
cquirion
Pencil


cquirion
Pencil

cquirion
Pencil

cquirion
Pencil

cquirion
Pencil

cquirion
Pencil



 2 

 
Transient Liquid-Phase Infiltration of a Powder-Metal Skeleton 

 
by 

 
Adam Michael Lorenz 

 
 

Submitted to the Department of Mechanical Engineering on May 24, 2002 
in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Mechanical Engineering 
 
 
ABSTRACT 

 
Transient Liquid-Phase Infiltration (TLI) is a new method for densifying a powder-metal skeleton 
that produces a final part of homogeneous composition without significant dimensional change, 
unlike traditional infiltration and full-density sintering.  Fabrication of direct metal parts with 
complex geometry is possible using TLI in conjunction with Solid Freeform Fabrication (SFF) 
processes such as Three-Dimensional Printing, which produce net-shape skeletons of powdered 
metal directly from CAD models.  The infiltrant used in TLI is typically composed of the 
skeleton material plus a melting point depressant in order to facilitate homogenization after the 
liquid metal fills the void space.  Parts over 20 cm tall with final compositions of Ni−4wt%Si and 
Ni−40wt%Cu were made by TLI from powder skeletons of pure nickel.  Tensile tests after HIP 
treatment compared favorably with cast material of the same composition.   
 
A basic understanding of the materials system requirements for TLI and the role of various 
parameters was developed using nickel−silicon and nickel−copper as test cases.  Upon 
introduction of the liquid infiltrant to the skeleton, the melting point depressant begins to diffuse 
into the skeleton causing isothermal solidification of the infiltrant.  This solidification chokes the 
flow of liquid and can limit the infiltration distance.  A capillary-driven fluid flow model was 
developed to predict the infiltration rate and freeze-off limit based on a variable permeability.  
The rate of diffusional solidification was measured via quenching experiments, compared to 
theory and simulations, and subsequently used to define the change in permeability of the 
skeleton.  For various skeletons of powder sizes ranging from 60 to 300 µm, the infiltration rate 
was measured via mass increase and compared to the flow model.  The predicted horizontal 
infiltration freeze-off limits were proportional to the square root of d 3γ / µDβ 2 where d is the 
average powder diameter, γ and µ are the infiltrant surface tension and viscosity, D is the solid 
diffusivity, and β is a function of the solidus and liquidus concentrations.  These relations can be 
used for selection of processing parameters and for development of new material systems. 
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Chapter 1: Introduction  

1.1 Background 

Over the past decade, the ability to manufacture complex-shaped metal parts has been 

significantly enhanced through synergy between the fields of Powder Metallurgy (PM) and Solid 

Freeform Fabrication (SFF).  Formerly, the geometric complexity of PM parts was limited by the 

traditional pressing of the powder into a mold.  Likewise, the usefulness of parts made by SFF 

(also called Rapid Prototyping) was limited by their material composition. The adaptation of SFF 

processes such as Three-Dimensional Printing to create net-shape metal parts from powder has 

freed manufacturers from prior geometric constraints and enabled the design of parts with 

superior functionality.  A prime example is the fabrication of tooling with cooling channels that 

are conformal to the mold surface for enhanced heat transfer.1  Considerable opportunities exist in 

the direct fabrication of metal parts by SFF, but current materials do not satisfy the requirements 

for many potential applications. 

 

PM-based SFF processes typically produce a skeleton of the final part that is only ~60% dense, 

with void space remaining between the powder particles.  The materials challenge lies in the 

further processing of the part skeleton to achieve full density and the desired mechanical 

properties.  In practice, this is accomplished either by full-density sintering or by liquid 

infiltration of the void space with another metal.  Examples of each method are shown in Figure 

1.1 below. 

 

    

Figure 1.1: Densification of metal powder skeletons made by Three-Dimensional Printing.  
Left-hand figure shows stainless steel parts sintered to full density in front of the initial 
skeletons to illustrate shrinkage.  Right-hand figure shows a larger (~15 cm) part skeleton 
before and after infiltration with bronze. 
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Sintering powder to full density consists of heating to near its melting temperature, causing the 

powder to consolidate by thermally activated mass transport processes.  Since no additional 

material is added during densification, the final part’s material composition matches the initial 

powder composition and materials choice is very good.  However, a skeleton undergoes 

significant dimensional change of ~15% during full-density sintering. For this reason, it is 

typically only used for smaller (< 5 cm on a side) parts, for which shrinkage is uniform and 

distortion is not a problem. 

 

Capillary infiltration of a powder skeleton with liquid metal fills the void space with negligible 

dimensional change, making this the method of choice for larger parts.  The final material 

composition in this case is a heterogeneous mixture of the powder material and the lower melting 

temperature infiltrant.  The composite material often has poor corrosion resistance and 

machinability and is not familiar to part designers. 

 

This thesis describes a new method for densification of powder-metal skeletons without 

significant dimensional change, in contrast to full-density sintering, and that achieves a 

homogeneous final part composition, in contrast to traditional infiltration.  This capability allows 

Solid Freeform Fabrication of large metal parts in an extended range of materials.  In particular, 

the potential to match the final part composition to existing commercial alloys will prove useful 

for critical applications (structural, aerospace, military) which require material certification. 

 

1.2 Description of Transient Liquid-Phase Infiltration 

Transient Liquid-Phase Infiltration (TLI) uses an infiltrant material that is similar in composition 

to the powder skeleton and also contains a melting point depressant such that the initial skeleton 

filled with infiltrant is not at equilibrium.  Figure 1.2 provides an example using a generic 

equilibrium phase diagram.  The powder skeleton in this case is pure metal A, with an alloy of 

metal A and a melting point depressant (MPD) used as an infiltrant.  At the infiltration 

temperature shown, Ti, the liquid infiltrant fills the void space of the skeleton achieving an 

average bulk composition that is not in equilibrium.  The difference in MPD concentration 

between the infiltrant and skeleton causes solidification of the infiltrant as the MPD diffuses into 

the skeleton.  This isothermal solidification is followed by homogenization and results in a final 

part composition equal to the average bulk composition after infiltration.  
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Figure 1.2: Generic equilibrium phase diagram with labeled components of TLI. 

 

 

 

 

 

Figure 1.3: Schematic illustration of the stages of Transient Liquid-Phase Infiltration. 

 

A schematic illustration of a powder skeleton is shown in Figure 1.3 followed by the three main 

stages in transient liquid-phase infiltration.  The TLI process owes its name to the liquid-to-solid 

phase transition of the infiltrant during the diffusional solidification stage.  The time scale of each 

stage can vary considerably under different conditions, but ideally the infiltration occurs quickly 

so that the liquid fills the part before the infiltrant solidifies.  The diffusion should be slow 

enough to prevent freeze-off, but fast enough to allow homogenization in a reasonable time 

period.  The study of how each of these stages is influenced by the materials, processing 

conditions and part geometry constitutes a major part of this thesis. 

 

1.3 Important issues for TLI  

Outlined below are several important issues or challenges which must be understood for 

successful development of TLI.  Chapters 2 and 3 present the theoretical background and 

experimental work, respectively, that deal with the materials challenges.  The issue of infiltrant 

freeze-off is presented separately in Chapters 4 and 5, with a model of fluid flow in porous media 

presented first, followed by comparison with experiments and analysis.   
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1.3.1 Materials selection 

The TLI concept is generally applicable to a high melting temperature powder material and a 

lower melting temperature infiltrant material that combine to form a homogeneous alloy.  For 

simplicity, the experimental work in this thesis uses two-component systems of a pure metal 

powder skeleton and a single element as a melting point depressant.  The understanding gained 

from these systems can then be applied to more complex and useful materials systems.  For 

complete homogenization, the final part composition must lie in a single equilibrium phase.  In 

Figure 1.2, the high solubility of MPD in the α phase allows the final part to homogenize into 

solid solution.  If the bulk composition were to lie in the two-phase field between the solid and 

liquid, then some liquid would remain at equilibrium until the part was cooled.  This could 

actually provide an advantage since the liquid would never completely freeze-off, but the final 

material resulting from this partial TLI would not be completely homogeneous. 

 

Based on a desired final material composition, skeleton and infiltrant compositions can be chosen 

based on the volume fraction of the skeleton.  Since it is generally desirable to minimize the 

infiltration temperature and maximize the melting temperature of the skeleton, the MPD is 

concentrated in the infiltrant.  For a skeleton containing no MPD with 40% void fraction, the 

concentration of MPD in the infiltrant should be ~2.5 times the desired final concentration, 

varying slightly if the skeleton and infiltrant densities are different.  The infiltrant composition 

determines the minimum temperature at which liquid infiltration can occur. 

 

Diffusivity of the MPD in the skeleton material plays an obvious role in how quickly 

solidification of the infiltrant occurs as well as how long it takes before the part is homogenized.  

The width of the two-phase field between the solid and liquid also plays a significant role in 

determining the solidification rate.  These factors are largely established by the choice of 

materials, but also vary with temperature and the presence of other alloying elements.  For a 

given solidification rate, the powder size and therefore the length scale of diffusion can be 

selected to adjust the solidification and homogenization time.  

 

A nickel-based materials system was chosen for initial development of the TLI concept because 

transient liquid-phase nickel brazing alloys are commonly used in the aerospace industry and 

nickel alloys are of interest in some DoD applications.  Silicon was chosen as the melting point 

depressant because it has a higher solubility and lower diffusivity than boron and phosphorous, 
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the other common melting point depressant in nickel brazing alloys.  Some experiments were also 

conducted using pure copper as an infiltrant into similar skeletons of pure nickel powder.  In this 

case, copper serves as the MPD and the concentration difference is more extreme.  This was done 

primarily as an additional test case for the model of infiltration rate with simultaneous 

solidification. 

 

1.3.2 Infiltration distance limits due to freeze-off 

A fundamental challenge of transient liquid-phase infiltration is that the liquid infiltrant begins to 

undergo diffusional solidification as soon as it contacts the skeleton.  If this freezing occurs too 

quickly, it can prevent the liquid from filling the entire skeleton, as illustrated in Figure 1.4.  The 

sequence of images illustrates how the solidification chokes off the flow of liquid during 

infiltration, with the infiltrant supply completely cut off in the third image.  This maximum 

penetration distance is referred to as the infiltration distance limit for TLI, which for the vertical 

case shown is corresponds to an infiltration height limit.  A TLI infiltration rate model is 

presented in Chapter 4 based on fluid flow through a powder skeleton with changing 

permeability.  Experimental verification of this model is then presented in Chapter 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Infiltration of a powder skeleton with simultaneous diffusional solidification 
(progression from left to right) can cause premature freeze-off, limiting the distance the 
liquid penetrates into the skeleton. 

Infiltrant Infiltrant Infiltrant 
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1.3.3 Erosion 

In TLI, the same mass transport that causes diffusional solidification when MPD moves into the 

skeleton can also cause erosion if skeleton material is absorbed into the liquid.  Due to the high 

diffusivity of liquid metals, dissolution tends to occur very quickly if the liquid is not in 

equilibrium with the solid material.  The infiltrant can be supplied at its equilibrium liquidus 

composition for the infiltration temperature to eliminate the initial propensity to absorb solid.  

However, subsequent heat generation during the exothermic solidification can offset this initial 

equilibrium.  More detailed discussion of erosion is presented in Chapter 2 with corresponding 

experimental methods and observations in Chapter 3.  

 

1.3.4 Uniformity of composition throughout the part 

Due to simultaneous microscopic mass transport and bulk fluid transport during TLI, the 

possibility exists that different regions of a part could have variable composition.  This would 

occur if the liquid changed composition while flowing through the part.  If liquid infiltrant was 

supplied at an initial MPD concentration and the concentration was depleted as the liquid flowed 

through the part, the remote regions farthest from the point of liquid entry would have a lower 

bulk concentration of MPD.  This problem is discussed in more detail in Chapter 2 and is easily 

addressed for binary alloys.  Ensuring uniform bulk composition in ternary and higher alloys is 

presented briefly, but can be much more complicated and is generally left for further research. 

 

1.3.5 Final microstructure and mechanical properties  

In addition to material composition, many other aspects of microstructure play an important role 

in determining mechanical properties.  Just as a forged part and a cast part of identical 

composition will not behave the same, the properties of a part made by TLI will depend on the 

grain size, porosity level and homogeneity of the material.  Chapter 3 covers the homogenization 

and resulting microstructure of parts made by TLI including tensile test comparisons to cast parts 

of identical composition. 

 

1.4 Review of related research 

Two prior studies from the early 1980’s attempted TLI in iron-based materials systems to create a 

useful steel part.  Thorsen et al 2 was reasonably successful in infiltrating a sintered steel skeleton 

with a Fe-C-P alloy, but an interconnected network of phosphides resulted in a very brittle final 
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part.  Banerjee et al 3 chose to rely on carbon as the primary MPD and used cast iron to infiltrate 

compacts of pure iron powder.  This was met with limited success due to the high diffusivity of 

carbon and subsequently fast freeze-off.  In their experimental work using various powders in the 

size range of ~100 µm, less than 1 cm of liquid penetration was achieved. 

 

This thesis attempts to explain TLI in terms of fundamental physical concepts and well-defined 

theory.  Chapters 2 and 4 provide considerable background in diffusional solidification and flow 

through porous media in support of this goal.  The same physical concepts play a similar role in 

the closely related fields of research described below.  Review of these research areas was 

beneficial in understanding the physics of transient liquid-phase infiltration. 

 

The flow of liquid into a medium during solidification occurs in many processes, such as forcing 

liquid into a cold preform in the manufacture of metal-matrix composites and even in the feeding 

of liquid from risers in traditional casting.  In these cases the solidification is due to heat flow 

rather than mass transport, but the effect on fluid flow is the same.  Flemings4 discusses how 

interdendritic liquid flow in casting can be compared to flow through porous media.  A more 

closely related example is the reactive infiltration of liquid silicon into a porous carbon preform.  

Messner and Chiang5 modeled the flow into a porous skeleton with variable permeability to 

determine the maximum penetration distance.  The permeability in this case was estimated using 

a simpler model based on effective pore radius that decreased with time, but they presented 

similar infiltration rate curves where the height is truncated due to the freezing of the liquid.  The 

silicon carbide formation is highly exothermic and is dominated by a solution−reprecipitation 

mechanism.6  This required a different freezing model than the diffusional solidification 

mechanism controlling the motion of the solid/liquid interface for TLI.  Further research with 

SiC−metal systems addresses the compositional variation throughout an infiltrated part that can 

occur in ternary systems.7 

 

Transient liquid-phase brazing is commonly used to repair cracks and bond materials together.  

This traditional process involves the similar mechanism of a melting point depressant diffusing 

into a base material and undergoing isothermal solidification.  Narrow gaps are necessary for the 

nickel brazing alloys to fill the capillary channel and solidify in a reasonable amount of time.  The 

solidification time is determined by the diffusion of the melting point depressant into the base 

metal, and gaps wider than ~50 µm would result in excessively long solidification times.  Filling 

larger gaps with powder similar to the base material allows the liquid brazing alloy to wick into 



 16 

these larger gaps and solidify faster.  These wide-gap brazing8 techniques have been developed to 

allow brazing of gaps in excess of 100 µm. 

 

Sintering of powder is often done above the melting point of some of the constituents, such that 

presence of liquid aids in the consolidation of the powder compact.9,10  This liquid-phase sintering 

can either involve pre-alloyed powder with a wide freezing range or a mixture of different 

powders, with the sintering temperature above the melting temperature of one of the constituent 

powders.  In both cases, liquid of one composition surrounds the remaining solid particles.  For 

some materials, the liquid phase is transient and the diffusion of a MPD into the solid causes 

isothermal solidification.11  These cases involve similar mechanisms for the homogenization of 

the final material. 
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Chapter 2: Diffusional Solidification Theory 

2.1 Solidification theory by mass transport 

2.1.1 Fick’s laws and diffusivity 

Mass transport resulting from a one-dimensional concentration gradient within a material can be 

described by Fick’s first law of diffusion: 

x
C

DJ A
AA ∂

∂
−=  (2.1) 

where JA is the net flux of atoms per unit area, CA is the concentration of metal A in atoms or 

moles per unit volume, and DA is the intrinsic diffusion coefficient of the metal A in the given 

material.  In a binary alloy of two metals A and B with a gradient in concentration, this mass 

transport results in a change in concentration over time at each position given by Fick’s second 

law of diffusion: 

x
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D
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C AA

∂
∂

∂
∂

=
∂

∂ ~  (2.2) 

where D~  is the chemical diffusion coefficient representing the interdiffusion of the two metals.12  

It varies with material composition, but is often assumed constant for small concentration 

differences. The chemical diffusion coefficient follows an Arrhenius temperature dependence and 

is typically reported in literature for a given composition range in terms of a frequency factor Do 

and an activation energy Q.   

RT
Q

o eDD
−

⋅=
~  (2.3) 

where R is the universal gas constant, 8.314 J-mol-1-K-1, and T is the temperature in degrees 

Kelvin.  For diffusion of silicon in pure nickel, Do = 1.5 cm2/s and Q = 258.3 kJ/mol,13 resulting 

in D~  = 8.35e-14 m2/s at 1185°C.  This diffusivity can be reasonably applied to the fairly narrow 

concentration range of interest for Ni−Si infiltrations.  For wider ranges in concentration, this 

assumption may not be valid.  The interdiffusion of nickel and copper provides an example of a 

system in which the concentration dependence of D~  is more significant and is discussed in more 

detail in section 2.2.2. 
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2.1.2 Diffusional solidification and solution of the moving-interface problem 

The isothermal solidification of infiltrant can be characterized by the motion of the solid-liquid 

interface resulting from diffusion. The interface motion is determined using the Stefan condition, 

applying conservation of mass at the interface in conjunction with Fick’s first law14: 

 ( )
ls Xx

liquid
Xx

solidsl dx
dCD

dx
dCD

dt
dXCC

==

⋅−⋅=⋅−
~~  (2.4) 

where Cl and Cs are the equilibrium liquidus and solidus concentrations, X is the position of the 

interface, and the right hand terms are the mass flux due to the concentration gradient on the solid 

and liquid sides of the interface, respectively.  Generation of heat could influence the liquidus and 

solidus concentrations as well as the diffusivities, but is ignored for the isothermal case presented 

here.  The self-diffusivity in both liquid Ni and liquid Cu at their respective melting points is  

~4e-9 m2/s, 15 and the diffusivity of smaller solute atoms is likely to be even higher.  Since the 

liquid diffusivity is four orders of magnitude higher than the solid, the interface motion can 

typically be separated into two distinct regimes.  For a brief initial dissolution period, the right 

hand side of equation 2.4 is dominated by the second term containing liquidD~  and the interface 

moves into the solid until all of the liquid reaches its equilibrium liquidus composition.  Once the 

gradient in the liquid reaches zero, the interface begins to move back into the liquid and the same 

term can be neglected during the subsequent diffusional solidification since there is no mass flux 

to the interface from the liquid.  To prevent erosion, as discussed further in Chapter 3, the 

infiltrant is typically supplied at its equilibrium liquidus concentration so the initial dissolution 

period is avoided.  The corresponding initial conditions are illustrated by the solid line in Figure 

2.1.  Specifically, the initial conditions are C=Co in the solid, C=Cl in the liquid and initial 

interface position X=0 and the concentration is that of the melting point depressant. 
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Figure 2.1: Schematic of the moving interface problem showing the concentration profile 
for a given time after interface has moved to X(t). 

