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Abstract 

Solar energy has been an important component of the world’s energy infrastructure for many years, but 

certain limitations have hindered its ability to become a primary source of renewable energy. In particular, 

intermittency and fundamental limitations on conversion efficiency have restricted adoption of direct 

photovoltaic conversion with PV cells. Recent developments in more advanced cell chemistries and 

concentrated solar power systems (CSP) seek to address some of these limitations and enable higher grid 

penetration of solar derived power. This thesis examines one of these such technologies, solar 

thermophotovoltaics (STPV), and presents opportunities to improve on past work in the field to enable 

higher conversion efficiencies and lower cost solar power. 

STPV power systems typically utilize a monolithic absorber-emitter component that is heated with 

concentrated sunlight through a highly absorptive surface. The monolith radiatively illuminates a low-

bandgap PV cell from a different, spectrally selective emitter surface, producing electricity. This added 

spectral selectivity allows for improved photovoltaic conversion efficiencies compared to a standard PV 

cell illuminated with the solar spectrum. STPV systems, however, often operate above 1000°C and are 

hindered by substantial parasitic thermal losses.  

In this thesis we first present an overview of the loss mechanisms currently limiting STPV system 

efficiencies and some theoretical approaches to address these losses. Previously demonstrated STPV 

systems have significant drops in efficiency through re-emission losses from the hot absorber surface. 

Selective absorber coatings can reduce these losses; however, experimentally demonstrated efficiency 

improvements have been limited due to non-ideal spectral selectivity and high-temperature instability. 

Through an alternative approach, we present a purely geometric solution to mitigate re-emission losses by 

varying the area ratio, defined as the ratio of thermal emitter area to solar absorber area. We model how our 
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solution could theoretically improve previously demonstrated STPV systems and also discuss the practical 

limitations of our approach. 

Secondly, we investigate the potential of integrating a cavity-based geometry for the absorber-emitter 

monolith in place of typical planar designs. By incorporating a cavity in place of the planar absorber-emitter, 

we take advantage of both increased absorption across the full solar spectrum and enable very high area 

ratios in a compact design. 

Third, we address how thermal gradients might develop within the absorber-emitter monolith and how these 

gradients might impact system performance. We present a numerical model capable of predicting PV cell 

performance degradation under uneven illumination resulting from emitter temperature gradients. 

Finally, we validate our model through experiments using cavities made from high-temperature refractory 

materials and a high-powered laser to emulate highly concentrated sunlight. By integrating a cavity-type 

absorber-emitter with state-of-the-art spectrally selective surfaces and filters, the maximum system 

efficiency demonstrated in previous works could be increased from 6.8% to upwards of 9% without any 

improvements in spectral selectivity. This cavity-type approach, which has the potential to improve solar 

absorber performance both for STPV and other solar thermal technologies, could help realize the full 

potential of these systems as efficient and useful methods of solar energy conversion. 

 

Thesis Supervisor: Evelyn N. Wang 

Title: Department Head of Mechanical Engineering 
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Chapter 1 

1. Introduction 

 MOTIVATION 

The sun provides an enormous amount of energy to the earth every day, dwarfing all other energy sources 

known to mankind [1]. Figure 1 illustrates the relative magnitudes of our fossil and nuclear energy reserves, 

as well available power from various renewable resources. Even with the availability of this abundant solar 

resource, less than 2.2% of the world’s electricity in 2017 was obtained from direct solar conversion, shown 

in Figure 2. Instead, the world relies primarily on non-renewable energy sources that contribute to the steady 

warming of our planet. 

 

 

Figure 1: Available energy by type compared to global annual energy consumption, reproduced from 

Perez et al. [1]. 
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Figure 2: Estimated global electricity consumption by source, end-2017, reproduced from the 

Renewable Energy Policy Network for the 21st Century [2]. 

Solar power has the potential to sustain the world’s energy consumption 1000 times over [1], but current 

conversion technologies have several key limitations. Two important issues with the most prevalent solar 

energy technology, direct photovoltaic conversion, are its intermittency and fundamental conversion 

efficiency limits. This efficiency limit is known as the Shockley-Queisser limit and identifies the maximum 

possible sun-to-electricity conversion efficiency for a sunlight illuminated single-junction solar cell as 

around 33%, illustrated in Figure 3. Technologies like multi-junction PV cells seek to exceed this limit, but 

do so at high cost and complexity. Intermittency can be addressed through methods of electrical energy 

storage, but few widely available and economical options exist to store utility scale quantities of electrical 

energy. 

 

Figure 3: Shockley-Queisser fundamental PV efficiency limit at various bandgap wavelengths, 

including typical cell chemistries’ progress towards the S-Q limit, reproduced from Polman et al. [3]. 
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 BACKGROUND 

1.1.1.  Fundamentals of solar thermophotovoltaics (STPV) 

Thermophotovoltaic systems (TPVs) are solid-state heat engines capable of converting heat to electricity 

through the emission and conversion of thermal radiation. These systems can utilize a spectrally selective 

emitter material heated in excess of 1000°C and capture the radiant emission using a photovoltaic cell. Solar 

TPVs (STPVs) facilitate the conversion of the full solar spectrum by absorbing sunlight through one surface 

of an absorber-emitter monolith and emitting a tailored spectrum from a separate emitter surface. This 

selective emission allows for photovoltaic conversion efficiencies higher than the Shockley-Queisser limit 

[4] that currently constrains the performance of conventional PV cells directly illuminated with sunlight. 

These STPV systems have the potential to outperform turbomachinery based power cycles currently utilized 

by concentrated solar power (CSP) plants in efficiency and reliability. The higher operating temperatures 

of STPV systems also enable the integration of ultra-high temperature, low-cost thermal storage for on-

demand electricity production [5].  

A typical photovoltaic cell illuminated by sunlight is performance limited based on the wide range of light 

wavelengths contained in the solar spectrum. The cell converts a portion of this broadband spectrum into 

electricity through the photoelectric effect. Through this effect, the energy of an incident absorbed photon 

excites an electron to the energy of that photon within the cell’s semiconductor structure. If the energy of 

this electron is above a certain value, known as the cell bandgap energy (Eg), it moves through the cell 

inducing a current flow. By the time the electron leaves the cell, however, its energy does not exceed the 

bandgap energy. Any additional energy imparted by the photon is absorbed as heat in the cell through a 

process known as thermalization. The significance of this process is that whether an incoming photon is 

highly energetic, or just energetic enough, the excited electron leaves the cell with a constant energy. 

Figure 4 shows the AM1.5 solar spectrum in light grey with the power able to be extracts when accounting 

for thermalization in dark grey. The bandgap wavelength of a silicon cell, the most ubiquitous PV cell 

chemistry, is also indicated. The photon wavelength is inversely proportional to the photon energy, so a 

bandgap wavelength can also be defined using Eg. The portion of the spectrum indicated in green in Figure 

4 is converted efficiently from photons to electrons, the yellow region suffers from inefficiencies due to 

thermalization, and the red region contains photons that are too low energy to excite electrons enough to 

leave the cell. By shifting the cell bandgap wavelength higher or lower, the yellow and red regions shrink 

or grow accordingly. These competing effects are what give rise to the well-known Shockley-Queisser limit 

on PV cell efficiency, shown in Figure 3. 
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Figure 4: Impact of photon wavelength on photovoltaic conversion effectiveness for direct solar 

illumination. The yellow highlighted region below the bandgap wavelength of a silicon PV cell 

represents inefficiency conversion due to photon thermalization losses. The green highlighted portion 

represents efficient conversion, and the red portion represents low-energy photons that are not 

converted by the indicated cell chemistry. 

Solar thermophotovoltaic devices seek to exceed this limit through the spectral conversion of sunlight. 

Instead of illuminating the cell with the solar spectrum presented in Figure 4, the selective emitter portion 

of an STPV system can emit a tailored spectrum with reduced emission in the red region. Figure 5 shows 

one such example of an emitter heated to 1800 K with suppressed emission at wavelength longer than the 

bandgap wavelength of a GaSb PV cell. Section 2.2.2 provides more detail on how tailoring the emission 

spectrum can significantly improve PV conversion efficiency. 

 

Figure 5: Potential emission tailoring enabled by an intermediate spectral converter including GaSb 

cell chemistry and an emitter at 1800 K. Darker portion represents the electricity generation potential 

at each wavelength accounting for thermalization of high energy (low wavelength) photons. 
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 THESIS OBJECTIVES AND OUTLINE 

The objective of this thesis is to perform a quantitative analysis on how geometric and material parameters 

affect absorber-emitter performance as part of a larger STPV system. The goal is for this analysis to be used 

to guide absorber-emitter design for future systems and enable higher system efficiencies. 

In Chapter 1, we have discussed the motivation for developing more efficient solar energy conversion 

technologies and the theoretical advantages of solar thermophotovoltaics over traditional direct 

photovoltaic conversion. 

In Chapter 2, we review current approaches to developing high-efficiency STPV systems and propose a 

geometric solution to a significant parasitic loss. We present a theoretical model that evaluates the impact 

material and geometric parameters have on absorber-emitter performance. 

