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Abstract 1

Fecal microbiota transplantation (FMT) is a highly effective intervention for patients suffering from recurrent 2

Clostridium difficile, a common hospital-acquired infection. FMT’s success as a therapy for C. difficile has 3

inspired interest in performing clinical trials that experiment with FMT as a therapy for treating conditions 4

like inflammatory bowel disease, obesity, diabetes, and Parkinson’s disease. Results from clinical trials that 5

use FMT to treat inflammatory bowel disease suggest that, for at least one condition beyond C. difficile, most 6

FMT donors produce stool that is not efficacious. The optimal strategies for identifying and using efficacious 7

donors have not been investigated. We therefore formulated an optimal Bayesian response-adaptive donor 8

selection strategy and a computationally-tractable myopic heuristic. This algorithm computes the probability 9

that a donor is efficacious by updating prior expectations about the efficacy of FMT, the placebo rate, and 10

the fraction of donors that are efficacious. In simulations designed to mimic a recent FMT clinical trial, 11

for which traditional power calculations predict ∼100% statistical power, we found that accounting for 12

differences in donor efficacy reduced the predicted statistical power to ∼9%. For these simulations, using 13

the Bayesian allocation strategy more than quadrupled the statistical power to ∼39%. We use the results of 14

similar simulations to make recommendations about the number of patients, number of donors, and choice 15
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of clinical endpoint that clinical trials should use to optimize their ability to detect if FMT is effective for 16

treating a condition. 17

Author Summary 18

Many clinical trials test the ability of a drug to a treat a disease by comparing that drug against a placebo. 19

In fecal microbiota transplant (FMT) trials, the “drug” is stool taken from a donor. For some diseases, 20

however, the outcome of FMT seems to depend strongly on the choice of donor, suggesting that different 21

donors may be producing different “drugs”. Standard clinical trials are not designed to account for this 22

possible multiplicity of drugs. We translated data from a FMT clinical trial into a model of donor stool 23

efficacy and used this model to evaluate how different trial designs can affect a trial’s ability to measure 24

FMT’s effectiveness. We found that, if only some donors produce efficacious drugs, standard clinical trial 25

designs are likely to conclude that FMT is ineffective, thus denying patients an efficacious therapy. We 26

also show that donor allocation strategies that adaptively use the best-performing donors can dramatically 27

improve a trial’s performance. Because FMT is not well enough understood for researchers to a priori identify 28

efficacious stool, our approach makes no assumptions about the biology of the condition being treated. 29

Introduction 30

Fecal microbiota transplant (FMT), the transfer of stool from a healthy person into an ill person’s gut, is a 31

highly effective treatment for recurrent Clostridium difficile infections, which kill 30,000 Americans a year. 32

Despite FMT’s efficacy and increasingly widespread use, the biological mechanism by which FMT cures the 33

infection is not fully understood [1, 2, 3, 4, 5, 6, 7]. FMT’s success in treating C. difficile has generated 34

interest in experiments to use FMT to treat other conditions related to the gut and the gut-associated 35

microbiota [8, 9]. However, emerging evidence suggests using FMT for these other diseases will be more 36

challenging. Notably, in a recent study by Moayyedi et al. [10] that used FMT to treat ulcerative colitis, 37

patients appeared to respond to stool from only one of the six stool donors. Stool from all other donors was 38

no more efficacious than placebo. These results suggest that the effectiveness of FMT can depend strongly 39

on the choice of stool donor. 40

Ideally, information collected before or during a clinical trial could be used to identify which donors 41

are efficacious. Predictions about a donor’s efficacy could be repeatedly updated depending on that donor’s 42

performance, the performance of other donors, and prior expectations about donor efficacy and heterogeneity. 43
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There is, however, not enough clinical information about this variability or biological information about the 44

mechanism by which FMT treats disease to create or validate a model for any particular indication. We 45

therefore present a general model of differences in donor stool efficacy that is not specific for any clinical 46

indication or biomarker. Using this model, we formulate an optimal, adaptive, Bayesian algorithm for 47

allocating donors. We also formulate a computationally-tractable myopic Bayesian allocation heuristic. 48