 

The dashed line represents the concentration profile after some diffusional solidification has 

occurred and the interface has moved to position X(t).  Conservation of mass requires that the 

solute taken from the liquid (the area above the dashed line and to the right of the initial interface) 

is absorbed into the initial solid (the area below the dashed line and to the left of the initial 

interface), so the two areas must be equal.  The concentration profile is found by application of 

Fick’s second law in the solid and can be satisfied by a solution of the form: 











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xBAtxC ~4
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where A and B are constants to be determined by the following boundary conditions 
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To satisfy the second boundary condition, the argument of the error function must be a constant, 

therefore X(t) must be directly proportional to the denominator. 

( ) tDtX ~4⋅= β  (2.6) 

where the constant β will be determined by mass conservation at the moving interface.  The 

solution for the concentration profile for the given conditions is obtained using the following 

constants: 
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The derivatives of concentration and interface position are therefore: 
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and can be substituted into equation 2.4 to solve for β.  Once again, since the liquid is all at its 

equilibrium concentration, the flux is determined solely by the concentration gradient in the solid 

at the interface. 
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Rearrangement and cancellation of terms allows β to be determined directly from the given 

concentration ratio.14,16 

( )( ) ( )
sl

os
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−
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=⋅+⋅⋅ 2experf1 βββπ  (2.9)  

The dependence of β on the concentration ratio is shown graphically in Figure 2.2. 
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Figure 2.2: Graphical representation of equation 2.9 illustrating the dependence of the 
solidification rate coefficient β on the given concentration ratio. 

 

2.1.3 Material system characteristics controlling solidification rate 

Equilibrium phase diagrams for both Ni−Si and Cu−Ni are presented in Figure 2.3 for reference 

in discussing how β varies with MPD solubility and the width of the two-phase field.  For a pure 

nickel skeleton, the numerator is equal to the maximum solubility and represents the scale of the 

concentration gradient.  A steeper gradient provides greater driving force for diffusion and 

therefore a faster solidification rate.  The denominator of the concentration ratio is equal to the 

width of the two-phase field between solid and liquid.  For a given solidification distance, a larger 

difference between the liquidus and solidus corresponds to a greater amount of MPD that must be 

absorbed into the skeleton.  Similarly, for a fixed diffusion rate, a wider two-phase field will slow 

down the solidification.  
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Figure 2.3: Equilibrium phase diagrams17 for Ni−Si and Ni−Cu . 
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The Ni−Si phase diagram demonstrates the case when the partition coefficient, defined as 

ls CCk ≡ , is relatively constant with temperature.  For an initial skeleton concentration of  

Co=0% Si, the concentration ratio of equation 2.9 can be expressed solely as a function of k 

because the solidus and liquidus are approximately linear. 

 
11

1

−
=

−
−

k
CC
CC

sl

os  (2.10) 

The Cu−Ni phase diagram demonstrates the case when the concentration ratio can vary 

significantly with temperature because the denominator approaches zero at the melting point of 

copper.  Table 2.1 shows how the resulting value of β decreases as the infiltration temperature 

increases.  Since the solidification rate is proportional to D~β  and diffusivity generally 

increases with temperature, selecting an optimum infiltration temperature in this system can 

minimize the solidification rate and prevent infiltrant freeze-off.  A further complication in the 

copper-nickel system is that the diffusivity is strongly dependent on composition as well as 

temperature.  The interdiffusion coefficients listed reflect the changing solidus concentration and 

represent the effective diffusivity that controls the solidification rate.  These values were 

determined using a numerical simulation discussed in greater detail in section 2.2.2. 
 

Infiltrant 
 

Temp  
(°C) 

Cs  
(at %) 

Cl - Cs 

(at %) 
β 
 

D~  

(10-13 m2/s) 

( )sec100~4 ⋅Dβ  
(µm) 

Ni−Si 

1160 
1200 
1250 
1300 

15.0 (Si) 
13.0 
10.3 
8.0 

5.7 
5.8 
5.6 
5.0 

0.62 
0.58 
0.52 
0.48 

 0.58 
1.04 
2.07 
3.97         

3.0 
3.7 
4.7 
6.0 

Cu−Ni 

1085 
1100 
1150 
1200 
1250 
1300 

99.9 (Cu) 
95.9 
82.7 
68.9 
55.9 
42.2 

0.05 
1.08 
4.87 
9.04 
10.1 
11.4 

2.33 
1.65 
1.20 
0.95 
0.85 
0.73 

3 
2.2 
1.6 
1.5 
1.7 
2.1 

26 
15 
9.6 
7.4 
7.0 
6.7 

Table 2.1:  Dependence of solidification rate coefficient β on temperature for two infiltrants. 

 

2.2 Numerical simulation 

2.2.1 General description and effect of finite boundary conditions 

The two-phase moving-interface problem can be solved analytically for semi-infinite boundary 

conditions in one dimension, but numerical methods are necessary to study several special cases 

of interest: finite boundary conditions, diffusivity change with composition, and spherical 



 24 

geometry.  The method described by Tanzilli and Heckel18 was carried out using MATLAB, with 

the code included in Appendix A.  At each time step, the interface motion is determined using a 

finite-difference version of equation 2.4, and then Fick’s second law is applied to the bulk of each 

phase using a variable-grid space transformation to account for the interface motion and 

corresponding stretching of the grid.  

 

 

Figure 2.4: One-dimensional diffusional solidification of Ni−Si at 1185°C with finite 
(simulation) and semi-infinite (analytical) boundary conditions. 

 

The concentration profile of the numerical simulation matches the analytical solution at 400 

seconds, when the width of the simulation is effectively semi-infinite because the concentration 

reaches zero prior to the edge.  For longer times, the concentration at the edge is higher in the 

simulation because the zero mass-transfer boundary allows buildup of solute.  Despite this 

interior buildup of solute, the interface motion for the finite case is identical to the interface 

motion for the semi-infinite analytical solution for the time range shown.  The solidification rate 

is expected to decrease for the finite boundary conditions, but this does not occur until the solid 

becomes nearly saturated. Figure 2.5 shows the solidification behavior of the same solid thickness 

Initial solid Initial liquid 
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for longer times.  The solid width was kept constant at 25 µm, thus interface motion greater than 

25 µm corresponds to an average composition in the solid greater than Cl/2, nearly 75% of the 

solidus concentration.  The effect of the finite boundary conditions depends on the relative 

liquidus and solidus concentrations for a given material system.  For skeleton material that is not 

near saturation, the finite boundary condition has little effect on the initial motion of the interface, 

which is the time of concern for determining liquid flow in TLI.  

 

Figure 2.5: Decrease in solidification rate due to finite boundary conditions at long time.  

 

2.2.2 Diffusivity variation with composition  

Transient liquid-phase infiltration of nickel powder with copper infiltrant is the most extreme 

case of variation in concentration between the skeleton and infiltrant.  For diffusion of nickel in 

pure copper, Do = 1.4 cm2/s and Q = 228.2 kJ/mol, resulting in D~ Ni = 2.9e-13 m2/s at 1100°C.  For 

diffusion of copper in pure nickel, Do = 0.4 cm2/s and Q = 257.9 kJ/mol, resulting in               

D~ Cu = 6.2e-15 m2/s at the same temperature, nearly 50 times lower.  The Tanzilli−Heckel 

numerical simulation presented in the previous section assumed a constant diffusivity in each 

phase, but the model was adapted to accommodate variable diffusivity for the nickel-copper 

system.  In the interface mass-balance equation (equation 12 of T−H), the diffusivity at the 

solidus concentration was used to determine the interface velocity.  The diffusion coefficient used 

in the solution to Fick’s second law in the solid (equation 10 of T−H) was determined locally as a 

function of concentration and used to evaluate the second derivative.  Specifically, 

( )11 2~
+− +−⋅ nnn CCCD  was replaced by ( ) ( )111

~~
++− −−− nnnnnn CCDCCD , where nD~  is the 

diffusion coefficient at the concentration Cn. 



 26 

 

The chemical diffusion coefficient for each concentration was determined by extrapolation of 

data presented in Smithells,13 Table 13.18 for interdiffusion of Ni−Cu at 1066°C.  A semilog 

quadratic curve fit to the data for the given temperature was adjusted for a desired temperature 

based on the frequency factor and activation energy for interdiffusion in pure nickel. 

 ( ) 26596.12912.0
900,257

5 10exp104,~ CCRTTCD ⋅+⋅−− ⋅







⋅×=  (2.11) 

where T is in degrees Kelvin, C is the atomic fraction copper, and the diffusivity is in m2/s.  The 

implicit assumption that the concentration dependence of D~  is independent of temperature is of 

questionable validity, but the approximation is useful for investigating whether the solidification 

rate is more dependent upon the diffusivity in the bulk solid or the diffusivity in the Cu−enriched 

solid near the interface. 

 

Figure 2.6: Numerical simulation of diffusional solidification in Ni−Cu at 1100°C using a 
concentration dependent diffusivity. 

 

The concentration profile using concentration dependent diffusivity is asymmetric to reflect the 

higher diffusivity in the solute-rich region of the solid.  The Ni−Cu case also further illustrates the 
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discussion of section 2.1.3, where the narrow two-phase field at 1100°C allows faster interface 

motion because very little solute absorption is required as the interface advances.  The effect of 

variable diffusivity during solidification at a higher infiltration temperature where the two-phase 

field is wider is presented in Figure 2.7.  A similar result is obtained with slightly less asymmetry 

in the concentration profile as compared with Figure 2.6.  

 

 

 

Figure 2.7: Numerical simulation of diffusional solidification in Ni−Cu at 1200°C using a 
concentration dependent diffusivity. 

 

The interface motion in both Figure 2.6 and Figure 2.7 is linear when plotted against the square 

root of time.  This suggests that the interface motion can be sufficiently described using an 

effective diffusivity applied uniformly throughout the solid. 
2
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where X is the interface motion at time t, and effD~  is determined by a least squares fit to the 

interface motion of the simulation.  The interface motion depends on the diffusivity at the solidus 

concentration, but the corresponding concentration gradient at the interface is lower for the case 

of variable diffusivity.  The solute is unable to penetrate very far into the pure nickel because of 

the lower diffusivity, and it builds up near the interface as a result.  The difference between the 

diffusivity at the solidus composition and the effective diffusivity relates to the difference in 

interface slope between the simulation using variable diffusivity and the analytical solution based 

on the assumption of uniform diffusivity.  The mass flux that controls the interface motion is the 

same in both cases by definition of the effective diffusivity.  

 

 

Figure 2.8: Effective diffusivity controlling interface motion for Ni−Cu infiltrations. 

 

The decrease in diffusivity at the solidus concentration for increased temperature is the result of 

the strong dependence on concentration expressed in equation 2.11 along with changing solidus 

concentration as shown in Table 2.1.  The effective diffusivity falls between the diffusivity in the 

bulk solid (pure nickel) and the diffusivity at the solidus concentration, generally weighted 

heavily towards the solidus concentration.  The specific weighting depends both on the 

equilibrium solidus and liquidus concentrations and the dependence of diffusivity on 

concentration, so the weighting is difficult to characterize universally.  When confronted with a 

material system with significant variation in diffusivity, the solidification rate depends more 

strongly on the diffusivity near the interface, rather than in the bulk material.  The solid material 
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at the interface quickly reaches the solidus concentration to maintain equilibrium and the 

localized diffusivity determining interfacial mass flux is therefore based on the solidus 

concentration.  The local concentration gradient also determines the mass flux and will be 

affected by the diffusivity farther from the interface, but this appears to be a secondary effect. 

 

2.2.3 Extension to cylindrical and spherical coordinates 

The numerical simulation of Tanzilli and Heckel allows study of the effect the geometry of the 

solid interface has on the solidification behavior.  The appropriate modifications to the interface 

mass balance and Fick’s second law for cylindrical and spherical interfaces are provided in their 

paper.  The initial width of the solid phase (positions 0−25µm on the left side) in these cases 

corresponds to the radius of the cylinder or sphere.  The width of the initial liquid phase on the 

right corresponds to the shell thickness of the liquid. 

 

 

Figure 2.9: Comparison of diffusional solidification for planar geometry, 50 µm diameter 
cylinder, and 50 µm diameter sphere. 
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The solidification rate decreases for the curved geometries because the solid has a diminished 

capacity to absorb solute in proportion to the interface motion.  For the planar case, 5 µm of 

interface motion results in a 20% growth of a 25 µm slab.  The same interface motion considered 

for curved geometry results in a 20% increase in radius.  This corresponds to a 44% increase in 

volume for a cylinder or a 73% increase for a sphere.  When using a single sphere to model the 

geometry of a packed powder bed, one method is to relate the thickness of a spherical shell to the 

void fraction of the powder bed by 

( )
ε−=

+
= 13

3

XR
Rv f    or 








−

−
= 1

1
1

3 ε
RX    (2.13) 

where R is the initial radius, X is the shell thickness or solidification distance, and ε is the void 

fraction.  For a bed of 50 µm diameter powder with 40% void fraction, equation 2.13 would 

require a shell thickness of only 4.5 µm.  This relation should be used only as a rough 

approximation since this single-sphere model can not be stacked to fill space, and is therefore not 

truly analogous to the geometry of a powder bed. 

 

Figure 2.10: Interface motion for diffusional solidification with curved interface geometry. 

 

The solidification distance for planar geometry matches the analytical solution.  The deviation 

from the planar solution seen for the curved geometry can be represented by a second term added 

to equation 2.6. 



 31 

( ) XtDtX ∆+=
~4β  (2.14) 

 

Figure 2.11: Deviation distance from planar interface motion for diffusional solidification 
with curved interface geometry. 

 

From the numerical simulation results of Figure 2.11, the deviation is seen to increase linearly 

with time for all three cases.  The deviation for the spherical case is twice that of the cylindrical 

case of the same geometry, and the deviation for the 250 µm sphere is one fifth that of the 50 µm 

sphere.  Further, a doubling of the diffusion coefficient resulted in twice the deviation with all 

other factors equal.  Based on these observed relationships, the deviation can be said to vary 

linearly with curvature, diffusivity and time. 
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where r1 and r2 are the two principal radii of curvature.  For a cylinder, r1 would equal the 

cylinder radius and r2 would be infinite.  For a sphere, both r1 and r2 would be equal to the sphere 

radius.  Based on the results of Figure 2.11, a constant of proportionality 0.374 would precede the 

right hand side of equation 2.15 to equal the observed deviation.  Since other factors might also 

influence the deviation, this observation should not be treated as universal. 

 

2.3 Free energy release during solidification and homogenization 

In thermodynamic terms, a material at equilibrium is by definition in its lowest energy state.  This 

is illustrated in Figure 2.12, where the minimum free energy determines the equilibrium phase at 

a given concentration.  Between the solidus and liquidus concentrations, the minimum Gibbs free 
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energy is achieved with a mixture of solid at the solidus concentration and liquid at the liquidus 

concentration, where a tie line connecting the common tangents defines the energy of the 

mixture.19,20  

Figure 2.12: Determination of equilibrium phase based on minimum thermodynamic 
potential or Gibbs free energy. 

 

In transient liquid-phase infiltration, the initial condition of the material consists of a solid 

skeleton and liquid infiltrant.  During the solidification and homogenization processes, the 

material moves toward a state of lower free energy.  The amount of heat released during the 

transformation is given by the change in enthalpy of the system, ∆H. A plot of enthalpy for 

mixtures of nickel and silicon at 1185°C is shown in Figure 2.13.  The liquidus concentration at 

this temperature is approximately 20 at% Si, and if used to fill a pure nickel skeleton with 40% 

void fraction, the average bulk concentration would be ε times Cl or 8 at% Si.  The enthalpy of 

the pure nickel is zero, so the initial enthalpy of an infiltrated part is equal to that of the liquid 

alone.  The final enthalpy after homogenization is given by the solid at Cfinal.  The net change in 

enthalpy can be represented by the vertical distance between the line representing the initial 

mixture and the solid at Cfinal.  For this example, the enthalpy change is equal to: 
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Figure 2.13: Enthalpy for a binary mixture of Ni−Si at 1185°C21 used to determine heat 
released during solidification and homogenization. 

 

For an adiabatic system, this release of enthalpy would heat up the material based on its molar 

heat capacity.  As an approximation, the value for pure nickel is used: 

 C354
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This would be a sufficient temperature increase to heat the entire part above the melting 

temperature of pure nickel.  The release of enthalpy actually occurs over a period of time as the 

solidification progresses, so the system will not be adiabatic, but heat will be released to the 

surroundings at a rate that depends on the part geometry and heat transfer properties.  The 

specific generation and dissipation of heat during the solidification happens over a continuum that 

is difficult to characterize, but some basic assumptions can provide a better idea of the effect of 

the latent heat release. 

 

Heat loss at these high temperatures can be assumed to be dominated by radiation and can be 

estimated using a Taylor series expansion. 

( ) ThTTq rad ∆=∆⋅= 3*4 σε  (2.18) 

where q is the heat loss per unit area, ε* is the emissivity (~0.2 for Ni), σ is the Stefan-Boltzmann 

constant, 5.6697e-8 W/m2K4, T is the surface temperature in Kelvin and ∆T is the increase in 

temperature of the part above its surroundings.  The term in parenthesis can be treated as a 
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radiative heat transfer coefficient, hrad, equal to 146 W/m2K for the given emissivity at 1200°C.  

Taking the heat loss into consideration over a given time period t, the increase in temperature of 

equation 2.17 can now be described by: 

 ( ) TCtTAh
V

MH prad ∆⋅=⋅∆−∆−
ρ

  (2.19) 

where ρ and M are the material density and molecular weight, and V and A are the volume and 

surface area of the part.  The appropriate time over which the heat is released, t, can be chosen to 

reflect various condition and is discussed later.  The temperature difference on the left-hand side 

of the equation expresses the temperature of the part relative to its surrounding and the 

temperature difference on the right-hand side corresponds to the increase in part temperature due 

to heating, but they can be set equal because the part starts out at the temperature of the 

surroundings.  The expected temperature increase can then be determined based on the part 

geometry and a given time. 
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For nickel, with M=58.7 g/mole and ρ=8.9 g/cc, and a cylindrical part geometry of 1 cm 

diameter, the coefficient of time in the denominator is ~0.4 W-mol-1K-1.  If the total 

homogenization time were considered, which might be on the order of 1 hour, then the 

temperature rise would be only a modest 6°C.  Macroscopically, the generation of heat occurs 

uniformly throughout the material during diffusional solidification, but the heat dissipation is 

dependent upon external geometry.  Smaller cross-sections would release more heat per unit 

volume resulting in less temperature increase, and the opposite would be true for larger part 

cross-sections. 

 

Most of the enthalpy is actually released during the phase change, which occurs much faster than 

the total homogenization time.  With less time to dissipate heat, a greater temperature increase 

will cause a shift in the equilibrium liquidus concentration and cause dissolution of the skeleton.  

Erosion is most noticeable when the dissolution of the skeleton occurs while liquid is still flowing 

into the part because the dissolved material is transported away in the liquid. During this short 

period of time, only some of the solidification has occurred, and very little homogenization is 

likely to take place.  The change in enthalpy during the infiltration is therefore only a fraction of 

that calculated in equation 2.16.   
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For a transient liquid-phase infiltration when the part dimensions are close to the limits of 

infiltrant freeze-off, the solidification time is of the same order as the infiltration time.  The 

enthalpy change of the system immediately after solidification, but prior to homogenization, can 

be approximated using the line shown in Figure 2.13 between the pure solid and the equilibrium 

solidus concentration.  This assumes that all of the solid is either pure nickel or saturated with 

solute, which is obviously not the case, but provides a rough estimate of the enthalpy released 

during solidification, as opposed to the subsequent mixing.  From Figure 2.13, this line shows 

that the enthalpy change occurring during the change of phase is equal to 7.6 kJ/mol, more than 

80% of the total enthalpy change.  This lower enthalpy value and the solidification time for a 

given powder skeleton could be used in equation 2.20 to estimate the increase in temperature 

during infiltration for a given part.  Since solidification times are typically on the order of one 

minute, the resulting predicted temperature increase could be substantial, perhaps exceeding 

100°C. 