In Chapter 3, we expand on our geometric solution and propose a shift from a planar-type to cavity-type 

absorber-emitters. We develop some theoretical and practical design guidelines and discuss some important 

considerations for materials selection. 

In Chapter 4, we examine how thermal gradients within the emitter surface affect the photovoltaic 

conversion performance. We propose a simple electrical model that can be used to evaluate PV cell 

performance under a number of illumination profiles. 

In Chapter 5, we introduce a laser-based solar emulation apparatus to validate our modelling from Chapter 

2 with some preliminary cavity absorber-emitter heating experiments. We also investigate some of the 

experimental and practical challenges that arise with such a system. 

In Chapter 6, we present the results of the cavity characterization experiments using the apparatus described 

in Chapter 5 and estimate the benefits of including cavity absorber-emitters into previously demonstrated 

STPV systems.  
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Chapter 2 

2. Improving solar thermophotovoltaic system efficiency 

 STPV LITERATURE REVIEW 

A significant portion of the work on STPVs in the past has focused on the design of spectral selectivity on 

the emitter side. Work in this area can be generally grouped into three approaches: selective emitters, optical 

filters, and back surface reflectors. Table 1 summarizes these spectral control techniques and some of the 

corresponding advantages and disadvantages. There is a significant body of literature on all of these 

techniques, but this thesis will not focus on the optimization or selection of one of them for a specific 

application. 

 

Table 1: Comparison of several typical methods of spectral control for TPV, reproduced from 

Pfiester et al. [6] 

 
 

Many of the challenges associated with STPV devices arise due to the multi-component, systemic nature 

of the devices. Recently, there have been several papers that present selective-emitters and reflectors 

fabricated and incorporated into STPV systems, but these systems have not demonstrated high system 

conversion efficiencies. Rinnerbauer et al. [7] built an STPV system utilizing a 3D photonic crystal 

selective emitter and were able to demonstrate a system efficiency of 4.8%. Additionally, Shimizu et al. [8] 

demonstrated a multi-layer coating of tungsten and yttria-stabilized zirconia and reported an efficiency of 

8% based on characterization of their material, however, this efficiency was not experimentally 

demonstrated. Ungaro et al. [9] also demonstrated a micro-textured tungsten selective emitter within an 

STPV system and achieved a conversion efficiency of 6.2% using a laser-based simulated solar source. 

Bierman et al. [10] presented a system utilizing a 2D photonic crystal selective-emitter capable of achieving 

the highest STPV system efficiency experimentally demonstrated using a broadband solar source. Full 

system efficiency converting sunlight to electricity was measured to be 6.8% but was predicted to be as 

high as 9.4% under different operating conditions. 
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Although a majority of the STPV literature focuses on spectral selectivity of the emitted light, there have 

been several recent papers that focus on the design of different system components. Datas et al.[11] and 

Vlasov et al. [12] have demonstrated STPV systems utilizing actual concentrated sunlight and 

implementing absorber-emitter cavities, but reported relatively low system efficiencies of around 1%. 

From past works we see that there are significant challenges associated with attaining high STPV 

conversion efficiencies. The remainder of this thesis seeks to break down the full system into intermediate 

components capable to be analyzed independently. In particular, it seeks to take a new look at system losses 

other than those associated with imperfect spectral selectivity.  

 

 STPV SYSTEM SUB-EFFICIENCIES 

Solar thermophotovoltaic devices are typically complex systems with multiple interacting components. At 

its most simple, an STPV device consists of a solar concentrator, an absorber-emitter, and a PV cell. The 

total system efficiency can be written as a product of these three component sub-efficiencies 

 𝜂STPV = 𝜂o𝜂PT𝜂PV (1) 

Optical efficiency, 𝜂o, represents how efficiently the concentrating optics focus the incident sunlight to the 

absorber surface and can be written as 

 
𝜂o ≡

�̇�opt

�̇�sun

 (2) 

where �̇�sun represents the incident solar power on the concentrating apparatus and �̇�opt represents the 

concentrated solar power incident on the absorbing surface.  

Photothermal efficiency, 𝜂PT, represents how efficiently the incident concentrated sunlight is converted 

into thermally radiated photons from the emitter surface and can be written as 

 
𝜂PT ≡

�̇�emit

�̇�opt

 (3) 

where �̇�emit represents the net power leaving the emitter surface and �̇�sun represents the incoming 

concentrated solar power. 

Finally, photovoltaic efficiency, 𝜂PV, represents how efficiently the emitted light is converted into 

electricity and can be written as 

 
𝜂PV ≡

�̇�elec

�̇�emit

 (4) 

where �̇�emit represents the net power leaving the emitter surface and �̇�elec represents electrical power 

generated by the PV cell. The definitions of these efficiencies and power variables are clarified in Figure 

6. 
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Figure 6: Schematic of a typical planar STPV system identifying system sub-efficiencies, optical 

efficiency (o) photothermal efficiency (PT), and photovoltaic efficiency (PV). 

2.2.1.  Optical efficiency 

All three of these sub-efficiencies are important, but optical efficiency typically only contributes a small 

amount to the total efficiency of STPV systems. For the remainder of this thesis, optical efficiency was 

assumed to contribute negligibly and to be 100%. 

2.2.2.  Photovoltaic efficiency 

The most significant advantage of STPV systems over a bare PV cell is enhancement in photovoltaic (PV) 

conversion efficiency due to a carefully tailored emission spectrum. To illustrate this enhancement, Figure 

7 shows several thermal emission spectra superimposed over a black-body emission spectrum at 1800 K, 

light grey shaded region. This temperature closely aligns the peak of emission with the bandgap of a typical 

STPV photovoltaic cell, gallium antimonide (GaSb), enabling high power densities and minimizing 

parasitic loss. 

Emitter 

�̇�sun 

PV Cell 

Absorber 

Concentrating Optics 

�̇�opt 

�̇�emit 

�̇�elec 

𝜂o ≡
�̇�opt
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�̇�emit

�̇�opt

 

𝜂PV ≡
�̇�elec

�̇�emit
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Figure 7: Theoretical impact of narrowing emission band on PV conversion efficiency for an ideal 

GaSb (λg=1.77 m) cell illuminated with black-body emission at 1800 K (light grey shaded region). 

The darker shaded region represents the power capable of being extracted from the PV cell, taking 

thermalization losses into account. Band width for the band-pass selective emitter is 200 nm. 

The darker grey region represents the actual power an ideal PV cell could produce when illuminated with 

black body emission. To calculate the value of this available power, we can first write the energy of a 

photon as a function of its wavelength as 

 
𝐸P(𝜆) =

ℎ ∙ 𝑐0

𝜆
 (5) 

where  is photon wavelength, h is Planck’s constant, and c0 represents the speed of light in a vacuum [4]. 

Planck’s law also states that the power emitted at each wavelength by a black-body emitter with a specified 

temperature is 

 
𝐸bb(𝜆, 𝑇) =

2𝜋ℎ𝑐0

𝜆5 (𝑒
ℎ𝑐0

𝑘b𝜆𝑇 − 1)

 
(6) 

where h, , and c0 are the same as in Eq. (5), and kb represents the Boltzmann constant. From Eq. (5) and 

Eq. (6), we can then calculate the number of photons emitted at each wavelength as 

 
𝑁photons(𝜆, 𝑇) =

𝐸bb(𝜆)

ℎ ∙ 𝑐0

𝜆

 (7) 

Since photons below the bandgap wavelength (g) each excite one electron enough to leave the cell with 

the bandgap energy (Eg), we can write the total power produced by an ideal cell as 
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𝑃cell,ideal(𝑇) = ∫ 𝑁photons(𝜆, 𝑇) ∙ 𝐸g

𝜆g

0

𝑑𝜆 (8) 

In reality, all the photons below the bandgap wavelength do not necessarily excite an electron or even get 

absorbed by the cell. These effects are typically lumped into a term called external quantum efficiency 

(EQE), a function of both cell chemistry and non-idealities within the cell. It can be understood as the 

probability that a sub-bandgap photon hitting the cell actually excites an electron enough to leave the cell 

and is a function of wavelength as well. Eq. (8) can be modified to include this probability as 

 

𝑃cell,real(𝑇) = ∫ 𝑁photons(𝜆, 𝑇) ∙ 𝐸𝑄𝐸(𝜆) ∙ 𝐸g

𝜆g

0

𝑑𝜆 
(9) 

which gives a more realistic estimate of the power produced by a PV cell. For an ideal cell as modelled in 

Figure 7, the EQE is assumed to be 1 for all wavelengths below the bandgap wavelength. For reference, 

Figure 8 shows the EQE values at a range of wavelengths for a PV cell designed for thermophotovoltaic 

applications. 

 

Figure 8: External quantum efficiency (EQE) values for JX Crystals GaSb PV cells for photon 

wavelengths ranging from 400 nm to 2 m, reproduced from JX Crystals’ cell specifications 

datasheet [13]. 