Using simulations of clinical trials, we show that differences in donor efficacy and the trial’s strategy for 49

allocating donors can have substantial impacts on the trial’s statistical power. We compare the performance 50

of non-adaptive approaches to matching patients and donors against a variation of a previously-studied 51

adaptive algorithm (a variation of the “play the winner” strategy [11, 12, 13]) and our own Bayesian heuristic. 52

We find that, in many cases, traditional non-adaptive donor allocation strategies are likely to falsely conclude 53

that FMT in inefficacious. Adaptive strategies, however, can substantially increase a trial’s ability to detect 54

if FMT is efficacious. 55

Methods 56

Model of differences in donor stool efficacy 57

The results of the trial reported in in Moayyedi et al. [10] raise the possibility that only some donors produce 58

stool that is efficacious for treating ulcerative colitis. We developed a simple model of differences in the 59

efficacy of stool produced by different donors (Fig. 1). The model we present assumes: 60

• Each donor produces efficacious stool or inefficacious stool. Stool from inefficacious donors is inert and 61

has no effect beyond placebo. 62

• All patients receive one course of treatment, each from one donor. Multiple patients can receive stool 63

from the same donor, but each patient receives stool from only one donor. 64

• Patient responses are dichotomous: a patient either responds to treatment (i.e., reaches a positive 65

clinical endpoint) or not. 66

• Patients are exchangeable. 67

These assumptions mean that the model has only three parameters: 68

1. the placebo rate pplacebo, 69

2. the probability peff that a patient will respond to stool from an efficacious donor, and 70
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Figure 1: The model of differences in donor efficacy. In the model, donors are efficacious or not. Patients
respond to FMT from an efficacious stool donor with probability peff . An FMT from an inefficacious stool
donor is considered identical to a placebo, i.e., patients respond with probability pplacebo. The fraction of
donors in the general donor population that are efficacious is feff .

Relevant trial result Parameter Estimated value

2 of 37 patients in placebo arm achieve remission pplacebo 2/37 = 0.054
1 of 6 donors appeared efficacious feff 1/6 = 0.17
7 of 18 patients allocated to efficacious donor achieved remission peff 7/18 = 0.39

Table 1: Estimates of model parameters from the data from an ulcerative colitis clinical trial. These clinical
data are drawn from the results of the trial reported in Moayyedi et al. [10], which used FMT to treat
ulcerative colitis.

3. the frequency feff of efficacious donors among the general donor population. 71

These parameters can be easily related to results from clinical trials. A conversion between the clinical trial 72

results from Moayyedi et al. [10] and the parameters in the model are shown in Table 1. 73

Further details about the model, its extensibility, and techniques for drawing random variates of its 74

parameters are in the SI Text. 75

Donor allocation strategies 76

In simulations of clinical trials, four different strategies for choosing which donor to use with which patient 77

were evaluated. The first two strategies, block allocation and random allocation, are non-adaptive, that 78

is, the allocation decisions about which donor will be used for which patient can be made before the trial 79

begins. The other two strategies, a randomized urn-based strategy and a myopic Bayesian strategy, are 80

response-adaptive strategies, that is, the allocation about which donor to use for a patient will depend on 81

outcomes of previous patients (Fig. 2). 82
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Figure 2: Adaptive donor allocations change depending on the trial’s progress. In a non-adaptive allocation,
the patients and donors can be matched before any patient is treated. In an adaptive allocation, the outcome
of previous patients’ treatments can affect the allocation of future patients. For example, if a donor is used
for a patient who responds to treatment, that donor might be used again. If the patient does not respond,
a different donor might be used.
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Block allocation In a block allocation, patients are evenly allocated to donors. For example, if there 83

are 30 patients and 6 donors, the first 5 patients are treated with the first donor, the second 5 patients are 84

treated with the second donor, etc. (In clinical practice, patients would be randomized within the blocks.) 85

Random allocation In a random allocation, patients are allocated to donors at random. (On average, 86

random allocations are similar to block allocations, so these two types of non-adaptive simulation yield 87

similar results.) 88

Urn-based allocation Our urn-based allocation strategy is a variation on the “play-the-winner” strategies 89

designed and studied as an ethical [14] and statistically-rigorous way to decide how to allocate patients to a 90

treatment arm when a trial includes more than one treatment arm [15, 16, 17]. In this study, we used the 91

generalized Pólya’s urn [18] with parameters w = 1, α = 3, β = 0, and without replacing the drawn ball. 92