 

As mentioned earlier, large rises in temperature can cause considerable erosion of the skeleton 

because the equilibrium liquidus concentration has more nickel at higher temperatures.  The 

skeleton quickly absorbs nickel from the skeleton until it reaches equilibrium.  Conservation of 

mass can be applied to determine how much of the skeleton is absorbed for a given change in 

liquidus concentration. 

( ) ( ) ( )( )εεε −+⋅∆+=⋅ 1fTTCTC ll  (2.21) 

where f is the fraction of the skeleton that is dissolved and can be solved directly using: 
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An increase in temperature from 1185°C to 1285°C would change the liquidus concentration 

from ~20 at% Si to ~14 at% Si.  For a skeleton with 40% void fraction, nearly 30% of the 

skeleton would be dissolved.  Erosion is discussed further in section 3.4 along with discussion of 

experimental observations. 

 

2.4 Uniform composition throughout the final part 

As mentioned in the introduction, mass transport occurring simultaneously with fluid transport 

during transient liquid-phase infiltration can potentially lead to compositional gradients within the 

final part.  This would occur if liquid changed composition while flowing into the part.  In a 

binary system, this variation can be prevented by supplying the infiltrant at its equilibrium 

liquidus composition.  This will ensure that any liquid present in the skeleton will be the same 
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composition — any loss of silicon must result in solidification.  Indeed, this method is already 

applied in order to prevent erosion of the skeleton.  Erosion and compositional variation are 

linked because composition variation would be the result of skeleton material being dissolved in 

one area and carried to another region of the part.  Figure 2.14 helps to provide a more technical 

explanation of how uniform composition can be guaranteed using infiltrant at its liquidus 

composition. 
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Figure 2.14: TLI into a capillary with infiltrant at its liquidus composition, Cl.  Top 
sequence shows progression of solidification as liquid rises to the top of the capillary.  
Bottom sequence plots the concentration profile of the MPD at cross-sections A and B.  

 

The top sequence shows infiltration into a one-dimensional capillary (two thin plates) with 

solidification of the infiltrant occurring as the liquid fills the channel.  The scale is distorted to 

better illustrate the degree of solidification changing along the height.  The bottom sequence 

shows the expected concentration profile corresponding to the cross-sections at the heights 
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marked A and B with primes denoting different times.  Because the infiltrant is supplied at its 

liquidus composition, it remains constant at Cl throughout the infiltration.  The composition 

profile at a point just behind the infiltration front (cross-section B) consists of pure nickel and 

infiltrant at its liquidus composition because very little time has elapsed to allow for diffusion.   

After a time interval of ∆t, when the liquid has filled most of the capillary, a similar location just 

behind the infiltration front at cross-section A' has an composition profile identical to B.  Some 

diffusional solidification will have occurred at B' since the liquid and solid have been in contact 

for the interval ∆t.  After another time interval ∆t, the cross-section at A" will now have solidified 

to the same degree as cross-section B', and cross-section B" will have solidified even further.  The 

point of this analysis is to show how the fixed composition of the liquid ensures the bulk or 

average composition will be the same at heights A and B — constant with both time and position. 

 

Ensuring uniform composition during TLI with ternary and higher systems becomes more 

complicated because the solidification process can change the composition of the remaining 

liquid.  As an extreme example of this concept, Hozer and Chiang7 describe the rejection of metal 

during the reactive infiltration of carbon preforms with various metal alloys containing silicon.  

The rapid formation of SiC extracts the silicon from the liquid and leaves a higher concentration 

of the remaining metal.  The same phenomenon occurs more subtly in material systems of interest 

for TLI. 

Figure 2.15: Ternary phase diagrams of Ni−Cr−Si and Ni−Fe−Si generated using 
Thermo−Calc with the Kaufman Binary Database.  Solidification along tie lines not parallel 
to the line of constant ratio for non-MPD elements (from A to B in the Ni−Fe−Si system) 
results in a change of composition in remaining liquid. 

 

liquid

liquid

solid

Constant
Ni:Cr ratio

Si

Cr Ni

Si

FeNi
solid

Constant
Ni:Fe ratio

A

B

1200ºC1250ºC



 38 

Solidification in ternary systems progresses along tie lines that run from a liquidus curve to a 

solidus curve on the phase diagram.  In the Ni−Fe−Si system in Figure 2.15, liquid at composition 

A would follow the tie line to composition B during solidification.  Since the new composition at 

B has a higher ratio of nickel to iron, which it must draw from the melt, solidification along this 

path will deplete the remaining liquid of nickel.  The effect is rather small in this case, and can be 

countered by diffusion of nickel from the melt supply to feed the depleted region, but the issue 

raises a concern about uniformity of composition in TLI of complex alloys.  The Ni−Cr−Si has tie 

lines that run parallel to the line of constant Ni:Cr ratio, consequently solidification would not 

change the composition in the remaining liquid.  In this manner, the appropriate selection of a 

materials system can be used to control the variation in composition.  The additional limitation 

imposed on materials choice is an obvious disadvantage and would need to be weighed against 

the magnitude of the compositional variation and its resulting effect on properties. 
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Chapter 3: Experimental Results and Discussion 

3.1 Diffusion couple to verify diffusivity 

A diffusion couple was prepared between pure nickel and Ni − 9 at% Si to experimentally 

measure the interdiffusivity of Ni−Si.  The two samples were polished to a mirror finish and then 

held together with the two smooth surfaces facing each other.  The clamp mechanism was a C-

shaped stainless steel block with a screw through one end to tighten against the samples, which 

had a contact area of ~0.2 cm2.  The entire assembly was heated at 5°C/min in a tube furnace 

under forming gas of 5% H2 in argon and held at 1200°C for 1 hour, then cooled at the same rate.  

A perpendicular cross-section of the interface was polished and examined with an Electron Probe 

X-ray Microanalyzer.  The results are shown in Figure 3.1, and the given diffusivity value of   

1.5e-13 m2/s was selected for the best fit of the experimental data to the theoretical error function 

solution for t = 3600s. 
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The diffusivity value from literature at this temperature is 1.04e-13 m2/s based on the parameters 

given in section 2.1.1.  Some additional diffusion occurs during the slow heating and cooling, 

which could explain some of the difference.  Considering the typical variability of diffusivity 

measurements, this agreement is fairly good.  For consistency, further experiments are based on 

the predicted values from literature using Do = 1.5 cm2/s and Q = 258.3 kJ/mol and the relation 
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Figure 3.1: Microprobe analysis of diffusion couple for 1 hr at 1200°C and estimated D~ . 
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3.2 Measurement of solidification rate 

3.2.1 Quenching experiments to observe solidification 

The rate of solidification can be measured by observing the interface position in samples 

quenched at fixed time intervals.  These experiments were conducted using a 1/8” diameter rod 

made of pure nickel, that housed a sample inside the tip.  A small, ~1 cm deep hole was bored 

into the end of the rod, then the hole was filled with either loose Ni powder or a bundle of thin Ni 

wire and the assembly was fired to sinter the sample in place.  The rod containing the sample was 

inserted through a fitting in the roof of a bench-top lab furnace so that the tip of the rod was held 

in the hot zone, a few centimeters above a crucible containing the infiltrant.  After reaching the 

desired infiltration temperature, typically 1180°C, the rod was briefly dipped into the molten 

infiltrant so the liquid could wick into the void space of the sample as illustrated in Figure 3.2.  

Because the sample size is very small, the infiltration occurs nearly instantaneously.  Diffusional 

solidification begins as soon as the liquid and solid come into contact with each other.  After 

holding in the hot zone for a fixed period of time, the rod can be pulled directly out of the 

furnace.  The rooftop fitting must have a slightly larger opening than the rod diameter to prevent 

the rod from getting stuck, particularly because some infiltrant may be attached to the rod.  Upon 

removal, the rod continued to glow for only 2−3 seconds, giving an indication that the air quench 

caused the sample to cool at several hundred degrees per second.  If a faster quench rate was 

desired, the sample could be dipped in an oil or water bath, but this was not deemed necessary.  

 

1/8” φ
Ni rod

Sintered
Ni powder

(not to scale)

Void space
is filled

with Ni−Si
infiltrant

Diffusional
solidification
occurs until
the sample
is quenched

 

Figure 3.2: Schematic of quenching experiments designed to observe diffusional 
solidification rate. 
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The samples were cross-sectioned and examined metallographically to observe the location of the 

solid-liquid interface at the time of the quench.  The microstructure is not visible after polishing 

alone, so an electrochemical etch (4:2:1 ratio of water:glacial acetic acid: hydrochloric acid) was 

used to facilitate viewing the microstructure.  A current of 0.5 A applied for 5–10 seconds was 

sufficient to reveal the microstructure.  Figure 3.3 shows two samples of infiltrated powder that 

were quenched after 10 seconds and 60 seconds of infiltration.  The original Ni powder particles 

are clearly visible as the lighter colored circular shapes, and the regions with fine lamellar 

structure correspond to where liquid was present prior to the quench.  The roughness of the 

interface is likely the result of the powder’s original surface texture, as can be seen in Figure 5.2.  

The reaction zone visible between the powder and liquid is bordered by black lines.  The outer 

line closest to the liquid corresponds to the location of the solid-liquid interface.  Close 

examination shows a gradual darkening closer to the edge that matches an increasing silicon 

content when examined with a microprobe.  The inner black line closest to the powder appears to 

have some depth when changing the focal plane of an optical microscope.  This crevice seems to 

develop as a result of the electropolishing step, since it does not appear in the original polished 

samples. 

 

    

Figure 3.3: Ni powder infiltrated with Ni−Si at 1180°C and quenched after 10 sec (left) and 
60 seconds (right). 

 

There is a clear progression of the solidification between the two samples, which is observed 

most easily by an increasing width of the reaction zone between the liquid and powder.  However, 

it can be difficult to interpret three-dimensional behavior when only looking at only two 
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dimensions.  When viewing a cross-section through a sphere, one cannot assume that the cross-

section cuts through the center of the sphere.  The motion of the interface is likely not to be 

coincident with the viewing plane, in which case the results are difficult to interpret.  Calculating 

the area fraction of the liquid, and therefore the volume fraction, would be the best method for 

measuring the solidification rate from a cross-section of powder.  In lieu of this task, the 

quenching experiments were redesigned to infiltrate a bundle of thin wire, which allows simpler 

interpretation of the results by reducing the physical geometry to only two dimensions. 

 

    

    

Figure 3.4: Ni wire bundles infiltrated with Ni−Si at 1180°C.  Cross-sections of initial 50 µm 
wire embedded in epoxy (upper left), and infiltrated samples quenched after 10 seconds 
(upper right), 100 seconds (bottom left) and 300 seconds (bottom right).  

 

Pure nickel wire was obtained from Alfa Aesar (stock# 10933) and wrapped numerous times 

around two ceramic posts held ~10 cm apart to form a bundle of the desired diameter.  The 

bundle was twisted slightly to achieve relatively tight packing of the wires, and the assembly was 

lightly sintered to bond the wires together.  Short segments of the bundle were then cut and 

placed into the end of a Ni rod as was done previously with powder.  The results of these two-
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dimensional quenching experiments are shown in Figure 3.4.  The infiltrant was supplied at the 

eutectic composition of 21 at% Si, and a small amount of initial dissolution could occur because 

the liquidus concentration at 1180°C is only 19.8 at% Si.  Using equation 2.22, this would cause 

2–4% of the wire to be dissolved into the liquid depending on the packing fraction.  For the 50 

µm diameter wire, that corresponds to only a 0.5 µm interface motion, which is considered to be 

negligible in light of uncertainties in material composition and processing temperature. 

 

The same electropolish was used to reveal the microstructure, and the interface motion can be 

easily determined and referenced to the initial wire diameter.  The white dashed lines have been 

superimposed on each of the micrographs to designate the original diameter of the wire.  The 

black crevice within the white circle is again an artifact of the electropolish.  It generally 

coincides with the distance to which silicon has diffused towards the center of the wire.  In the 

last sample in the time sequence, there is no liquid remaining between the close-packed wires, 

only a small region on the left and a larger region in the upper right where there was larger 

spacing between wires. The lamellar structure designating the presence of liquid appears slightly 

more coarse for the wire experiments in Figure 3.4 than for the experiments with powder in 

Figure 3.3, although they are shown at a higher magnification.  

 

Microprobe analysis was conducted on these samples to examine the concentration profile of 

silicon across the diffusion zone.  The plot below shows the results of linescans starting from the 

pure nickel interior, traversing perpendicular to the interface toward the liquid region.  The 

original wire diameter was not referenced during the linescan, so the position is somewhat 

discretionary, but the plots have been adjusted to the left or right so that they cross the initial 

interface position near ( )( )βerf1 +sC , as predicted by the theory and shown in Figure 2.4.  
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Figure 3.5: Microprobe concentration measurements of wire bundle quenching tests. 

 

These measurements can be compared to the diffusional solidification predicted by theory and the 

numerical simulation results shown in Figure 2.4.  The observed diffusion occurs slightly faster 

than expected, evidenced by the more gradual slope in Figure 3.5.  After 400 seconds, the theory 

predicts a difference in concentration from 4% to 12% over the 10 µm centered around the initial 

interface. The observed concentration difference over the central 10 µm is roughly between 6% 

and 10%, suggesting that more interdiffusion has occurred despite the shorter time of only 300 

seconds.   

 

3.2.2 Quantification of the solidification rate 

The solidification rate is most easily quantified by tracking the interface motion.  For each of the 

3 quenched samples, the motion of the interface was estimated by  measuring its position relative 

to the original wire diameter using the micrographs in Figure 3.4.  Several measurements were 

taken from different areas of each sample and the values averaged.  The observed outward growth 

in wire radius was 3.4, 7.5, and 13.4 µm for the samples quenches at 10, 100 and 300 seconds.  

Since this growth should theoretically be equal to tD~4β  for planar motion, the results can be 

used to measure the effective solidification rate coefficient β for the material system.  
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Figure 3.6: Estimation of solidification rate coefficient from interface motion in quenched 
samples.  Error estimates are based on multiple measurements of interface motion at 
different locations. 

 

The slope of the linear regression shows the measured value of β equal to 1.3, and the non-zero 

intercept could correspond either to an offset from the nominal wire diameter or a small amount 

of solidification that could occur during the quench. Forcing a zero intercept would result in only 

a small increase in β.  These experiments show that the solidification rate is approximately twice 

as fast as expected at this temperature based on a diffusivity at this temperature of 7.76e-14 m2/s 

and β of 0.59 calculated in Chapter 2. 

 

3.2.3 Discussion of observed solidification rate 

The solidification rate is specified in terms of both the coefficient β, which affects the rate 

linearly, and the diffusivity, which only has a square-root effect.  When comparing experimental 

results with theory, it is most convenient to discuss the difference in terms of β, because the 

diffusivity can still be expressed in terms of temperature by the parameters in literature.  

However, it would also be possible to fix the β value predicted by the concentration ratio and 

determine an effective diffusivity that corresponds to the observed solidification rate.  Indeed, this 

is more realistic since the value of β is determined by solid solubility and two-phase field width, 

both of which should not change.  The diffusivity is more likely to vary under different material 

conditions, as discussed below.  For simplicity, β is described as the adjusted term in matching 
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the observed solidification behavior to tD~4 , keeping in mind that the solidification rate is 

really characterized by the product of the two terms D~⋅β . 
 

Several other researchers have observed significantly faster diffusional solidification than 

predicted by theory when analyzing interlayer width in transient liquid-phase bonding.  Both 

Tuah-Poku et al22 and MacDonald and Eagar16 observed isothermal solidification times more than 

four times faster than expected in Cu−Ag sandwich joints.  Due to the square-root dependence on 

time, this means the solidification rate is more than twice the expected value.  The most likely 

explanation for the faster rate is the influence of grain boundaries on the effective diffusivity into 

the solid as well as grooving at the interface that increases the contact area.  Several studies of 

diffusion bonding using both Ni−P and Ni−B filler metals have shown a significant increase in 

solidification rate as the grain size of the solid is decreased.23,24  The presence of the liquid phase 

and its ability to penetrate grain boundaries and alter the surface characteristics make the effect 

even more pronounced than for diffusivity increase with grain refinement in solid alone.  In a 

study by Saida et al,25 the effective diffusion coefficient measured for solidification of Ni−P at 

1423°K increased from 1.4e-14 m2/s into both single-crystal and coarse-grained nickel, to        

2.2e-14 m2/s into nickel with a relatively fine grain size of 480 µm.  The exact grain size of the 

wire is unknown, but it is likely polycrystalline and therefore smaller than the 50 µm wire 

diameter.  Grain boundary effects are likely responsible for most of the observed increase in 

solidification rate. 

 

Several other experimental factors may effect the observed solidification rate.  The effect of 

cylindrical geometry is addressed in section 2.2.3 and would slightly reduce the predicted rate of 

solidification.  For the 50 µm diameter cylinder, the deviation from the planar solution would be 

less than 10% over the solidification range studied.  The cylindrical geometry can not explain any 

of the difference between observed solidification rate and the theoretical prediction because it 

influences the solidification rate in the opposite direction as the observed discrepancy.  

 

Because the microstructure can transform during cooling, observations of a eutectic phase in a 

room-temperature micrograph do not necessarily represent the presence of liquid at the 

infiltration temperature. For slow cooling conditions, off-eutectic liquid will begin to solidify first 

in solid solution until the eutectic temperature is reached.  The result would be an observed 

eutectic area that is smaller than the actual liquid area at the infiltration temperature.  If the 
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sample were cooled instantaneously, the liquid would transform directly into a lamellar phase that 

would appear similar to the eutectic, but with an average composition equal to the original liquid, 

not the concentration at the eutectic.  Saida et al,25 observed different microstructure in samples 

quenched in air, oil, and water, with the water-quenched samples providing the closest match 

between the observed microstructure and the liquid width.  The air and oil quenched samples 

followed more closely to the slow-cooling case, although the sample size was 1.2 cm diameter so 

the cooling rate associated with the air quench will be significantly less than for the 1/8” Ni rod.  

A description of the transformation from eutectic width to liquid width is provided for reference 

in the following section, and the difference in width becomes more significant as the liquid 

composition moves farther away from the eutectic.  Since the wire quenching experiments were 

conducted close to the eutectic temperature and the concentration difference was small, no such 

transformation was necessary.  For the images in Figure 3.3 and Figure 3.4, the eutectic areas can 

be assumed to represent all of the area that was liquid prior to quenching.  

 

It is worth noting that the measurement of interface motion in the wire bundle experiments 

achieves the same objective of the planar measurements of isothermal solidification commonly 

presented in the context of diffusion bonding.  In these cases, the eutectic width is measured and 

plotted against the square root of time to estimate the total solidification time.  Since the eutectic 

and liquid widths are directly proportional, either plot would extrapolate to the same time.  In the 

wire experiments, the growth of the solid phase is measured instead, since the remaining liquid or 

eutectic phase does not have a characteristic width, but would need to be measured as an area 

fraction.  If quenching rates were insufficient and liquid concentration varied significantly from 

the eutectic, then the actual growth rate of the solid would be difficult to determine because it 

would need to account for the liquid to eutectic transformation.  Failing to account for this 

difference would lead to overestimation of the initial solidification rate.  In such cases, it might be 

preferable to design a planar experiment to determine the solidification rate. 

 

3.2.4 Relating observed eutectic width to original liquid width 

Due to material phase changes that occur during cooling, the observed microstructure at room 

temperature often does not correlate directly to the phases present at a given temperature.  If the 

material has sufficient time to remain at equilibrium during the cooling process, then room 

temperature observations can be correlated to high temperature conditions based on the 

equilibrium phase diagram. Figure 3.7 shows a generic phase diagram and is used to illustrate 

how room temperature observations can be translated to conditions at elevated temperatures.   
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Figure 3.7: Generic phase diagram used to relate eutectic width to liquid width. 