Returning to Figure 7, the emission spectrum profiles correspond to the portion of the spectrum that is 

emitted. The black-body emitter will emit the full black-body curve colored light-grey, while the short-pass 

emitter only emits power below the bandgap wavelength. The band-pass emitter emits power only within a 

200 nm band just below the bandgap wavelength. In each of these cases, the efficiency of the PV cell will 

be different. Pushing emission closer to the bandgap results in the highest level of conversion efficiency 

and the least amount of thermalization. We can write the PV efficiency for these three cases as  



24 

 

 

𝐵𝑙𝑎𝑐𝑘 − 𝑏𝑜𝑑𝑦 𝑒𝑚𝑖𝑡𝑡𝑒𝑟: 𝜂PV =
∫ 𝑁photons(𝜆, 𝑇) ∙ 𝐸g

𝜆g

0
𝑑𝜆

∫ 𝐸bb(𝜆, 𝑇)
∞

0
𝑑𝜆

 (10) 

 

𝑆ℎ𝑜𝑟𝑡 − 𝑝𝑎𝑠𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑟: 𝜂PV =
∫ 𝑁photons(𝜆, 𝑇) ∙ 𝐸g

𝜆g

0
𝑑𝜆

∫ 𝐸bb(𝜆, 𝑇)
𝜆g

0
𝑑𝜆

 (11) 

 

𝐵𝑎𝑛𝑑 − 𝑝𝑎𝑠𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑟: 𝜂PV =
∫ 𝑁photons(𝜆, 𝑇) ∙ 𝐸g

𝜆g

𝜆L
𝑑𝜆

∫ 𝐸bb(𝜆, 𝑇)
𝜆g

𝜆L
𝑑𝜆

 (12) 

where L represents the lower cutoff of the emission band in the band-pass case. The resulting efficiencies 

for these examples are shown in the Figure 7 legend. 

From this ideal analysis, we see that constraining thermal emission band to a narrow band close to the 

bandgap can result in very high conversion efficiencies. Unfortunately, narrowing the emission band also 

results in fewer overall photons incident on the cell. This results in a corresponding reduction in power 

density that can exacerbate the effects of any parasitic loads on the high-temperature emitter. These 

competing effects would need to be accounted for when designing a complete STPV system. 

2.2.3.  Photothermal efficiency 

Adding the intermediate spectral converter of an STPV device to a PV cell can increase PV efficiency, but 

also introduces a source of losses. The absorber-emitter is particularly susceptible to a variety of thermal 

parasitic losses, including convective losses through the surrounding gas, conductive losses through any 

supporting structure, and thermal re-emission from the absorbing surface. Convective losses are often 

mitigated by operating in high-vacuum, and may become negligible when operating at very high absorber-

emitter temperatures where radiation dominates. Conductive losses through supporting structures can be 

minimized through careful thermal engineering and low thermal conductivity materials. Thermal re-

emission from the absorber, however, is fundamentally challenging to address as both emitter and absorber 

emission scale equally with temperature. This loss can be significant, and a high photothermal efficiency is 

very important when designing an STPV system to take full advantage of any benefits in PV efficiency 

gained through the introduction of the absorber-emitter. 

 IMPROVING PHOTOTHERMAL EFFICIENCY 

The primary difference between STPVs and conventional solar photovoltaics is the presence of the 

absorber-emitter monolith. The added thermal step of absorption and re-emission introduces opportunities 

for thermal losses, including radiation emitted from the absorbing surface. Selective absorber materials, 

which are highly absorptive in the solar spectrum and have low emission in infrared wavelengths, address 

this problem by suppressing the dominant portion of the re-emission spectrum. However, the durability of 

these spectrally selective surfaces has not been demonstrated at the temperatures needed for efficient STPV 

systems (>1000°C) [14]–[17]. While some high-temperature stable absorptive coatings do exist, they are 

near black (abs ≈ 0.95) at wavelengths from 250 nm all the way to 20 μm [18], encompassing both the solar 

absorption and infrared emission spectra. When an absorber with one of these coatings is coupled with a 
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spectrally selective emitter (emit < 0.95), the emitted power flux at the absorber surface can exceed that of 

the emitter, resulting in significant losses. We propose a geometric approach to account for this discrepancy 

and have developed a model to predict the impact of certain geometric parameters on photothermal 

efficiency.  

2.3.1.  Isothermal modelling of approach 

By reducing the area of the absorber with respect to the emitter, the fraction of the total emitted power 

exiting through the absorber can be decreased. To help quantify this relative area difference, we define the 

area ratio (AR) as 

 
𝐴𝑅 ≡

𝐴emit

𝐴abs
 (13) 

where Aabs refers to the area of the absorbing surface and Aemit to the emitter area. To illustrate this approach, 

Figure 9 shows a thermally isolated absorber-emitter illuminated by concentrated sunlight with a defined 

absorber emittance (𝜀abs) and emitter effective emittance (𝜀)̅. 

 

Figure 9: Schematic of modelled absorber-emitter geometry including relevant variables. 

To simplify this example, we can estimate the power leaving a surface via thermal radiation using the 

standard equation for radiative heat transfer instead of Planck’s law from Eq. (6). 

 �̇�radiation = 𝜀𝜎𝐴(𝑇4 − 𝑇∞
4 ) (14) 

Here,  represents the Stefan-Boltzmann constant, A represents the surface area, T is the surface 

temperature, 𝑇∞ is the temperature of the surroundings, and  represents the grey-body emittance of the 

surface. Using Eqs. (13) and (14), and assuming a high enough operating temperature that the 𝑇∞ term is 

negligible, the radiative power leaving the emitter and loss from the absorber can be written as 

 �̇�loss = 𝜀abs𝜎𝑇4𝐴abs (15) 

 �̇�emit = 𝜀�̅�𝑇4𝐴abs𝐴𝑅 (16) 

where 𝜀 ̅ represents the diffuse effective emittance of the emitter surface, accounting for any spectral 

selectivity, and 𝜀abs represents the emittance of the absorbing surface.  

�̇�opt �̇�loss 𝐴abs 

𝜀abs 

�̇�emit 
𝐴emit 

𝜀 ̅

T
emit
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In our modeling, the effect of a selective surface is simplified through the definition of this diffuse effective 

emittance term, defined as 

 
𝜀̅ ≡

𝐸emit

𝐸bb
 (17) 

This ratio of net emitter radiative heat flux (Eemit) to black-body emissive power flux (Ebb) can be modified 

to account for several forms of spectral shaping including selectivity on the emitter side (i.e. selective 

emitters), the front surface of the PV cell (i.e., optical filters), or the back side of the PV cell (i.e., back 

surface reflectors) [6][19]. Eq. (18) shows how effective emittance would be derived for a selective emitter 

surface with known spectral emittance data, and Eq. (19) shows how the effective emittance would be 

calculated for a black-body emitter coupled with a spectrally selective filter and perfect view factor. An 

effective emittance value for more complex emitter-filter interactions with non-unity view factors can be 

calculated using a ray tracing approach detailed in Leroy et al. [20], but will not be addressed in this thesis. 

 
𝜀̅ =

∫ 𝜀𝜆𝐸bb,𝜆𝑑𝜆
∞

0

𝐸bb
 

𝜀̅ =
∫ 𝜌filter,𝜆𝐸bb,𝜆𝑑𝜆

∞

0

𝐸bb
 

 

(18) 

 

 

(19) 

To understand how the effective emittance (𝜀)̅ and area ratio (AR) affect photothermal efficiency, we can 

write an energy balance on the absorber-emitter with some simplifying assumptions. The most important 

assumption is that all the surfaces of the cavity are at the same temperature. Based on this assumption, the 

model is independent of bulk material properties like thermal conductivity and instead depends entirely on 

geometry and material surface properties (i.e., effective emittance). This energy balance can be written as 

 𝜀abs�̇�opt = �̇�loss + �̇�emit (20) 

This energy balance also assumes that the emittance and absorptance of the absorbing surface are equal, 

typical for a black absorber.  

From Eqs. (3) and (20), we can then write photothermal efficiency as 

 
𝜂PT =

𝜀abs�̇�emit

(�̇�loss + �̇�emit)
 

                      =
𝜀abs𝜀 ̅𝐴𝑅

𝜀abs + 𝜀�̅�𝑅
                       

 

 

 

(21) 

We can also make a further simplifying assumption that abs is relatively close to 1 to maximally absorb the 

concentrated sunlight, and obtain the final form of our photothermal efficiency equation 

 
𝜂PT ≈

𝜀 ̅𝐴𝑅

1 + 𝜀�̅�𝑅
 (22) 

Figure 10 shows the results of the modelling using Eq. (22) for two different emitter surfaces and area ratios 

ranging from 1 to 100. As predicted, increasing area ratio improves photothermal efficiency, but 



27 

 

improvements reach a point of diminishing returns around AR=40. Also plotted are the reported 

photothermal efficiencies of two recent works on STPV. Bierman et al. [10] implements an area ratio 

approach to improving photothermal efficiency, achieving some success in improving absorber-emitter 

performance. Rinnerbauer et. al [7], however, utilizes an absorber-emitter with an area ratio of 1. Another 

interested finding of this modelling is that the photothermal efficiencies for a black-body emitter are 

significantly higher than those of the selective emitter for the same area ratio. This behavior touches back 

on the limitations of narrowing the emission spectrum discussed in Section 2.2.2. By constraining the 

emission from the emitter surface, the thermal resistance is increased and more heat leaves through the 

absorber surface. 