Adaptive allocation strategies, like this urn-based approach, are designed to reduce the probability of a 93

Type II error (i.e., to avoid concluding that FMT is ineffective when it actually is effective) without increasing 94

the probability of a Type I error (i.e., without increasing the chance that a trial will conclude that FMT is 95

effective when it is actually ineffective). If FMT is effective for some donors, this urn-based allocation should 96

allocate more patients to efficacious donors. If FMT is ineffective (i.e., there are no efficacious donors), then 97

an adaptive strategy should not increase the risk of a Type I error, since any and all allocation strategies 98

will allocate only inefficacious donors. 99

Myopic Bayesian strategy The urn-based approach is randomized, which is desirable in clinical trials 100

because it can reduce certain kinds of bias [11]. However, random approaches are not guaranteed to make the 101

best choices about donor allocation. We therefore designed a myopic Bayesian deterministic donor allocation 102

strategy that uses the results collected during a simulated trial to make the best choice about how to allocate 103

the next patient, similar to other “bandit” problems [19]. Unless noted, the myopic Bayesian strategy was 104

initialized with a uniform prior on the model parameters. 105

Computing the posterior predictive probabilities in the myopic Bayesian allocation strategy requires a 106

computationally-intensive numerical integration. The value of the integral was computed using Monte Carlo 107

integration with Suave (SUbregion-Adaptive VEgas), an importance sampling method combined with a 108

globally adaptive subdivision strategy. Sampling for this integral was performed with Sobol pseudo-random 109

numbers. The integrator was implemented in C++ using the Cuba package [20]. Wrappers for the integration 110

routine were implemented in Python 3 and simulations were then parallelized to run on multiple cores to 111
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optimize computational run time [21]. 112

Details about the optimal Bayesian strategy and the derivation of the posterior predictive probabilities 113

are in the SI Text. 114

Simulated clinical trials 115

The expected fraction of patients allocated to efficacious donors and the the statistical power of clinical trials 116

using different donor allocation strategies were estimated using simulated clinical trials. In each simulation, 117

the three model parameters (pplacebo, peff , feff) and the number of patients in the trial were fixed. For each 118

combination of the trial parameters, 10,000 lists of 6 donors each were randomly generated. Donors were 119

designated as efficacious or not efficacious by random chance according to the frequency of efficacious donors 120

feff . The same donor lists were used for simulations for each of the allocation strategies. 121

In one set of simulations, the number of donors was varied among 1, 3, 5, 10, 15, and 30 donors. For 122

those simulations, lists of 30 donors were generated for each parameter set and trial iteration. The lists were 123

truncated for the simulations using less than 30 donors. 124

For each allocation strategy and donor list, a trial was simulated. In each simulation, a patient allocated 125

to an efficacious donor responds to the treatment with probability peff . Patients allocated to inefficacious 126

donors or to the placebo arm respond with probability pplacebo. For adaptive allocations, the outcomes from 127

all the previous patients treatment were determined before the donor for the next patient was selected. An 128

equal number of patients was allocated to the treatment and placebo arms. 129

Clinically-relevant parameter values Simulations were performed for all combinations of parameter 130

values selected to reflect clinically-relevant possibilities: 131

• The placebo rate pplacebo is either 0.05 (a low placebo rate consistent with stringent, objective outcomes; 132

e.g., endoscopic Mayo score [10, 22]) or 0.25 (a high placebo rate consistent with self-reported, subjective 133

outcomes [23, 24]). 134

• The efficacy peff of efficacious donors is either 0.4 (similar to the value in Table 1) or 0.95 (efficacy of 135

FMT to treat C. difficile infection). 136

• The frequency feff of efficacious donors is either 0.15 (similar to the value in Table 1) or 0.9 (reflective 137

of the fact that almost any well-screened donor produces stool that can successfully treat C. difficile 138

infection). 139
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• The number of patients in each of the treatment and control arms is 15, 30, or 60, corresponding to a 140

range of patient numbers typical for Phase I and small Phase II clinical trials. 141

