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ABSTRACT

One of the important challenges facing the scientific and engineering community is the

development of a reliable computational tool for predicting failure of structures under
extreme and/or accidental loads. Considered in the present thesis is the process of
formation of ductile cracks, which may be responsible for a catastrophic structural
failure. Experimental, numerical and analytical studies are carried out on the prediction of

ductile crack formation in uncracked bodies on an example of 2024-T351 aluminum

alloy. A methodology for ductile crack formation suitable in industrial applications is

developed through the introduction of different weighting functions for different stress

triaxiality ranges where different ductile crack formation mechanisms occur ("shear

fracture" in negative stress triaxialities, void nucleation, growth, and linkage in high

stress triaxialities, a transition mode in intermediate stress triaxialities). A cut off value at

the stress triaxiality of -1/3 is discovered. Effects of stress and strain ratios, specimen size

and anisotropy are also quantified. It is found that the stress triaxiality and the equivalent

strain are the two most important parameters governing ductile crack formation while

other parameters are probably of secondary importance. A modification to the criterion is

introduced to predict crack formation in a single reversal of straining. A case study of a

solid aluminum 2024-T351 beam with a smooth round notch under 3-point bending is

conducted. Other cases of component validations on different materials, structures and

loadings performed by colleagues in the Impact and Crashworthiness Lab are

summarized. It is concluded that the proposed approach of predicting ductile crack

formation holds a promise of becoming a reliable and practical calculation tool for

industrial applications.

Thesis Supervisor: Tomasz Wierzbicki
Title: Professor of Applied Mechanics
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Chapter 1

Introduction

1.1 Background and Motivation

Failures of man-made structures, such as ships, planes, cars, trains, buildings (Fig. 1.1)

under accidental loadings can lead to loss of lives and property. This becomes especially

true in two recent terrorist attacks on the USS Cole and the World Trade Center Twin

Towers. Those disasters proved vulnerability of man-made structures to extreme

loadings. In addition, with growing legislative and market pressure, the industry is

moving toward design of new generations of ships, planes, cars, trains and buildings by

using novel materials and structures. Any premature failure should be fully understood

and, if possible prevented. Premature failure of any key component of a system can

dramatically increase the possibility of intrusion of failed members, which may risk an

occupant's life and even lead to the collapse of the entire system. To alleviate the amount

of damage and reduce the number of casualties engineers should understand the

mechanisms of the failures and should be able to predict them.

29



Fig. 1.1 Failures due to fracture in various structures

Fracture is one of the most important modes of failures of man-made structures.

Consequently, fracture prediction becomes an important issue in the design of reliable

structures, which can sustain severe loading conditions. It is well known that fracture of

structures is hard to prevent once a crack initiates. In addition, with advanced

manufacturing process and nondestructive damage detection techniques, structures can be

produced without pre-existing cracks or crack-like defects. Most metals used in structures

experience large plastic deformation before fracture occurs. Therefore, prediction of

ductile crack formation (fracture initiation) in uncracked bodies appears to an important

factor in the engineering design practice.

Mechanisms of crack formation are very complex and dependent on the type of material,

geometry of the structure and the loading conditions. Cleavage and void nucleation,

growth, and linkage are typical idealized mechanisms of fracture. According to the

relation of yielding and fracture, fracture in structures can also be classified into brittle

fracture and ductile fracture. Both brittle fracture and ductile fracture differs substantially

at a micromechanics level experiencing intergranular and transgranular fracture patterns

depending on the relation of cracks and grain boundaries. Mechanisms also differ for
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crack formation in uncracked bodies, crack initiation in pre-cracked structures and

continuous crack growth. Although the present study is focusing on ductile crack

formation in uncracked bodies, it does not make the problem simple. The way voids

nucleate, grow and link to form macrocracks is different for different materials, structures

and loadings. Complicated plastic deformations such as necking, shear localization may

occur prior to crack formation. Crack formation happens in different stress states such as

plane strain, plane stress, and axisymmetric state, in different locations such as surface,

subsurface and under different loadings such as bending, tension, shear and compression.

All those factors make the ductile crack formation complicated and difficult to predict

accurately.

The need of simplifying prediction of ductile crack formation is obvious for industrial

applications. It is recognized that components of stress and strain tensors are basic

outputs of well-developed structural analyses, such as finite element analysis using

commercial codes. An ideal and also realistic goal for engineers is to develop a suitable

fracture criterion in terms of the stresses and strains and possibly their gradients with

certain material dependent parameters for predicting crack formation with an acceptable

degree of accuracy. This criterion should be as general as possible and should apply to a

broad class of materials, structures and loading conditions, which engineers have to deal

with in everyday situations.

1.2 Prior Approaches to Ductile Crack Formation

Various approaches for ductile fracture have been proposed in the past. Fracture

mechanics, void growth model, porous plasticity fracture model, damage mechanics,

decohering zone model and empirical fracture model are the main methods that emerged

to describe ductile fracture of metals. Fracture mechanics deals with crack initiation and

growth in structures with a sharp crack, which is different from the topic of this thesis. A

summary of methods of the calssical fracture mechanics is given in Appendix.
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1.2.1 Void Nucleation, Growth, and Linkage Models

The growth of holes in tensile specimens was first observed in ductile metals around

1950's (eg. [11-13]). Studies on mechanisms of void growth have begun since then.

However, before 1968, the studies were relatively empirical (eg. [14-16]). It was

McClintock [3] who performed a first theoretical analysis on the void growth. In this

classical paper, in order to simplify the problem, it was assumed that the principal

components of stress did not rotate relative to the materials. Thus only the principal

components of the stress and strain were considered. The material was assumed to

contain cylindrical holes of elliptical cross-section with axes parallel to the principal

directions of the applied stress and strain increment as shown in Fig. 1.2. For a power law

plastic hardening material, the increment of the accumulated damage can be expressed as

(n FM)= sinh + - (1.)
d 2(1-n) 2a 4 a

where 77m is an accumulated damage = d(In Fm) /In Fm f, n is the hardening exponent,

Or and a 2 are principal transverse stresses, a being the largest, 6 the von Mises or

equivalent stress, FM is a relative hole growth factor = (b/lh) /(b0 Iho),I where b is the

size of the hole and Ih is the distance between two holes, b. and Ih are the initial values

of b and 1h, respectively, Fm' - (1/2) /(b lho), fracture occurs when Fm = FM f

lb

Z1-2 9

3

I 3 
2

Fig. 1.2 Geometry of McClintock's hole growth model
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Another important study on void growth is the one by Rice and Tracey [17]. They found

that for any remote strain rate field, the enlargement rate of spherical voids was amplified

over the remote strain rate by a factor of an exponential function of the stress triaxiality

by studying the growth of a spherical void in a general remote field. The stress triaxiality

parameter is defined as -,, /5, where a- is the mean stress or hydrostatic stress. The

volume changing contribution to void growth was found to override the shape changing

part when the stress triaxiality was large.

In the case of shear deformation, there is rotation of the material elements at large

distances from the hole. Rotation of holes in a shear band was clearly observed in a

necked copper tensile specimen by Bluhm and Morrissey [2]. McClintock et al. [18]

assumed that large numbers of holes were scattered uniformly throughout a material and

divided the solid in to a number of elements, each containing a single centrally-located

hole. Fracture was assumed to occur when the hole just touches the boundary of the

deforming element in which it lies.

Void nucleation and interaction between voids were not considered in the above studies.

LeRoy et al. [19] modified the theory of Rice and Tracey by allowing for a change in

void shape and proposed a simple void nucleation and void linkage model. As mentioned

by the authors, the mechanism of void nucleation and linkage has not been well

developed. The main purpose of their study was to serve as a guideline in trying to

investigate the problem instead of developing a criterion applicable to commercial

materials. Recently, numerical simulations have been used in studies of void growth and

linkage (eg. [20-24]). However, due to the complexity of the process of nucleation,

growth, and linkage, which will be described in Chapter 2, no criterion has been

developed so far to capture all the stages of the fracture processes.
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1.2.2 Porous Plasticity Fracture Models

Porous plasticity fracture model is also called the Gurson-Tvergaard-Needleman model.

The model discussed in this section is different from the void growth model described in

Section 1.2.1 even though both of them start from the similar model, a unit element with

a hole inside. The void growth model determines the evolution of the hole based on the

Mises plasticity which is plastic incompressible and assumes crack formation occurs

when two holes touch. The porous plasticity fracture model is based on the porous

plasticity constitutive model, which is hydrostatic stress dependent and was developed by

Gurson [25, 26] on the basis of void nucleation and growth using an upper bound

approach. It was assumed that voids are embedded in a continuous media (matrix) and

the matrix was treated as plastic incompressible. An important parameter, the void

volume fraction f, was introduced. It is assumed crack forms when f, reaches a critical

value.

The yield function for porous material developed by Gurson [25, 26] is

D 2 +2f, cosh( " )--f, 2 =0 (1.2)
aM 2 am

where a is the macroscopic Mises equivalent stress, a,, is the macroscopic mean stress

or hydrostatic stress, am is the equivalent flow stress of the matrix.

A modification to the Gurson yield function was made by Tvergaard [27, 28] who

introduced two additional parameters q, and q 2 . The yield function becomes

D 2 + 2qif, cosh( 3q2 m)I(qlf,) 2 = 0 (1.3)
am 2 a'm

According to this model, loss of material stress carrying capacity occurs when voids have

grown so large that Eq. (1.3) has shrunk to zero, i.e. at f, =I/ q, , which is unrealistically

large. A function f,*(f,) (Eq. (1.4)) replacing f, in Eq. (1.3) was introduced by

Tvergaard and Needleman [29] to model the complete loss of material stress carrying

capacity at a realistic volume fraction.
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fV , before any loading

ffo (f) =f I f , (1.4)1

f + q (f, - fc), for f, > fvfv LF fVc

where fvO is initial void volume fracture, fc is a critical value of void volume fraction

at which the material stress carrying capacity starts to decay rapidly and fv F is the actual

void volume fraction associated with the complete loss of the stress carrying capacity.

However, this function is quite complicated. To avoid the difficulty of dealing with Eq.

(1.4), the onset of failure is often determined when the void volume fraction f reaches

ff E which is usually taken as an intermediate value of fc and fVF [30].

Clearly, the void volume fraction f, is a critical variable. Gurson [26] assumed that the

increment of the void volume fraction came from void nucleation and growth, i.e.

dfv = dfv nucleation + dfv growth (1.5)

Gurson [26] postulated that the rate of void volume fraction change due to void growth is

closely related to the volumetric strain and can be written as

dfvgrowth = (1 - f, )dekk" (1.6)

where dekk is the rate of macroscopic plastic volumetric strain.

He also presented a model for the rate of void volume fraction change due to void

nucleation based on the research performed on the micromechanics (eg. Argon et al. [31]

and Gurland [32]).

dfvgrowth = MdeM +M 2d( ) (1.7)
1-f,

where cM is the equivalent strain of the matrix. M, and M 2 are two free parameters to

be determined.
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It was also assumed that the rate of plastic work in the matrix material equals to the

macroscopic rate of plastic work, i.e.

ai ' = (l- f,)M M (.8)

where a and eg are stress and plastic strain tensors, respectively.

and the matrix material follows a certain hardening law.

UM Fh (M) (1.9)

The rate of volume fraction change due to void nucleation in the form of Eq. (1.7) is

relatively difficult to work out. Needleman and Rice [33] proposed another model

df, nuleaio = MideM + M 2d(am - a..) (1.10)

Normal distributions of the parameters M, and M 2 were proposed by Chu and

Needleman [34]. For strain controlled nucleation,

f, n 1 6 - 6
Mi =- nN ep- (mn N )2], M 2 = 0 (1.-1)

SN 2-z7 2 sN

and for stress controlled nucleation,

f = vN exp[ -( M N 2 2 =12)
s 2)r 2 sM

where, fn and f, are the void volume fraction of void nucleating particles, s"n and ss

are the standard deviations. The superscript n and s stand for the strain and stress

controlled nucleation, respectively, while 8
N and UN are the nucleating strain and stress,

respectively.