 

Figure 10: Isothermal modelling results for photothermal efficiency with respect to area ratio (AR) 

for both a black body emitter and a short-pass selective emitter (inset) cutoff at the bandgap 

wavelength of GaSb (1.77 μm). The emitter temperature was assumed to be 1800 K for the effective 

emittance calculation. 

  

2.3.2. Coupling between system sub-efficiencies 

The individual components of STPV devices can be a challenge to optimize independently due to the 

coupled nature of these systems. From the modelling presented in the previous section, increasing emitter 

selectivity to improve PV efficiency can have negative effects on photothermal efficiency. To account for 

these competing effects, Figure 11 shows what the system efficiency might look at various area ratios. A 

similar improvement with higher area ratios is seen, but the importance of a selective emitter is also 

apparent. PV efficiencies are calculated using the approach presented in section 2.2.2. 
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Figure 11: Isothermal modelling results for a simplified STPV system efficiency. PV efficiencies were 

calculated for ideal cells assuming the bandgap of GaSb (1.77 μm), an emitter temperature of  

1800 K, and the emission spectra described in Figure 10 (inset) using Eqs. (10) and (11). 

 SUMMARY 

In this chapter, we presented an overview of current approaches to improving STPV system efficiency, and 

proposed an alternative, geometric solution. We showed an isothermal model capable of estimating the 

improvements in photothermal efficiency obtained through manipulating the relative areas of the absorbing 

and emitting surfaces of an STPV absorber-emitter. We also discussed the importance of how optimizing 

one component or sub-efficiency can have negative effects on other components. 
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Chapter 3 

3. Cavity-type Absorber-Emitters for STPV 

 ADVANTAGES OF CAVITIES 

Improving the photothermal efficiency of STPV systems by increasing area ratio shows promise, but with 

planar geometries as explored in previous works, even low area ratios can generate significant temperature 

gradients [10]. Utilizing a cavity-type geometry in place of the typical planar geometries has two distinct 

advantages. Cavities significantly enhance absorber effective emittance and also enable high area ratios 

without the same thermal gradient issues and cavities. The effect on temperature gradients by switching 

from a planar to cavity geometry is challenging to model analytically, but section 4 addresses this in more 

detail. 

Assuming diffuse internal reflection, cavities are more absorptive than a flat surface of the same material 

but are not necessarily black-body absorbers. To account for this, the emittance of the absorbing cavity 

(𝜀abs) is calculated with a view factor based analysis assuming diffuse reflections, uniform internal 

illumination from the input optical source, and a cylindrical internal cavity with a flat circular bottom [21]. 

This emittance can be written as 

 

𝜀abs =
1 + 4

𝐿
𝐷

1
𝜀 + 4

𝐿
𝐷

 

 

(23) 

where the L/D ratio represents the ratio of internal cavity length to diameter and 𝜀 represents the material 

emittance.  
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Using Eq. (23), Figure 12 compares cavity absorptance with the L/D ratio for various surface emittances. 

 

Figure 12: Impact of cavity aspect ratio on absorber effective emittance for several surface effective 

emittances. 

At higher L/D ratios, the improvement in emittance between the flat material and a cavity of the same 

material can be drastic. Highly absorptive coatings often have limitations on maximum temperature and 

can degrade over time [14]–[17]. A cavity, on the other hand, is made of one monolithic material and as 

such can be leveraged to provide high absorptance and temperature stability. 

Eq. (23) represents an ideal case where incoming light is uniformly distributed on the interior walls of the 

cavity. In more realistic scenarios, if the incoming light is diffuse, there will be more illumination towards 

the opening of the cavity and if the light is collimated, more illumination towards the back. To evaluate the 

impact of these two optical conditions, we analyzed cavities with a range of L/D ratios and the two optical 

conditions as well as our ideal case with a COMSOL model. Figure 13 shows these three cases for a surface 

effective emittance of 0.2; the resulting changes in cavity effective emittance can be significant. Due to this 

discrepancy, care should be taken when approximating the level of collimation of incoming concentrated 

light to optimize the design of a cavity. 
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Figure 13: Estimate of the sensitivity of the cavity emittance to incoming light distribution for a 

surface effective emittance of 0.2. Collimated and diffuse light sources were simulated with 

COMSOL. 

 MATERIALS SELECTION 

Materials selection is another important consideration when designing a cavity absorber-emitter for an 

STPV application. With a more complex geometry like a cavity, selecting a material with the ideal 

characteristics becomes very important. We consider three characteristics to be the most vital: high-

temperature stability, high thermal conductivity, and desirable optical properties. Figure 14 compares these 

characteristics with three broad materials classes we considered for STPV absorber-emitter cavities. 

 

Figure 14: Comparison of material selection criteria and material classes. 
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When considering high-temperature stability, there are a limited number of materials capable of operating 

at 1800 K or hotter for extended periods of time. Options are mainly limited to refractory ceramics (i.e. 

alumina, titania, etc.), refractory metals (i.e. tungsten, tantalum, etc.), and various forms of carbon (i.e. 

diamond, graphite). An advantage of the refractory ceramics, particularly oxides like alumina, is that they 

are able to achieve the high operating temperatures in an oxygenated environment, something the metals 

and carbon compounds are not.  

A more restrictive constraint is to have both high-temperature stability, as well as high thermal conductivity. 

In this category, ceramics are particularly bad. Sintered alumina materials typically have thermal 

conductivities in the range of 8-34 W/m-K [22] compared to tungsten at around 175 W/m-K [23] and 

graphite at around 100 W/m-K [24]. Thermal conductivity is particularly important when considering the 

isothermal assumption made in Section 2.3.1. Any gradients within the absorber-emitter will result in a 

higher absorber temperature, resulting in additional re-emission losses.  

The final selection criterion is the spectral selectivity of the base materials. In this category, the refractory 

metals are particularly advantageous. Figure 15 shows measured spectral emissivity profiles for graphite 

and tungsten samples, as well as literature data for tungsten. Immediately apparent is the inherent spectral 

selectivity of tungsten, which is more emissive in the visible and ultra-violet wavelengths than in the 

infrared. When considering an STPV system implementing a GaSb PV cell with a bandgap of 1.77 m, the 

tungsten acts like a weak short-pass emitter enabling high PV conversion efficiencies. Unfortunately, this 

selectivity becomes less pronounced at higher temperatures but still persists up to the desired operating 

temperature of 1800 K. 

 

Figure 15: Comparison of graphite and tungsten spectral hemispherical emissivity profiles at 300 K 

(measured) and 1800 K (literature) [25]. 

The three materials criteria discussed in this section are by no means comprehensive. When actually 

designing a full STPV system, other characteristics like thermal shock resistance, evaporation rate, and cost 

must also be considered.  
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 PRACTICAL CAVITY DESIGN CONSIDERATIONS 

The previous analyses presented in this thesis have indicated that a higher photothermal efficiency can 

always be achieved by increasing area ratio. There are, however, practical constraints on how high the area 

ratio can go. If we re-visit the model presented in section 2.3.1, the optical power term in Eq. (20) can be 

written as 

 �̇�opt = 𝐶𝐺0𝐴abs (24) 

where C is the optical concentration ratio and G0 is the solar irradiance constant, typically assumed to be 

1000 W/m2. Eq. (20) can be re-written with the definitions from Eqs. (15) and (16) as 

 

 𝜀abs�̇�opt = �̇�loss + �̇�emit (20)  

 𝜀abs𝐶𝐺0 = 𝜎(𝜀abs + 𝜀�̅�𝑅)𝑇4 (25) 

Rearranging and again assuming that abs is close to 1, we can write the steady-state absorber-emitter 

temperature as 

The significance of this relationship between area ratio, input concentration, and steady state temperature 

is illustrated in Figure 16. Commercial solar concentrators are able to achieve a maximum concentration 

ratio of around 5000x, and only at significant cost [26]. Even with 5000x concentration, an absorber-emitter 

with a selective-emitter cannot have an area ratio greater than ~40 to operate at 1800 K. 

 

𝑇 = √
𝜀abs𝐺0𝐶

𝜎(𝜀abs + 𝜀  ̅𝐴𝑅)

4

 (26) 
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Figure 16: Equilibrium cavity temperature versus AR at several input solar concentrations. Both 

emitter emission spectra are detailed in Figure 10 (inset). 