Of these combinations, the set of values most similar to the one in Table 1 is pplacebo = 0.05, peff = 0.4, 142

feff = 0.15, Npatients = 30. 143

Computing statistical power After determining the outcome of all the patients in the trial, the p-value 144

of a one-sided Fisher’s exact test (asserting that the response rate in the treatment arm was greater) was 145

calculated. The proportion of simulations that produced p < 0.05 was the estimate of the statistical power 146

for that allocation strategy under those trial parameters. Confidence intervals were calculated using the 147

method of Clopper and Pearson [25]. Values are rounded to two or three significant digits. 148

Results 149

Trials using adaptive strategies allocate more patients to efficacious donors 150

The purpose of adaptive donor allocation strategies is to identify and use efficacious donors. We therefore 151

expected that simulated trials that use adaptive strategies would allocate more patients to efficacious donors 152

(compared to simulated trials that used the block or random donor allocation strategies). 153

For every parameter set simulated, the average fraction of patients allocated to efficacious donors was 154

greater in the adaptive strategies (urn-based and myopic Bayesian) than in the non-adaptive strategies (block 155

and random; Table S1). The two non-adaptive allocation strategies performed almost identically: for each 156

parameter set, their results differed by less than 1 percentage point. The two adaptive strategies performed 157

similarly: for half of the parameter sets, their results differed by less than 2 percentage points. In the 158

remaining parameter sets, their results varied by between 2 and 9 percentage points. 159

When efficacious donors are common (feff = 0.9), the adaptive and non-adaptive strategies performed 160

similarly (Fig. 3). In other cases, the performance of the two strategies differed substantially. For example, 161

for the parameterization most similar to the one in Table 1, the random strategy allocated 15% of patients 162

to efficacious donors while the myopic Bayesian strategy allocated 41% of patients to efficacious donors. 163

Trials using adaptive allocation have higher statistical power 164

Because trials that used the adaptive donor allocation strategies allocated more patients to efficacious donors 165

than the trials that used the non-adaptive strategies, we expected that trials using adaptive strategies would 166
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Figure 3: Adaptive strategy allocates more patients to efficacious donors. (top) For the parameterization
most similar to the one in Table 1 (top), the adaptive strategy (red) allocated more patients to efficacious
donors than random allocation (black) did. When efficacious donors are common (bottom; same parameters
as top but with feff = 0.9), the two strategies allocate similar numbers of patients to efficacious donors. For
visual clarity, only trials in which there was at least one efficacious donor are shown.
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Trial parameters FMT power (%) Naive power (%)

pplacebo peff feff Npatients block random urn Bayesian

0.05 0.4 0.15 15 4.57 5.04 17.2 19.1 68.1
30 8.44 8.89 33.7 39.4 93.8
60 23 24.1 53.5 58 100

0.9 15 59.1 59.7 63.4 64.3 67.8
30 87.7 87.4 92.1 93.2 94.2
60 99.2 99.1 99.8 99.9 100

0.95 0.15 15 19.9 21.3 60.3 60.7 100
30 33.9 34.2 61.4 61.6 100
60 55.9 53.2 63.2 63.1 100

0.9 15 99.8 99.5 100 100 100
30 100 100 100 100 100
60 100 100 100 100 100

0.25 0.4 0.15 15 2.8 2.88 3.43 3.77 11.4
30 4.44 4.55 7.16 7.27 25.5
60 6.55 6.15 13.6 13.9 47.3

0.9 15 10.5 10.3 10.5 10.7 11.7
30 21.6 21.3 23 23 25
60 40.7 40.7 44.5 44.8 47.2

0.95 0.15 15 9.04 10.3 38.6 47.4 99.4
30 20 20.3 60 60.1 100
60 32.6 32.7 63.4 62.7 100

0.9 15 94.3 93.9 98.2 99 99.6
30 99.6 99.4 100 100 100
60 100 100 100 100 100

Table 2: Adaptive strategies yield clinical trials with higher statistical power. “FMT power” is the power
computed by simulating the results of trials that would occur if the frequency of efficacious donors if feff .
“Naive power” is the power computed in the situation in which all donors are efficacious (i.e., feff = 1.0).
All 95% confidence intervals on these values are within 1 percentage point of the reported value and are not
shown.