The major difficulty for applying the model in practical examples is a large number of

coefficients to be determined. Clearly, there are two unknown parameters q, q2 in the

yield function (Eq. (1.3)), three parameters fl0 gfs , fVF in the void volume fraction

function f,* (Eq. (1.4)) or two parameters fLI fVE for the void volume fraction f,,

'S r f N' N for the increment of the void volume fraction f, and
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coefficients for the stress-strain law of the matrix (eg. two or three parameters for a

power law material). Totally over ten parameters need to be determined for a single

material. Moreover, those parameters are strongly coupled. Those factors make the model

extremely difficult to apply in practical problems. That is the reason why there have been

few successful industrial applications.

In the existing applications of this model published in the literature (eg. [34-39]), fixed

values of certain parameters were taken (eg. q, = 1.5, q2 = 1, fVE =0.2) and the initial

void volume fracture f, 0 was determined from metallography. Other parameters were

found by fitting numerical simulation and experiments. However, the calibration

procedure was not clearly defined and presented.

Faleskog and Gao [40, 41] made an attempt to calibrate q,, q2 , f,0 and fVE by using a

cell model and by fitting of experiment and numerical simulations. The parameters for

the hardening law of the matrix were chosen to fit the stress-strain curve of the actual

material obtained from experiment. However, the parameters of the evolution law of the

void volume fraction f, were not considered in their methods. As mentioned earlier, most

of ten parameters are strong coupled. This calibration procedure is a good start but clearly

is far from a standard clean procedure. The calibration of G-T-N model still remains

open. It strongly limits the model in industrial applications.

1.2.3 Damage Mechanics

The damage variable D, was firstly presented by Kachanov [42] to represent the loss of

stiffness and integrity attributed to microcracks in terms of the effective surface density

of microdefects. Based on this concept, Rabotnov [43] introduced an effective stress a

related to the damage variable, namely,
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'7= (1.13)
1-DI

The strain behavior was assumed to be modified only through the effective stress by

Lemaitre [44]. For example, the linear elastic strain e becomes

d '7
Ee = -= (1.14)

E (1-DI)E

With those assumptions, the elastic law of damage mechanics, which are different from

the continuum mechanics, can be expressed as

u, = (I - D, ) jA ,, + 2E ), (1.15 )

where, A, u are Lame constants, 5j is the Kronecker symbol and e is the elastic strain.

and the yield function is generalized to

F = O - (1- Di)(O, + R,) (1.16)

where d is the equivalent stress, '7, is the initial yield stress and Ra is the isotropic

hardening scalar variable [44].

Thermodynamic potential and dissipation potential were introduced (eg. Lemaitre [45]

and Wang [46] ) to obtain the relation of damage strain energy release rate y and stress

and strain state and finally the damage evolution law, which is the key point for the

damage mechanics. It was assumed that there are two uncoupled part i.e. elastic and

plastic part in thermodynamic potential and the elastic is quadratic in ee and linear in

(1 - D1 ) in almost all the literature. The damage strain energy release rate y then can be

described as

y = [-(1+ v)+ 3(1- 2v)( am)]2 (1.17)
2E 3 a

where, E is the Young's modulus, v is the Poisson's ratio and or, is the mean stress.

The damage evolution was given by the normality property of the potential of dissipation,

i.e.
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b1 = ( (1.18)
ay

where p is the potential of dissipation.

However, the potential of dissipation has not been well established. Lemaitre [45]

postulated a potential of dissipation (9 as a power function of damage strain energy

release rate y and linear in equivalent plastic strain rate e,

so = S+1 ) --(119
(so +1) SO

where sDO and SDO are material and temperature dependent.

This potential of dissipation and the Eqs. (1.17) and (1.18) finally leads to

6- [ 3(1+ v)+ 3(1- 2v)( )2 2nE (1.20)
eC 0

for the material which follows the Ramberg-Osgood hardening law coupled with damage

5'= (1 - DI)K" (1.21)

where, K, n are material constants, DIC is the damage failure at failure and E0, ec are the

one-dimensional strain at damage threshold and at failure.

Wang [46] assumed the dissipation potential in the form of

D =Y ) 2(c ) (1.22)
2(1- D) SD 2n

where T, is the critical value of T at failure and aD is a damage coefficient.

A damage evolution law given in Eq. (1.23) was obtained based on the above dissipation

potential (Eq.(1.25))

b a(D - D10 ) [ (1 + v)+ 3(1- 2v)(m)2] (c _ 7)a-I (1.23)
(6 - O)a 3

where D10 is the initial value of D.
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Other damage evolution laws appeared in the literature were directly assumed instead of

being derived from Eq. (1.18). For example, Dhar et al. [47] proposed the following

damage evolution law

K2 2
Ci =DE + (a 2D,) -~ (1 + v) + 3(1- 2v)(a)2]E (1.24)

2E 3

where, cD, al, a2 are material constants.

The damage mechanics and the porous plasticity fracture model look similar. The volume

fraction f, is one type of damage variable D1 . However, the porous plasticity fracture

mode has a strong basis of physical mechanisms, while unfortunately, the damage

mechanics does not have a solid foundation on the crack formation and growth

mechanisms. Those damage laws were found on the basis of empirical assumptions.

Also, the coupling of the damage variable and constitutive relation makes calibration of

material constants in material models and damage laws very difficult to carry out. For

example, obtaining the material constants in the Ramberg-Osgood hardening law from

tensile tests becomes a hard task since it involves the damage variable which is generally

unknown in the direct output of the test. Another drawback of the damage evolution

model is the assumption that fracture occurs in a monotonic way to the point that a

critical state is reached. In reality, the fracture process manifests itself only at the terminal

phase of the monotonic loading process with little or no evidence of any macro-

mechanical changes prior to the final stage. Those drawbacks lead to the fact that the

damage mechanics is not widely used in industry.

1.2.4 Decohering Zone Models

The decohering zone model following early concepts of Barenblatt [48] and Hillerborg et

al. [49] now becomes a popular method in fracture prediction especially in plane stress.

Main idea of the decohering zone model is to simulate the fracture process zone using
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special interface elements. Therefore, mechanical properties and formulations of the

special interface elements are two key factors for this method.

The mechanical property of the special interface elements is often called the traction-

separation relation which is described by stress or and displacement 5 normal to crack

planes. However, shape of the traction-separation law has not been well developed and

no universal function has been established. Needleman [50] proposed an exponential

traction-separation relation.

a = o.ez A'exp(-z 15) (1.25)
co co

where, z = 16e /9 , 1C0 is the characteristic length of the decohering zone model.

Roychowdhury et al. [51] derived a traction-separation relation from an exponential free

energy potential. The traction-separation relation has the following form

0 = ce exp(- 0) (1.26)

where Si is the value of S at a = 0>.

Eq. (1.25) and Eq. (1.26) are essentially the same since one can obtain S, = z /1 0 from

these two equations. Tvergaard and Hutchinson [52, 53] proposed a piecewise linear

traction-separation relation as shown in Fig.1.3. These traction-separation laws

experience a hardening behavior at beginning of the separation.

I I
I _ _ _ _ _ I

1 2 Sf5

Fig. 1.3 Traction-separation relation proposed by Tvergaard and Hutchinson
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However, Elices et al. [54] pointed out that a decohering zone in a homogeneous body

could not have a hardening branch (actually it could have in a boundary layer depleted of

precipitate with grain boundary cracking [55]) and the hardening part should be

incorporated into the behavior of the continuum outside the decohering zone since the

initial width of the decohering crack is zero and the corresponding elastic displacement is

also zero. The traction-separation relation then becomes a softening function. Elices et al.

[54] presented an inverse procedure to determine parameters of a bilinear softening

function which is often introduced in concrete and other cementitious materials. An

optimization based numerical approach was developed by Que and Tin-Loi [56] to

determine key parameters of shape known softening functions with experimental data.

The inverse problem was formulated as a mathematical program with equilibrium

constraints (MPEC) and then converted to a nonlinear program. A bilinear softening

function, three-branch piecewise linear softening law, power softening relation and a

power-exponential softening law were introduced in their study. It was found that the

piecewise linear laws were computationally more tractable and the three-branch law

provided the best predictions of a wedge splitting test.

Moreover, Siegmund and Brocks [57] demonstrated that the separation work per unit area

FO and the peak stress required for separation or are not constant for different stress

triaxialities by studying a center cracked panel using the modified Gurson model, where

the separation work per unit area FO is defined as

F0 = foad. (1.27)

A number of studies on formulations of the special interface elements have also been

performed. Needleman [58] presented an early thought of the decohering zone

methodology for finite element analysis in a study of void nucleation by inclusion

debonding. The basic idea is to model the deformation by conventional continuum

elements and to model fracture by special interface elements. The application of this

concept is mainly in 2-D frameworks of plane strain and plane stress (eg. [53, 59-62]).

The interface elements contain two surfaces attached to the surrounding continuum
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elements. The displacements of the edge of the interface element are required to be

compatible with displacements on the edge of the adjacent continuum element. A

relatively small number of studies went to three dimensions. Several different 3-D

decohering elements were introduced recently. Lin et al. [63] incorporated the decohering

surface as a loading contribution in the formulation of a mixed boundary-value problem.

De-Andres et al. [64] introduced a 3-D interface element which consists of two

quadrilateral patches to predict fatigue crack growth in aluminum shafts. Very recently,

Roychowdhury et al. [51] adopted a large displacement formulation for a 3-D decohering

element to predict ductile tearing in thin aluminum panels. Finally Repetto et al. [65]

described the calibration procedure from two dynamic tests and showed interesting

examples of 2-D crack growth.

Further studies on mechanical properties and formulations of the special interface

elements apparently are necessary for the decohering zone model. Besides, there are two

fundamental limitations. The available decohering zone model can only deal with normal

separation (eg. mode I crack) since the traction-separation law appeared in the literature

is in terms of stress and displacement normal to the crack surface. Consequently, this

model is not sufficient to predict shear failure and combined normal and shear

separations. Also, since one has to introduce special interface elements along crack path,

it is very difficult to predict crack formation and also crack growth for structures without

obvious potential crack path. As pointed out by Scheider [66] who tried to simulate the

cup-cone fracture in round bars using the decohering zone model, those two difficulties

have to be overcome to make the decohering zone model applicable.

1.2.5 Empirical Models

A number of relatively simple crack formation criteria have been proposed in the past by

the bulk-forming community. Those criteria lack a solid foundation and are based on

observation, experience, and math simplicity. Those empirical criteria were verified over

a restricted range of stress states.
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It is postulated that fracture occurs at a material point in a body when the following scalar

function reaches a critical value C.

g(uj)d 7 = C (1.28)

where g is a weighting function, which is generally a function of the components of the

stress tensor u~, e is the equivalent strain, Cf is the equivalent strain to fracture and C

is a calibration constant. Often the above function is referred to as a "damage indicator"

[67].

The simplest case is the equivalent strain criterion

C = Ef (1.29)

which is essentially a limiting case of Eq.(1.28) when g =1. Although it is well know

that the equivalent strain to fracture is different for different stress states, this criterion is

still being used in many leading nonlinear commercial codes such as ABAQUS, LS-

DYNA and PAM-CRASH.

Cockcroft and Latham [68] postulated that facture is controlled by the maximum

principal tensile stress integrated over the plastic strain path, i.e.

f = CC, (1.30)

where CCL is a material constant.

Based on this criterion, fracture crack may form due to shear stresses or tensile stresses

but not compressive stresses. It was shown to be in reasonable agreement with

observation of workability-the maximum deformation before crack formation during

rolling, extrusion etc.

Brozzo et al. [69] proposed a modification to include an explicit dependence on

hydrostatic stress for the prediction of formability limits in metal sheets.

ft d = CB (1.31)
3(ao -ua.)

where CB is a material constant.
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Clift et al. [70] introduced equivalent stress into the function instead of maximum

principal tensile stress and suggested a criterion of generalized plastic work per unit

volume.

ald 7 = Cct (1.32)

where C. is a material constant.

It was found that this criterion successfully predicted the site of crack formation but not

the level of deformation at which crack formation should occur in three types of metal

forming operation, simple upsetting, axisymmetric extrusion and strip compression and

tension.

A simple version of McClintock's model (Eq. (1.1)) can be integrated over the strain path

to fall in the form of Eq. (1.28).

f[K F sinh( 2 )+ - ]d = CM (1.33)
2(1- n) 2(1-n) 67 4 (

where CM is a material constant.