 

 SUMMARY 

In this chapter, we took a more practical approach to designing an absorber-emitter for high photothermal 

efficiencies. We identified cavity-based absorber-emitters as an approach to enable high area ratios with 

minimal thermal gradients, and also considered important material characteristics. Finally, we recognized 

practical limitations on increasing area ratio based on the current availability of solar concentrators. 
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Chapter 4 

4. Thermal Gradients Within Cavity-type Absorber-Emitters 

 IMPACT OF GEOMETRIC AND SCALE PARAMETERS ON THERMAL 

GRADIENTS 

The isothermal condition was an important assumption for the previously presented analyses of absorber-

emitter performance. In reality, some degree of thermal gradients within either a planar or cavity-type 

geometry is expected. To estimate how these gradients might scale with the cavity geometric parameters, 

we performed a scaling analysis on an example cavity. A schematic clarifying the scaled variables is shown 

in Figure 17. 

 

Figure 17: Schematic for thermal gradient scaling analysis represented as a cross section of an 

axisymmetric cylindrical cavity with internal diameter D, length L, and wall thickness t. 

From the conduction simplification of the 2D heat equation and the coordinate axes shown in Figure 17, 

we can write  

 𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0 (27) 

From this equation, we can associate the wall thermal gradients in the x- and y-directions as 

 ∆𝑇𝑦

𝐿2
~

∆𝑇𝑥

𝑡2
 (28) 

Using Fourier’s law and a uniform internal wall heat flux assumption, the x-direction thermal gradient 

scales as 

 
�̇�~

𝑘∆𝑇𝑥

𝑡
 (29) 

 
∆𝑇𝑥~

�̇�

𝑘
𝑡 (30) 

where �̇� represents internal wall thermal power flux, and k is the thermal conductivity of the cavity material. 

y 

x 

�̇� 

t 

L 

D 
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The y-direction gradient can also be estimated using Eq. (28) and the assumption that 𝑡~𝐷. 

 
∆𝑇𝑦~

�̇�

𝑘
𝐿 (

𝐿

𝐷
) (31) 

From this analysis, we see that gradients scale both with a geometric aspect ratio (L/D), the scale of the 

cavities themselves (L, t), and the (�̇�/k) term. To validate this approach, we developed a COMSOL model 

that evaluated the thermal gradients at two aspect ratios and two scales. To model a more realistic case, the 

uniform internal wall heat flux was replaced with diffuse optical power at the cavity opening. In the four 

cases considered, the area ratio, thermal power flux, and thermal conductivity were held constant. The 

results of this analysis are shown in Figure 18. 

 

Figure 18: Thermal gradients in cavities with different geometries (L/D) and scales (L, t). Incoming 

light was modelled as diffuse and optical concentration, thermal conductivity, and AR was held 

constant for all four cases. Temperature is in degrees kelvin (K). 

As predicted, both the profile and magnitude of the temperature gradients varied with scale and aspect ratio. 

Unfortunately, this also means that incorporating thermal gradient minimization into our cavity design 

guidelines is challenging. To accurately predict how these gradients might develop, we recommend a 

numerical simulation of the specific scale and geometries considered. 

10 mm 10 m 

𝐿

𝐷
= 4 

𝐿

𝐷
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 IMPACT ON PV CELL PERFORMANCE 

Some degree of thermal gradation can be expected with any cavity design, so an estimate of how these 

gradients might affect system performance is also important. To this end, we developed an electrical model 

to predict how PV cell performance might change with illumination from an emitter with non-uniform 

temperature.  

4.2.1. Past work on uneven PV cell illumination 

The negative impact of uneven illumination on PV cell performance is not a particularly new problem. The 

problem has been studied since the 1980s in the context of contact fingers shading certain portions of 

standard PV cells. Dhariwal et al. [27] presented an analytical model to determine how the voltage of a 

solar cell might be reduced with partial shading due to contact fingers and found there was an effect, 

although not significant. Additionally, Franklin et al. [28] investigated how uneven illumination in a 

concentrated PV context might impact the cell performance. Although the prior work identifies useful 

approaches to estimating the impact of thermal gradients in and STPV application, the models and results 

presented are specific to either one illumination profile [27] or one cell chemistry and geometry [28], and 

do not take the spectral shifting impacts of temperature gradients into account. Illustrated in Figure 19, 

changes in emitter temperature affect both the intensity and spectrum of emitter light. 

 

Figure 19: Comparison of thermal emission magnitude and spectra at 1800 K and temperatures 

corresponding to a 50% increase and 50% decrease in emitter power. 

4.2.2.  PV cell electrical model under uneven illumination 

This first order estimate of how an illumination gradient might affect PV performance builds on the 

methodology described in Dhariwal and Franklin, accounting for internal lateral current flows within the 

cell and associated resistive losses. Figure 20 illustrates the modelled system, a PV cell illuminated by a 

thermally non-uniform emitter. 
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Figure 20: Diagram of modelled emitter-PV cell system with an emitter wall ranging from Tmin to 

Tmax. Vi an Ii represent the local voltage and generated current across the p-n junction for a discrete 

slice of a PV cell. Ai represents the vertical cross-sectional area of each slice. 

To simplify the model, temperature gradients are only considered in one direction. The cell shown in Figure 

20 was discretized into N slices, represented in Figure 21(b) as voltage dependent current sources in parallel 

with resistors accounting for the bulk material resistance in the lateral and vertical directions. The 

relationship between local voltage (Vi) and local current (Ii) can be estimated with the typical photovoltaic 

cell equation [4], written as  

 
𝐼𝑖 = 𝐴𝑖 (𝐽L,𝑖 − 𝐽0𝑒

𝑉𝑖
𝑛𝑘𝑏𝑇𝑐𝑒𝑙𝑙) (32) 

where dark circuit current density (J0) and n are cell specific constants, kb is the Boltzmann constant, Tcell is 

the cell temperature (assumed to be constant at 300 K), and JL,i  represents the light generated current density. 

Also included is the vertical cross-sectional area Ai. This area term is a function of the number of slices as 

well as the total length of the cell. JL,i is calculated based on the number of sub-bandgap photons incident 

on the discrete slice and is written as 

 
𝐽L,𝑖 = ∫

𝜆 ∙ �̇�(𝜆)

ℎ ∙ 𝑐0
∙ 𝐸𝑄𝐸(𝜆) ∙ 𝑞

𝜆𝑔

0

𝑑𝜆 (33) 

which is similar in form to Eq. (9), but replaces bandgap energy Eg with q, the charge of an electron, to 

calculate current instead of energy.  
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Figure 21: (a) Reference dimensions for discretized slice of PV cell. (b) Simplified circuit diagram of 

a discretized PV cell accounting for the bulk resistance of both p-type and n-type semiconductor 

layers.  

The resistance terms shown in Figure 21(b) were estimated using simple bulk resistance equations 

 
𝑅1−n =

𝜌n𝑡n

𝐴𝑖
 (34) 

 
𝑅1−p =

𝜌p𝑡p

𝐴𝑖
 (35) 

 
𝑅2−n =

𝜌n𝐿𝑖

𝐴2−n
 (36) 

 
𝑅2−p =

𝜌p𝐿𝑖

𝐴2−p
 (37) 

with dimensional terms clarified in Figure 21(a) and material bulk resistivities (𝜌n and 𝜌p) taken from 

specific cell properties. The cell properties used in the following analysis are presented in Table 2. 
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Table 2: Cell properties used in PV cell gradient model 

Cell Property (units) Value 

Chemistry/manufacturer GaSb/JX Crystals 

Length (mm) 16 

Width (mm) 11 

tn (m) 500 

tp (m) 700 

𝜌n (-cm) 0.012 

𝜌p (-cm) 0.08 

N  120 (Li = 130 m) 

n 1 

J0 (A/m2) 3.67 x10-6 

Tcell (K) 300 

 

The circuit described in Figure 21 was analyzed using the software LTspice XVII with a netlist generated 

in MATLAB and cell voltage was swept from 0V to 0.7V in order to obtain I-V curves for the modelled 

PV cells. Figure 22 presents the result of the analysis, along with the modelled illumination profiles. To 

isolate the impact of the intensity changes as well as the spectral shift due to emitter temperature gradients, 

both emitter temperature and illumination intensity were varied independently. Figure 22(c)(e) show the 

modelled I-V curves for a cell illuminated with four different emitter temperature gradients, detailed in 

Figure 22(a). All four profiles will result in the same average black-body emitted power flux, and are used 

to study the response of the PV cell under non-uniformity in both spectrum and intensity. To exclude the 

effects of the spectral shift, Figure 22(b)(f) show the results of the modelling using the illumination profiles 

presented in Figure 22(b). These profiles only vary in intensity, not spectrum, and also all have the same 

black-body emitted power flux. Figure 22(c)(d) are for an ideal cell with an EQE of 1 for all wavelengths, 

and Figure 22(e)(f) are for a cell with the spectral EQE values shown in Figure 8. For all the cases, emission 

is assumed to be black-body with a view factor of 1. Also included in Figure 22(b)-(f) are the maximum 

power point power densities and conversion efficiencies for each modelled profile and cell. 