have greater statistical power. 167

The adaptive strategies consistently yielded higher statistical powers than the non-adaptive strategies 168

(Table 2). When efficacious donors are rare, the performance gap is larger. For example, for the parame- 169

terization most similar to the one in Table 1, a trial that uses random allocation is expected to have 9% 170

power, while the myopic Bayesian strategy can deliver 39% power. The gap in performance is smallest when 171

selecting a donor at random is likely to yield an efficacious donor: among the trials with feff = 0.9, the 172

adaptive and non-adaptive statistical powers differed by less than 6 percentage points. 173

Low statistical powers when feff is small are likely due to the fact that if all the available donors are not 174

efficacious, then no allocation strategy should make a trial achieve significance. For example, if only 15% 175

of donors are efficacious (feff = 0.15) and there are only 6 donors (the number used in these simulations), 176
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then we expect that 38% of trials will have no good donors (using the binomial distribution function). We 177

therefore separately analyzed the simulated trials in which no donors were efficacious and the simulated trials 178

in which at least one donor was efficacious (Table S2). When no donors are efficacious, trials with adaptive 179

or non-adaptive strategies have ∼0% power. Among trials with at least one efficacious donor, the difference 180

in statistical power between adaptive and non-adaptive strategies is greater than the difference computed 181

using the results of all trials. 182

Conversely, the power computed in traditional calculations that do not account for differences in donor 183

efficacy (i.e., that assume that all donors are efficacious, or equivalently feff = 1.0) is, in many cases, 184

substantially higher than the power computed when accounting for differences in donor efficacy (Table 2, 185

column “Naive powers”). For example, for the parameter set most similar to the one in Table 1, the naive 186

calculation predicts 94% power, but the calculation that accounts for differences in donor efficacy predicts 187

only 9% power for non-adaptive allocation strategies. The differences between the powers computed by the 188

naive method and our approach is largest when feff is small. 189

Performance of adaptive strategies depend on their parameterization 190

In these simulations, we varied the actual values of pplacebo and peff but we always initialized the adaptive 191

algorithms the same ways. To determine the sensitivity of the adaptive allocation algorithms’ performance to 192

their initialization, we simulated trials in which the actual model parameters were fixed but the algorithms’ 193

initializations varied (Table S3 and Table S4). The myopic Bayesian algorithm’s performance was mostly 194

robust to the parameterization of its prior distribution except when the prior was strong and inaccurate. 195

Accurate priors, weak priors, and uniform priors provide comparable performance. In contrast, the urn 196

algorithm delivered widely varying powers, from 15% to 40%, depending on its parameterization. 197

Increasing the number of available donors benefits the adaptive Bayesian strategy 198

Increasing the number of available donors increases the probability that at least one of them will be efficacious. 199

We therefore determined, for each donor allocation strategy, the number of available donors that optimized 200

the trial’s expected power. Simulations showed that increasing the size of the donor “pool” almost always 201

increased the power of trials using the myopic Bayesian donor allocation but, depending on the parameter 202

set, could increase or decrease the power of trials using other allocation strategies (Table S5). 203

Table 3 shows how donor selection strategy and model parameter values affects the optimal number 204

of donors. Notably, when efficacious donors are uncommon (feff = 0.15) and only moderately efficacious 205
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Trial parameters Optimal Ndonors

feff peff pplacebo random block urn Bayesian

0.15 0.4 0.05 1 1 10 10–30
0.15 0.4 0.25 1 1 5 10
0.15 0.95 0.05 3–15 3–5 15–30 15–30
0.15 0.95 0.25 3 3 10 10–30
0.9 0.4 0.05 1–30 3–30 3–30 3–30
0.9 0.4 0.25 1–30 1–30 1–30 5–30
0.9 0.95 0.05 3–30 3–30 3–30 3–30
0.9 0.95 0.25 3–30 3–30 3–30 3–30

Table 3: The optimal number of donors varies by donor selection strategy and model parameter values. For
each parameter value, trials were simulated using 1, 3, 5, 10, 15, and 30 donors. (The number of patients was
fixed at 30.) The number of donors that optimized the expected power was identified. If multiple numbers
of donors yielded powers within 0.05 of the optimal value, all those numbers are reported as a range.