Rice and Tracey [17]'s result was represented in the literature by taking the void

enlargement as a damage measure.

exp(- ' )d = CRT (1.34)
2 o

where CRT is a material constant.

Based on the qualitative result of LeRoy et al [19], a simple criterion also appeared in the

literature.

(whr - -)de = CL (1.35)

where C, is a materi al constant.
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Another simple criterion based on the fact that stress triaxiality plays a key role in ductile

crack formation appeared in the literature.

f- = CH (1.36)

where CH is a material constant.

Above criteria have only one material constant, which makes calibration straightforward.

Criteria involving two material constants were also proposed ( eg. Norris et al. [71] (Eq.

(1.37)), Oyane et al. [72] (Eq. (1.38)), Atkins [73]) (Eq. (1.39)), Johnson and Cook [74]

(Eq. (1.40), Wilkins et al. [75] (Eq. (1.41))).

-1 de = CN 2  
(1.37)

(1+ -"' dAE= CN2 (1.38)
cola)

(+de2(1+ 2 )
2 d = CA 2  (1.39)

(1- C Alm)

de=1 (1.40)
am

(CJC2 + CJC2 exp(CJC3  )

(f )CW2 (2 -Max(L , S2))CW3 dE=CW4 (1.41)
1 - Cw10-, S3 S1

where CN1,CN 2 9 COlCO 2 9CAl,)CA 2 ,C 1Cl JC2'CJC3 CW1, CW2, CW 3 and CW4are

material constants, l, 62 are maximum and medium principal strains, SPS2 and S3 are

the principal stress deviators.

The coupling of the material constants with the integrand and the existence of two or

more material constants make the calibration procedure of those criteria difficult.
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1.3 Objective

It has to be admitted, maybe reluctantly for some researchers, that although ductile crack

formation has been studied for several decades, the mission has not been successfully

accomplished. The main difficulty is explained on one hand by a complex mechanism of

crack formation and the need of a simple and universal criterion and the corresponding

standard calibration procedure on the other. The objective of the present research is to

find a balance between the complexity of the physical mechanism of ductile crack

formation and the simplicity needed for applications and to develop a relatively simple

general criterion and a clean well-defined calibration procedure for the determination of

ductile crack formation in a crack-free body. Crack formation is understood here as an

appearance of a macroscopic crack with an order of 0.1 mm inside or on the surface of

the body.

Several new findings are reported in this study.

" A ductile crack formation mechanism, "shear fracture" different from classical

void nucleation, growth, and linkage is found in upsetting tests.

" An extensive study of various criteria is carried out. The applicability and

effectiveness of those criteria are evaluated.

* A unique locus of crack formation in the equivalent strain and the stress triaxiality

space is determined over the entire range of stress triaxiality encountered in

practical situations for A12024-T351. This is accomplished using conventional

upsetting tests, tensile tests and also newly developed shear and combined loading

tests. The locus clearly shows three different regions, which consists of two clear

crack formation mechanisms: void nucleation, growth and linkage, the "shear

fracture" in upsetting tests and a transition mode in between.

* A new criterion of crack formation prediction under monotonic loadings for

industrial applications is developed based on the information of two crack

formation mechanisms, one transition mode and the entire fracture locus.

Preliminary component validation is presented.
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" A cut-off value of stress triaxiality of - 1/3 is revealed from upsetting tests.

" Effects of other factors such as specimen size, anisotropy, stress and strain ratio

are discussed and quantified.

" A design of a specimen and experiment setup for studying crack formation under

compression-tension reverse loadings is developed. A modification to the

criterion is introduced to consider the effect of pre-compression in crack

formation.

1.4 Structure of the Thesis

The present thesis consists of nine chapters. The motivation, objective and overview of

the thesis are presented in Chapter 1. This chapter also includes a substantial literature

review on prior approaches to ductile crack formation.

In Chapter 2, physical mechanisms of ductile crack formation are studied. Different

processes of the classical void nucleation, growth, and linkage are reviewed and

described. Fractography is performed on upsetting and notched round tensile specimens,

which represent negative stress triaxiality and high stress triaxiality, respectively. A

"shear fracture" mechanism different from the classical void nucleation, growth and

linkage is observed in the upsetting specimen.

Performing numerical simulations is good a way to acquire individual components of

stress and strain tensors at the locations of crack formation. The stress-strain curve is one

of the most important inputs in numerical simulations. Approximate methods of

determining stress-strain curves from upsetting and tensile tests are presented in Chaper3.

The stress-strain curve for A12024-T351 is obtained.

An extensive comparative study of a class of existing crack formation criteria is

performed in Chapter 4. A series of upsetting and tensile tests, which give different stress

sates, are carried out. Limitations of the criteria are presented.
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In Chapter 5, the relationship of the two most important factors governing ductile crack

formation, i.e. the equivalent strain and the stress triaxiality, is determined in a relatively

wide range of stress triaxiality (-0.33-1.0) for A12024-T351. New specimen

configurations are developed to cover the relatively wide range of stress triaxiality

together with the conventional upsetting and tensile tests. A clear mode transition is

shown in the fracture locus. This chapter provides a new methodology of prediction of

ductile crack formation under monotonic loadings. An analytical solution is derived for

crack formation in upsetting tests for the negative stress triaxiality range.

Numerous other factors such as stress and strain ratio, specimen size, and anisotropy are

studied in Chapter 6 using suitable tests and parallel numerical simulations.

In reality, the loading path of a material element is often complex. Structures could

experience unloading and even reverse loading. A preliminary study on crack formation

under a compression-tension loading is carried out in Chapter 7. The design of a

specimen and experiment setup is developed and a modification to the criterion is

proposed to consider the effect of pre-compression in crack formation.

In Chapter 8, various problems with different materials, structures and loading conditions

are conducted to validate the approach developed in Chapter 5 for ductile crack

formation by the present author and other colleagues.

Finally, main results are presented and discussed in Chapter 9. Recommendations for

future study are provided.
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Chapter 2

Physical Mechanisms of Ductile

Crack Formation

The stress triaxiality is the most important parameter governing crack formation besides

the equivalent strain. This conclusion has been arrived independently from void growth

studies (eg. [3, 17]), from empirical routines (eg. [69, 71, 72, 76, 77]) and from other

experimental and numerical studies (eg. [4, 5, 78, 79]). In this chapter, the physical

mechanisms of ductile crack formation are described in different ranges of stress

triaxiality.

Numerous studies on micro mechanisms of ductile fracture have been performed in the

past. However, the majority focus on the high stress triaxiality range. Studies of the

negative stress triaxiality range are very limited. In this chapter, the mechanisms reported

in the literature are reviewed. Fractography is carried out on specimens that failed in the

high stress triaxiality range and the negative stress triaxiality range. Besides the well-
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known void nucleation, growth, and linkage mechanism, which occurs in the high stress

triaxiality, a different mechanism is revealed in the negative stress triaxiality range.

2.1 Mechanisms dominating at High Stress

Triaxialities

It is well known that void nucleation, growth, and linkage is the fundamental cause of

dimple fracture in high stress triaxialities. This type of fracture mechanism has been

extensively studied. Notched round bars under tensile loadings are classical examples

exhibiting this mechanism. The common features of this fracture mode are rough fracture

surfaces and dimples observed in SEM pictures. However, the way in which micro voids

nucleate, grow and link is quite different depending on the microstructures and the

history of stress, strain, and rotation.

Void nucleation is the first step for the crack formation in the high stress triaxiality range.

As reviewed by Gurson [26], a number of studies [15, 31, 32, 80-85] in the literature have

shown that a void can be nucleated either by matrix-particle decohesion illustrated in Fig.

2.1 (a) or by particle cracking displayed in Fig. 2.1 (b). It is generally observed that voids

nucleate preferably in larger particles due to the local stress fields generated by the

presence of larger rigid inclusions when matrix under plastic deformation and due to the

more and larger flaws in larger particles leading to easier crack in the particles. Void

nucleation could also occur in shear bands as shown in Fig. 2.2.
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Uncracked particle

(a) matrix-particle decohesion in carbon steel

(after Engel and Klingele [86])

Cracked particle

(b) particle cracking and decohesion

in Al 2024-T351

Fig. 2.1 Void nucleation due to matrix-particle decohesion and particle cracking

Fig. 2.2 Void nucleation in shear bands

(after Porter et al. [1])
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Once voids nucleate, they will grow and finally link. McClintock [3] emphasized that

changes in size, shape and spacing of the holes depend on the entire history of stress and

strain. The processes of void growth and final linkage are also quite different for different

microstructures, deformations and loading conditions. Rice and Tracey [17] pointed out

that when a material is under very large mean stress, i.e. the stress triaxiality is very high,

the volume changing contribution to void growth overtakes the shape changing part.

McClintock et al. [18] noticed that there is a rotation and shape change of voids for

materials under shear deformation (See Fig. 2.3). Thomason [87] also pointed out that

ductile fracture in relative "low" stress triaxiality cases is due to relatively large

"deviatoric" or shape changing void growth and relatively small "dilatational" or volume

changing growth.

S NOMAL

Fig. 2.3 Void growth and linkage in copper

(after Bluhm and Morrisey [2], McClintock [3])
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Besides the different processes of void nucleation and growth, different processes of void

linkage have been observed. As shown in Fig.2.4, void linkage could occur due to the

internal necking of the matrix between two voids, simple touching of two voids and also

could occur due to the so-called void sheet mechanism. Necking of the matrix, simple

toughing of two voids and void sheet mechanism appears to be the three common ones.

Schematic representations of the three processes are illustrated in Fig. 2.5-2.7,

respectively. Those mechanisms are described in two-dimensions. Clearly, the real

mechanisms in 3-D are more complicated. Thomason [87] assumed that the process of

void linkage is due to the internal necking of the matrix between large voids in his study.

McClintock [3] and Rice and Tracey [17] considered the simple touching of two voids as

void linkage in their classical studies. Although the void sheet mechanism was found in a

number of tests (eg. [4, 88, 89]), to the best of the author's knowledge, no good modeling

has been developed. It should be noted that necking of the matrix and simple touching of

two holes are similar and not easy to distinguish in real situations.

Necking of the matrix Void sheet

Simple touching

, Jm2OOm

Fig. 2.4 Different modes of void linkage

(after Hancock and Mackenzie [4])
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Void growth

Internal
necking

Particles

Fig. 2.5 Void linkage due to internal necking

Void growth

Particles

Fig. 2.6 Void linkage due to simple touching of two voids

Sometime, the sizes of voids, which link with one another, are very different. Especially,

for alloys with different sizes of inclusions, voids nucleate first around large inclusions

and then with the increase of plastic deformation voids may also nucleate and grow

56



around small inclusions as shown in Fig.2. 1. This process usually leads to different sizes

of dimples which have also been observed in a number of other studies (eg. Henry and

Horstmann [90] and Brooks and Choudhury [91] ) besides Fig. 2.1. Consequently, the

linkage processes must be slightly different from those discussed above. As an example,

the simple touching model of materials with different sizes of inclusions and voids

becomes the one illustrated in Fig. 2.8. Likewise, the small changes should also be

introduced to represent the other two linkage processes.

Void growth

Void sheet

Particles

Fig. 2.7 Void linkage due to void sheet

Void growth

Small
particles

Large particles

Fig. 2.8 Void growth and linkage in materials with large and small inclusions
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The above representation does not involve rotation and shape change of voids. It is easy

to imagine that the process of the void growth and linkage involving rotation and shape

change of voids will be different from those without rotation and shape change. A

criterion was developed to predict fracture involving rotation and shape change of voids

by McClintock et al. [18]. It was assumed that large numbers of holes are scattered

uniformly throughout a material and the solid is divided into a number of elements, each

containing a single centrally-located hole and fracture occurs when the hole just touches

the boundary of the deforming element in which it lies.

However, it is likely that void linkage does not occur even if a void touches the boundary

of its element. This criterion can be improved in 3-D FEM modeling by checking the

relative position of neighboring holes and calculating the minimum distance between two

holes at every deformation increment until the distance reaches zero which is the

condition of real void linkage. Figure 2.9 and 2.10 are schematic representations of

simple touching model under relative "low" stress triaxiality for materials with only one

type of inclusion and with two different inclusions, respectively. Again, similar changes

should also be made to represent the other two linkage models.