Based on the modelling presented in Figure 22, temperature gradients appear to have some effect on PV 

cell performance. The impact of the modelled gradients, however, only becomes significantly pronounced 

with extreme variations in either emitter temperature or illumination. In reality, the gradients developed 

within an absorber-emitter are likely to most closely resemble the modelled “linear” temperature gradient, 

which resulted in a 3% absolute (6.5% relative) decrease in PV conversion efficiency for an ideal cell and 

only a 1.5% absolute (4.4% relative) decrease in efficiency for cell incorporating realistic EQE values. 

Although this performance degradation is relatively small, we believe it is significant enough to warrant 

incorporating this gradient model in any absorber-emitter design optimization. 
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Figure 22: (a) Modelled temperature profiles normalized to the average emitted power (T4). (b) 

Modelled optical intensity profiles normalized to the average optical illumination intensity calculated 

at 1800 K. (c) I-V curves for an ideal PV cell illuminated with bandgap of 1.77 μm and constant EQE 

of 1 illuminated with several thermal gradients. (d) I-V curves for the same ideal PV cell illuminated 

by optical intensity gradient. (e) I-V curves for a similar PV cell, accounting for the EQE values 

specified in Figure 8, illuminated with several thermal gradients. (f) I-V curves for the same cell as 

part (e), but illuminated by optical intensity gradients. 

(a) (b) 

(c) (d) 

(e) (f) 
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 SUMMARY 

In this chapter, we investigated whether temperature gradients play an important role in STPV absorber-

emitters design. We performed a scaling analysis to determine what geometric parameters contribute to the 

appearance of gradients in a cavity absorber-emitter, and we developed a numerical model based on 

previous literature that can estimate performance degradation of a cell under non-uniform illumination. 

From the results of this model, we estimated an absolute decrease of up to 3% in PV efficiency was expected 

by illuminating a cell with a significant linear temperature gradient when compared to uniform illumination 

with the same average power flux. Based on these findings, we suggest that incorporating this PV gradient 

model into any future design optimization for absorber-emitters would be useful. 
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Chapter 5 

5. Experimental Setup and Methodology 

 EXPERIMENTAL ABSORBER-EMITTER CAVITIES 

Section 2.3.1 presented a model predicting the photothermal efficiency of an absorber-emitter as a function 

of its effective emittance and area ratio. To validate this model and determine if cavity absorber-emitters 

are a viable option, we fabricated four experimental cavities. The experimental cavity design was guided 

both by the dimension guidelines set by area ratio and available cell geometry for an eventual STPV system 

demonstration. Cavities were manufactured with a triangular profile, shown in Figure 23, to maximize 

external surface area (Aemit) while minimizing wall thickness and cavity length to reduce thermal gradients. 

Two area ratios (24 and 106) were considered with two of the candidate materials from section 3.2, graphite 

and tungsten. 

 

 

Figure 23: Photographs of sample cavities for experiments with two area ratios (AR), 106 and 24, and 

two materials, graphite and tungsten. 

In addition to verifying material viability, the cavity materials selection provided two different surface 

selective emittances to further validate the modelling. Surface spectral emittance was measured at 25°C 

with a UV-VIS and FTIR measurement system from 0.25 to 15 μm, shown in Figure 15, and used to 

calculate effective emittance as a function of cavity temperature.  

  

Graphite Tungsten 

AR = 106 

AR = 24 
1 cm 
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 SOLAR EMULATOR EXPERIMENTAL SETUP 

To simulate a concentrated solar power system, we developed an experimental apparatus capable of testing 

sample cavities with input optical power densities up to 9,000 kW/m2.  The experimental setup was enclosed 

in a vacuum chamber, illustrated in Figure 24, and pumped down to 10-4 Paabs to minimize convective and 

conductive losses through the surrounding gas. Operating in high-vacuum allows for certain heat transfer 

phenomenon to be isolated, and does not necessarily indicate a need for evacuation for the final application. 

The apparatus used a fiber-optic coupled 200 W, 976 nm, laser diode to emulate concentrated sunlight.  

 
Figure 24: Experimental apparatus schematic summarizing major components. 

The laser was collimated and directed into the cavity openings by an aligned mounting structure shown in 

Figure 25. Future experiments will adapt the collimating optics to more closely emulate the converging, 

diffuse light typical of CSP applications. To account for any optical losses through the fiber and collimation 

optics, the beam power was calibrated at several laser power set-points using an optical power meter. The 

cavities were thermally isolated from an alumina silicate (k = 2 W/m-K) support pillar with three zirconia 

ceramic microspheres (dia. 500 μm), resulting in minimal conduction loss (<5%). The pillar also had a 400 

nm sputter deposited gold reflective coating on the top surface measured to have over 95% diffuse 

reflection. A C-type thermocouple was adhered to the center of the cavity surface with a zirconia-based 

adhesive and used to measure the characteristic cavity temperature. Figure 26 presents photographs of the 

experimental mounting apparatus using the tungsten cavity with AR = 24. Additional photographs of the 

entire apparatus are provided in the Appendix. 
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Figure 25: Details of the experimental fixturing (not to scale, scale bar provided for order of 

magnitude dimension reference). 

 

 

Figure 26: Photographs of experimental setup including the tungsten cavity with AR = 24. 
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 EMITTED POWER MEASUREMENTS 

To calculate the photothermal efficiency of the experimental cavities, accurate emitted power 

measurements are necessary. To obtain these measurements, we developed an indirect measurement 

technique using surface emissive properties and temperature. The adhered thermocouple measures surface 

temperature, and experimental photothermal efficiency is then calculated as 

 
𝜂PT, exp =

𝜎𝜀  ̅𝑇cav
4

𝜀abs𝐶𝐺0
∙ 𝐴𝑅 (38) 

where 𝜀 ̅is calculated using Eq. (18), the spectra presented in Figure 15, and additional literature data for 

tungsten emission profiles at different temperatures [25]. 𝜀abs is estimated using a COMSOL simulation 

for a collimated beam entering cavities with the experimental geometry to account for the error in Eq. (23) 

described in Figure 13. 

 EXPERIMENTAL CHALLENGES AND LIMITATIONS 

Throughout the development, fabrication, and testing of our experimental apparatus, there were a number 

of experimental challenges to be overcome. Three significant challenges were the limitations of a collimated 

monochromatic light source when emulating concentration sunlight, the temperature dependence of 

material spectral properties, and radiative parasitic losses from non-unity view factors.  

A collimated light source used in the context of our cavity experiments has a number of limitations when 

compared to diffuse concentrated sunlight. The illumination profile on the interior of the cavities is 

significantly different between a beam incident only on the bottom of the cavity, and a diffuse source with 

significant illumination towards the opening of the cavity. Specifically, realistic performance of a cavity 

with a diffuse source could be worse due to the decrease in cavity absorptivity detailed in Figure 13. 

As a spectrally selective material, tungsten is particularly advantageous for STPV applications. 

Unfortunately, as shown in Figure 15, the spectral emissivity profile is also a function of temperature. The 

emittance of the sample cavities was only measured at room temperature, and high-temperature spectral 

properties had to be estimated with literature data. Any discrepancy between the sample surface finish or 

structure could result in significant errors when comparing experimental values to modelling. Specifically, 

if the sample surface finish is rougher than the surfaces in literature data, emittance could be higher resulting 

in an overprediction of cavity steady-state temperature and photothermal efficiency in the modelling. 

Finally, the top and bottom unused external surfaces of the sample cavities were a potential source of 

parasitic loss. These losses were mitigated through the integration of reflectors within the experimental 

fixturing, but differences in modelled and experimental view factors between emitter surfaces and reflectors 

could make a significant difference in the calculated losses. Specifically, higher experimental parasitic 

losses could result in an overprediction of cavity steady state temperature and photothermal efficiency in 

the modelling. An estimated parasitic loss term can be written as 

 �̇�parasitic = 𝜎(𝜀�̅�,𝑡𝐴𝑡 + 𝜀�̅�,𝑏𝐴𝑏)(𝑇cav
4 − 𝑇∞

4 )𝑇∞ (39) 

where At and Ab represent top and bottom inactive emitter area, clarified in Figure 27. Also, 𝑇cav represents 

cavity temperature, 𝑇∞ represents environmental temperature, and 𝜀�̅�,𝑡 and 𝜀�̅�,𝑏 represent the effective 
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emittances calculated for the top and bottom surfaces respectively. These values account for multiple 

reflections between the emitter surface and reflectors. They can be calculated using a converging geometric 

series as 

 
𝜀�̅� = 𝜀̅ (1 − 𝜀̅

𝐹2𝜌𝑟

1 − 𝐹2(1 − 𝜀)̅
) (40) 

where 𝜌𝑟 represents the reflector reflectance, 𝜀 ̅is material effective emittance at the cavity temperature, and 

F represents the view factor between the surface and reflector. For both top and bottom reflectors, 𝜌𝑟 was 

conservatively estimated at 90%. 

 

 

Figure 27: Schematic of parasitic loss model. 