(peff = 0.4), the non-adaptive strategies perform optimally when only one donor is used. In other words, 206

when using non-adaptive strategies in this parameter regime, it is wiser to take the 15% chance of picking a 207

single efficacious donor than it is to distribute patients across many donors, allotting around 15% of them to 208

efficacious donors. In contrast, the myopic Bayesian donor allocation almost always benefits from a larger 209

donor pool. 210

Discussion 211

Model limitations 212

We chose to use a simple model for a simple use case because, in the absence of data about the treatment 213

histories of hundreds of patients using dozens of donors, we do not believe that more complicated models 214

will be more useful to aiding trial design. The model’s greatest weakness is that it cannot be validated, 215

but it is exactly the model’s purpose to improve the probability of collecting the kind of information that 216

could validate or invalidate it. In light of the dearth of data, we developed a simple model, and it could be 217

that the simplifications we made limit the model’s validity. For example, the model assumes that each donor 218

produces efficacious stool or inefficacious stool (when in fact there is probably day-to-day and donor-to-donor 219

variation in stool efficacy) and that all patients receive one course of treatment (while, say, patients who do 220

not respond to a first treatment might be treated with stool from a different donor). 221

In our simulations, we assumed that the outcome from all the previous patients treatments are known 222

before the donor for the next patient is selected. In reality, patients in an FMT trial overlap. The urn-based 223
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method can still be used for overlapping patients [18], but the myopic Bayesian method would require some 224

modification. For example, clinicians could choose to consult the myopic Bayesian’s rankings of donors inter- 225

mittently, or patients could be allocated in proportion to the predicted probabilities of successful treatments. 226

Differences in donor efficacy should be accounted for in trial design 227

Our results entail recommendations to clinicians. First, the powers we computed here are, in many cases, 228

well below the powers computed assuming that all donors are efficacious. We therefore encourage researchers 229

to consult our predictions about statistical power when deciding on the size of their trials. 230

Second, a high placebo rate can substantially decrease the statistical power of an FMT trial. We therefore 231

encourage researchers to use the most stringent outcome measurement possible (e.g., an endoscopic Mayo 232

score for inflammatory bowel disease). 233

Third, adaptive donor allocation strategies consistently delivered higher statistical power than traditional, 234

non-adaptive approaches. We therefore recommend that researchers use such an adaptive strategy. The urn- 235

based strategy has the advantages that similar response-adaptive strategies may be familiar to clinicians, 236

it is randomized, and it is simple to implement. However, an urn-based strategy needs to be carefully 237

parameterized: a badly-parameterized urn-based strategy performs similarly to random allocation. The 238

adaptive Bayesian donor allocation algorithm performs well even when using the “default” settings (a uniform 239

prior) but is complex and deterministic. To fully leverage this strategy, a clinician would need to consult the 240

algorithm’s output after every patient outcome and follow the algorithm’s deterministic instructions, which 241

might introduce bias. 242

Fourth, adaptive algorithms benefit from having access to a “bank” of 10 or more donors. Researchers 243

hoping to achieve the full benefits of adaptive donor selection must be prepared to change donors multiple 244

times during the trial. 245

Finally, researchers reporting about FMT trials should include information about the donors, notably 246

how many donors were used and what proportion of patients alloted to each donor responded to treatment. 247

This information will help future researchers account for differences in donor efficacy. 248

Future research may identify mechanistic explanations of FMT’s efficacy 249

The adaptive allocation strategies we described here have a narrow aim: to increase the number of successful 250

patient outcomes in a trial. In theory, an adaptive trial design is capable of more. For example, if it were 251

hypothesized that FMT succeeded or failed because of the presence or absence of some particular microbial 252
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species in the donor’s stool, then an adaptive trial design could recommend donor choices that aim to identify 253

that critical species. 254

We did not pursue a hypothesis-centric approach because we believe it is premature. Even the mechanism 255

by which FMT treats C. difficile, the most well-studied case, remains unclear. We expect that strong 256

hypotheses about mechanism will come from retroactive comparison of efficacious vs. inefficacious stool 257

after clinical trials have definitively show that FMT is effective for treating some disease. Our study aims 258

to do exactly this. Until then, we hope that our results about adaptive donor allocation help more patients 259

benefit from FMT and will help clinicians identify those conditions that FMT can treat. 260
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Supplementary Tables

pplacebo peff feff Npatients block random urn Bayesian

mean s.d. mean s.d. mean s.d. mean s.d.