 

As the liquid of a concentration Cl is cooled below the infiltration temperature Ti, it begins to 

solidify as α and the remaining liquid increases in solute content by conservation of mass.  For 

the one-dimensional case, when the eutectic temperature is reached the relative widths of the α 

phase wα and the eutectic liquid we can be determined by the Lever rule. 
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where Cm, Cl, and Ce are the concentrations of maximum solid solubility, the original liquid, and 

the eutectic.  Since the width of the original liquid, wl is equal to the sum wα + we, it can be 

estimated from the eutectic width, which is easily observed in micrographs at room temperature.  
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where ρe and ρl are the density at the eutectic and original liquid concentrations.26  The density 

ratio can be set to unity when concentration differences are small and the two densities are nearly 

equal.  The two widths can be replaced by area fractions if the geometry is not one-dimensional. 

 

3.3 Gated infiltration 

Physical separation of the infiltrant and skeleton before the start of the infiltration prevents 

premature diffusion of the melting point depressant. Using some type of gate to actively control 

the introduction of the liquid to the skeleton allows the liquid to reach a thermal and chemical 

equilibrium prior to contacting the skeleton and enables very short infiltration times.  The first 
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type of gating mechanism implemented was by suspending the part above the melt, and then 

dipping the part.  This had the added benefit of allowing the measurement of the infiltration rate, 

but required modification to the part typically by drilling holes in it.  Another gating mechanism 

that was successfully implemented was to place a movable wall between the part and the melt.  

The wall was made of ¼” thick bisque-fired alumina and was shaped to mate with the walls of the 

alumina crucible.  Since both materials were non-wetting to the infiltrant, a gap of up to ~1 mm 

was tolerable without the liquid head to causing any leaks.  The large rectangular part shown in 

Figure 3.8 was made using this gating mechanism.  Many different methods can be envisioned, 

but one simple, robust method was tested by placing the melt inside a ceramic tube that rested 

vertically with one end facing flat on the bottom of the crucible, this successfully contained a 

melt and the tube could be lifted to introduce the melt to a skeleton resting nearby. 

 

 

Figure 3.8: This large rectangular part composed of 50–150 µm powder was made in March 
of 2000 as a proof of concept for TLI. 

 

3.4 Erosion and melt saturation methods 

The root cause of erosion is the dissolution of the skeleton material in the liquid infiltrant.  In 

order to reach an equilibrium state at the solid-liquid interface, the infiltrant wants to move 

towards its liquidus composition and the skeleton wants to move towards its solidus composition.  

Since the diffusivity is much faster in the liquid, it will absorb nickel from the skeleton until it is 

saturated and reaches its equilibrium liquidus composition.  For a large melt pool, more nickel 

must be absorbed to achieve the same change in concentration, and the erosion is more severe. 
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Figure 3.9: Erosion of part on left caused by dissolution of skeleton material by unsaturated 
melt pool.  Part on right shows no evidence of erosion infiltrated using saturated liquid, 
with some dendrites stuck to the part from the semi-solid infiltrant pool.  

 

Saturating the melt before it contacts the skeleton can minimize the erosion as illustrated in 

Figure 3.9.  Presaturation consists of ensuring the supply of liquid is already at the equilibrium 

liquidus concentration. Since it would be difficult to control the exact composition and 

temperature, Figure 3.10 shows how the proper amount of excess nickel can be chosen to allow 

for process variation.  If the desired infiltration temperature were 1180°C, eutectic Ni−Si and 

excess nickel would be combined to allow for a generous window of +/- 20°C.  The composition 

of the mixture would be chosen at the liquidus of the upper temperature limit and the quantity of 

the mixture would be chosen based on the Lever rule at the lower temperature, making sure that 

sufficient liquid would always be available to fill the skeleton.  For the case in Figure 3.10, the 

infiltrant composition would be 9.9 wt% Si to ensure saturation even if the actual temperature 

reached 1200°C.  If the actual temperature were only 1200°C, then approximately 70% of the 

supplied infiltrant would be liquid based on the lever rule.  Note that since the liquid is saturated, 

there is no disadvantage to having extra infiltrant (other than wasted material).   
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Figure 3.10: Presaturation of infiltrant supply to prevent dissolution. 

 

Initially, the desired infiltrant composition was achieved by mixing pure nickel powder in with 

available chunks of infiltrant alloy at the eutectic composition.  Once a consistent infiltration 

temperature was selected, typically 1185°C, a new batch of infiltrant was made at 10.2 wt% Si, 

slightly less Si than the equilibrium liquidus concentration.  To promote uniform mixing of the 

infiltrant, the melt was heated above the infiltration temperature and then slowly cooled to below 

the liquidus.  The top sample in Figure 3.11 was infiltrated with a presaturated melt containing 

excess nickel.  The bottom sample used a similar presaturated melt, but was heated above its 

liquidus and then cooled to the infiltration temperature.  Very little erosion can be seen on the 

bottom sample, perhaps due to better mixing within the melt.  

 

Figure 3.11: Reduced part erosion through better mixing of infiltrant.  Bottom sample 
involved overshooting the infiltration temperature to enhance mixing. 
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In some cases, presaturating the infiltrant worked well to prevent dissolution at the base where the 

part is submerged in liquid, but did not eliminate the ‘riverbeds’ running up the part surface.  

Referring back to the discussion of heat release in section 2.3, equations 2.20 and 2.22 can be 

used to determine the expected increase in part temperature and corresponding dissolution for 

these experimental conditions.  Using a solidification time of 60 seconds, which would be 

appropriate for smaller powder size, the temperature increase would be ~150°C causing 

dissolution of 50%.  For a solidification time of 300 seconds, more appropriate for larger powder, 

the temperature increase would be ~50°C causing dissolution of only 7% of the skeleton.  These 

numbers are only rough estimates, but are considerably higher than expected based on the degree 

of erosion visible on infiltrated parts. Figure 3.12 shows a sequence of infiltrations using 

successively larger powder sizes.  The erosion is clearly more severe in the skeletons of small 

powder size. 

  

Figure 3.12: Set of infiltrated nickel powder skeletons showing more erosion on skeletons of 
smaller powder size.  Left photo shows infiltration with Ni−Si (63−74, 90−104, 125−150 and 
250−300 µm powder from left to right).  Right photo shows infiltration with Cu (63−74, 
90−104 and 250−300 µm powder from left to right). 
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3.5 Measurement of variation in composition 

The resulting composition throughout an infiltrated part was measured by cutting small sections 

from different points along the infiltration path.  The samples were sent to Massachusetts 

Materials Research in West Boylston, MA for analysis by Inductively Coupled Plasma (ICP).  

Figure 3.13 highlights the segments of the infiltrated part that were analyzed and the measured 

composition.  The serpentine part shape was used to test longer infiltration distances inside of a 

small furnace chamber that was used at the time.  

 

Figure 3.13: Infiltrated part sectioned and tested for compositional variation. 

 

The part shown in Figure 3.13 used a 50−150 µm powder skeleton and was infiltrated at 1160°C 

using eutectic Ni−Si with excess Ni powder added to the melt for presaturation.  With a spacing 

of ~3 cm between each tested specimen, the variation along the path of infiltration is fairly small.  

The farthest point along the infiltration path exhibits a slightly lower silicon concentration, but is 

also very near the point of infiltrant freeze-off.  Greater residual porosity in this area would also 

cause a decrease in bulk silicon concentration, a different mechanism than that of mass transport 

in the liquid discussed in section 2.4. 

 

3.6 General dependence of penetration distance with powder size 

The specific influence of powder size on the fluid flow and solidification rate is discussed in 

much greater detail in Chapters 4 and 5, but will be discussed briefly here along with 

experimental observations.  The diameter of the powder affects both the fluid flow and the 

4.0 wt% Si 

4.5 wt% Si 

4.7 wt% Si 

4.4 wt% Si 

Infiltrant freeze-off 
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amount of time before the infiltrant freezes.  For both reasons, larger powder size provides a 

desirable effect of improving the distance that the infiltrant will penetrate.  Larger powder lowers 

the viscous drag and allows the infiltrant to fill the skeleton faster, and it also decreases the 

surface area for diffusion providing more time before the porous network is closed off.  Both 

Figure 3.12 and Figure 3.14 clearly show how the infiltration height can be controlled by the 

powder size of the skeleton.  Through the use of progressively larger powder size, we have 

achieved infiltration heights greater than 20 cm in both the Ni−Si and the Ni−Cu materials 

systems. 

Figure 3.14: Infiltration heights achieved using progressively larger powder sizes: 50–150 
µm, 150−300 µm, and >300 µm 

 

3.7 Homogenization, porosity and mechanical testing 

3.7.1 Homogenization 

Samples were typically cooled at 5°C/min immediately after infiltration.  Very little 

homogenization had taken place at this stage.  Even after being held for 1 hour at the infiltration 

temperature, the left-hand image of Figure 3.15 shows how considerable microscopic variation in 

composition remains.  After subsequent heat treatment at 1200°C for 5 hours, the material 
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appears homogeneous, but localized pockets of residual porosity remain in areas that could 

correspond with the original locations of powder particles.  A similar sample was heat treated at 

the same temperature for 12 hours and appears to have become more homogeneous and does not 

show as much evidence of porosity.  Microprobe analysis shown in Figure 3.16 confirms the 

optical microscope observations.  

 

   

Figure 3.15: Homogenization of 250−300 µm infiltrated powder after 1 hr @ 1180°C, 5 hrs 
at 1200°C, and 12 hrs at 1200°C. 
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Figure 3.16: Microprobe analysis of homogenization in samples from previous figure. 

 

3.7.2 Residual porosity and measurement of density 

The existence of residual porosity in a final part can be detrimental to its mechanical properties. 
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Typical sources of porosity in castings include voids from solidification shrinkage and gas 

evolution.  In TLI, the solidification shrinkage can not be fed from remaining liquid as occurs 

from risers in traditional casting.  In addition, the mass transport of the melting point depressant 

into the skeleton during TLI could lead to Kirkendall porosity.  For example, the differential 

diffusivities of Si and Ni results in more silicon being transported into the skeleton than nickel 

into the regions that were liquid.  Fine-scale porosity could result and have an adverse impact on 

the mechanical properties of the final part. 

 

The density of infiltrated samples as well as cast chunks of infiltrant where measured using fluid 

displacement and the Archimidean principle.27  The infiltrated samples typically do not have any 

open porosity, so the density of a given sample can be determined by a dry mass measurement 

and the volume displaced when the sample is submerged in water, which is measured by change 

in weight and the known fluid density.  The results of the density measurements are included in 

Table 3.1. Samples A and B were tensile tested before density measurements were taken, so no 

data is available for the specific sample.  Three other samples in similar as-infiltrated condition 

had measured densities of 8.16, 8.01, and 8.02 g/cc. 

 

Homogenized samples of Ni−Si were heat treated at 1200°C for 12 hours.  Ni−Cu samples were 

heat treated at 1100°C for 12 hours and then at 1200°C for 12 hours.  The initial heat treat was 

done at the infiltration temperature for copper to provide time to complete isothermal 

solidification and begin homogenization so that the higher temperature did not melt any portion 

of the sample.  After homogenization treatment, some samples were additionally sent to Bodycote 

IMT in Andover, MA for a 4 hour Hot Isostatic Press (HIP) treatment at 104 Mpa (15 ksi) and 

1163°C (2125°F).  This process is typically used to help remove porosity in high-performance 

castings used in the aerospace industry.  Parts are processed in large batches and the cost is 

typically a few dollars per pound.   
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3.7.3 Tensile test results and HIP Treatment 

Sample Material 
Composition 

Condition Elastic 
Modulus 

(GPa) 

Yield 
Stress 
(MPa) 

UTS  
 

(MPa) 

Max 
Strain 

(%) 

Density 
(g/cc) 

A Ni − 4 wt% Si Infiltrated 230 156 250 4.6  
B Ni − 4 wt% Si Infiltrated 200 184 230 1.4  
C Ni − 4 wt% Si Homogenized 275 133 230 6.4  
D Ni − 4 wt% Si Homogenized 220 118 201 4.1 7.97 
E Ni − 4 wt% Si Hot Isostatic Pressed 200 200* 423 34 8.49 
F Ni − 4 wt% Si Hot Isostatic Pressed 210 152 436 41 8.50 
G Ni − 4 wt% Si Cast 400 123 400 30  
H Ni − 4 wt% Si Cast and Homogenized 210 162 370 64 8.53 
I Ni − 10 wt% Si Cast 300 n/a 480 0.2  

C1 Ni − 40 wt% Cu Homogenized 100 75 133 5.3 7.42 
C2 Ni − 40 wt% Cu Hot Isostatic Pressed 120 87 158 11 7.68 

Table 3.1: Tensile test results and density measurements.  

 

Tensile bars were machined to the specifications28 of ASTM 12.7 mm wide sheet specimens and 

varied in thickness from 2.5 mm to 4 mm.  Sample gauge length was 50.8 mm and an 

extensometer with 12.7 mm gauge length was mounted on the sample for more accurate 

measurement of strain and therefore modulus.  The elastic behavior of all the specimens was very 

similar, with no marked difference in the elastic modulus, even for the samples tested prior to 

homogenization.  The yield stress was also within a reasonable range such that no clear 

distinction can be made between the various conditions.  The samples tested prior to 

homogenization actually showed the highest yield strengths. Sample E is marked with an * to 

denote that slipping occurred at the grips and the specimen was unloaded for repositioning, then 

reloaded prior to yield and the posted result is therefore somewhat questionable.  
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Figure 3.17: Tensile bars of homogenized Ni − 4 wt% Si after elongation and failure.  Grain 
size in cast sample (top, H) is visibly ~1 cm, while infiltrated bar (bottom, F) has much finer 
grains, but exhibits similar tensile behavior. 

 

The most significant observation of the tensile tests is the premature failure of the infiltrated 

samples when compared to the cast samples, which underwent 30−60% elongation before failure.  

The 4−6% elongation of the infiltrated and homogenized sample may not be considered brittle, 

but they failed prior to the substantial strain hardening that was observed in the cast sample.  The 

HIP treatment appears to have succeeded in removing residual porosity from the homogenized 

samples, which would correspond to ~5% in the samples prior to HIP treatment if the cast sample 

is considered fully dense (the theoretical density of Ni − 4 wt% Si is not published).  Figure 3.17 

contrasts the grain size observed between the cast sample and the infiltrated sample after HIP 

treatment.  The tensile behavior of both samples was similar, but the smaller grain size of the 

sample made by infiltration actually provides the advantage that the deformation is more likely to 

be distributed evenly throughout the part. 
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Chapter 4: Infiltration of Liquid into Porous Media 

4.1 Surface tension and capillarity 

Surface tension provides the driving force for capillary infiltration of liquids into porous media.  

Significant capillary pressure develops under proper wetting conditions because of the small 

length scales involved and the subsequently high curvature at the liquid interface.  The magnitude 

of the capillary pressure can be determined by balancing the work exerted by the fluid over a 

given volume with the change in surface energy associated with the change in interfacial area, 

dAdvP ⋅=⋅∆ γ .  For the simplest case of a spherical interface, the capillary pressure inside a 

sphere of radius r is equal to 2γLV/r where γLV is the liquid/vapor interfacial surface energy. 29  In 

porous media, the capillary pressure can similarly be calculated based on the surface area to 

volume ratio of the pore space.30  

( )
dv
dAP SLSVc ⋅−= γγ  (4.1) 

The term in parenthesis represents the change in surface energy associated with the solid surface 

previously exposed to vapor that is now covered by liquid.  This term can also be represented by 

an equilibrium wetting angle and the liquid/vapor surface tension.  The wetting angle is defined 

by the magnitude of the interfacial surface tensions by ( ) ( ) LVSLSV γγγθ −=cos .  

 

For a sintered skeleton composed of powder with a reasonably narrow size distribution, the 

geometry can be approximated as a bed of spheres with uniform diameter D.  This allows 

straightforward calculation of the surface area to volume ratio of the pore space.  The specific 

surface S of the skeleton is the surface area per unit volume of solid, which is then related to the 

volume of pore space through the skeleton void fraction ε: 

( )
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Since the capillary pressure is dependent upon the surface area to volume of the pore space, not 

the volume of the solid, it is defined as: 

  ( ) ( )
ε
ε

θγ
D

P LVc
−

⋅=
16cos  (4.3) 

This can be used to determine the maximum height a liquid will rise within a skeleton by setting 

the capillary pressure equal to the gravitational head of the liquid column, ρgh. 
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4.2 Viscous flow and permeability 

4.2.1 General theory of flow in porous media 

The flow of liquid through porous media is restricted by viscous drag due to the no-slip boundary 

condition and the high specific surface area of powder.  The geometry of a specific porous 

medium is represented by a permeability K that is the proportionality constant between the 

pressure gradient and the volume-averaged velocity of the fluid in the viscous dominated flow 

regime: 

 V
K

P µ
=∇−  (4.4) 

where P is fluid pressure, µ is the fluid viscosity, and V is equal to the flow rate divided by the 

total cross-sectional area.  The permeability K will be discussed in greater detail in section 4.2.3.  

V is often referred to in literature as seepage velocity and is also equal to the velocity of the 

infiltration front times the void fraction.  As an example, a flow rate of 1 cc/sec through a 

skeleton with 1 cm2 cross-sectional area and ε=0.4 would correspond to V equal to 1 cm/s, but the 

velocity of the infiltration front would equal 2.5 cm/s.  This equation, known as Darcy’s Law, is a 

simplification of the general momentum equation for cases when the two given terms dominate 

over any inertial terms.  For example, the contribution of fluid acceleration to the momentum 

equation would be of the order ρV/to, where ρ is the fluid density and to is a characteristic time for 

the process.  Comparing this term to the right-hand term of equation 4.4, the acceleration term 

will only be significant for to < Kρ/µ.  Because the permeability of even very coarse powder (300 

µm) is less than 10-10 m2 and the ratio ρ/µ for liquid metals is less than 107 s/m2, the acceleration 

term becomes insignificant after 1 ms.31   

 

As fluid flow velocity increases, the form drag can begin to impact the flow characteristics.  This 

is represented by the Forchheimer equation, an extension of Darcy’s Law: 

2V
K

c
V

K
P F ρ

µ
−−=∇  (4.5) 

where cF is a dimensionless form-drag constant dependent on geometry and equal to 0.55 for 

spherical particles.31  More detailed analysis suggests an increase of cF with greater surface 

roughness and packing fraction.32  The comparison of the two right-hand terms can be used to 

determine a critical velocity in terms of a Reynolds number with length scale K , below which 

the Forchheimer term becomes important.   



 61 

KFF

F

RecKVc
V

K

V
K

c

⋅==
µ

ρ
µ

ρ 2

 (4.6) 

The influence of the Forchheimer term can be more easily explained by reference to Figure 4.1, 

which plots the Forchheimer equation divided through by ρV2/K½ and represented as a friction 

factor fK, taken from Nield and Bejan.31  For Reynolds numbers above unity, the friction factor 

begins to levels off at cF, rather than continuing to follow the extrapolation of 1/ReK predicted by 

Darcy’s Law.  Since the velocity (shown as v in the figure, but this is the same as V) is inversely 

proportional to the friction factor, the Forchheimer equation would predict a slower velocity than 

Darcy’s Law for the same conditions. 