 

 SUMMARY 

In this chapter, we described the experimental cavity absorber-emitter and apparatus used to validate the 

modelling presented in section 2.3.1. We discussed the rationale behind the selected cavity geometry and 

materials, as well as the selection of solar emulation equipment. We also addressed several important 

challenges and limitations of the experimental setup and how they might have impacted the results. 

𝐴t  

𝐴b  
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Chapter 6 

6. Realizable Improvements Using Cavity Absorber-Emitters 

 MODELLING AND EXPERIMENTAL RESULTS 

Using the experimental apparatus and methodology described in Chapter 5, we performed cavity 

characterization experiments for each of the four candidate cavities at several input optical concentrations. 

The results of these experiments are presented in Figure 28. The modelling results include the estimated 

parasitic loss from section 5.4 as well as the cavity absorptance estimate from section 5.3. For each data 

point, cavity temperature was measured using the adhered thermocouple and photothermal efficiency was 

calculated using Eq. (38). Uncertainty in input concentration includes instrument error as well as two 

standard deviations of the fluctuations in the measured calibration data. Uncertainty in cavity temperature 

accounts for instrument error. Uncertainty in photothermal efficiency is derived from both the concentration 

uncertainty and temperature uncertainty.  

 

Figure 28: (a) - (d) Modeled temperature and photothermal efficiency versus input concentration for 

a tungsten and graphite cavities with area ratios of 24 and 106. Concentration uncertainties include 

instrument error as well as two standard deviations of the fluctuations in the measured calibration 

data. Uncertainty in cavity temperature accounts for instrument error. Uncertainty in photothermal 

efficiency is derived from both the concentration uncertainty and temperature uncertainty. 

(a) (b) 

(c) (d) 
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The modelling and data show relatively good agreement at low temperatures and concentration for all four 

cases. The cavities with an area ratio of 24 deviate at higher temperatures, most likely caused by a parasitic 

loss not accounted for in the modelling. With the smaller cavities, the loss represents a more significant 

portion of the incoming optical power and therefore has a larger contribution to divergence between the 

model and data. Additionally, the discrepancy between modelling and data appears to become relatively 

constant at concentrations higher than 800x, indicative of a radiative loss that scales with the thermal 

emission from the emitter.  

 EXPERIMENTAL ERROR ANALYSIS 

We identified several potential sources of error in the experiment after observing the discrepancy between 

modelled and experimental results from Figure 28(a) and (b). The effects and impacts of the non-idealities 

identified in section 5.4 as well as some additional errors were investigated and quantified. 

6.2.1.  Parasitic radiative losses from cavity inactive area 

The radiative parasitic losses associated with inactive cavity external surface area were accounted for using 

Eqs. (39) and (40), but more significant parasitic loss could account for the discrepancies in Figure 28(a) 

and (b). To investigate this error, the modelled parasitic loss was compared to the worst case scenario of 

unmitigated thermal emission from the inactive area with no reflectors. Even with this conservative case, 

the impact on modelling results was negligible. Figure 29 shows updated versions of Figure 28(a) and (b) 

considering the impact of removing the inactive area reflectors. 

 

Figure 29: Impact of maximum inactive area radiative parasitic loss on agreement between modelled 

and experimental data for a tungsten and graphite cavity with AR = 24. 

From this analysis, the impact of parasitic radiative loss from the cavity inactive area does not contribute 

significantly to the discrepancy between modelling and data. 

6.2.2.  Surface roughness emittance error 

A significant potential source of error, as addressed in section 5.4, is the surface roughness of the tungsten 

cavity as we used literature emissivity data for a smooth surface. To investigate the impact of this roughness 
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on results, we performed a sensitivity analysis using an experimentally and theoretically demonstrated 

relationship between surface roughness and metallic surface reflectance [29] 

where 𝜌r and 𝜌p are the reflectances of a rough and polished surface, respectively, σ represents surface RMS 

feature size, and λ represents the photon wavelength. In addition to any initially present surface roughness, 

evaporation or oxidation of the surface could contribute to additional roughening throughout the 

experiment. Figure 30 shows UV-Vis measurements for the same surface before and after the experiment 

was run at temperatures up to 1600 K. Also shown is the relative increase in emittance as well as the 

predicted roughness change throughout the experiment using Eq. (41). 

 

Figure 30: Tungsten cavity surface roughness before and after experiment and predicted final surface 

roughness. 

Based on this comparison, the final surface roughness is estimated at around 0.02 μm higher than initial 

surface roughness. Roughening may occur during the experiment, but the initial tungsten cavity roughness 

was specified by the manufacturer at less than 0.05 μm. Utilizing Eq. (41), the plot from Figure 28(a) is 

reproduced in Figure 31 accounting for a surface roughness of 0.02, 0.05, and 0.07 μm, the worst case 

scenario.  

 

 
𝜌r = 𝜌pexp ⌊− (

4𝜋𝜎

𝜆
)

2

⌋ (41) 
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Figure 31: Impact of surface roughness on agreement between modelled and experimental data for 

a tungsten cavity with AR = 24. Surface feature sizes of 0.02, 0.05, and 0.07 μm were considered. 

From this analysis, surface roughness can significantly contribute to the discrepancy observed between the 

model and experimental data. Unfortunately, since measured emittance data is used for the graphite cavity 

analysis, the same surface roughness contribution cannot be expected. 

6.2.3.  Thermocouple temperature gradient error 

Errors in the cavity temperature measurement due to thermocouple thermal gradients were also 

investigated. Local cooling of the thermocouple adhesion point could result from both the adhesive and 

conduction through the thermocouple wires. To account for this, we developed a COMSOL model that 

predicts the temperature at the measurement location and compares it to a more characteristic temperature 

point. Figure 32 shows a visualization of the modelled cavity, 1 mm radius glue ball semi-sphere, and 100 

μm diameter combined thermocouple wire. The glue was estimated to have a thermal conductivity of 27 

W/m-K and an emittance of 0.4, based on conservative estimates for similar ceramic materials. The C-type 

σ = 0.02 μm 

σ = 0.05 μm 

σ = 0.07 μm 

σ = 0 μm (smooth) 
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thermocouple wire was assumed to have an emittance of 1 and a thermal conductivity of 70 W/m-K. The 

input optical power was modelled as a uniform heat flux on the interior wall. 

 

Figure 32: Visualization of temperature gradients within the cavity, glue ball, and thermocouple. The 

thermocouple measurement and reference points are also indicated. 

The COMSOL model was run with input optical concentrations ranging from 40 to 4500 kW/m2 with 

material properties for both a graphite and tungsten cavity. Results of the analysis are shown in Figure 33 

including both the absolute temperature error, as well as the relative error at several average cavity 

temperatures. 

 

Figure 33: Results from COMSOL analysis indicated absolute and relative error in thermocouple 

reading due to thermal gradients within the glue ball and thermocouple. 
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The maximum thermocouple error expected in the actual experiment was approximately 2%, corresponding 

to an average cavity temperature of 1600 K. Although this does not address the discrepancy completely, an 

additional temperature reading error of 2% has been included in the remainder of the cases considered in 

this section. 

6.2.4.  Modelled cavity absorptance error 

Another potential source of the discrepancy could arise if the absorptance of the cavity opening was less 

than the modelled estimate. This could result in a smaller portion of the laser power being absorbed and 

thereby a lower cavity temperature than predicted. The absorptance of the tungsten cavity with AR=24 was 

measured using the UV-Vis system and is shown compared to the modelled absorptance based on modelling 

and material emissive properties in Figure 34. The absorptance of both graphite cavities is very close to 1 

due to the near black material optical properties, so this error should not affect them. 

 

Figure 34: Comparison of modelled and measured cavity absorptance for a tungsten cavity with  

AR = 24. A relative error of roughly 5% was observed throughout the measured data range. 

Accounting for the observed 5% error in absorptance, Figure 35 shows how the results change for the 

tungsten cavity with an area ratio of 24. The impact of this error is minimal.  
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Figure 35: Impact of absorptance error on agreement between modelled and experimental data for 

a tungsten cavity with AR = 24. 

 

6.2.5.  Hemispherical versus normal emittance measurement error 

Discrepancies between experimental and modelled surface properties due to roughness have been 

discussed, but difference can also arise when considering normal versus hemispherical emittance. To 

investigate the impact of this difference, literature data for hemispherical and normal emission for a 

polished tungsten surface is shown in Figure 36 along with the absolute difference between the two.  

 

Figure 36: Comparison of literature data on the difference between hemispherical and normal 

emission for a polished tungsten surface [25]. 

In the temperature range considered for this experiment, 400 K to 1600 K, the absolute difference is relative 

constant at around 0.02. The results of increasing the emittance used in the model by 0.02 when comparing 
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to experimental data is shown in Figure 37. Unfortunately, this increase does not impact the data-model 

discrepancy for the tungsten cavity significantly. 

 

Figure 37: Impact of implementing hemispherical emittance correction factor on agreement between 

modelled and experimental data for a tungsten cavity with AR = 24.  