0.05 0.4 0.15 15 0.15 0.15 0.15 0.17 0.29 0.30 0.32 0.33
30 0.15 0.14 0.15 0.16 0.36 0.35 0.41 0.38
60 0.15 0.14 0.15 0.15 0.44 0.39 0.49 0.42

0.9 15 0.9 0.12 0.9 0.14 0.95 0.075 0.96 0.068
30 0.9 0.12 0.9 0.13 0.97 0.051 0.98 0.041
60 0.9 0.12 0.9 0.13 0.98 0.03 0.99 0.022

0.95 0.15 15 0.15 0.15 0.15 0.17 0.44 0.36 0.51 0.42
30 0.15 0.15 0.15 0.16 0.52 0.42 0.56 0.45
60 0.15 0.15 0.15 0.15 0.57 0.45 0.6 0.47

0.9 15 0.9 0.13 0.9 0.14 0.97 0.047 0.99 0.028
30 0.9 0.12 0.9 0.13 0.98 0.027 1.0 0.013
60 0.9 0.12 0.9 0.13 0.99 0.014 1.0 0.0069

0.25 0.4 0.15 15 0.15 0.15 0.15 0.17 0.20 0.25 0.21 0.29
30 0.15 0.15 0.15 0.16 0.24 0.30 0.24 0.34
60 0.15 0.15 0.15 0.15 0.29 0.34 0.28 0.38

0.9 15 0.9 0.13 0.9 0.14 0.93 0.14 0.94 0.15
30 0.9 0.12 0.9 0.13 0.94 0.13 0.95 0.14
60 0.9 0.12 0.9 0.13 0.96 0.11 0.96 0.14

0.95 0.15 15 0.15 0.15 0.15 0.17 0.36 0.34 0.45 0.42
30 0.15 0.15 0.15 0.16 0.45 0.38 0.52 0.44
60 0.15 0.15 0.15 0.15 0.53 0.42 0.57 0.46

0.9 15 0.9 0.13 0.9 0.14 0.96 0.076 0.99 0.056
30 0.9 0.12 0.9 0.13 0.98 0.048 0.99 0.029
60 0.9 0.12 0.9 0.13 0.99 0.029 1.0 0.016

Table S1: Fraction of patients allocated to efficacious donors. The same simulated trials were analyzed to
create Table 2 and this table.
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Parameters Simulation conditions Power (%)

peff feff Donor pool quality Nsimulations random block urn Bayesian

0.4 0.15 all trials 10000 8.9 8.4 34 39
0.4 0.15 no efficacious donors 3794 0.37 0.29 0.4 0.16
0.4 0.15 some efficacious donors 6206 14 13 54 63
0.4 0.9 some efficacious donors 10000 87 88 92 93
0.95 0.15 all trials 10000 34 34 61 62
0.95 0.15 no efficacious donors 3851 0.62 0.44 0.34 0.31
0.95 0.15 some efficacious donors 6149 55 55 100 100
0.95 0.9 some efficacious donors 10000 100 100 100 100

Table S2: Power of simulated clinical trials, conditioned on presence of efficacious donors. A subset of the
data used to create Table 2 (only those simulations with Npatients = 30 and pplacebo = 0.05) was analyzed by
separately estimating the power for the trials in which no donors were efficacious (“no efficacious donors”)
and in which at least one donor was efficacious (“some efficacious donors”). “All simulations” shows the
same data as in Table 2. For feff = 0.9, none of the 10,000 simulations had a donor pool with no efficacious
donors. All 95% confidence intervals are within 1 percentage point of the reported value and are not shown.