 

Figure 4.1: Influence of inertial body forces on flow through porous media given by the 
Forchheimer extension of Darcy’s Law.31 

 

It should be noted that this transition defined by Forchheimer equation does not correspond to the 

traditional distinction between laminar and turbulent flow.  For ReK > 0.1, the form drag becomes 

significant even though the flow remains laminar.  Truly turbulent flow has been found not to 

occur until ReK ~100 and this is rarely encountered in flow of incompressible fluid through 

porous media.33  Maximum fluid velocities occur at the beginning of an infiltration and the 

corresponding ReK is typically well below 0.1 for oil infiltrations.  For liquid metal infiltrations 

into large powder, the ReK can approach or exceed unity briefly at the start of infiltration, but 

usually falls to below 0.1 before the height reaches 1 cm. 
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4.2.2 Liquid flow model 

Based on the typical conditions for capillary driven flow of oil or liquid metal into powder with 

diameter less than ~500 microns, characterization by Darcy’s Law is sufficient.  For the case of 

liquid flowing vertically into a sintered skeleton of porous media, it can be rewritten as a 

differential equation. 

 





=

∆
dt
dh

Kh
P

ε
µ  (4.7) 

Substitution of the capillary pressure and gravitational head loss yields: 

( )







 −
−′

= gh
Dh

K
dt
dh

ρ
ε

εγ
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where ( )θγγ cosLV=′ .  This differential equation can serve as a model to predict the flow rate of 

liquid into various geometry skeletons.34  By substituting ( )
µε
εγ

2

16
D

KA −′
≡  and 

εµ
ρgKB −≡ , the 

above equation can be simplified for integration in the following form: 

 ∫∫ =
+

th
dtdh

BhA
h

00
 (4.9) 

After integration, the time must be determined as a function of infiltration height due to the 

implicit nature of the equation. 

 t
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
 +

− ln2  (4.10) 

Although making time a dependent variable may seem a bit counterintuitive, the flow model can 

now easily be compared with subsequent experimental results. 

 

4.2.3 Permeability prediction based on pore geometry 

It is very useful to be able to predict the permeability of porous media based on known geometric 

properties.  One method for doing this is the model developed by Kozeny based on solution of the 

Navier–Stokes equation for known porous media geometry, a bed of uniform diameter spheres.  

The original model was further modified by Carman after comparison with experimental work.  

For a skeleton with void fraction ε and specific surface area per unit volume of solid S, the 

permeability K can be predicted by the Kozeny–Carman equation.35 
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As discussed earlier in the section on capillary pressure, the specific surface area S is equal to 6/D 

for the case of uniform diameter spheres.  The Kozeny−Carman equation has been exposed to 

some criticism due to variability under different experimental conditions, but remains the most 

widely recognized and useful means of predicting permeability for porous media.  Prior 

researchers have included a ‘tortuosity’ factor T in the denominator to correct for differences 

between predicted permeability and that measured experimentally.  This is typically justified by 

suggesting the actual path flow path is T times longer than the ‘apparent’ straight path.35  
 

4.3 Infiltration model incorporating freezing 

As mentioned previously, solidification of the infiltrant while it is still flowing into the skeleton 

results in a choking effect on the flow.  Each powder particle essentially grows radially at the 

solidification rate determined by diffusion.  As the powder particles impinge and the volume 

fraction of solid increases, the permeability of the skeleton decreases, provides greater restriction 

to flow, and will eventually cuts off the flow completely.  This occurs first in at the entry point of 

the liquid, where the liquid and solid have been in contact with each other the longest, 

subsequently preventing liquid from flowing in all downstream sections.  The maximum distance 

the liquid can travel due to this freezing is referred to as the infiltration or penetration distance 

limit.  Note that it is a maximum distance from the entry point of the liquid, and not a direct 

height limit as with capillarity. 

 

4.3.1 Growth of a sphere within a unit cell 

With the goal of estimating the permeability of a skeleton as a function of its degree of 

solidification, the volume fraction and surface area to volume ratio were calculated for a powder 

bed with a simple cubic lattice structure.  The unit cell of this geometry can be modeled as a 

sphere sitting inside a cube with side length equal to the sphere diameter.  The solidification of 

the skeleton corresponds to growth of the sphere, with the lattice constant, represented by the 

cube side length, remaining constant.  As the sphere grows, it takes up a larger fraction of the 

cubes interior volume as illustrated in Figure 4.2. 
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Figure 4.2: Growth of sphere of radius r within cubic unit cell with side length equal to the 
initial sphere diameter, 2Ro. 

 

The initial volume fraction of this unit cell is ( )33
3

4 2 oo RRπ or 52.4%, where Ro is the initial 

sphere radius and 2Ro is the cube side length.  Once the radius of the sphere reaches oR3 , the 

sphere will completely enclose the initial cube, corresponding to unity volume fraction and zero 

surface area (and adjacent spheres would be overlapping).  For the range oo RrR 2≤≤  where r 

is the growing sphere radius, the volume fraction and surface area can be calculated simply by 

subtracting the elements of the spherical caps that would extend outside the cube.  The volume of 

each cap corresponds to where particles would impinge upon each other in the cubic-latticed 

skeleton.  The volume of each cap can be found by integrating the solid of revolution36: 

( ) ( ) ( )33222
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−−−=−⋅= ∫
π

ππ  (4.12) 

The volume fraction can then be calculated as: 

( ) ( ) ( )33323 226
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Similarly, the surface area of each cap can be found by integrating the area of the surface of 

revolution: 
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leading to a specific surface area of S, which is the ratio of surface area to solid volume: 

( )
( )3

2

2
124
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⋅

−⋅−
=

ππ
 (4.15) 

 

4.3.2 Change in permeability 

The results of equation 4.13 and 4.15 can be inserted into equation 4.11 to predict the change in 

permeability with growing sphere radius: 
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As shown in Figure 4.3, the permeability decreases sharply with radius so the limited model 

range of r < 1.4Ro is sufficient.  It should be noted that application of the Kozeny−Carman model 

in this context is only valid when the geometry still resembles packed spheres. This geometry 

exists for the initial packing of the spheres, K(Ro), and prediction of the initial slope when r ≈ Ro, 

but the model validity becomes questionable as solidification progresses.  Nonetheless, it 

provides a reasonable estimate of how the permeability will vary during solidification. 

 

 

Figure 4.3:  Volume fraction vf, normalized surface area to volume ratio S, and normalized 
permeability K as a function of sphere growth (solidification) in a simple cubic unit cell. 

 

The geometry of a randomly packed powder bed will differ from that of a simple cubic lattice and 

cause some deviation from the curves above.  In particular, the void fraction ε will differ from 
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that of the initial unit cell, which is 47.6%.  The void fraction (1-vf) must be scaled appropriately 

by %6.47
ε to achieve a better estimate of K(r) for a given powder skeleton. Finally, the permeability 

as a function of time is found based on the growth of the sphere radius r(t) = Ro + X(t). As 

discussed in Chapters 2 and 3, the solidification rate is well represented by: 

( ) tDtX ~4β=  (4.17) 

where β is determined from the solidus and liquidus compositions or experiments, D~  is the 

diffusivity of the melting point depressant in the solid and t is time. 

 

The resulting permeability dependence on time is shown in Figure 4.4 for two skeletons with 

different void fractions, 100 µm diameter powder, and sample solidification parameters denoted 

in the caption.  K(t) is the result of equation 4.16 with substitution of r(t) based on equation 4.17 

and vf modified based on ε as suggested above. 

 

 

Figure 4.4:  Predictions of K(t) during skeleton solidification (D=100 µm, β=1, D~ =10-13 m2/s) 
and curve fits of equation 4.18 estimating permeability change. 

 

For reasons that will become more apparent during the data analysis presented in sections 5.6 and 

5.7, it is useful to have a simpler equation relating the permeability and time as follows: 

 ( ) ( ) 2
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This estimate matches the curve well until the permeability decays to below 20% of its initial 

value, at which point the corresponding flow rate is very small and the difference is tolerable.  

The general form of equation 4.18 was selected based on matching a quadratic curve to the 

permeability decay of Figure 4.3.  The parameter (1+5ε) was determined using a least-squares fit 

weighted by the permeability to force a closer match when the permeability is greater and has 

more influence on liquid flow.  The dependence on void fraction was found by matching the 

curve for various initial void fraction values, as shown in Figure 4.4.  The permeability at t=0 is 

fixed at the permeability predicted by the Kozeny−Carman equation and would typically include 

a tortuosity factor determined from experiments, although for the data shown in Figure 4.4, T was 

set to unity. 

 

4.3.3 Numerical simulation of infiltration rate with variable permeability 

The infiltration rate into a powder skeleton during solidification can be predicted using the 

changing permeability in equations 4.16 or 4.18 in the flow model described in equation 4.8.  A 

numerical simulation was written using MATLAB, with the code provided in Appendix B.  A 

simple version initially assumes that permeability changes with time only, and is the same 

everywhere in the skeleton at a given moment.  Then a modification is described which accounts 

for spatial differences in a skeleton’s permeability due to variable contact time with the infiltrant. 

 

Because the infiltration rate and the permeability change very quickly at the beginning of the 

simulation and then begin to level off, a variable time step was used.  Small time steps are 

necessary for simulation accuracy, but lead to excessively long computing time when used for the 

entire simulation.  The variable time steps provide greater simulation accuracy for a given 

number of computer iterations.  Starting with an initial time step of ∆t, each successive time step 

increased by ∆t, such that the time vector consists of the following components, where n is the 

number of iterations in the finite-difference simulation: 
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Since the infiltrant flow stops when the skeleton permeability reaches zero, the solidification rate 

can be used to determine the necessary run length based on how quickly the permeability goes to 
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zero for the growing particle radius shown in Figure 4.3.  The infiltration effectively comes to a 

halt when r = 1.3Ro  or X(t) = 0.15D.  The necessary runtime t(n) can be plugged into the 

solidification rate to find the time at which this occurs.  The corresponding initial time step, ∆t 

can be found from the bottom line of equation 4.19. 
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At each time step i from 1:n, the height increase is calculated using the numerical difference form 

of equation 4.8: 
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where R(i) is a resistance term equal to h(i)/K(i) for the case when permeability varies with time 

only.  For convenience, the time steps described in equation 4.19 are used to define K(t) and for 

calculating h(t), but they need not be the same. 

 

To initiate the finite-difference simulation, it’s necessary to estimate the first value for the height 

h(2) in order to avoid dividing by h(1) = 0 during the first iteration through the simulation.  To 

provide a reasonable estimate of the height after the first time step, this first value is selected such 

that h(3) would equal twice h(2). Using i=2 in the right-hand side of equation 4.21 and setting the 

left-hand side to equal 2 times h(2) gives: 
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The numerical simulation can be checked against the analytical solution of equation 4.10 by 

setting R(i) = h(i)/K(t=0).  A small error develops at the beginning of the numerical simulation, 

but for n=500 and typical conditions, this error is less than 1 mm. 

 

To account for spatial variations in permeability, the bulk resistance is the sum of the local 

resistance in each height segment.  The skeleton permeability is known as a function of the 

elapsed time it has been in contact with the liquid infiltrant, so this time must be determined for 

each height segment to determine the localized permeability.  In an example of an infiltration 

height vs. time curve, Figure 4.5 defines the time in contact with liquid for a given point as t′(i,j) 
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where i is the index for the current total infiltration time, and j is an index from 2:i for each of the 

previous time steps and the corresponding heights.  This is a convenient method of breaking 

down the skeleton into height segments that have undergone variable degrees of solidification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5:  Definition of terms for variable permeability within a skeleton. 

 

The actual time in contact with liquid, t′, is equal to t(i) – t(j) but due to the non-linearity between 

the indices and elapsed time, the new index m cannot be found simply by subtracting i – j.  Such 

an index is convenient to reference the existing function of K(t) because K(t) has been defined by 

the same variable time steps of equation 4.19.  The new index can be found based on the relation 

of time to the indices in equation 4.19. 
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The quadratic relation can be solved directly for m, and then rounded to the nearest whole number 

for use as an index to define the localized permeability. 
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The resistance term in equation 4.21 accounts for the spatial as well as temporal change in 

permeability when defined as a sum of series resistances from each height segment: 
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with m as a function of j from equation 4.24. 

 

The actual difference in both height and effective permeability between the numerical simulations 

using K(t) and K(h,t) is fairly small.  The K(t) simulation predicts a ‘worst case’ and a final 

infiltration height that is ~10% less than for K(h,t).  The results of the numerical simulation are 

shown in Figure 4.6 for transient liquid-phase infiltration of a 100 µm powder skeleton with 

ε=0.4, the same solidification parameters as in Figure 4.4, and infiltrant properties of ρ=7.2 g/cc, 

µ=10.5 mPa-s, and γ′=1.4 N/m. 

 

Figure 4.6:  Sample results of TLI numerical simulation and effect of including spatial 
change in permeability. 
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Chapter 5: Infiltration Rate Results and Analysis 

5.1 Oil permeametry 

Direct measurement of permeability is relatively simple and can be done at room temperature 

with any fluid of known physical properties.37  Permeametry experiments were conducted using 

Multitherm 503, a heat-transfer oil with the physical properties described in Appendix C.  Figure 

5.1 shows a schematic representation of the apparatus used for measuring permeability alongside 

a photograph of the experimental setup.   
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Figure 5.1: Permeametry using oil flow through cylindrical plug sample. 

 

The plastic tubing used was ¼″ inner diameter and samples had a slightly larger diameter so the 

tubing stretched around it and ensured all the liquid flowed through the sample, not around it.  

The top and bottom liquid reservoirs had a large cross-sectional area of ~100 cm2 to minimize the 

height change during an experiment.  Samples were typically 15 – 20 mm in length and prepared 

as described below in Appendix D.  The mass flow through the sample was determined via timed 

measurements of mass increase to the lower reservoir.  The permeability is calculated directly 

from Darcy’s Law:   

L
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µ
ρ

ρ
&

=  (5.1) 

where ρ is the fluid density, g is gravity, h is the height difference of the reservoirs, µ is the fluid 

viscosity, L and A are the length and cross-sectional area of the sample, and m&  is the mass flow 
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rate of the liquid.  For better measurement accuracy, several flow-rate measurements are taken at 

varying heights and the permeability is determined from the least squares fit to the corresponding 

plot slope.  The tortuosity factor T for a given powder sample is then determined by solving for T 

in equation 4.11 using the average powder diameter and the measured permeability value. 

 

Dpowder (µm) Dsample (mm) L sample (mm) 1−ε Kmeasured (m2) Tortuosity 

63−74 9.48 19.35 59.0% 3.54E-12 1.45 

90−104 9.42 16.56 59.6% 5.50E-12 1.76 

125−150 6.29 14.90 58.0% 8.79E-12 2.64 

212−250 6.34 19.20 56.4% 2.80E-11 2.76 

250−300 7.05 18.93 54.2% 6.79E-11 2.02 

Table 5.1: Permeametry using Multitherm 503 oil and skeletons of nickel powder. 

 

The powder was sieved into narrow size distributions to match the assumption of uniform 

diameter spheres used in the Kozeny–Carman model.  The distribution of powder size within the 

range is unknown for each powder sample, which would cause the weighted average diameter to 

differ from the midpoint of the sieve sizes.  In addition, the surface texture of the 

hydrometallurgically processed nickel powder was cauliflower-like and the roughness will have 

an affect on the permeability.  This combination of factors is taken into account with the 

tortuosity factor, which appears to have a correlation with powder size but there is no strong 

justification for this.  The sample of largest powder was made by machining a sintered bar with 

square cross-section into a cylindrical plug.  The corresponding rough surface introduced more 

uncertainty into the calculation of void fraction and could explain the deviation from the trend.  

All of the other cylindrical samples were sintered inside an alumina tube and had smoother 

exterior surfaces. 
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Figure 5.2: Ni powder made by the hydrometallurgical process.  Polished cross-section of 
several powder particles embedded in epoxy highlights their surface roughness. 

 

5.2 Oil infiltration and comparison with flow model 

The infiltration rate of oil into various skeletons was measured and compared with the flow 

model developed based on Darcy’s Law.  For nickel powder, the infiltration front is easily 

distinguishable due to the darkening of the skeleton when filled with oil.  A sintered skeleton was 

held vertically next to a ruler as shown in Figure 5.3, and infiltration height was measured as a 

function of time. 
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Figure 5.3: Photo and schematic of infiltration rate measurement of Multitherm oil into 
125−150 µm nickel skeleton. 
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Figure 5.4: Infiltration rate of oil into nickel powder and corresponding rate model. 

 

The experimental results shown in Figure 5.4 correspond to the solution to equation 4.8 with the 

addition of a parameter, H, that accounts for variation of the actual capillary pressure from that 

predicted by equation 4.3: 
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The values for permeability are calculated from equation 4.11 using the tortuosity factors 

determined from oil permeametry and listed in Table 5.1.  The parameter H could ideally be 

extracted from the final capillary rise height, but a secondary flow regime is observed over longer 

time scales where incessant fingering of the liquid front prevents measurement of the equilibrium 
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rise height.  Instead, the values for H are selected to match the experimental height measurements 

with minimum least-squares error.  The values for H are shown on the plot corresponding to each 

powder size.  For both H and T, the given values are considered representative of the given 

powder size range and used for future modeling results with liquid metal infiltrant. 

 

5.3 Fluid properties of liquid metal 

The fluid properties of density, surface tension, and viscosity must be determined in order to 

apply the liquid flow model to another infiltrant.  For the case of liquid copper, these properties 

are fairly well defined, but the properties of the binary nickel−silicon alloy used as an infiltrant 

are not available in literature.  The near-eutectic composition Ni−Si material is not commercially 

available, so it was mixed from high purity Ni chunks and Si chips, both obtained from Alfa 

Aesar (stock #’s 35482 and 38542), using an induction furnace in MIT’s foundry under a 

blanketed Argon atmosphere.  The methods used to determine each of the fluid properties for this 

material are given below. 

 

5.3.1 Density 

The density of the solid Ni − 10.2 wt% Si was measured using Archimedes principle with several 

different cast samples and found to be 8.08 g/cc.  Cross-sections of the samples revealed no 

significant voids that would alter the density measurement.  To estimate the density of the same 

material at its melting point, the ratio of liquid density to solid density at room temperature was 

compared for several different common metals as compiled in Appendix E.  The ratio was fairly 

consistent for the common metals listed (excluding the semiconductor Si) and this ratio was 

applied to the Ni−Si alloy to get an estimated liquid density of 7.2 g/cc.  Theoretical 

approximation of density for a binary liquid alloy is given by the weighted sum of their atomic 

volumes: 

 ( ) 







++=

2

22

1

11
2211 ρρ

ρ
MxMx

MxMxalloy  (5.3) 

where xi, Mi, and ρi are the atomic fraction, molecular weight, and liquid density of the two 

mixture components, resulting in a density of 6.5 g/cc for the Ni−Si alloy.39  However, significant 

negative excess volumes have been reported for compound-forming alloys that would result in 

underestimating the density by as much as 25%.  Because of this uncertainty, the initially 

estimated value of 7.2 g/cc was used for subsequent calculations. 
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5.3.2 Surface tension 

The surface tension of pure nickel at its melting temperature of 1454°C is listed in Appendix E as 

1.778 N/m.  The addition of alloying elements generally tends to reduce the surface tension of 

pure metals.  To determine the surface tension of the Ni−Si infiltrant, a method based on the 

Wilhelmi plate principle38 was developed for use with liquid metal inside the furnace.  In this 

case, a 1mm thick, 5 cm wide sheet of pure nickel was dipped into a pool of liquid infiltrant.  It 

was suspended from a wire that could be raised and lowered from outside the furnace while 

measuring the wire tension using a load cell.  The setup was the same as that used for measuring 

the infiltration rate of liquid metal and is described in more detail in section 5.4.  Figure 5.5 plots 

the surface tension force generated from four sequential measurements.  For each measurement, 

the sheet was lowered until it touched the surface of the melt, then held for 5−10 seconds and 

removed.  The average value was 1.4 N/m. 
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Figure 5.5: Surface tension measurements from dipping nickel plate into Ni − 10.2 wt% Si 
at 1200°C. 