Large particles

Void growth,
rotate, shape
changing

Fig. 2.9 Void linkage under relative "low" stress triaxiality
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Large
particles

Small
particles

0

Fig. 2.10 Void linkage under relative low stress triaxiality in materials with large and

small inclusions

Although, there are clear differences in the process of void nucleation, growth and

linkage, the main characteristic is the same. This type of fracture mechanism generally

occurs in the high stress triaxiality range and usually produces a rough surface.

In this thesis, all the specimens tested were cut from a same block of aluminum alloy

2024-T351. To study the mechanisms of crack formation of this material under high

stress triaxiality, a fractured round tensile specimen with a circumferential notch (stress

triaxiality =0.95, see Chapter 5) was examined.

Various components in Al 2024-T351 listed in Table 2.1 yield different inclusions. The

largest inclusion or particle in A12024-T351 is AlCuFeMn with a size of 10 u m. Other

particles such as AlCuMg, AlMgSi, AlZnMg, AlZnMgCu, are less than 2U m. The

scanning electron microscope (SEM) pictures on fracture surfaces were taken for the

notched round tensile specimen and are displayed in Fig. 2.11.
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Table 2.1 Compsition of Al 2024-T351

*Note: the value in the table only gives a range except for Al.

There is a difference between the center, which is the crack formation location and the

edge of the section as shown in Fig. 2.11 (b) and Fig. 2.11 (c), respectively. In Fig. 2.11

(b), clearly voids nucleate first at the AlCuFeMn particles because of the particle

cracking. Small voids also developed between the large voids nucleated at the AlCuFeMn

particles with the increase of plastic deformation. This is a good example of the process

schematically illustrated in Fig. 2.8. In Fig. 2.11 (c), besides the development of voids at

large and small inclusions, one can also observe clear rotation and shape change of the

voids. This process is much closer to the schematic mechanism displayed in Fig. 2.10. It

is known that the stress triaxiality at the center is higher than at the edge for the round

bars with a circumferential notch. That is the reason for the difference between those two

fracture processes.
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Component Weight %

Al 93.5

Cu 3.8-4.9

Mg 1.2-1.8

Mn 0.3-0.9

Fe Max 0.5

Si Max 0.5

Zn Max 0.25

Ti Max 0.15

Cr Max 0.1



2mm

a)

Cracked AlCuFeMn

b) c)

Fig. 2.11 Fractograph showing dimples in the notched tensile specimen

The broken specimen was also sectioned and polished. During the polishing process, the

crack formation location, i.e. center of the specimen was carefully protected to avoid

damage. A microscopic picture was taken on the polished sample and is shown in Fig.

2.12. It confirms that voids nucleated due to the crack of AlCuFeMn particles. Void

linkage was likely due to simple touching or necking of the matrix in this case and the

typical rough crack surface can also been clearly seen from the picture.
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I

Fig. 2.12 Dimple fracture in the notched tensile specimen

2.2 Mechanisms dominating at Negative Stress

Triaxialities

The knowledge of crack formation mechanisms in the negative stress triaxiality range is

very limited. No well-established mechanism in this range can be found in the open

literature. In order to uncover this "mystery", a preliminary microscopic study was
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performed. Upsetting tests are good examples for ductile crack formation in the negative

stress triaxiality range. It will be shown in Chapter 5 that the stress triaxiality is negative

(-0.33 ~ -0.05) for this case. The SEM pictures on fracture surfaces were taken for a

fractured upsetting specimen of A12024-T351 with initial diameter of 12.5 mm and initial

height of 12.5 mm and are presented in Fig. 2.13. The fracture surface is relatively flat

and no clear dimples can be observed at the location of crack formation, which is the

equatorial area. Crack formation clearly was due to a different failure mechanism from

the void nucleation, growth, and linkage observed in the high stress triaxiality range.

Fig. 2.13 Fractograph showing flat fracture surface in the upsetting specimen

This mechanism was further examined by sectioning the broken specimen. The equatorial

area was protected to avoid damage during the polishing process. As illustrated in Fig.

2.14, crack is relatively smooth and goes through the matrix instead of the inclusion or
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the connection of inclusions and matrix. There was no evidence showing cracked particle

and nucleated voids. A possible reason for this type of failure is that the cylinder failed

along the closest packed sliding planes [92]. A further study on this "shear fracture"

mechanism is needed to get a deep understanding. However, it is beyond the scope of this

study. It should be noted that "shear fracture" is just the name for this type of mechanism

and it does not mean that this type of fracture is exclusively due to shear.

Di

51 0OI1..

5.0m

Fig. 2.14 "Shear fracture" through the matrix in the upsetting specimen
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2.3 Mixtures of Mechanisms at Intermediate

Stress Triaxialities

French and Weinrich [5] studied the influence of pressure on the tensile fracture of a very

ductile copper with 233 MPa tensile strength. Classical void nucleation, growth and

linkage were found in the fracture surface from the SEM examination in the case with no

pressure. As the pressure increased, the relative area of the rough portion due to void

nucleation, growth and linkage decreased. As displayed in Fig. 2.15, a limited number of

voids can be observed for the case with 300 MPa pressure. Very few voids can be found

in the fracture surface at a pressure of 500 MPa shown in Fig. 2.16. This mechanism is

very similar to the "shear fracture" observed in the upsetting tests. Similar tests on steels

have been carried out in an earlier study by Bridgman [93]. It was also observed by naked

eye that roughness of fracture surface decreases with increase of the pressure.

As shown above, cracks form in two different ways in the high stress triaxiality and the

negative stress triaxiality range, respectively. There are two competing fracture modes.

"Shear fracture" favors the negative stress triaxiality while dimple fracture dominates in

the high stress triaxiality range. Therefore, with the studies of French and Weinrich [5]

and Bridgman [93] it is reasonable to conclude that crack formation in the intermediate

stress triaxiality could due to the combination of those two mechanisms Although it is

difficult to know the stress triaxiality of those two cases (Fig. 2.15 and Fig. 2.16) since

significant necking was found during the deformation and the true stress was not given in

the paper, it is likely that the case with 500 MPa is in the negative stress triaxiality range

and it is clear that the stress triaxiality in the case with 500 MPa pressure is less than the

one with 300 MPa pressure and the stress triaxiality in the case with 300 MPa pressure is

less than the one with no pressure. Therefore, this study provided clear evidence

supporting the above conclusion of the competition of "shear fracture" mode and void

nucleation, growth and linkage mode.
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Fig. 2.15 Fracture surface of specimen fracture at pressure of 300 MPa, tensile strength of

this copper is 235 MPa

(after French and Weinrich [5])

Fig. 2.16 Fracture surface of specimen fracture at pressure of 500 MPa, tensile strength of

this copper is 235 MPa

(after French and Weinrich [5])
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2.4 Discussion

It is clear that there are two different ductile crack formation mechanisms, namely "shear

fracture" occurring in the negative stress triaxiality range and void nucleation, growth

and linkage occurring in the high stress triaxiality range. A combination of those two

mechanisms happens between those two ranges. In other words, the intermediate stress

triaxiality range is a transition range. It should be mentioned that the definition of the

three stress triaxiality ranges here is qualitative and not quantified. The boundary of the

stress triaxiality ranges depends on materials. For A12024-T351, a more precise definition

can be found in Chapter 5.

As shown above, the crack formation mechanisms are very complex. No well-developed

modeling has been proposed even for the whole process of the void nucleation, growth

and linkage, which has been observed for decades. McClintock's cylindrical hole model

[3], Rice-Tracey's spherical hole model [17] and Gurson's model [25, 26] developed in

1960-1970s are still the best in the area of modeling void growth and linkage. However,

they did not consider void interaction and rotation. Also they assumed regular void

shapes (elliptical cylinders or spheres), a homogenous distribution of voids and the

simple touching as the process of void linkage. Clearly, the actual process is far more

complicated than those models. With these facts, it is very hard to see the possibility of

developing a much better model based on these complicated crack formation mechanisms

in the near future. Apparently, approaches with a totally different point of view are

needed in order to meet the urgent demand of the industry. Those approaches should

avoid dealing with the details of the complex mechanisms.
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Chapter 3

Determination of Stress-Strain

Curve

It is clear that crack formation is governed by local stress and strain. It is almost

impossible to measure individual components of stress and strain tensors directly from

experiments. Performing numerical simulations is an alternative way to acquire

individual components of stress and strain tensors at the potential locations of crack

formation. The stress-strain curve is one of the most important inputs in numerical

simulations.

Uniaxial tensile and compression tests are the most common ones to obtain the stress-

strain curve. However, in compression tests, homogeneous compression is difficult to

achieve because of the effect of friction between the ends of the specimen and the flat

platens, and the associated "barreling" of specimens. In tensile tests, necking often occurs

in ductile metals, which brings difficulties in determining stress-strain curve since stress

and strain is not uniform in the neck and the gauge area.

Several approximate methods are discussed in this chapter to reduce the effect of friction

in compression and to extrapolate the material property after necking in tension. The
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stress-strain curve of A12024-T351 is determined from compression and tension tests,

respectively.

3.1 Determination of Stress-Strain Curve in

Compression Tests

3.1.1 Specimen under "Cone-Shaped" Platens

The idea of compressing the specimen between cones to avoid barrel effect was first

suggested by Siebel and Pomp [94] in 1927. Unfortunately, the uniform stress

distribution can not be obtained even if the barrel effect is eliminated by choosing the

certain angle of the cone for a certain friction condition because of the difference of the

initial height between the center and the edge as shown in Fig.3.1. The barrel effect is

clearly eliminated, but the stress distribution is not uniform.

Symmetry ax

(Ave. Crit.. 75%)
-3.746ei-02

-4 .130e'-02
-4,.514e+02
-4 .&98e+O2
-5. 281e'-02
-5. 665e4-02
-6.04 9e+02

b-V O ~ -6,917e-02
-7.201e-02
-7. 594e+02
-7.968.e-02
-91352e4-02

Symmetry

Fig. 3.1 Stress distribution for a specimen under "cone-shaped" platens
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A relatively homogenous stress distribution can be achieved by making the height from

the center to the edge of the specimen same and replacing one of the platen with a

different shape to fit the specimen as shown in Fig. 3.2.

Symmetry axi

Fig. 3.2 Stress distribution for an improved specimen under "cone-shaped" platens

Even more uniform stress and strain distribution in the gage area can be obtained as

shown in Fig. 3.3 and Fig. 3.4 by replacing the solid cylinder with a ring specimen.

However, there are some limitations for this method. One limitation of this method is that

the specimen with an optimum shape at the ends of the specimen is only effective for a

certain range of friction. Another limitation is that it is not good for low ductility material

because of high strain and high stress at some locations though the areas are small

(shown in Fig. 3.3 and Fig. 3.4). Fracture might develop very early at those areas.
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Fig. 3.3 Stress distribution for a ring specimen
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Fig. 3.4 Strain distribution for a ring specimen
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3.1.2 Grooved Specimen

Another approximation to homogeneous compression may be obtained by introducing

lubrication by means of oil, which is entrapped in concentric grooves machined on each

end of the specimen. Loizou and Sims [95] successfully acquired approximate

homogeneous compression (shown in Fig. 3.5) using this idea. Johnson [96, 97] obtained

approximate stress-strain curves using a similar approach. This technique was also tried

by the present author for Al 2024-T351 with the same grooves suggested by Loizou and

Sims [95], but the barrel effect was not effectively eliminated.

(a) Barreling on lubricated specimens without (left) and with grooves (right)

(b) Grooving of specimens after and before compression

Fig. 3.5 Simple compression of grooved specimens

(after Loizou N. and Sims R.B. [9])
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The drawback of this method is that a lot of tests needed to determine the depth, shape

and number of the grooves suitable to the particular material and friction condition. And

it is not certain that good results can be obtained.

3.1.3 Extrapolation Method

The idea of extrapolation method is based on the fact that if cylindrical specimens with

equal diameters but different heights are compressed, the degree of barreling effect

depends on the original height of the specimen and is least for the highest one.

Theoretically, there would be no barreling effect for a cylinder with an infinite height and

then the mean compressive pressure could be taken as the flow stress in uniaxial

compression. However, long cylinders will buckle before yielding.

