time makes the method potentially applicable in 

both research and clinical arena to provide further insight into 

the pathophysiological processes of atherosclerosis. 
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