 

5.3.3 Viscosity 

Measurements of the viscosity of pure nickel at its melting temperature are fairly consistent at ~5 

mPa-s and the viscosity decreases by ~0.005 mPa-s/°C as temperature increases.39  The effect of 

alloying elements on viscosity is somewhat unpredictable, so a relatively simple method for 

measuring the infiltrant viscosity was developed based on the capillary method.  A known 

quantity of liquid metal is forced through a capillary tube by a known pressure differential using 

the apparatus described in Appendix F.  The viscosity is determined by the flow rate through the 

23 cm long alumina tube with 0.75 mm inner diameter.  Because any solidification of the 

infiltrant would clog the capillary tube, the experiments were conducted using the eutectic 
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composition of Ni − 11.3 wt% Si at a temperature of 1200°C, significantly above the eutectic 

temperature of 1143°C.  The viscosity was measured at 10.5 mPa-s, with an estimated accuracy 

of +/- 10%. 

 

5.3.4 Summary 

The liquid properties of various infiltrants are summarized in Table 5.2, along with the typical 

infiltration temperature.  Any change in fluid properties between the measurement temperature 

and infiltration temperature is neglected.  The maximum capillary height for a given powder 

skeleton is proportional to γ′/ρ, which is 4–5 times greater for liquid metal than for oil.  

Significantly below the capillary rise limit, the rate of infiltration is affected only by γ′ and µ, 

therefore infiltration occurs significantly faster with liquid metal because the driving force of 

surface tension is ~50 times greater and there is very little difference in the viscous drag.  The 

corresponding higher flow rates can cause the form drag term of equation 4.5 to potentially 

become significant. The critical ReK of 0.1 corresponds to a maximum front velocity of 1.5 cm/s 

for Cu or 4.5 cm/s for Ni−Si in a skeleton of 250−300 µm powder.  Infiltrant velocities 

sometimes exceed these values, particularly for copper, but only briefly at the beginning of an 

infiltration.  Since the velocity and permeability drop off sharply with time during an infiltration, 

the overall contribution of the form drag term to predicting infiltration rate and penetration 

distance is considered insignificant. 

 

Fluid 
Multitherm 503 Oil 

20 °C 
Ni − 10.2 wt% Si  

1185 °C 
Copper 
1100 °C 

ρ [kg/m3] 794 7200 8000 
µ [mPa⋅s] 8.0 10.5 4.0 
γ′ [N/m] 0.029 1.4 1.2 

Table 5.2:  Fluid properties of oil and liquid metal infiltrants. 

 

5.4 Experimental setup for measuring liquid metal infiltration rate 

Measurement of the imbibition or infiltration rate of liquid metal into a powder skeleton is 

challenging because it cannot be easily observed optically.  Furnace windows can be installed to 

provide limited views of the hot zone, but the walls of the infiltrant crucible would further 

obstruct the view.  In addition, the contrast at the infiltration front may not be easy to distinguish, 

depending on the relative emissivities of the liquid and solid material.  An alternative method was 

developed to measure the infiltration rate indirectly through the increase in the skeleton’s mass as 
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it sucks up the liquid infiltrant.  The skeleton is suspended from a wire passing through the roof 

of the furnace and the wire tension is measured using a load cell.  The mass of the skeleton must 

be isolated from other forces acting on the skeleton and wire, specifically friction, surface 

tension, and buoyancy. 
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Figure 5.6: Setup used to measure infiltration rate inside furnace through mass increase. 

 

The force measurement device (in this case a 1 N load cell from Strain Measurement Devices) 

must be kept outside the hot zone, therefore the supporting wire must pass through the gas-tight 

furnace shell with little or no friction.  A short ~2 cm section of alumina thermocouple tube (⅛″ 

OD, double bores of 0.023″ ID) is mounted in a compression fitting using Teflon ferrules with the 

holes remaining open for the wires to pass through.  The holes must be kept small and long 

enough to prevent contamination of the furnace atmosphere, which is kept at a slight positive 

pressure to prevent influx of air.  Molybdenum wire, 0.010″ φ, was selected because it maintains 

strength at high temperatures and is reasonably ductile before firing.  The wire is stretched prior 

to installation to straighten it and prevent it from rubbing against the ceramic tube.  Hysteresis 

between raising and lowering a skeleton of fixed mass reveals the contribution of friction to the 

wire tension to be typically less than 0.5 grams. 

 



 79 

The force acting on the skeleton due to surface tension can be estimated from the solid/liquid 

surface energy and the perimeter of the skeleton.  The ratio of the skeleton perimeter to its cross-

sectional area will determine the relative importance of the effect of surface tension.  This ratio 

was kept small by using skeletons with cylindrical or square cross-sections and diameter or side 

lengths of ~1 cm.  Typically the compensation for the effect of surface tension corresponds to 1−2 

centimeters of infiltrant height rise.  

 

The buoyancy force acting on the skeleton is equal to the volume of liquid displaced times the 

difference in density.  Since the liquid displaced by solid has only a small density difference, the 

corresponding buoyancy force is negligible, but the force due to liquid displaced by void space in 

the skeleton can be significant.  The overall effect of the buoyancy, when translated to an 

infiltration height, is roughly equal to the distance the skeleton is submerged below the surface of 

the melt.  To keep the skeleton near the melt surface, it is slowly lowered from above the melt 

with a linear actuator while monitoring the wire tension.  A noticeable step increase in wire 

tension (due to surface tension) occurs when the skeleton touches the surface of the melt, and the 

actuator is then stopped so the buoyancy effect is limited to a few millimeters. 

  

Force disturbances can also occur if the skeleton touches any other solid objects.  The melt pool 

must be kept deep enough to prevent the skeleton from accidentally touching the bottom of the 

crucible.   In the case when the infiltrant is maintained at a semisolid state, even a sparse matrix 

of solid dendrites can support some of the skeleton’s mass and disrupt the measurements.  A 

stirring mechanism originally developed to ensure uniform composition in the melt also serves 

the purpose of breaking up any solid matrix that forms in the crucible.  A ceramic rod with a 

rectangular block of bisque-fired alumina cemented on the end was used as a propeller to stir the 

melt at ~100 rpm while it was slowly cooled from a fully liquid state to the desired infiltration 

temperature.  After the infiltration temperature is reached, the propeller is lifted so it only stirs in 

the top half of the melt, with the intention of the solid settling to the bottom.  The propeller is 

stopped and removed prior to dipping the skeleton.  After removal of the skeleton, dendrites can 

sometimes be found attached to the skeleton where it was dipped into the melt, visible in Figure 

3.9.  These likely are responsible for some of the disturbances in the infiltration rate data, but 

useful results were still attainable.   

 

The infiltration height of the skeleton can then be found based on mass increase as the the liquid 

fills the skeleton:   
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where m is the mass, ρl is the liquid density, ε is the void fraction and A is the cross-sectional area 

of the skeleton.  The mass is determined from the load cell voltage V based on the load cell 

constant c (g/V) and the surface tension effects as discussed above where L is the perimeter of the 

skeleton.  In most cases there was no buoyancy effect, but because it is proportional to height it 

can be compensated for after the conversion from mass to distance.  A data-logging multimeter 

was used to record measurements from the load cell through a 1000x DC amplifier at time 

intervals of 0.05 seconds.  The load cell was first calibrated at room temperature with several 

different masses and c was found to equal 11.2 g/V.  Because the load cell is close to the furnace 

roof and is near 100°C during infiltration measurements, the difference between the skeleton’s 

mass and the infiltrated part’s mass was used to calibrate the load cell for each run at the elevated 

temperature.  The mass change was divided by the difference between initial and final voltage 

measured from the load cell during each experiment, resulting in values of c = 11.3 ± 0.4 g/V. 

 

5.5 Dipping experiments to measure local permeability change 

As discussed in section 4.3, the permeability of the skeleton begins to change as soon as it comes 

into contact with molten infiltrant and will therefore vary spatially within the skeleton during an 

infiltration.  To experimentally isolate the local change in permeability, the skeleton was dipped 

in infiltrant for only a few seconds to fill the bottom few centimeters with infiltrant.  The skeleton 

was then removed and held at temperature for a given time period as diffusional solidification 

occurs and the permeability decreases.  The skeleton was then re-introduced to infiltrant to 

measure the corresponding change in permeability.  As long as the initial dipping time is short, 

the skeleton can be assumed to be uniform, and the spatial variation in permeability can be 

ignored.  The experiment is summarized in Figure 5.7 showing the sequence of actions in 

conjunction with the recorded data. 
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Figure 5.7: Raw data from dipping experiment to measure local permeability change.  
Increase in mass can be correlated to infiltration height.  Raw data shown does not account 
for surface tension offset, which is only applied when the part is touching the melt. 

 

The velocity of the infiltration front can be found by taking the derivative of the measured height 

vs. time.  The experimental data is recorded 20 times per second, and allows a reasonable 

calculation of the slope for the short time periods over which the part is dipped. The permeability 

can be estimated from the front velocity and compared to the model shown in Figure 4.6.  The 

permeability is calculated directly by rearrangement of equation 5.2: 
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where the slope dh/dt is calculated from a least squares fit to +/- N sequential data points over 

which the derivative is taken.  Any irregularities in the height measurement become magnified in 

the calculation of permeability, so larger values for N help to smooth out the data.  However, if 

the sample was dipped into the melt at tdip and pulled from the melt at tpull, then the slope 

calculations are only valid for (tdip − N/20) < t < (tpull − N/20).  Since the initial dip typically lasted 

for 3−4 seconds, N must be small to still extract permeability values for more than one second.  

Values of N ranged from 10−15 during initial dipping and from 50−80 after the hold. Figure 5.8 

below shows the results of three dipping experiments with 250−300 µm powder and two 

experiments with 125–150 µm powder.  The initial void fraction of each skeleton was slightly 

tpull tdip 
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different, which would result in a Kozeny−Carman permeability (including the appropriate 

tortuosity T for the powder size) unique to each skeleton.  To allow a comparison of the 

skeletons, the plot shows a normalized permeability, which has been divided by KK-C for the given 

skeleton to compensate for differences in void fraction. 

 

Figure 5.8: Local permeability change from dipping experiments for skeletons of two 
different powder size.  The dashed line represents the K(t) model with β = 1.3 and              
D~ = 8.35 x 10-14 m2/s.  Solid black and gray lines are calculated using equation 5.5 and 
heights from dipping experiments. 

 

The experimental results exhibited the expected decrease in permeability with time, and further 

show the rate of decay increases as the powder size decreases.  However, when compared to the 

model of K(t) developed in section 4.3.2, the calculated permeability values are significantly 

lower than predicted (dashed line).  The infiltration temperature was 1185°C, corresponding to 

the diffusivity given in the caption and the value for β was chosen based on the quenching 

experiments of section 3.2.2.  The fluid properties used in the model are those listed in Table 5.2.  

The initial value of ReK for the larger powder is 0.2 and it decreases rapidly, signifying that the 
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flow is indeed viscous dominated.  The variables T and H used to fit the oil permeametry and 

infiltration rate experiments are intended to be representative of each skeleton’s powder size 

range.  Representing the permeability and capillary pressure variation from the given models for 

uniform diameter spheres, they can be considered skeleton parameters to be carried over for 

modeling with another fluid.  Since T and H affect the fluid flow in the same manner as the fluid 

viscosity and the surface tension respectively, determination of these parameters is dependent 

upon the properties of the calibrating fluid.  Similarly, the fluid properties of the Ni−Si infiltrant 

play a significant role in the calculation of permeability as shown in equation 5.5. 

 

The lower than expected permeability value could be attributed either to an actual fluid viscosity 

greater than µ or an effective surface tension less than γ′.  As discussed in section 5.3, the method 

used to determine viscosity necessitated measurement at a slightly higher temperature and silicon 

composition to prevent solid particles from clogging the capillary.  The infiltrations of Figure 5.8 

were done at 1185 °C with the bulk infiltrant composition in the two-phase field so that the 

extracted liquid was at its liquidus composition.  The corresponding viscosity would be expected 

to be slightly higher than the estimated value of µ, although the specific relationship is unknown.  

An argument could also be made for an effective surface tension value less than γ′, a static 

calculation from contact with a flat plate.  The advancing contact angle is likely to be higher 

(resulting in lower γ′) and could also be dependent upon the infiltration front velocity. 

 

The dipping experiments were specifically designed to isolate the local permeability change in 

the skeleton for comparison with the model for K(t).  The differences between the two models for 

K(t) and K(h,t) shown in Figure 4.6 are quite small compared to the differences between 

experiment and model shown in Figure 5.8.  A permeability calculation can be extracted from a 

simpler continuous infiltration experiment by neglecting the spatial differences in permeability.  

 

5.6 Infiltration rate curves and analysis 

Continuous infiltration rate experiments into nickel powder were conducted for four different size 

ranges with the Ni−Si infiltrant and three powder size ranges using pure copper as an infiltrant.  

For each experiment, the effective bulk permeability (ignoring spatial variation) was calculated 

using equation 5.5.  For the infiltrations with Ni−Si at its liquidus composition, solidification in 

the melt pool is the likely cause of noise in the data.  The slope dh/dt was averaged over a larger 

number of data points, N=200, to smooth out the measurements of permeability.  The copper melt 
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pool at 1100°C did not cause as much disturbance in the height measurements so a smaller value 

of N=60 was used.  

 

In order to extract physically meaningful information from the permeability data, the results of 

each experiment were fit to the form of equation 4.18 with the solidification rate substituted for 

X(t) using the relation from equation 2.6:  
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where the two parameters τ and α are fitted to the calculated permeability based on least squares.  

These parameters characterize the variation of the permeability curve from expectation in terms 

of a direct scaling factor accounting for initial variation, τ, and a coefficient influencing the rate 

of decay, α.  Determination of τ and α cannot be done simultaneously because they appear in 

equation 5.6 in a non-linear manner.  First, a free fit to a second-order polynomial fit is used to 

achieve a very good match to the curve and find the appropriate initial permeability at X=0.  This 

involves solving for the independent parameters p1, p2, and p3: 
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using linear regression to fit a curve to the calculations of equation 5.5 that extract permeability 

from experiments.  The polynomial coefficients would be interdependent if this polynomial fit 

were forced to match equation 5.6, where the interdependence would relate to τ and α as follows: 

τ
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α 2

3 =p  (5.8) 

However, since p2 and p3 are determined independently, they rarely exhibit this interdependence 

and only the first parameter can be determined from the polynomial fit.  The value for τ 

determined by the first fit can now be used to find the appropriate value for α by rearrangement 

of equation 5.6: 
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and finding the corresponding least square fit for α. 

 

Figure 5.9 shows how the two equations fit the calculated permeability value using equation 5.6 

with τ and α chosen from 5.7 − 5.9.  The unadjusted model for the given skeleton, 125−150 µm 
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powder with 40.9% void fraction, uses the values for H=0.95 and T=2.64 determined with oil and 

solidification parameters β=1.3 and D~ =8.35 x 10-14 m2/s from the wire bundle experiments in 

Chapter 3.  It significantly overestimates the permeability and therefore the corresponding height 

rise of the infiltrant.  Both the original polynomial fit of equation 5.7 and the second curve fit to 

equation 5.6 match the measured permeability closely and therefore accurately predict the 

infiltration height for the given skeleton.  The parameters τ and α can be used to characterize the 

observed behavior.  Since α and β are both directly proportional to the solidification rate, the 

fitted value for α will depend on β.  In order to facilitate application of the model to different 

material systems without the need for experimentally determining the solidification parameters, 

the theoretical value for β is calculated from the solidus and liquidus concentrations on the phase 

diagram. 

 

Figure 5.9: Continuous infiltration rate experiments, comparison with model and 
permeability curve fits (p1 = 0.76, p2 = −8.2, and p3 = 22.5 for the polynomial fit; τ = 1.3 and 
α = 2.1 for the fit to equation 5.6). 
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The results of eight different experimental measurements of infiltration rate are summarized in 

Tables 5.3 and 5.4, where the variation from the model is captured in the curve-fitted parameters 

τ and α.  

Dpowder (µm) ε T H τ α T·τ α (τ = 3.6/T) 
63−74 40.3% 1.45 0.71 2.86 1.03 4.15 1.10 

90−104 40.7% 1.76 0.82 1.83 1.65 3.22 1.61 
125−150 40.9% 2.64 0.95 1.31 2.08 3.46 2.06 
250−300 45.3% 2.02 0.99 1.62 1.53 3.27 1.18 
250−300 45.4% 2.02 0.99 1.97 2.90 3.98 3.20 

Table 5.3: Fitted parameters for Ni−Si infiltrations using β = 1.3 and D~  = 8.35 x 10-14 m2/s. 

Dpowder (µm) ε T H τ α T·τ α (τ = 3.6/T) 
63−74 40.1% 1.45 0.71 2.74 0.92 3.97 0.94 

90−104 41.8% 1.76 0.82 2.41 1.09 4.24 1.12 
250−300 46.6% 2.02 0.99 1.42 1.89 2.87 1.54 

Table 5.4: Fitted parameters for copper infiltrations using β = 1.65 and D~  = 2.2 x 10-13 m2/s. 

 

There appears to be significant variation in both τ and α from one experiment to another, with no 

clear reason.  Some of this variation is attributable to experimental uncertainty, since the two 

250−300 micron powder skeletons infiltrated with Ni−Si produced different results.  The second 

of those two skeletons was only 8 cm tall and filled in only 20 seconds, well before freeze-off 

occurred.  Since data was only available over a short time period, the corresponding curve fit is 

less reliable and these values were not used in any averaging.  Using the remaining seven 

experiments, the mean and standard deviation are τ = 2.0 ± 31% and α = 1.46 ± 31%. 

 

To make the model useful as a predictor of infiltration distance, it is necessary to identify the 

parameters τ and α in some universal way.  The data suggests a possible inverse relationship 

between the tortuosity factor T and the curve fit parameter τ.  Their product is included in the 

table and indeed the variance is significantly reduced, Tτ = 3.6 ± 15%.  The final column shows 

the corresponding parameter α found from equation 5.9 using the suggested dependence of τ. The 

resulting deviation in the second parameter is reduced as well, α = 1.36 ± 29%, although only 

slightly.  No doubt there are many different physical phenomena responsible for defining these 

parameters, but the limited data set with some intrinsic variability prevents a definitive 

explanation.  Use of a dynamic wetting angle would cause a dependence of the capillary pressure 

on the infiltration rate.  Deviation from the Kozeny−Carman model is likely as the solidifying 

geometry no longer resembles packed spheres.  This could be represented by a tortuosity factor 
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that changes with volume fraction.  The rate of solidification is directly proportional to α, and 

since a value of 1 would correspond to a match between the permeability decay and the prediction 

based on the sphere growth solidification model, the observed fits for α correspond roughly to a 

50% higher solidification rate.  Experimental results with 50 µm diameter wire in Chapter 3 

already exhibited a factor of two higher solidification rate than expected by theory using the 

literature value for diffusivity.  This rate might be further increased in the powder if it has a finer 

grain size.  Nonetheless, the model captures the general behavior of infiltration into a skeleton 

during diffusional solidification and makes a reasonable prediction of limitations to the 

infiltration height due to freeze-off.  The following plots show how the universal model would 

have faired in predicting the behavior for each of the experiments. 
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Figure 5.10: Infiltration rate experiments with Ni−Si and model (τ = 3.6/T, α = 1.4). 



 89 

 

Figure 5.11: Infiltration rate experiments with copper and model (τ = 3.6/T, α = 1.4). 