According to Johnson and Mellor [98], the extrapolation method appears to be the most

satisfactory approach for determining the stress-strain curves in uniaxial compression in

general. The advantage of this method is that only a few tests needed to get satisfactory

results.

Cook and Larke [99] used four cylinders with the ratios of initial diameter to initial

height 0.5, 1.0, 2.0, 3.0 to obtain the stress-strain curve for copper. Graphs of

compressive pressure at the different stage of the compression against the initial aspect

ratio were plotted and then were extrapolated to the initial ratio of zero, which is the

condition for no barreling to get the stress-strain curve.

Shey, Venner and Takomana [100] obtained the true flow stress of Aluminum 6061-T6

by plotting the pressure against instantaneous aspect ratio of current diameter to current

height and extrapolating it to the instantaneous ratio of 0.5. It was found that once an
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instantaneous aspect ratio of 0.5 is reached, the cylinder deforms virtually

homogeneously [100].

In this thesis, the extrapolation method is used to obtain the stress-strain curve in

compression for A12024-T351. Cylinders with the ratios of initial diameter to initial

height 0.5, 0.8, 1.0, 1.5 were compressed in a screw driven 200 kN MTS machine (See

Fig. 3.6). The initial diameter of the specimens was 12.5 mm.

a) Initial

b) Deformed

Fig. 3.6 Compression specimens with different aspect ratios

Since the force level in the tests almost reached the capacity of the test machine which is

200 kN, the effect of the deformation of the system of the test machine may not be

negligible. Stiffness of the test machine is assumed to be constant during the test. The

total stiffness K, can be expressed as

1 1 K

K, K, K,
(3.1)
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EA.
where, K, = - is the elastic stiffness of the sample and Km is the stiffness of the test

ho

machine, E is the Young's modulus, A is the cross section area and hois the initial

height of the specimen.

The total stiffness can be measured directly from the output of the test for the different

samples. For same material EA is same. Then the stiffness of the machine can be

obtained from Eq. (3.1), which is 250 kN/mm for this MTS machine. The displacement -

force response with the correction of the deformation of the test machine is shown in Fig.

3.7.

16X

14 - -

12

04L d /h =1.5
6~0 0

2

0 2 4 6 8 10
Displacement (mm)

Fig. 3.7 Load-displacement response of upsetting tests

With the assumption of volume conservation i.e.

d 2h = d 2h (3.2)

where do and d are the initial diameter and current diameter, respectively; ho and h are

the initial height and current height, respectively.
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The approximate stress-strain curves shown in Fig. 3.8 can be obtained from the force-

displacement in Fig. 3.6 for four different types of specimens using the following

definition

4P 4Ph (33)

lrd 2 Mrd 2 ho

hoE = ln( ) (3.4)
h

where P is the load.

800

700 - .. ----...-

600-

0 500-

400-

- d /h =0.5
300. d 0/h 0=0.8

200 ........ d 0/h 0=1.0
.... d /h0=1.5

100 - -

0 ' '1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True strain

Fig. 3.8 Approximate stress-strain curves directly obtained from the force-displacement

responses of different upsetting specimens

Clearly, the result obtained directly from Eq. (3.3) and (3.4) is good only when barreling

is small. It can be seen that due to different degree of barreling the stress-strain curve

obtained from the different specimens is different at large deformation while the curve is

the same at small deformation. Therefore, the real true stress and strain curve for F <0.1

of this material can be obtained directly from Fig. 3.8, while a correction should be

introduced for ' 0.1. The real true stress and strain curve for ' 0.1 is determined
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using the extrapolation method as follows. Seven data points are used to represent the

curve for ' ! 0.1.

The seven points have the strain of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4, respectively.

The goal of the extrapolation method is clearly to obtain the corresponding stresses of

those strains. Eq. (3.4) can be rewritten as

h = hoe-7 (3.5)

Together with Eq. (3.2), the ratio of current diameter to current height for different

specimen can be expressed as

d d 2h= - e 2 (3.6)
h ho

The ratio of current diameter to current height for different specimens at the same strain

level is different. For each strain, four corresponding stresses and ratios of current

diameter to current height are obtained for the four different specimens based on Fig. 3.8

and Eq. (3.6). The relationship of the stress and the ratio of current diameter to current

height for each strain was obtained and is illustrated in Fig.3.9. For each strain, there are

four points, which represent the four different samples. By extrapolating the stress to

d / h = 0, which is the idea case without barreling effect, the corresponding stress for

each strain can be acquired. The stress-strain curve for ' 0.1 is then determined. By

combining the curve for 6 < 0.1, the complete stress-strain curve for Al 2024-T351 was

obtained and is shown in Fig. 3.10.

78



0.4

0.35

0.3

A- 0.25
0.2

800

750

700

650

600
p gO

0.5 1 1.5 2 2.5 3 3.5 4
d/h

Fig.3.9 Flow stress against the current ratio for different plastic strains
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Fig.3.10 True compressive stress-strain curve for aluminum 2024-T351
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3.2 Determination of Stress-Strain Curve in

Tension Tests

3.2.1 Bridgman Correction

Round bars are most often used in tensile tests to get the stress-strain relation. The stress

and strain are homogenous in the gauge area before necking occurs. The stress and strain

curve up to necking can be determined as follows

6= 2 (3.7)

7= ln(-) (3.8)
0

where P is the load ; a is the current radius of the gauge section; 10 and I are the initial

and current gauge length, respectively.

After necking occurs, Eq. (3.7) and Eq. (3.8) are no longer valid. In order to obtain the

local stress and strain in a necked round bar, Bridgman's [93] developed a semiempirical

analysis in terms of the radius of curvature of the neck and the radius of the minimum

cross section. The main feature of Bridgman's analysis is that the equivalent strain is

constant across the minimum cross section, but the radial, hoop and axial stresses

(Or,a and o-z, respectively) vary. The stress and strain are determined as follows

referring the geometry given in Fig.3.11.

e=21n(a) (3.9)
a

a2 +2aR-r 2

U-, = &[l+ln( ) (3.10)
2aR

a2 +2aR-r2
arr = o=ln( ) (3.11)

2aR

80



J_ 1 a2 +2aR -r 2
') (3.12)

Z 3 2aR

where, a, o,,, o , 5 and a,. are axial, radial, hoop, equivalent and mean normal

stress, respectively, 7 is the equivalent strain, a and R are the radius of the minimum

cross-section and the radius of the circumferential notch, ao is the initial value of a.

The stress sate at the neck essentially corresponds to a constant uniaxial tension with a

superimposed hydrostatic tension building up toward the center. Therefore, the load

carried by the hydrostatic stress must be subtracted from the total load carried by the

minimum cross section to find the equivalent stress. This correction is called the

Bridgman correction and is given as the ratio of equivalent strain to average axial stress

based on the Bridgman analysis

___ 2)__ 1 (3.13)
P /(ra2  (1+ 2R a)ln(l+ a /2R)

z

Neck

Rr
a

Shape before nec *ng

Fig. 3.11 Tensile necking in a round bar
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Determination of the radius of the neck R is inconvenient. Bridgman [78] found that it

could be avoided by using an empirical relation

a
a = 6 - En (3.14)
R

where e, is the uniaxial strain at tensile strength.

This method clearly depends on the measurement of the radius of the minimum cross

section a and accuracy of the Bridgman solution and Eq. (3.15). Even if the difficulty of

determining R can be avoided by using Eq. (3.14), still a should be measured during the

test, which is also difficult because 1) the position of the neck is not known before the

test; 2) it needs a series of tests with different loadings or pausing the test several times to

obtain the evolution of a. In addition, the stress state in the neck given by the Bridgman

solution essentially has not been verified. As reviewed by McClintock and Argon [101],

"Marshall and Shaw [102] ran tensile tests on specimens which were machined to

arbitrary values of longitudinal curvature at different stages. The found that the results

they obtained could be correlated into a smooth curve by applying Bridgman correction.

On the other hand, Parker et al. [103] determined the stress distribution in the neck of a

tensile specimen by unloading a necked specimen, calculating the stress change on

unloading from elasticity theory and then boring out the specimen to determine the

residual stress. They disagreed with Bridgman's results". Recently, Alves and Jones

[104] performed a finite element analysis for notched round bars under tensile loading.

Stress triaxiality and equivalent strain were compared between numerical simulations and

Bridgman solution and large difference was found. It should be noted that in their study,

change of the radius of curvature due to the deformation was not considered in

calculating stress and strain using the Bridgman solution. A more complete comparison is

conducted in this study. Consider a round bar with initial radius of the minimum cross

section ao= 4 mm and initial radius of the notch Ro= 4 mm as shown in Fig. 3.12 and

focus on one deformation stage (a = 3.46mm, R = 4.54mm). Comparisons of Bridgman

solution and numerical simulation are displayed in Fig. 3.13 and Fig. 3.14 for equivalent

strain and stresses, respectively. The difference of equivalent strain is relatively small

(15%), while the difference of stresses is large (30%-50%).
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Fig. 3.12 Finite element mesh of the notch region
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Fig. 3.13 Comparison of equivalent strain between Bridgman and numerical simulation
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Fig. 3.14 Comparison of stresses between Bridgman and numerical simulation

3.2.2 Trial-and-Error Method

The stress-strain calculated by Eq. (3.7) and (3.8) is good before necking. In this thesis a

trial-and-error method is used for searching an accurate stress-strain curve after necking

occurs. The main idea is to iterate the stress-strain curve by comparing the load-

elongation response of experiments and numerical simulations. The procedure is

summarized as follows.

(1) Perform a tensile test on a round bar. Make sure that necking occurs inside the

gauge area. Record the load-elongation response.

(2) Calculate the initial stress-strain curve using Eq. (3.7) and (3.8).

(3) Perform numerical simulation with the initial stress-strain obtained in Step (2) and

compare the load-elongation response with experiment. Calculate the relative

error of the force.
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(4) Adjust the stress-strain curve based on the relative error obtained in Step (3) and

replace the stress-strain curve with the new one in Step (3).

(5) Repeat Step (3) and (4) until the relative error becomes small.

By following this procedure, the stress-strain for A12024-T351 was determined. Two

round bars with a 9 mm diameter gauge section and 25.4 mm gauge length were tested.

As shown in Fig. 3.15, necking occurred inside the gauge section. The two samples gave

almost exactly the same result as illustrated in Fig. 3.16. Numerical simulations were

performed using 4-node axisymmetrical elements. A finite velocity was applied to one

end of the model while the other end was fixed. In order to study the possible mesh size

sensitivity, a coarse and a fine mesh were developed. Initial and deformed model of

coarse mesh and fine mesh are displayed in Fig. 3.17 and Fig. 3.18, respectively. Both

coarse and fine models successfully captured the necking. No difference of the results

was found between the coarse and fine mesh. A large number of runs were needed to get

the correct points after necking. The stress-strain curve used in the simulations of tensile

tests is shown in Fig.3.19. Comparison of the force-elongation between experiments and

numerical simulations are illustrated in Fig. 3.20 which shows excellent correlation.

Fig. 3.15 Final stage of tensile test on a standard round bar
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Fig. 3.16 Experimental force-relative elongation response of tensile tests on round bars
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Fig. 3.17 Coarse mesh of round bars under tensile loading
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Fig.3.19 Stress-strain curve obtained using a trial-and- error method from tensile tests
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Fig. 3.20 Comparison of the force-elongation between experiments and numerical

simulations (tensile tests on round bars)

3.3 Summary

Due to the inhomogeneous deformation in conventional compression and tension test, the

stress-strain relation for materials can only be obtained approximately. Several

approximate engineering methods were presented. The stress-strain curve for A12024-

T351 was obtained from both compression tests and tensile tests using one of the

approximate methods each. It will be shown in the following chapters that the stress-

strain determined in this chapter gives good correlation.