Hyperparameter values

Hyperparameterization Aplacebo Bplacebo Apeff Bpeff Afeff Bfeff Power (%)

From Table 1 2 35 7 11 1 5 41.1
Weak, accurate 0.2 3.5 0.7 1.1 0.1 0.5 41.2
Strong, accurate 20 350 70 110 10 50 40.4
Weak, inaccurate 0.4 3.3 1.4 0.4 0.2 0.4 40.9
Strong, inaccurate 40 330 140 40 20 40 34.4
Uniform n.a. n.a. n.a. n.a. n.a. n.a. 39.6

Table S3: Sensitivity of simulated clinical trial power to parameterization of the myopic Bayesian algorithm
parameters. Starting from the parameter described in Table 1, 10,000 trials using the myopic Bayesian donor
allocation were simulated for each of six different parameterizations of the Bayesian algorithm. “Accurate”
means that the prior is centered around the true value (i.e., that A

A+B equals the true value); “inaccurate”
means that the prior is centered at approximately double the true value (but that A + B has been held
constant). “Strong” means that every hyperparameter is ten-fold greater; “weak” means that every hy-
perparameter is ten-fold smaller. “Uniform” means a uniform prior was used for all parameters. All 95%
confidence intervals are within 1 percentage point of the reported value and are not shown.
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w α β replace? Power (%)

1 3 0 true 28.5
false 35.6

1 true 13.9
false 14.2

6 0 true 33.2
false 41

1 true 16.2
false 16.4

3 3 0 true 19.7
false 29.1

1 true 13.2
false 13.1

6 0 true 24.8
false 32.6

1 true 15.6
false 15.3

Table S4: Sensitivity of simulated clinical trial power to urn parameterization. Using the parameter set
described in Table 1, 10,000 trials using the urn-based donor allocation were simulated for each of several
combinations of the parameters for the urn model as described in [18]. We also vary whether drawn balls
are replaced or not. All 95% confidence intervals are within 1 percentage point of the reported value and
are not shown.
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Parameters Power (%)

feff peff pplacebo Ndonors random block urn Bayesian

0.15 0.4 0.05 1 15.5 15.3 15.5 14.8
3 12.4 12.2 28.4 30.9
5 9.87 9.67 33.8 38
10 7.49 6.93 38.2 44.3
15 6.91 6.38 34.6 45.9
30 6.17 5.26 16.6 45.9

0.25 1 6.08 6.15 5.89 5.58
3 4.64 4.21 6.7 6.89
5 4.65 4.7 7.28 7.1
10 4.37 4.18 6.2 7.52
15 4.48 4.09 5.41 7.07
30 4.25 4.3 4.67 6.89

0.95 0.05 1 15.2 15.1 15 14.9
3 34.4 37.2 39 39.2
5 35 36.1 56.3 56.5
10 33.7 33.3 80.1 80.4
15 33.5 32.6 91 90.6
30 31.6 30.4 87.4 93.9

0.25 1 17.1 17.3 17 16.8
3 23.1 22.6 39 39.9
5 21.3 20.9 55.2 55.5
10 18.8 17.7 69.7 69.7
15 17.4 16.8 65.4 69.9
30 16.4 15.4 43.2 69.4

0.9 0.4 0.05 1 84.9 84.7 84.6 84.3
3 85.9 85.8 91.8 92.4
5 87.4 87.2 92.4 92.4
10 88.4 88.9 92.3 92.8
15 88 89 91.8 92.9
30 89.1 89.3 91.1 92.9

0.25 1 22 22.3 22.5 22.1
3 21.8 21.2 23.1 22.7
5 21.7 21.3 23.1 23.2
10 21.7 21.3 22.7 23.7
15 22.2 21.5 22.5 24
30 21.9 21.6 22.1 23.5

0.95 0.05 1 90.1 90.1 90.1 90.4
3 99.5 99.7 99.9 99.9
5 100 100 100 100
10 100 100 100 100
15 100 100 100 100
30 100 100 100 100

0.25 1 90.4 90.4 90.4 90.5
3 97.7 98.1 99.9 99.9
5 99.1 99.4 100 100
10 99.8 99.9 100 100
15 99.8 99.9 100 100
30 99.9 100 100 100

Table S5: Dependence of simulated clinical trial power on number of available donors. For each parameter
value, trials were simulated using 1, 3, 5, 10, 15, and 30 donors. The number of patients was fixed at 30. All
95% confidence intervals are within 1 percentage point of the reported value and are not shown.
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