 

The final infiltration height predicted by the model is generally within about 20% of the measured 

value for both material systems.  The solidification parameters β and D~  are the only difference in 

the model for infiltration with Ni−Si and infiltration with copper.  Furthermore, because the 

model fit to the observed data suggests the product (τT) to be constant, the tortuosity factor, T 

does not play a significant role in the model for the given conditions.  The only experimentally 

determined parameter to play a role is H, which could be neglected when using the model for first 

order approximations. 

 

5.7 Implications of the TLI rate model 

Using this relatively universal permeability model, we can determine the dependence of the 

infiltration height limit on powder size.  For infiltration heights less than 10−20 cm, the loss of 

fluid driving pressure to gravitational head is quite small, and the limitations to vertical and 

horizontal infiltrations are identical.  This can be seen clearly in Figure 5.12, showing how the 

model predicts dependency on powder size for the two infiltrants. 
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Figure 5.12: Dependence of infiltration limits on powder size based on TLI model.  Dashed 
lines are for horizontal infiltration ignoring the effect of gravity.  Experimental results from 
section 5.6 are superimposed to show the height achieved with skeletons of the given size 
range, X for Ni−Si and O for Ni−Cu.  Both skeletons of 250−300 µm powder filled to the top 
of the skeleton and therefore represent minimum values. 

 

The maximum value for vertical infiltration limit occurs for both materials in the range of 

300−400 µm powder, signifying a transition from the freezing limit to the capillary rise limit.  For 

powder sizes larger than 500 mm, the inertial body forces become more significant and the fluid 

flow will begin to deviate from the Darcy’s Law.  Below the capillary limit, the curve indicates 

that a doubling of powder size would result in slightly more than doubling of the infiltration limit.  

For infiltrant with a slower diffusing melting point depressant, the slope would be steeper, the 

peak infiltration limit would be higher, and the transition to limitation by capillary rise would 

occur at a smaller powder size.  This would be the case for copper as compared to Ni−Si, except 

that the lower surface tension causes the peak to be lower as well.  An infiltrant with a very fast 

melting point depressant would conversely have a more gradual slope, a lower peak infiltration 

limit, and would not transition to a capillary rise limit until a larger powder size.  For such a case, 

it is reasonable to neglect the gravitational head loss in the model, and equation 5.2 can be 

integrated directly with the model of equation 5.6 substituted for K(t): 
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The curve fit for K(t) is valid until the permeability reaches zero at tfinal = 1/Z2, at which point the 

height is equal to the horizontal infiltration limit. 
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The effect of the void fraction on the infiltration is actually quite small due to several offsetting 

influences.  For constant permeability, a smaller void fraction creates greater capillary pressure, 

but is more than offset by the smaller permeability.  The net effect on infiltration distance without 

freezing follows ε/(1- ε) and can result in 20% greater distance by increasing from 0.4 to 0.5.  In 

the case of freezing as in TLI, the term (1+5ε) is derived in section 4.3.2 and represents how the 

permeability change is faster in a skeleton of higher initial void fraction.  The effects offset each 

other and the combination of all the terms in equation 5.11 that include void fraction results in 

less than a 5% difference in height limit over a wide range of 0.35 < ε < 0.5.  Substitution of H=1, 

Tτ=3.6, α=1.4 and ε=0.4 reduces equation 5.11 to the following: 
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The preceding equations neglect the effect of gravity, which can begin to play a significant role 

for large parts and large powder sizes.  For vertical infiltration as shown in Figure 5.13, the effect 

of void fraction for small powder once again is very small, but for large powder the effect can be 

greater due to the influence of void fraction on the capillary limit. 

 

 

Figure 5.13: Influence of void fraction on vertical infiltration limits generated from model 
to include the effect of gravity. 
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Chapter 6: Conclusions 

6.1 Overview 

The impact Transient Liquid-Phase Infiltration has on the PM and SFF industries will be 

determined by the usefulness of parts that can be made using this new method of densification.   

Specifically, this ‘usefulness’ can be defined in terms of the achievable material properties and 

part geometries.  To address these aspects of TLI, Chapters 2 and 3 presented the important 

materials issues and Chapters 4 and 5 delved deeper into the limitation that freeze-off can impose 

on part geometry.  Each of the major issues introduced in section 1.3 has been presented in 

general terms so as to apply to a variety of material systems.  The two material systems developed 

experimentally in this work, Ni−Si and Ni−Cu, were successfully used to test the understanding 

of the physical mechanisms playing a role in TLI. 

 

6.2 Materials conclusions 

The solidification rate is determined primarily by diffusion of the MPD into the solid skeleton.  

The motion of the solid liquid interface can be described by  

( ) tDtX ~4β=  (6.1) 

 for semi-infinite, one-dimensional geometry and constant diffusivity.  β is determined from the 

MPD solubility and the width of the solid/liquid two-phase field.  This relationship is described in 

equation 2.9 and plotted in Figure 2.2.  The diffusivity can be found in literature.   

 

Numerical simulations were used to show the effect of finite boundary conditions and curved 

geometry on the solidification rate.  Described in section 2.2.1, finite boundary conditions were 

shown not to affect the interface motion until the solid became nearly saturated with MPD.  For a 

skeleton containing no MPD, the effect on solidification rate is negligible for cases when the 

partition coefficient, Cs/Cl, is greater than the initial volume fraction of the skeleton.  In section 

2.2.3, cylindrical and spherical geometry was shown to decrease the motion of the interface 

relative to the planar case.  The decrease is proportional to both curvature and elapsed time, and 

the effect is fairly small for the large powders and short times of interest in TLI. 

 

For cases of concentration-dependent diffusivity, interface motion is determined by mass flux 

using the local diffusivity and concentration gradient at the interface.  The diffusivity at the 
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interface is based on the solidus concentration, but the concentration gradient is affected by the 

diffusivity elsewhere.  The numerical simulations in section 2.2.2 showed that the interface 

motion was once again proportional to the square root of time as in equation 6.1, despite 

significant variation in diffusivity with the Ni−Cu system.  The motion can therefore be 

represented by an effective diffusivity that lies somewhere between the diffusivity in the pure 

skeleton material and the diffusivity at the interface.  This effective diffusivity followed more 

closely to that of the solidus concentration for the Ni−Cu system as shown in Figure 2.8, but 

generalization is not recommended since the effective diffusivity will depend on the specific 

concentration dependence of diffusivity for a given materials system. 

 

The quenching experiments described in section 3.2 provided a simple and accurate method for 

measurement of the solidification rate.  The observed solidification rate in the Ni−Si materials 

system was approximately twice as fast as predicted by theory.  This difference is likely due to 

penetration of liquid and subsequent higher rates of diffusion along grain boundaries, which has 

been observed by prior researchers in other materials systems. 

 

Significant dissolution of a skeleton occurs when it is dipped into an infiltrant pool that can 

absorb the skeleton material.  Presaturating the infiltrant can prevent this gross part erosion 

because the liquid is already at thermodynamic equilibrium.   However, further erosion can result 

if the latent heat released during solidification increases part temperature and allows more 

dissolution.  The temperature rise depends on the solidification time, which is a strong function of 

powder size, and the external part geometry, which limits the dissipation of heat, as given by 

equation 2.20.  Experimental observations show the erosion to be in general less severe than 

predicted by equation 2.22, but support the prediction that this type of erosion is more severe for 

skeletons of smaller powder.  

 

The bulk composition of a part made by TLI remains uniform along with path of infiltration for a 

binary system with presaturated infiltrant.  This is ensured because the liquid composition does 

not change as it flows into the part.  Compositional analysis of an infiltrated Ni−Si part supported 

this prediction.  Uniform composition cannot be guaranteed for ternary and higher systems 

because solidification can result in a change of composition in the remaining liquid even if the 

infiltrant begins at a liquidus composition.   
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After infiltration and heat treatment sufficient for homogenization of MPD concentration, Ni−Si 

parts made by TLI were compared to cast material of the same composition.  The density of the 

infiltrated and homogenized parts was lower than the cast parts, suggesting the presence of some 

residual porosity.  Tensile tests showed similar elastic behavior for the parts made by TLI and 

casting.  Above the yield strength, the TLI parts failed after only 3−5% elongation and at a lower 

UTS, most likely as a result of the porosity.  After HIP treatment of the TLI parts, the density 

increased to match that of the cast samples as did the ductility and UTS.  The TLI parts after HIP 

treatment maintained a finer grain size than the castings, resulting in more isotropic deformation 

throughout the tensile bar. 

 

6.3 Infiltration limits from freeze-off 

Fluid flow during capillary infiltration of a powder skeleton can be adequately described by the 

differential equation: 
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for viscous-dominated flow with the variables as defined in sections 4.1 and 4.2.  Skeleton 

permeability K was measured directly via permeametry as described in section 5.1.  The 

parameter H was used introduced to account for differences between the actual capillary pressure 

of the skeleton and that predicted by a uniform diameter sphere model.  Figure 5.4 shows very 

close agreement of the solution to equation 6.2 with measurements of infiltration rates using oil of 

known fluid properties. 

 

The measured permeability for different skeletons was compared with the Kozeny−Carman 

model of equation 4.11 to determine a tortuosity factor T characteristic of each powder size range.  

Neglecting the gravitational term of equation 6.2 and substitution of the Kozeny−Carman model 

for permeability allows a simple solution for infiltration height (or distance, since gravity is 

neglected).   
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This relation is useful for determining the influence of each parameter on the infiltration distance 

for a skeleton of constant permeability. 
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Measurement of infiltration rate with liquid metal was done through mass increase as described in 

section 5.4.  The changing permeability of the freezing skeleton was determined by solving 

equation 6.2 for K with the measured infiltration rate.  A model for the permeability change was 

developed based on a simple cubic lattice structure, a growth rate for each powder radius 

according to equation 6.1, and the Kozeny−Carman model prediction of permeability using the 

volume fraction and surface area of the unit cell.  The permeability calculated from the measured 

infiltration height typically was smaller and decreased faster than the model prediction.  A 

reasonable curve fit to the measured permeability change was found using the following 

expression for permeability: 
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where τ and α were introduced to adjust the initial permeability value and the rate of decay 

respectively to match experimental observations, discussed in more detail in sections 4.3.2 and 

5.6.  In the case of a perfect match between experiments and the prediction of permeability 

change by the unit sphere growth model, both parameters would equal one.  Some possible 

explanations for the faster freeze-off were discussed in section 5.6, along with the 

characterization for the Ni−Si and Ni−Cu systems.  Suggested values for τ and α were chosen 

based on the experimental data in these two material systems, but understanding of the physical 

phenomena that determine these values is still somewhat lacking. 

  

This expression for variable permeability given by equation 6.4 was used in the fluid flow model 

of equation 6.2 and solved to find the following general expression for the infiltration distance 

limit (neglecting gravity) due to freeze-off in transient liquid-phase infiltration with the 

parameters described below. 
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T – tortuosity factor determined by oil permeametry and comparison to Kozeny−Carman 

prediction of permeability as described in section 5.1. 

H – height factor introduced to match actual capillary pressure of the skeleton to that 

predicted by the uniform diameter sphere model, determined from measurement of 

infiltration rate with oil in section 5.2. 
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τ and α − determined by curve fit to experimental measurements of infiltration rate for 

Ni−Si and Ni−Cu as described in section 5.6. 

ε − initial void fraction of the powder skeleton determined by comparing skeleton density 

to theoretical density of solid skeleton material. 

D – representative powder diameter.  For powder sieved between two mesh sizes, D is 

typically chosen as the median value.  If powder size distribution is known, D could 

be chosen as the weighted average. 

γ′ − surface tension force acting on the skeleton, inclusive of wetting angle effects.  This 

was measured directly for Ni−Si as described in section 5.3.2. 

µ − viscosity of the liquid infiltrant.  This was measured directly for Ni−Si as described 

in section 5.3.3. 

β − solidification rate coefficient determined from solidus and liquidus concentrations 

and Figure 2.2 or alternatively through direct measurement of solidification rate via 

quenching experiments as described in section 3.2.2.   

D~  – chemical diffusion coefficient of the MPD in the solid skeleton found in literature 

and generally reported as an Arrhenius function of temperature.  For diffusivity that 

is a strong function of concentration, an effective diffusivity representative of the 

interface motion can be determined as described in section 2.2.2. 

 

Based on the experimental measurements of permeability with Ni−Si and Ni−Cu, the following 

substitutions can be made: Tτ=3.6, and α=1.4 as discussed in section 5.6.  Further, for most 

skeletons the height factor is close to one, so a good approximation can be made by substituting 

H=1.  The terms including the skeleton void fraction are fairly insensitive to variation in ε in the 

range from 0.35 to 0.55.  Using a typical value of ε=0.4, equation 6.4 can be simplified to: 
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providing a very simple estimate for the freeze-off limit that is useful for selection of processing 

parameters and evaluation of potential new material systems. 

 

The numerical simulation described in section 5.6 further includes the effect the gravitational 

head can have on the capillary driving pressure, which becomes significant for conditions when 

the freeze-off limit approaches the capillary rise height limit.  When the freeze-off limit is 
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significantly greater than the capillary rise limit, it no longer plays a role and the behavior is 

similar to a traditional infiltration. 

 

6.4 Recommendations for future work 

The Ni−Si material system was selected for experimental work because of the common use of 

similar alloys as brazing material, the simplicity of analysis for a binary system and its well-

known equilibrium thermodynamic properties.  Because the silicon content in most nickel 

superalloys is typical very small, it may not be possible to match the composition of 

commercially significant alloys such as Inconel 718 using TLI.  However, the addition of other 

alloying elements to the binary system will help achieve more desirable final material properties.  

Infiltration at higher temperatures could also further decrease the silicon content in the final part.  

Work with ternary systems such as Ni−Cr−Si would also provide an opportunity to test the 

uniformity of composition along the infiltration path as discussed in section 2.4.   

 

The Ni−Cu system is more likely to allow TLI fabrication of final parts equivalent to existing 

commercial alloys, namely Monel 400 and K−500 which consist primarily of 30 wt% copper in 

nickel.  Further work with this materials system should include more extensive analysis of the 

microstructure after infiltration and during homogenization.  Because this TLI system involves 

significantly greater mass transport, there is increased likelihood of Kirkendall porosity.  The rate 

of solidification for Ni−Cu in this work was predicted using the solidus and liquidus 

concentrations to find β and the values of diffusivity from literature (including the variation with 

composition).  Quenching experiments as in section 3.2.1 would provide verification of the 

solidification rate in this system and test the predictions of an effective diffusivity from the 

simulations of variable diffusivity in section 2.2.2.  For the Ni−Cu system, both the quenching 

experiments and the infiltration rate experiments could be conducted at higher temperatures to 

test the prediction of solidification rate temperature dependence given in section 2.1.3. 

 

The amount of erosion resulting from latent heat release during solidification as described in 

sections 2.3 and 3.4 will depend on the characteristic enthalpy change of a given materials 

system, with some systems being more prone to erosion than others.  The temperature increase in 

a part during TLI could be measured to learn more about this mechanism.  Conducting 

experiments with different part geometry could test how heat dissipation might control erosion, 

with thicker parts expecting to rise more in temperature. 
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Development of TLI to fabricate steel parts could be achieved using either silicon or carbon as 

primary melting point depressants.  The equilibrium phase diagrams for the two binary systems 

are shown in Figure 6.1 to aid in the selection of infiltrant composition and infiltration 

temperature and corresponding parameters to estimate the TLI freeze-off limits. 
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Figure 6.1: Equilibrium phase diagrams for Fe−C and Fe−Si.17 

The use of carbon offers significantly greater potential to match existing commercial alloys, 

which often contain over 1 wt% C.  Infiltration at 1300°C would correspond to an infiltrant 
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composition of 2.7 wt% C from the liquidus curve of the phase diagram and result in a final 

composition near 1 wt% C.  At this temperature, the solidification rate would be given by          

D~ = 8.7 x 10-10 m2/s13 and β = 0.36.  The fluid properties of pure iron at its melting point provide 

reasonable estimates for the surface tension, viscosity and density: γ = 1.8 N/m, µ = 5.5 mPa-s,     

ρ = 7 g/cc.  The majority of commercial steel alloys contain less than 1 wt% Si, but some have up 

to 3−4 wt% Si.  An infiltration temperature of 1400°C using Fe−Si would use an infiltrant 

composition of 9 wt% Si, the corresponding solidification rate would be given by                       

D~ = 2.8 x 10-11 m2/s13 and β = 0.71, and once again the fluid properties could be approximated by 

those of pure iron.  The freeze-off limit for a horizontal infiltration can be determined using these 

values in equation 6.5 and the numerical simulation in section 5.6 provides the limits for a 

vertical infiltration including the effects of gravitational head loss.  

 

 

Figure 6.2: Prediction of size limitations due to freeze-off in TLI for steel parts.  

 

This provides an example of how the understanding of TLI developed in this thesis can be used in 

the selection of new materials systems.  Several rough approximations are implicit in these 

predictions, but they still provide a useful basis for decision making.  The predictions of Figure 

6.2 are based on the observations in the nickel systems and the corresponding values of τ and α 

used in equation 6.4.  Further measurements of infiltration rate in other material systems could 

help provide insight into what factors influence these parameters. 
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The diffusivity can change dramatically with crystal lattice structure, which could play a 

significant role in the Fe−Si system that changes from fcc to bcc with increased silicon content.  