By putting the two curves together as shown in Fig. 3.21, it is found that those two curves

are not exactly the same although the specimens were cut from a same block. This

phenomenon has also been found in the literature (eg. White et al. [105]) and industrial

applications. This material inhomogeneity is likely caused by the rolling process.
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Chapter 4

Comparative Study of Various

Fracture Models

Although various models based on different assumptions and different mechanical

models have been proposed in the past to predict ductile crack formation, many of them

such as porous plasticity fracture models, damage mechanics, decohering zone models,

have not gone beyond the walls of academic institutions and found applications in

industry. The crack formation criteria currently used in industry mostly are of an

empirical nature or are based on models derived from the concepts of void nucleation,

growth, and linkage. However, those criteria have not been critically evaluated and

studied. In view of the complexity of crack formation mechanisms described in Chapter

2, it is difficult to expect a universal criterion capturing all the crack formation and

clearly evaluation of those criteria is necessary. The objective of this chapter is to apply

those crack formation models to some common tests to evaluate the range of their

applicability.
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4.1 Selection of Models

Since no universal crack formation criteria have been developed, engineers have been

using different criteria. The crack formation criteria being used in industry mostly are the

empirical models and the models derived from void nucleation, growth, and linkage.

They are relative simple and easy to calibrate. Those criteria are postulated that fracture

occurs at a point in a body when the scalar function reaches a critical value (Eq. (1.28)).

Different weighting functions were proposed in different criteria.

Among those crack formation criteria, the criteria listed in Table 4.1 appear to be the

more often cited in the literature.

Table 4.1 Functional forms of fracture criteria

Criterion

Equivalent strain

Formula

E = ef

Cockcroft - Latham [68]

Hydrostatic stress

Clift [70]

Brozzo [69]

Rice-Tracey [17]

LeRoy [19]

McClintock [3]

L = CCL
6F

-- '"d = CH

di = Cclft

2a d6= CB
3(g- '-,m)

f exp( -- '")d3 = CRT
2 6F

(al - a.,)d = CL

[\F smnh( _3a U )+ - a _U2e Cm
2(l1- n) 2(l - n) 6- 4 -

* Note: A short description of the listed criteria is given in Chapter 1.
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4.2 Selection of Tests

Ductile crack formation occurs in many tests such as upsetting, tension, shear, bending,

torsion and deep drawing tests. As shown in Chapter 2, the crack formation mechanisms

in upsetting tests and tensile tests are different. Also, upsetting tests and tensile tests have

been studied by a number of engineers and are well defined (eg. [4, 6, 93, 106-108]).

Those tests can be easily conducted in a standard universal testing machine. Therefore,

those two types of tests are clearly good candidates to assess effectiveness and accuracy

of existing crack formation criteria. A series of tests including upsetting tests on short

cylinders with different aspect ratios and tensile tests on smooth and notched round bars

were carried out. All the specimens were cut from a same block of A12024-T351. The

specimens prior to testing are shown in Fig.4. 1. Parallel numerical simulations were also

performed to obtain local individual components of stress and strain tensors, which are

necessary for the evaluation.

a) Upsetting specimens

b) Tensile specimens

Fig. 4.1. Undeformed upsetting and tensile specimens
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4.3 Upsetting

One of commonly used tests for studying crack formation is the uniaxial compression of

short cylindrical specimens between flat platens (the so-called upsetting test). Because of

the friction between specimens and flat platens, a barreling near the equator of specimens

occurs. The resulting tensile circumferential stresses are developed causing specimens to

fracture.

4.3.1 Experiments

Four types of cylindrical specimens with different aspect ratio were compressed between

two flat compression platens in a 200kN MTS machine. Those cylinders had a same

diameter of 12.5 mm but different heights. The initial aspect ratios do /ho were 0.5, 0.8,

1.0 and 1.5, respectively. Six specimens each were compressed to different stages in

order to capture crack formation at the equatorial area more accurately. As an example,

Fig. 4.2 shows representative specimens at different stages of compression for the

specimen with an initial diameter of 12.5 mm and an initial height of 12.5 mm. Force-

displacement responses with the correction of test machine stiffness are shown in Fig.

3.7.

Surface A Surface B

Fig. 4.2. Upsetting specimens at different stages of compression
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4.3.2 Numerical Simulations

It is almost impossible to obtain individual components of stress and strain tensors, which

are key factors in crack formation, directly from experiments. Performing numerical

simulations is an alternative way to acquire individual components of stress and strain

tensors at the locations of crack formation.

Parallel numerical simulations of the upsetting tests for crack formation were carried out

using the finite element code ABAQUS. In finite element models, cylindrical specimens

were modeled as 4-node axisymmetrical elements. The compression platens were

modeled as two rigid surfaces. A surface-to-surface contact with friction was introduced

to model the interaction between the platen and the specimen. A boundary condition was

applied at the top platen while the bottom platen was fixed. The stress-strain curve shown

in Fig. 3.10 was used as material input. Three different meshes were developed to study

mesh sensitivity for each specimen. As an example, an evolution of equivalent plastic

strain in the equatorial area from the three meshes shown in Fig. 4.3 for the specimen

with initial diameter of 12.5 mm and initial height of 12.5 mm is illustrated in Fig. 4.4.

The difference of the three meshes in stress and strain calculations was less than 2%.

f1~i *~T,

Coarse meh(2*0

414

.44 - i 11

Medium mesh (40* 80) Fine mesh1 (60* 120)

Fig. 4.3 Three different meshes for upsetting tests (do / ho =1)
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Fig. 4.4. Evolution of the equivalent plastic strain at the equatorial area (upsetting)

Friction coefficients between the platen and the specimen were determined by fitting the

experimental and numerical results. From the deformed upsetting specimens depicted in

Fig. 4.2, it can be found that the friction on surface A and surface B (outer ring), which

originally is part of the circumferential surface, is different. Therefore, different friction

coefficients were used to model the friction between platen and surface A and the friction

between platen and surface B in numerical simulations. Numerical simulations with

different combinations of friction coefficients of platen-surface A and platen-surface B

were performed. The one with friction coefficient p = 0.15 for platen-surface A and

S= 0.5 for platen-surface B gave best results. As an example, for the specimen with

initial diameter of 12.5 mm and initial height of 12.5 mm at the onset of fracture

(1 = 4.4 mm, where ( is the displacement of top platen), the diameter of the equator was

15.67 mm and the diameter of the end of the specimen was 15.1mm in this numerical

simulation, which were close to 15.75 mm and 15.1mm measured in the experiment,

respectively. Correlation of the force-displacement responses as presented in Fig. 4.5 was

also good. The deformation shape of those four specimens is shown in Fig. 4.6.
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Fig. 4.6 Deformed shapes of upsetting specimens
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4.4 Tension

4.4.1 Experiments

As shown in Fig. 4.1, besides standard smooth round specimens, tensile tests were also

carried out on two different types of notched specimens. Round classical specimens with

a 9 mm diameter gauge section and 25.4 mm gauge length and two different types of

notched specimens with a same 8 mm minimum cross section and different notch radius

12 mm and 4 mm, were tested to get the information of crack formation in different stress

states. As an example, the final stage of the test on the specimen with a 12 mm radius of

notch is shown in Fig. 4.7. An extensometer was attached to measure the elongation of

the gauge area during the experiment. Clearly, fracture occurred inside the gauge area.

From the fractured specimens displayed in Fig. 4.8, it can be seen that fracture was due to

void nucleation, growth and, linkage. Two samples of each case were tested and the

results were repeatable. As an example, the force-displacement responses of two samples

of the bar with 12 mm radius of notch are illustrated in Fig. 4.9. Not only the force level

but also the crack formation point is the same.

Fig. 4.7 Final stage of the test on the round bar with a 12 mm radius of notch
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a) smooth standard round bar

b) notched bar (R =12 mm)

c) notched bar (R =4 mm)

Fig.4.8 Fractured tensile specimens showing dimple fracture
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Fig.4.9 Responses of notched specimens (R =12mm)
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4.4.2 Numerical Simulations

Detailed finite element modeling on the standard smooth round bar is given in Chapter 3.

Finite element modeling on the two notched round bars was the same as the standard

smooth round bar. The stress-strain curve shown in Fig.3.19 was also the material input

for the two notched bars. In addition, two different meshes were developed for each

specimen. Comparisons of equivalent plastic strain at center of the neck are illustrated in

Fig.4.10-4.12, for smooth and two notched round bars, respectively. It clearly shows that

the result presented here is not mesh dependent. Force-displacement responses of

experiments and numerical simulations correlated almost perfectly as displayed in Fig.

3.20, Fig. 4.13 and Fig. 4.14. Only the responses up to the crack formation point are

shown in the pictures since the present study focuses on crack formation. Determination

of crack formation is given in Section 4.5. Final diameters of the minimum cross-section

obtained from numerical simulations were 7.17mm, 6.9 mm and 7.2 mm for smooth and

two notched round bars, respectively, which were very close to 7.2 mm, 6.8 mm and 7.15

mm measured from experiments. The deformed shape of the three tensile specimens is

shown in Fig. 4.15.
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Fig. 4.10. Evolution of the equivalent plastic strain at the center of the neck (smooth)
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E Crack formation location

L
I
I

b) R =12 mm c) R =4 mm

Fig. 4.15 Deformed shapes of tensile test specimens

4.5 Discussion

Since the correlation of the experimental and numerical results was almost perfect for all

the cases considered in this study, it is reasonable to study the crack formation criteria

based on the individual components of stress and strain tensors at locations of crack

formation obtained from numerical simulations.

From tests, crack formation is indicated at the critical locations by the displacement to

crack formation Sf. It can be determined from both experimental observation and
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numerical simulations. In the upsetting tests and tensile tests, the locations of crack

formation are the equatorial area and the center of round bars, respectively. This

observation was also reported by a number of other studies [4, 6, 13, 106]. There was a

sudden load drop in the force-displacement responses in tensile tests (See Fig. 4.9)). This

drop is taken as the point of crack formation in this study. However, this type of sudden

drop in force level did not occur in some of the upsetting tests. Therefore, crack

formation in upsetting tests is determined by observing the crack on the external surface

of the equatorial area during the experiment. To do this, short cylinders were compressed

to different stages and then were examined.

The criteria listed in Table 4.1 have the same form (Eq. (1.28)) which involves one

material dependent constant for each criterion. The value of the left hand side of each

criterion obtained from different tests at crack formation is taken as an indictor to assess

the effectiveness of the various criteria. This value is determined by evaluating the

integral of the fracture criteria at the locations of crack formation based on the results of

numerical simulations and is summarized in Fig.4.16. Since the specimens tested in this

thesis were cut from a same block of Al 2024-T351, the value of the left-hand side of

each criterion obtained from different tests at crack formation should be the same if the

criterion works well for all the tests. For example, the equivalent strain criterion indicates

that crack formation is controlled only by the equivalent strain. When the equivalent

strain 6 reaches a critical value 6- which is only dependent on material, crack formation

occurs. If the equivalent strain criterion is a universal crack formation criterion, the

equivalent strain at crack formation obtained from different tests on the same material

should be the same.

104



I E Cokcroft-Latham
0.6

0.5

0.4

0.3

0.2

0.1

0

0.6 -

0.5 -
0.4 -

0.3 -
0.2 -

0.1 -
0-

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4
0.3

0.2
0.1

0.

200

150

100

50

0

A B C D

0 Brozzo

E F G A B C D

M Rice-Tracey

E F G

0.8

0.6

0.4

0.2 -

A B C D E F G A B C D E F G

I LeRoy(MPa) 0 McClintock

0.8

0.6

0.4

0.2

0
A B C D E F G A B C D E F G

A: upsetting (do /ho = 0.5), B: upsetting (do /ho = 0.8), C: upsetting (do /ho = 1), D:

upsetting (do /ho =1.5), E: standard round, F: notched round (R=12 mm), G: notched

round (R=4 mm)

Fig. 4.16 Material constants of fracture criteria for A12024-T351

For all those crack formation criteria, the value of the left hand side of a single criterion

obtained from the tests is not unique. The values are very different from case to case. The

values of the Cockcroft-Latham and Brozzo criterion obtained from tensile tests on

smooth specimens are 4-5 times larger than the corresponding ones from upsetting tests.
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The values of the McClintock and Rice-Tracey criterion achieved from tensile tests on

smooth specimens are 3-4 times larger than the ones from upsetting tests. The values of

the equivalent strain criterion, Clift criterion and LeRoy criterion from tensile tests on

smooth specimens are about 3 times larger than the corresponding values obtained from

tensile tests on the specimens with 4 mm radius of circumferential notch. The hydrostatic

stress criterion fails to predict fracture in upsetting tests since hydrostatic stress is

negative at the crack formation location all the time in upsetting tests in this study.