There also exist discrepancies between the measured graphite emittance and literature data for 

hemispherical emission. These two emittance spectra are compared in Figure 38, indicating a significant 

discrepancy at long wavelengths. 

 

Figure 38: Comparison of literature and measured emissivity data for graphite surfaces. Literature 

data is for hemispherical emission [30] and measured data is obtained using normal reflectance 

measurements. 

Figure 39 shows an updated plot using the hemispherical literature data [30], indicating much better 

agreement between data and modelling. 
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Figure 39: Impact of implementing hemispherical emittance data on agreement between modelled 

and experimental data for a graphite cavity with AR = 24. 

To better understand how hemispherical versus normal emittance data could impact the results, further UV-

Vis and FTIR measurements will be taken at various incidence angles to more accurately characterize the 

surface properties. Particularly for the graphite cavities, however, this error seems to be a significant 

contributor to the observed model and data discrepancy. 

6.2.6.  Collimating lens contamination error 

The final error considered was potential lens contamination from evaporating tungsten or tungsten oxides. 

To investigate this error, the solar emulator system was calibrated before and after the experiments and less 

than 5% difference in measured power was observed. A 5% change in power would result in roughly a 

1.25% change in steady state temperature due to the T4 relation between thermal radiation and temperature. 

Due to this relatively small change, lens contamination was not expected to be a major error. 

6.2.7.  Error analysis summary and next steps 

In this section, we quantitatively analysed several errors to account for the discrepancy between modelling 

and experimental data observed with cavities of AR = 24. For the tungsten cavity, surface roughness seemed 

to be the most likely contributor to the discrepancy, while for the graphite cavity, measured surface 

emittance errors seemed most important.  

To further investigate the errors in the experimental results, we plan to perform several additional tests. The 

optical properties of both materials will be measured at a variety of incident light angles to account for any 

discrepancies resulting from using normal emissivity data. Additionally, we plan to take AFM and 

profilometer measurements of the surface feature size to determine if roughness could be playing a part in 

emittance errors. By accounting for these sources of error, we hope to demonstrate better agreement 

between the modelling and experimental results for the candidate absorber-emitter cavities. 
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 COMBINING SELECTIVE EMITTERS WITH CAVITY ABSORBER-EMITTERS 

From the modelling presented in section 2.3.1 and demonstrated with experiments, increasing area ratio 

can significantly increase photothermal efficiency without impacting PV efficiency. To evaluate what the 

effect of this increase in a real system would be, we analyzed the device presented by Bierman et al. [10] 

and the reported losses. Figure 40 compares the losses from past work (a) with the predicted losses of a 

system integrating a cavity absorber with an AR of 35, (b). This area ratio was chosen as the effect of AR 

on photothermal efficiency begins to decrease soon after this value. Additionally, this AR enables operation 

at 1800 K with a concentration ratio of 3600x. A system capable of achieving this concentration has been 

previously demonstrated by Vlasov et al. [12]. The presented device implemented a planar absorber-emitter 

with an area ratio of 12 and reported a photothermal efficiency of 68%. This value agrees quite well with 

the predicted photothermal efficiency based on the modelling from section 2.3.1 and an area ratio of 12. By 

increasing the area ratio to 35, however, we estimate a photothermal efficiency of 90%. Scaling the re-

emission losses from Bierman et al. and retaining the demonstrated PV efficiency, reflective loss, and 

parasitic loss, we predict that the system efficiency could be increased to 9%. 

 
Figure 40: Comparison of (a) past demonstrated STPV system [10] and (b) predicted performance 

improvements through the integration of a cavity-type absorber-emitter with AR = 35. 

 SUMMARY 

In this chapter, we presented the results of the cavity characterization experiments described in Chapter 5 

and discuss some of the discrepancies between the measured values and modelling. We also evaluated how 

increasing the area ratio and switching to a cavity-type absorber emitter could impact previously 

demonstrated STPV system performance. We predicted an improvement from 6.8% system efficiency to 

9% photothermal efficiency by solely increasing the area ratio of the absorber-emitter. 

(a) (b) 

AR = 12 

η
PT

 = 68% 

η
STPV

 = 6.8% 

AR = 35 

η
PT

 = 90% 

η
STPV

 = 9% 



59 

 

Chapter 7 

7. Opportunities and Future Work in STPVs 

 CONCLUSIONS ON STPV DEVICE DESIGN 

This thesis explored whether manipulating absorber-emitter geometric parameters has the potential to 

improve STPV system efficiency. We predicted and experimentally demonstrated that by increasing area 

ratio, the efficiency of converting of incoming solar radiation to emitted radiation could be significantly 

improved. Additionally, we explored some practical considerations for absorber-emitter design and 

proposed a cavity-type geometry to address some of these issues. From our findings, incorporating cavity 

absorber-emitters with high area ratios in STPV systems can result in performance enhancements and 

should be considered in future works and real STPV devices.  

The experiments performed for this work also highlight a number of challenges in realizing a practical 

STPV device. Operating at very high temperatures (~1800 K) introduces oxidation and insulation 

challenges that can seriously restrict device feasibility. In our experiments, heating the cavities to 

temperatures higher than 1600 K was challenging due to material oxidation and outgassing. The further 

development of quality low-bandgap cell chemistries that enables operation at lower temperatures without 

sacrificing performance could help significantly on this front.  

Another practical challenge highlighted by this investigation into geometric optimization of absorber-

emitters is the relationship between area ratio and required solar concentration ratio. High concentration 

ratios (>1000x) can be challenging and expensive to achieve, limiting STPV systems with high area ratios 

to niche applications (i.e. spacecraft). 

Finally, an important component of STPV devices not addressed in this thesis is the spectral selectivity side 

of the spectral converter. There is a significant body of literature on various techniques for selectivity, each 

with benefits and disadvantages. Developing novel selective emitters, in particular, has been a popular 

research topic as PV inefficiency accounts for the majority of system losses. Unfortunately, few selective 

emitters have been demonstrated that can operate at the high temperatures necessary for efficiency PV 

conversion for the long periods of time necessary for an economical power conversion system.  

 PROPOSED FUTURE WORK 

7.2.1.  Optimization of spectral selectivity method 

Our approach to STPV performance improvement focused on absorber-emitter design, but poor spectral 

selectivity is arguably an even more significant detractor from high system efficiencies. Figure 41 illustrates 

three promising avenues for implementing this selective behavior: selective emitters, optical filters, and 

back surface reflectors. When designing an optimal STPV system, selecting the ideal spectrally selectivity 

technique is critical. We would like to perform a thorough theoretical and experimental analysis of existing 

technologies to determine the ideal selective emitter technique for a real STPV device. This analysis would 

consider performance, maximum operating temperature, durability/lifetime, cost and other system design 

parameters.  
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Figure 41: Illustration of the major operating principle of three promising spectral selectivity 

techniques: (a) selective emitters, (b) optical filters, and (c) cell back surface reflectors/mirrors. 

Yellow arrows represent PV convertible photons, while red arrows represent low-energy photons. 

After choosing a selectivity technique, the goal would be to demonstrate a world-record STPV system 

incorporating our geometric absorber-emitter design guidelines and optimal state-of-the-art selectivity 

approach.  

7.2.2.  PV gradient model validation 

In this thesis, we proposed a numerical model to predict PV cell performance degradation due to uneven 

illumination. We would like to validate the modelling through a series of experiments on several cells with 

differing emitter temperature and illumination profiles. We believe that validation of our approach could 

present a methodology for quantitatively incorporating thermal gradients into the absorber-emitter design 

process. Similar approaches have been presented for concentrated PV systems [28] and PV cell contact 

finger spacing optimization [27], but the effects of gradients in thermophotovoltaic applications are still 

relatively unstudied. 

7.2.3.  Integrated thermal energy storage 

STPV systems have the potential to exceed traditional PV conversion efficiencies due to the incorporated 

spectral converter component. Unfortunately, past demonstrations of real STPV devices have highlighted 

the numerous opportunities for loss that are inherent to these more complex systems. With the current low-

cost and reasonable efficiency of mass produced PV cells, STPVs will have a hard time competing on a 

cost per watt basis with traditional photovoltaics. The thermalization that occurs during the spectral 

conversion process, however, introduces an opportunity for low-cost thermal storage. Silicon, for example, 

melts at 1697 K and has an extremely high latent heat of fusion (1800 J/g). It is also one of the most 

prevalent elements in the earth’s crust and is very inexpensive at $2/kg or only $4/kWht [5]. STPV devices 

utilizing GaSb PV cells operate at the ideal temperature to take advantage of this phase change thermal 

storage medium. We plan to investigate how thermal storage media like silicon could be combined with the 

cavity absorber-emitters explored in this thesis. Figure 42 illustrates one such configuration including a 

pool of phase-change medium enabling 24-hour electricity generation from a solar powered system.  
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Figure 42: Proposed STPV cavity design integrating high-temperature phase change thermal storage 

medium. 
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Appendix 

Photographs of vacuum chamber and laser system 
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