The diffusivity value presented in the previous paragraph is based on the bcc lattice at 4 at% Si 

and changes by only a factor of two within the alpha-phase.  The diffusivity in the gamma-phase 

is ~50 times slower, and could cause significant retardation of the solidification rate.  This 

situation is somewhat similar to the variable diffusivity of Ni−Cu presented in 2.2.2, but involves 

a step change in diffusivity and an additional interface between the two solid phases.  Quenching 

experiments in conjunction with a modified numerical diffusion model could provide better 

understanding of how the solidification rate is effected.  Addition of other elements to stabilize 

the gamma phase might allow significantly greater infiltration distances. 
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Appendices 

Appendix A: Matlab M-file simulation of diffusional solidification 

% Diffusional solidification simulation based on Tanzilli and Heckel's model 
% as described in Transactions of the Metallurgical Society of AIME 
% Volume 242, Nov 1968, pages 2313-2321. 
% Written for Matlab by Adam Lorenz - November 2001 
  
% Sample values based on Ni−Si at 1185°C 
Da=8.35e-14;  %Diffusivity in the Beta phase (m^2/s) 
Db=8.35e-14;  %Diffusivity in the Alpha phase (m^2/s) 
Cb=0.138;  %Equilibrium concentration in Beta (solidus comp) 
Ca=0.196;  %Equilibrium concentration in Alpha (liquidus comp)  
 
width_b=2.5e-5;  %initial width of Beta phase, left side (meters) 
width_a=2.5e-5;  %initial width of Alpha phase, right side (meters) 
r=40;   %Number of nodes in Beta portion (also node of interface position) 
 
i=width_b;  %set interface position i 
L=width_b+width_a; %calculate total width L 
N=round(r+(L-i)/i*(r-2)); %calculate total number of nodes 
 
%set initial concentration profile 
C=zeros(N+1,1); 
C(r:N+1)=Ca;  %set right half at liquidus composition 
 
%initialize variables 
j=1;dt=0;int_vel=0;x=0;mass=0; 
elapsed_time=0; 
runtime=1000;  %time for simulation to run (seconds) 
while elapsed_time<=runtime  
   dxb=i(j)/(r-2);    %mesh size in Beta phase 
   dxa=(L-i(j))/(N-r);   %mesh size in Alpha phase 
   dt(j)=min([ 0.2*dxb^2/Db 0.2*dxa^2/Da]);%time step must be less than 0.25*dx^2/D for stability 
   elapsed_time(j+1)=elapsed_time(j)+dt(j); 
    
   %Calculate interface motion based on mass flux balance 
   int_vel(j)=1/(Cb-Ca)*[Da*(-C(r+2,j)+4*C(r+1,j)-3*Ca)/(2*dxa) ... 
                           - Db*(C(r-2,j)-4*C(r-1,j)+3*Cb)/(2*dxb)]; 
   i(j+1)=i(j) + int_vel(j)*dt(j); 
 
   %Apply Fick's law to Alpha phase (right side) 
   C(r,j)=Ca; 
   for  n=r+1:N 
      C(n,j+1)=C(n,j) + dt(j)*[(N-n)/(L-i(j))*(C(n+1,j)-C(n-1,j))/2*int_vel(j) ... 
                           + Da*(C(n-1,j)-2*C(n,j)+C(n+1,j))/dxa^2]; 
   end; 
       
   %Apply Fick's law to Beta phase (left side) 
   C(r,j)=Cb; 
   for n=2:r-1 
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      C(n,j+1)=C(n,j) + dt(j)*[(n-2)/i(j)*(C(n+1,j)-C(n-1,j))/2*int_vel(j) ... 
            + Db*(C(n-1,j)-2*C(n,j)+C(n+1,j))/dxb^2]; 
   end; 
    
   %reset boundary conditions for zero mass flux boundaries 
   C(1,j+1)=C(3,j+1);  
   C(N+1,j+1)=C(N-1,j+1); 
    
   %Extra calculations for use while plotting 
   x(j,1:N-1)=[([2:r]-2)*dxb,(r-2)*dxb+[1:N-r]*dxa]; 
   
end; 
plot(1e6*x(j,:),100*C(2:N,j)); 
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Appendix B: Matlab M-file of liquid flow model using variable permeability 

% Transient Liquid-Phase Infiltration Model 
% Written by Adam Lorenz – March 2002 
 
% Predicts the rise height of liquid metal into a porous skeleton  
% based on the following model: 
% dh/dt = (K/(e*mu*h))*((6*gamma*(1-e))/(De)-rho*g*h) 
 
%Sample properties based on Ni−Si at 1185°C  
%Fluid properties 
rho=7200;   % density [kg/m^3] 
mu=0.0105;   % viscosity [Pa-s] 
gamma=1.4;  % surface tension [N/m] 
g=9.81;   % acceleration due to gravity [m/s^2] 
%Solidification properties 
Diff=8.35e-14;  % Diffusivity of MPD in Skeleton [m^2/s] 
M=1.3;    % value for beta based on growth of interface in wire experiments 
 
%Skeleton properties  
D=68.5e-6;  % average powder diameter [meters] 
e=0.403;   % void fraction 
T=1.45;   % Tortuosity factor based on oil permeametry expmts 
H=0.71;   % Height factor based on oil infiltration rate expmts 
t_end=98;      % Time when sample was removed from melt [sec] 
N=200;   % Number of points to average dh/dt over 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Calculation of permeability change with time based on growth of a sphere in a unit cell  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Resolution of time steps set by n, where the total time is the sum of  
% 0+dt+2dt+3dt+...+ndt and dt=2*tfinal/(n^2-n),  t(1)=0, t(n)=tfinal. 
n=500; 
tfinal=(0.15*D/M)^2/(4*Diff);  % time til porosity closed off, X=0.15*D [seconds] 
if tfinal >t_end   tfinal=t_end; end; %when comparing to experiments, only need to calculat 
t=((1:n).^2-(1:n))/(n^2-n)*tfinal;  
% Solidification distance given by X = M*sqrt(4*Diff*t) 
r=D/2+M*sqrt(4*Diff*t);   % Radius of growing sphere 
 
% Volume fraction solid as a function of growing radius 
cap=pi.*(r.^2.*(r-D/2)-(r.^3-(D/2)^3)/3); 
sphere=4/3*pi.*r.^3; 
volumefrac=(sphere-6*cap)/D^3; 
% Surface/volume ratio as a function of growing radius 
caps=2*pi.*r.*(r-D/2); 
spheres=4*pi.*r.^2; 
surface=(spheres-6*caps)./(volumefrac*D^3); 
%Offset for actual initial packing density (unit cell is 52.4% dense) 
volumefrac=1-(1-volumefrac)*e/(1-volumefrac(1)); 
% Permeability based on Kozeny-Carman model including tortuosity factor 
K=(1-volumefrac).^3./(5.*surface.^2.*volumefrac.^2)/T; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Numerical simulation for infiltration rate with permeability changing in space and time 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
h=0;  %initialize height array [meters] 
%select appropriate value for initial height based on time step  
h(2)=sqrt((4*tfinal/(n^2-n))*K(1)/(e*mu)*(6*gamma*(1-e)/(D*e))); 
R=h(2)/K(1); %initialize R 
for  i=2:n-1 
   % define indices m such that t(m) corresponds the time the  
   % liquid has been in contact with the skeleton at a given height 
   m=round((1+sqrt(1+4*(i^2-(2:i).^2-i+(2:i))))/2); 
   % R(i) accounts for the spatial variation in permeability K as the sum of resistors in series, where 
   % each height segment contributes dh/K 
   R(i)=sum(diff(h)./K(m)); 
   h(i+1)=h(i)+i*2*tfinal/(n^2-n)/(R(i)*e*mu)*(6*gamma*(1-e)/(D*e)-rho*g*h(i)); 
end; 
R(n)=R(n-1); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Extract permeability from experimental measurements of height (array NiSi_68 for sample skeleton) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
hdata=NiSi_68(1:20*t_end); 
tsegment=[ [-N+1:N]'/20 ones(2*N,1)];  % matrix used for linear regression 
V=0; 
for i=N:length(hdata)-N 
    linefit=(tsegment\(hdata(i-N+1:i+N)));   
    % finds the least squares fit to the data over +/- N points 
    V(i)=linefit(1)/100;     % determines front velocity, dh/dt [m/s] 
end; 
Kdata=V'*e*mu*0.01.*hdata(1:length(hdata)-N)... 
    ./ (6*gamma*(1-e)/(D*e) - rho*g*0.01*hdata(1:length(hdata)-N)); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Determine parameters alpha (B2) and tau (T2) for curve fit to measured permeability 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Permeability based on Kozeny-Carman model including tortuosity factor 
Ko=e^3./(5*(6/D)^2*(1-e)^2)/T; 
B=1+5*e; 
tfit=[N/20:0.05:t_end-N/20]'; 
X=M*sqrt(4*Diff*tfit); 
F=(Ko*[ones(size(X)) 2*B*X/D (2*B*X/D).^2])\(Kdata(N:20*t_end-N)); 
T2=1/F(1);% or 3.6/T for universal fit 
B2=real((2*B*X/D)\(1-sqrt(Kdata(N:20*t_end-N)*T2/Ko)));% or B2=1.4 for universal fit 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Define permeability based on curve fit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Resolution of time steps set by n, where the total time is the sum of  
% 0+dt+2dt+3dt+...+ndt and dt=2*tfinal/(n^2-n),  t(1)=0, t(n)=tfinal. 
n=500; 
tfinal=(0.15*D/M)^2/(4*Diff);  % time til porosity closed off, X=0.1*D [seconds] 
if tfinal > 1*t_end   tfinal=1*t_end; end; 
t=((1:n).^2-(1:n))/(n^2-n)*tfinal;  
X=M*sqrt(4*Diff*t)'; 
K=Ko*(1-B2*B*2*X/D).^2/T2; 
if interp1(diff(K),1:n-1,0)<n     % if curve fit reaches out of valid range 
    K(round(interp1(diff(K),1:n-1,0)):n)=Ko/1e5; % set permeability to really small number 
end; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Numerical simulation for infiltration rate based on Kfit  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
h=0;  %initialize height array [meters] 
%select appropriate value for initial height based on time step  
h(2)=sqrt((4*tfinal/(n^2-n))*K(1)/(e*mu)*(6*gamma*(1-e)/(D*e))); 
for  i=2:n-1 
   h(i+1)=h(i)+i*2*tfinal/(n^2-n)*K(i)/(h(i)*e*mu)*(6*gamma*(1-e)/(D*e)-rho*g*h(i)); 
end; 
 
 
 
subplot(2,1,1);plot(t,100*h,'k--',0.05:0.05:t_end,hdata(1:20*t_end),'k-'); 
ylabel('Height (cm)');xlabel('Time (s)'); 
subplot(2,1,2);plot(t,K,'k--',N/20:0.05:t_end-N/20,Kdata(N:20*t_end-N),'k-');  
ylabel('Permeability (m^2)');xlabel('Time (s)'); 
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Appendix C: Properties of Multitherm 503 heat transfer oil 

 
The Multitherm 503 oil used for permeability and infiltration tests is a product of: 
Multitherm Corporation 
125 South Front Street 
Colwyn, PA 19023 
1-800-225-7440 
The physical properties are reported by the manufacturer at: 
http://www.multitherm.com/503PP.html 
and are summarized in the following table: 
 

T [°C] ρ [g/cc] µ [Pa-s] 
-18 0.819 40.9 
10 0.800 10.2 
38 0.782 4.15 
66 0.764 2.25 
93 0.746 1.39 

Table C.1: Properties of Multitherm 503 

 
 The values at room temperature (20 °C) were interpolated from the nearest data points of 10°C 
and 38°C.  This led to a density of 0.794 g/cc and a viscosity of 8.04 mPa·s.  Because the 
viscosity is a non-linear function of temperature, it was also tested using a glass capillary 
viscometer and compared relative to water.  This yielded an average value of 8.0 mPa·s, in 
agreement with the manufacturers specification and this value was used for all calculations. 
 
When the oil is exposed to the air, it changes from clear to yellow in color over the course of 
several days.  A slight increase of the viscosity accompanied the color change, but it is on the 
same order of the viscosity change due to variations in room temperature from day to day, 
between 20–22°C.  Uncertainty in the viscosity measurement is estimated at ~3%. 
 
Since the manufacturer did not specify a value for surface tension, it was measured using a 
Rosano Surface Tensionometer by Roller-Smith, employing the Wilhelmy Plate principle.  It 
consists of a precision 500 mg balance with a thin platinum plate that is held at the surface of the 
test liquid.  The surface tension decreased as the oil was exposed to air and began to turn yellow.  
Four samples of oil in different condition were tested, all at 21°C. 
 γ = 0.030 N/m  –  oil taken directly from 5 gallon container as supplied, clear 
 γ = 0.029 N/m  –  oil exposed for ~12 hours, clear/yellow 
 γ = 0.027 N/m  –  several days of exposure, stored in nalgene bottle, slightly yellow 
 γ = 0.025 N/m  –  several weeks of exposure, stored in open beaker, yellow 
The measurements of oil infiltration into powder skeletons were each done using a fresh supply 
of oil, but typically lasted for several hours.  A value of 0.029 N/m was used for all calculations, 
but there is significant uncertainty of ~5–10%. 
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Appendix D: Preparation for sintered skeletons of well-defined void fraction 
Skeletons were generally prepared by sintering loose powder inside of a mold rather than by 
using Three-Dimensional Printing since only very simple shapes were required.  Because the 
packing fraction of the skeleton plays an important role in many calculations such as predicting 
permeability, it is necessary to prepare samples consistently and with well-defined geometry.  
The packing fraction is calculated by measuring a skeleton’s mass and volume and then 
comparing the apparent density to the solid density of the skeleton material.   
 
For cylindrical skeletons, an alumina tube can be used as a mold by plugging the ends of the tube 
with packed alumina fiber blanket.  Consistent packing fraction was achieved using the following 
steps: 

1. Hold ceramic tube vertically with bottom end resting on lab bench. 
2. Stuff alumina blanket into bottom ~1cm of tube and compress it using a metal rod of 

slightly smaller diameter than the tube ID (rod must be longer than the tube). 
3. Use a paper funnel to pour powder into top of tube, tap along the side with metal rod to 

achieve consistent packing fraction, fill to desired height leaving at least 1 cm at top. 
4. Stuff top of tube with additional alumina blanket and compress with rod. 
5. Tube can now be held horizontally and transported to furnace for sintering. 

 
Sintering cycles for both nickel and iron powder was 1 hour at 1200°C in an atmosphere of 95% 
Argon and 5% Hydrogen with 5 C/min heating and cooling rates.  For smaller powder, there was 
sufficient shrinkage during the sintering cycle (a few percent) that the sintered skeleton would 
easily slide out of the ceramic tube.  For powder larger than ~200 µm, this became a problem 
because the shrinkage was less than the manufacturing tolerance in the tube diameter and samples 
would be stuck inside the tube.  For the larger powder, a slot was milled into a plate of alumina 
bisque ceramic (available from McMaster-Carr Supply Co.) to form five sides of the mold. A 
second ceramic plate is held against the first to form the final side of the mold.  It is initially 
clamped in place leaving a small gap at one end to allow powder to be poured in with a funnel as 
before.  Once the powder has filled the mold at tap density, the clamp can be removed and the 
assembly can be loaded into a furnace taking care not to separate the two halves of the mold.   
 
Initially a thick plexiglass sheet was used as the second plate during the filling of the powder so 
that the powder was visible.  If the plexiglass were lifted away from the powder, electrostatic 
forces would disturb the powder, so the sheet needed to be removed by sliding it along the top 
surface.  Another ceramic plate would then need to be placed on top of the mold to prevent the 
powder on the top layer from rearranging while inside the furnace due to sintering forces.  The 
interim step using the plexiglass sheet was cumbersome and eventually deemed unnecessary. 
 
Sintered bars are strong enough for handling, but are still somewhat fragile and can be broken by 
hand easily.  The short plugs for permeametry are broken from longer bar by placing the alumina 
tube over the two ends of the bar with a gap at the intended breaking point.  This enables short 
segments to be made without any bending.  The broken surface must be flattened to accurately 
the skeleton volume.  This can be done with a coarse hand file (slightly more coarse than the 
powder) so the powder particles are torn loose rather than smeared.  Smearing of the particles into 
the void space would cause additional flow restriction and invalidate any permeability 
measurements. 
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Appendix E: Physical properties of liquid metals at melting point13  

  

Material Melting Point   
[°C] 

Density  
[g/cc] 

Viscosity 
[mPa⋅s] 

Surface 
Tension 
[N/m] 

Density of 
solid at 20°C    
[g/cc] 

Aluminum 660.0 2.385 1.30 0.914 2.70 
Copper 1083 8.000 4.0 1.285 8.96 
Iron 1536 7.015 5.5 1.872 7.87 
Nickel 1454 7.905 4.90 1.778 8.89 
Silicon 1410 2.51 0.94 0.865 2.34 
Silver  960.7 9.346 3.88 0.903 10.5 
Table E.1: Properties of liquid metals 
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Appendix F: Viscosity measurement of liquid metal by capillary method 

Figure F.1: Apparatus for measurement of viscosity of liquid metal. 
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This apparatus designed for the measurement of viscosity by the capillary method is very simple 

and fairly easy to construct, but requires careful selection of various design parameters to work 

properly.  The crucible and capillary must be selected such that with no external pressure 

supplied, the surface tension of the liquid will be sufficient to prevent flow through the capillary.  

When the metal charge melts, the initial height in the crucible, h, must not allow the pressure due 

to gravitational head to exceed the capillary pressure: 

 
d

gh γ
ρ

4
<  (E.1) 

where ρ is the liquid density, γ is the surface tension of the liquid and d is the diameter of the 

non-wetting capillary.  To accommodate a large amount of metal, it therefore best to have a 

crucible with large cross-sectional area.  For ease of construction and to minimize gas leakage, a 

crucible was machined from boron nitride with a ½″ inner diameter. 

 

Next, the application of external pressure must be sufficient to drive the liquid into the capillary, 

but not too high that the flow becomes turbulent.  For the measurement of eutectic liquid Ni−Si, 

the external pressure used was 2−5 psi, which fell within the appropriate range for the given 

capillary.  The gas of 95% Argon / 5% Hydrogen was supplied from a low pressure regulator and 

rapidly introduced to the liquid metal in the pressure vessel by opening a ball valve and having a 

relatively small volume of gas that must change pressure (using small tube diameters).  The time 

necessary for all of the liquid to flow through the capillary was determined by a marked increase 

in gas flow and a decrease in pressure once all of the liquid reached the collection crucible.  The 

experimentally measured parameters for each experiment are the total mass of metal, m, time to 

flow through the capillary, t, and the pressure difference between the gas inside the vessel and 

ambient, ∆Pgas. 

 

Several other factors affect the fluid pressure in addition to the pressure drop due to viscous drag.  

These must be accounted for before the viscosity is determined assuming Poiseuille flow. 
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The second term corresponds to the small difference in pressure across the gas/liquid interface 

where rcrucible is the radius of the crucible.  The third term is the additional driving force due to the 

gravitational head of the liquid column where L is the length of the capillary and h is given by 

m/ρπrcrucible
2.  The fourth term is the pressure drop associated with accelarating the fluid as it 

enters the capillary, where V is the velocity of the liquid inside the capillary, given by 4m/πd2ρt.   
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Because the calculation of viscosity is very sensitive to the diameter of the capillary, the 

apparatus was calibrated using water at room temperature to accurately determine the appropriate 

diameter for subsequent calculations.  A pin was used to block the capillary tube prior to 

pressurizing the chamber because water wet the capillary and would have otherwise leaked.  The 

water was at 23°C, corresponding to the fluid properties, γ = 0.073 N/m, ρ = 0.997 g/cc, and        

µ = 0.962 mPa-s.  The capillary diameter determined by the calibration was d = 0.031″, almost 

identical to the nominal 1/32″ ID specification.  Variation was +/- 5% between the tests at 

different supply pressures. 

 

Mass      
(g) 

∆Pgas    
(Pa) 

Time     
(s) 

4γ/rcrucible   
(Pa) 

ρg(h/2+L) 
(Pa) 

ρV2/2    
(Pa) 

µ       
(mPa-s) 

Reynolds 
number 

9.013 7129 22.77 23 2688 331 0.943 678 
9.647 7060 23.99 23 2712 342 0.923 704 
9.79 7060 24.54 23 2718 337 0.932 692 

8.818 7129 22.16 23 2680 335 0.937 687 
9.208 7060 23.00 23 2695 339 0.926 699 
9.262 12845 15.56 23 2698 749 0.978 984 
9.804 12845 16.22 23 2719 772 0.963 1015 
9.191 12845 15.2 23 2695 773 0.961 1017 
9.62 12845 16.15 23 2711 750 0.979 984 

9.686 12845 15.98 23 2714 777 0.960 1021 
9.436 19347 11.58 23 2704 1404 0.998 1321 
9.913 19347 12.43 23 2723 1345 1.023 1260 
9.952 19485 12.12 23 2724 1426 0.996 1332 
9.432 19278 11.66 23 2704 1384 1.003 1305 
9.588 19209 12.02 23 2710 1345 1.015 1270 

Table F.1: Viscosity measurement of water used to calibrate the diameter of capillary tube. 

 

Using the same capillary tube diameter and estimated fluid properties of eutectic liquid Ni−Si of  

γ = 1.4 N/m and ρ = 7.6 g/cc, the following results were obtained.  Note the density used for these 

calculations is slightly higher than the 7.2 g/cc used elsewhere  these calculations were done 

prior to careful analysis of the liquid density. 

 

Mass      
(g) 

∆Pgas    
(Pa) 

Time     
(s) 

4γ/rcrucible    
(Pa) 

ρg(h/2+L) 
(Pa) 

ρV2/2    
(Pa) 

µ       
(mPa-s) 

Reynolds 
number 

37.17 17306 34.32 441 19263 325 10.2 172 
52.4 28407 37.02 441 19852 556 10.2 224 

46.94 30890 33.61 441 19641 541 10.8 208 

Table F.2: Viscosity measurement of liquid Ni – 11.3 wt% Si at 1200°C. 
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