However, the values of the hydrostatic stress criterion from the tensile tests on smooth

and two notched specimens are close, which means the hydrostatic stress criterion works

well for the three tensile tests. The Cockcroft-Latham criterion is suitable for upsetting

tests. Actually the Cockcroft-Latham criterion is equivalent to the experimental fracture

locus of upsetting tests first reported in the literature by Kudo and Aki [6]. This will be

shown analytically in Chapter 5. The McClintock and Rice-Tracey criterion give fairly

good result for the two notched round bars. It is understandable since on one hand those

two models were developed based on void nucleation, growth, and linkage which is the

mechanism of crack formation occurred in these tensile tests, on the other hand those two

models involve a lot of assumptions (See Chapter 2) which is hard to achieve in reality.

The strain to crack formation is to a large extent controlled by the stress triaxiality. In this

chapter, the tests considered falls into a relatively wide range of the stress triaxiality. For

the upsetting test, the stress triaxiality is -0.33 at the beginning (uniaxial compression

state) and increases to near zero at the crack formation. The stress triaxiality is a constant

of 0.33 before the necking (uniaxial tension state) for the tensile test on smooth

specimens and increases to 0.5 at the crack formation. In the tensile tests on the two

notched specimens, the stress triaxiality is approximately constant and is 0.65 and 0.95

for R =12 mm and R =4 mm, respectively.

It is recognized that crack formation could also be described in terms of other damage

indicators as a different combination of stresses and strains. However, in view of the

present results, the two different fracture mechanisms described in Chapter 2 and also the
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results of others (eg. [70, 108-110]) it would appear that no single damage indicator could

be devised covering the entire spectrum of the stress triaxiality.

As shown in the previous section, although none of the criteria studied in this paper gives

consistent results for the wide range of the stress triaxiality, certain crack formation

criteria work well for a more narrow range of the stress triaxiality. The hydrostatic stress

criterion works quite well for the three tensile tests, which are in the range of high stress

triaxiality. The Cockcroft and Latham criterion gives a good prediction of crack

formation in upsetting tests, which are in the range of negative stress triaxiality. It should

be noted that those two criteria are the same except the weighting functions. Therefore,

different forms of weighting functions in Eq. (1.28) seem necessary and effective for a

wide range of problems. They can be determined from different tests, which cover the

entire range of the stress triaxiality. Clearly, the function for the range of negative stress

triaxiality can be obtained by upsetting tests or the tests under hydrostatic pressures,

while the function for the range of high stress triaxiality can be developed by tensile tests

on notched specimens. The function for the range of intermediate stress triaxiality can be

determined by suitable shear tests or tests under combined loadings. This is the main task

of Chapter 5.
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Chapter 5

A New Criterion for Ductile

Crack Formation

5.1 Introduction

The mechanisms of ductile crack formation, as described in Chapter 2 are complex. Yet,

there is an urgent need of relatively simple criteria for prediction of ductile crack

formation in engineering applications. It has been shown in Chapter 4 that various

empirical criteria and criteria based on void nucleation, growth, and linkage have a

narrow range of applicability. It is the objective of this thesis to develop a relatively

simple and general criterion with an acceptable degree of accuracy and a well defined

calibration procedure.

All the tests reported in this study were performed under quasi-static loading and room

temperature. The effect of strain rate and temperature is not considered. However, recent

work by Hopperstad et al [111] and Teng and Wierzbicki [10] indicate that the strain rate

dependence and temperature effects on crack formation are small in a steel and aluminum

alloy, respectively.
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In all cases considered in this chapter the loading was monotonic. It is recognized that in

reality, the loading path of a material element might not be monotonic. Structures could

experience unloading and even reverse loading. It is well known that Bauschinger effect,

which is characterized by a reduced yield stress upon load reversal after plastic

deformation has occurred during the initial loading, occurs during reverse loading.

However, little work on the effect of reverse loading on ductile crack formation is

reported in the literature. A pilot study on the effect of pre compression on ductile crack

formation under tensile loading is carried out in Chapter 7.

5.2 A New Ductile Crack Formation Criterion

Ductile crack formation is a localized behavior. It is reasonable to postulate that crack

formation occurs when damage accumulation, which is measured in terms of stresses and

strains, reaches a critical value at a critical location. A general and widely accepted

expression for ductile crack formation is presented in Eq. (1.28). Different integrands in

Eq. (1.28) (called weighting functions) have been proposed in the past. Due to the

different complex mechanisms described in Chapter 2 leading to ductile crack formation,

functional dependence of the ductile crack formation criterion on the stress state can not

be the same for all possible types of tests. However, by narrowing the range of

applicability, good predictions have been obtained by introducing a suitable weighting

function as shown in Chapter 4. Therefore, it is necessary and also effective to introduce

different weighting functions for different stress and strain states. This is the main idea of

the present chapter. Rather than working with individual components of the stress and

strain tensor, crack formation is formulated in terms of the corresponding first and second

invariants in this study. Thus, the number of parameters responsible for crack formation

is reduced to three (a., 5 and '), i.e. the mean stress ,, the equivalent stress & and

the equivalent strain ' (Note that because of plastic incompressibility, the mean strain

vanishes, c,. = 0). There is overwhelming evidence that ductile crack formation strongly
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depends on the stress triaxiality as mentioned in Chapter 2 from void growth studies (eg.

[3, 17]), from empirical routines (eg. [69, 71, 72, 76, 77]) and from other experimental

and numerical studies (eg. [4, 5, 78, 79]).

The general criterion (Eq. (1.28)) now reduces to

g(a )d = C (5.1)

By dividing both sides with the constant C, we can get

f(m" )di = 1 (5.2)

In this thesis the integral is called damage indicator D. When it reaches unit, then crack

formation occurs. It should be noted that this damage indicator D is different from the

damage variable D, in damage mechanics described in Chapter 1. A good representation

of the weighting function f clearly is

1
f (--"-) = 1(5.3)

Then Eq. (5.2) becomes

D =M ' 1 (5.4)

The key point now is to find appropriate stress triaxiality dependence f of the damage

increment or a fracture locus in the equivalent strain to fracture and the stress triaxiality

space.

Studies of effect of stress triaxiality on equivalent strain to crack formation for metals

performed in the past were mainly using pre-notched round tensile specimens. For

example, Hancock and Mackenzie [4] carried out a series of tensile tests on pre-notched

steel specimens. It was found that the ductility depends markedly on the triaxiality of the

stress state. In their study, the stress triaxiality was calculated using the Bridgman's [78]

formula (Eqs. (3.3) and (3.4)). The experimental results were correlated with the Rice-

Tracey exponential function. Wierzbicki et al. [108] found that the following equation
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2, = "'")I(5.5)

gives a better correlation with Hancock's experimental data than the Rice-Tracey

criterion. However, those results should be revisited since the Bridgman formula does

not give an accurate calculation of stress triaxiality and equivalent strain as shown in

Chapter 3 and others (eg. [104, 109, 112]). Recently, Mirza et al. [79] performed an

experimental and numerical study on three different materials (pure iron, mild steel and

aluminum alloy BS1474) over a wide range of strain-rates (10-3-104 s-1). The equivalent

strain to crack formation for all three materials was found to be strongly dependent on the

level of stress triaxiality. No significant effect of strain-rate could be ascertained from the

experimental results provided fracture remains fully ductile. However, for mild steel, a

transition to a brittle fracture mode was observed as the strain-rate was increased.

For lower stress triaxialities, Bridgman [78] performed a set of experiments on standard

round bars under hydrostatic pressure for different steels. The stress triaxiality and

equivalent strain were calculated from the approximate Bridgman formula. It was found

that for some steels (eg. stainless steels and high carbon steels), the equivalent strain to

crack formation increases with the hydrostatic pressure (decrease of the mean stress or

the stress triaxiality) while for some steels (eg. SAE 1045) equivalent strain to crack

formation decreases with the increase of hydrostatic pressure. Similar tests on a very

ductile copper was carried out by French and Weinrich [5] in their study. The equivalent

strain to crack formation calculated using the Bridgman formula was found increasing

with the hydrostatic pressure. However, this type of tests cannot be done in a universe

tensile machine and clearly needs a much more sophisticated facility with a pressure

chamber.

Clearly, the community still lacks an effective and simple way to establish the relation of

the equivalent strain to crack formation and the stress triaxiality. No such relation has

been found for a single material in a wide range of the stress triaxiality.
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5.2.1 Experimental Determination of Fracture locus

In this study, suitable configurations of specimens for the intermediate stress range are

designed. Together with upsetting and tensile tests, totally 11 tests described in Fig. 5.1

on 2024-T351 aluminum alloy were performed in a universal test machine to find the

relation of the equivalent strain to crack formation and the stress triaxiality in a relatively

wide range of the stress triaxiality (-0.33-1.0). All the specimens were cut from a 6' long,

6" wide and 3" thick block of 2024-T351 aluminum alloy. The procedure is briefly

described as follows.

1) Perform a series of tests and obtain force-displacement responses.

2) Perform parallel numerical simulations.

3) Determine from tests the location of crack formation and displacement to crack

formation (5f for each case.

4) Calculate evolution of the equivalent strain and the stress triaxiality at the crack

formation location (Z vs. 5 and am / 57 vs. 8 ) for each case.

5) Determine the equivalent strain to crack formation, the stress triaxiality and the

average stress triaxiality for each case.

6) Plot the results from Step 5 in f -(-, / d)av space and construct the limiting

failure curve.

In all parallel numerical simulations, two or three different meshes with different mesh

size were developed. It was found that the results including stress and strain obtained

from different finite element models are the same (within 4%).
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Fig. 5.1 A photograph of specimens used to calibrate A12024-T351 for failure locus and

ranges of triaxiality calculated in these tests.

5.2.1.1 Negative Stress Triaxiality

Axial compression of short cylinders (so-called upsetting tests) provides clues of ductile

crack formation in the range of negative stress triaxiality. The barreling of the cylindrical

surface furnishes considerable flexibility since barrel severity changes by altering the die

contact friction conditions and cylinder aspect ratio do / ho. This leads to a variation of the

tensile hoop stress at the bulge surface. Therefore, the upsetting tests can be utilized to

provide a broad range of stress and strain sates in the equatorial area.
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Range of Stress
Test Specimen triaxiality

Number description --- x, i.

Cylinder
1 (do /ho = 0.5) -0.33 ~-0.12

Cylinder
2 (d lnh e -0.32 - -0.05

( do/I ho = 0.8 )

Cylinder
3 (d lnh e -0.32 - -0.05

(do /ho = 1.0 )

Cylinder
4 Cyl ) -0.32 ~ -0.05

(do / ho = 1.5)

5 Asymmetric -0.4 - -0.09

7 Flat

Plate, with a
8 033,

vfeu larhl

9 Round, smooth 0.33 0.5

10 Round, large notch 0.6 - 0.7

11 Round, small notch 0.9 - 1



a) Conventional upsetting test

Compression of four short cylinders with different aspect ratios has been performed in

Chapter 4. The stress triaxiality vs. equivalent strain at equatorial area, which is the crack

formation location, is illustrated in Fig. 5.2. It can be seen that the stress triaxiality was

negative all the time during the deformation.

0
- d/h=0.5

-0.05 ---- d/h=0.8
.--...-. d/h=1.0
----- d/h=1.5

J -0.1 -- -0.15

-0.35 -

-0.4
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Equivalent strain

Fig. 5.2 The evolution of the stress triaxiality at equatorial area of upsetting tests

b) New compression test

Conventional upsetting tests involve a certain amount of friction between specimens and

die platens. The presence of friction is responsible for the barrel effect and fracture, but it

also brings difficulties and extra efforts in performing numerical simulations (See the

numerical simulation in Chapter 4 for upsetting tests). A new promising type of

compression specimen shown in Fig. 5.3 was designed and tested, which removed the

undesirable effect of friction and still provided crack formation at the surface (Fig. 5.4).
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The specimen was machined as round bars with a notched small gauge section in the

middle. Crack formation also occurred at the equatorial area (Fig. 5.4). There was no

deformation in the shoulders and hence there was no horizontal force acting on the ends

of the specimen due to friction. In order words, friction did not play a role in the test with

this particular design. Same as the upsetting tests, six specimens were tested to different

stages to capture the crack formation point.

Fig. 5.3 A new configuration of compression test

Fig. 5.4 A deformed new compression specimens showing crack formation at the surface

The finite element modeling for the new compression test was similar to the conventional

upsetting tests. The specimen for the new compression test was also modeled as 4-node

axisymmetrical elements. The compression platens were modeled as two rigid surfaces.

Also, a surface-to surface contact was introduced to model the interaction between the

platen and the specimen. A downward velocity boundary condition was applied at the top

platen while the bottom platen was fixed. The deformed mesh is shown in Fig. 5.5. Three

friction coefficients 0, 0.2 and 0.5 were introduced. Comparison of force-displacement

response is displayed in Fig. 5.6. The stress triaxiality vs. equivalent strain at the crack
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formation location is shown in Fig. 5.7. The correlation between experiment and

numerical simulations were perfect. It clearly shows that finite element models with

different friction coefficients gave the same result. This test was independent of the

friction condition.

* Crack formation
location

Fig. 5.5 Deformed shape of the new compression test

9 x 10 4 I I I I I I I

- Experiment
8- ---- ABAQUS(=0.0)

........ ABAQUS(p=0.2)
7-1--. ABAQUS(R=0.5)-

6-

-
o 4--

3-

2-

1

0 '1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Displacement (mm)

Fig. 5.6 Comparison of force-displacement (new compression test)
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[- =0.0
-0.05 - ........ =0.2

-0.1 ------ =0.5
-0.1 - 0 -

-. -5
-0.2

4- -0.251CO.
-0.3-

-0.35

-0.4 I

0 0.1 0.2 0.3 0.4 0.5 0.6 Oil
Equivalent strain

Fig. 5.7 The stress triaxiality vs. equivalent strain at the critical location of the new

compression tests

5.2.1.2 Intermediate Stress Triaxiality

Acquiring reliable data in the range of intermediate triaxiality has been a challenging

task. The responses of the specimen and in particular the magnitudes of local stresses and

strains depend to a large extent on the shape of the free boundary. Thus, the first and

substantial task is to design the shape of the specimens so that fracture will start inside

rather than at the free edge of the test piece.

a) Pure shear test

A pure shear test is understood as the one in which the mean stress is zero or very small

compared to the equivalent stress at locations of crack formation. In a search for the

"best" shear test, a new specimen configuration illustrated in Fig. 5.8(a) was proposed
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based on the concept of a "butterfly" gauge section. The specimen was pulled through

two pins. Fractured specimen is displayed in Fig. 5.8(b), from which it can be seen that

fracture occurred due to "shear". It was observed that crack formation occurs at point A

shown in Fig. 5.8(b).

A
Gauge section

a) undeformed specimen b) fractured specimen

Fig. 5.8 A new specimen configuration of pure shear tests

Shell elements were used to model the pure shear test specimen. Two pins were model as

rigid surfaces. A node-surface contact was introduced to model the interaction between

the pin and the specimen. An upward velocity boundary condition was applied at one pin

while another one was fixed. The deformation shape is shown in Fig. 5.9, from which it

can be seen that plastic deformation was localized in the "butterfly" section. Comparison

of the force-displacement response is displayed in Fig. 5.10. The correlation was almost

perfect. The stress-triaxiality was less than 2% at the crack formation location during the

plastic deformation (See Fig. 5.11). Therefore, this test can be taken as a pure shear test.
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Crack formation
location

Fig. 5.9 Deformation shape of pure shear test (Equivalents strain distribution)

12000
- Experiment
---- ABAQUS

10000-

8000-

* 6000-U
s-
o

4000-

2000-

00 0.5 1 1.5 2 2.5
Displacemenmt (mm)

Fig. 5.10 Comparison of force-displacement response (pure shear test)
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0.4

0.35 ............-

0.3-

- 05- Pure shear
0.25 - ---- Combined loading

. 0.-----. Plate with a hole
0.2-

b0.15-

0.1 
-

0.05 -

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Equivalent strain

Fig. 5. 11 The stress triaxiality vs. equivalent strain of the tests in the intermediate stress

triaxiality range

b) Test under combined loading

A specimen configuration for combined shear and tension loading shown in Fig.5.12 (a)

was developed such that it provides information on crack formation in the range between

pure shear tests and tensile tests. Similarly in the case of the pure shear test, the specimen

was pulled through two pins. The gauge section was obviously under a combined shear

and tension loading. It was observed that crack formation occurs at point B shown in Fig.

5.12(b). The finite element modeling was the same as the pure shear test. The

deformation shape is shown in Fig. 5.13. Plastic deformation was localized in the small

gauge area. Comparison of the force-displacement response is displayed in Fig. 5.14. The

correlation was also quite good. The stress-triaxiality was between 0.1 and 0.15 at the

crack formation location during the plastic deformation (See Fig. 5.11).
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-_- 7 __________

Gauge section

a) undeformed specimen b) fractured specimen

Fig. 5. 12 A new specimen configuration of tests under combined loading

Critical formation
location

Fig. 5.13 Deformed shape of the combined loading test (Equivalent strain distribution)
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7000

6000

5000

,-4000

0u- 3000
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1000

0 C 0.5 1 1.5 2
Displacement (mm)

2.5 3

Fig. 5.14 Comparison of force-displacement response (combined loading test)

c) Test on plates with a circular hole under tensile loading

A plate with 4 mm thick, 50 mm wide and 20 mm radius of the hole in the middle

subjected to tensile load as displayed in Fig. 5.15 was carried out experimentally and

numerically. Crack formation occurred at the middle of the circumferential surface of

holes perpendicular to the load.

Fig. 5.15 Initial and final deformed shapes of tensile tests on a plate with a circular hole

under tensile loading
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The specimen was modeled as 8-node solid elements. A finite velocity was applied to one

end of the model while the other end was fixed. Deformed configuration from the

experiments and the numerical simulation is displayed in Fig. 5.16. Comparison of the

force-displacement is shown in Fig. 5.17. Correlations of the experiment and the

numerical simulation are almost perfect. The point of crack formation experienced a

constant stress-triaxiality of 0.33 during the entire plastic deformation (See Fig. 5.11).

Crack formation
location

a) experiment b) solid element (Equivalent strain distribution)

Fig. 5.16 Comparison of deformed shapes from experiments and numerical simulations

(tensile tests on a plate with a circular hole under tensile loading)

The three different types of tests for the intermediate stress triaxiality range gave

relatively constant stress triaxiality at the crack formation location (Fig. 5.11). Cleary the

configurations of the three specimens were good choices to determine the fracture locus

and the weighting function in the intermediate stress triaxiality range.
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Fig. 5.17 Comparison of load-displacement response

(tensile test on plates with a circular hole)

5.2.1.3 High Stress Triaxiality

Finally, tensile tests on three different specimens were performed for the determination of

the limiting curve. Detailed results of experiments and numerical simulation of those

three tests have been described in Chapter 4. The stress triaxiality vs. equivalent strain at

the crack formation locations is illustrated in Fig. 5.18.
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Smooth

0.9 ---- R=12 mm
R=4 mm

0.8

0.7-

0.2
S0.4-

0.3

0.2-

0.1 -

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Equivalent strain

Fig. 5.18 The stress triaxiality vs. equivalent strain at the crack formation locations in

tensile tests

5.2.1.4 Fracture Locus

Since the correlation of the experimental and numerical results was almost perfect for all

the 11 cases for determination of fracture locus, it is reasonable to establish the fracture

locus based on the individual components of stress and strain tensors at crack formation

locations obtained from numerical simulations.

Crack formation is fully described by critical locations and the displacement to crack

formation 65 . Same as the Chapter 4, in the tensile tests and the tests for intermediate
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stress triaxialities, the displacement to crack formation Sf is determined as the

displacement corresponding to the sudden drop, while the displacement to crack

formation (5f is determined by observation in the upsetting and the new compression

tests. The numerical simulations provide stress and strain components and also load-

displacement response. The relationship of displacement and equivalent strain at the

critical location can also be obtained from the numerical simulations for each case. Then,

the equivalent strain to crack formation is determined as the equivalent strain which

corresponds to the displacement to crack formation (5 as shown in Fig. 5.19 for the pure

shear test as an example.

15000

10000

0
Li.

5000

n0 0.5 1 1.5
Displacement (mm)

28

0.3

02

0. 1

Fig.5.19 Comparison of the experimental and numerical load-displacement response and

growth of the equivalent strain at the crack formation location (shear test)

The stress triaxiality at the critical location during the deformation is not strictly constant.

0J 1 r U
An average value (f) = -dT is taken as a first approximation. The

df a
coordinate of the relative point on the fracture locus of the pure shear test is then (0.0,
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0.2). A similar procedure is then repeated for the remaining ten points on the failure

diagram, shown in Fig. 5.20. It can be clearly seen that equivalent strain to crack

formation differs significantly for specimens under different stress triaxialities. In the

range of negative stress triaxiality, the equivalent strain to crack formation decreases with

the stress triaxiality and reaches a minimum of 0.2 at the stress triaxiality (a, / &), = 0 ,

which corresponds to the pure shear test. Then it increases in the intermediate stress

triaxiality range with the stress triaxiality and reaches a peak of 0.45 at the stress

triaxiality (or / &),, = 0.4 which corresponds to the tensile test on smooth specimen.

Finally, it decreases again with the stress triaxiality in the range of high stress triaxiality.

There are a sufficient number of points on Fig. 5.20 to be able to develop an analytical

representation of the fracture locus. It clearly shows that one function is not enough to

cover the whole range.

0
*
+-

Compression (round)
Tension (round)
Shear, combined loading and tension (flat)

She irfracture

60

6

6;;

0

Fracture due to
void formation

0.4

Fig. 5.20 Dependence of the equivalent strain to crack formation on the stress triaxiality
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The existence of the three ranges of stress triaxiality has so far been qualitative. From

Fig. 5.20, the boundary of the stress triaxiality ranges for Al 2024-T351 can be found.

Clearly the negative stress triaxiality range is defined as (am / )a< 0 and the

intermediate stress triaxiality range is defined as (am / &), = 0 - 0.4 while the high stress

triaxiality range is defined as (a, / ,>0.4. It should be noted that the above

boundaries for stress triaxiality range is only for A12024-T35 1. The boundary of the

stress triaxiality ranges would depend on materials.

5.2.2 Theoretical Determination of Fracture Locus

from Upsetting

Ductile crack formation in upsetting tests was studied experimentally first by Kudo and

Aoi [6]. The results were later confirmed and extended by a number of others (eg. Kuhn

and Dieter [106], Thomason [113, 114], Ganser et al. [115]). Local strains were

determined in the tests by means of small grid markings at the mid-height of the

cylindrical surface shown in Fig. 5.21. A short summary of the experiment is given as

follows.

dod

Fig.5.21 Small grid markings to measure strains in upsetting tests
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Measurements of the grid dimensions at various stages of the test permitted calculation of

the principal strains, strain increments, and strain histories. The logarithmic surface

strains in the cylindrical coordinate system (r, 0, z ) shown in Fig. 5.22 were

600 In WU
wUo

'U 0e, = In 1

lUo

(5.6)

(5.7)

where l'o and lu are initial and current vertical grid spacing, wu 0 and wu are initial and

current circumferential grid spacing.

The incompressibility condition gives the radial strain err

Err = -(sV0 + ezz ) (5.8)

LZ

tccI -- + r

Fig.5.22 A cylindrical coordinate system and a photograph of a crack produced by the

secondary hoop tension in the equatorial region of the specimen

The point of crack formation was determined by observing crack formation near equator.

Note that crack formation in upsetting tests occurred in the equatorial region on the outer
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surface of the specimens. It is interesting that the failure locus determined by many

authors was always represented as a straight line (Eq. (5.9)) in the space of { e, 6, }

independent of the material, friction coefficient, and the height to diameter ratio of the

cylinders.

700+ zZ = C (5.9)
2

where 00 and Ez are components of the strain tensor at the point of crack formation in

the hoop and axial direction, respectively, CU is a constant depending on materials

However, the loading trajectory in the strain space depended on the friction condition and

the aspect ratio of specimens as illustrated in Fig. 5.23 from Kudo and Aoi's study [6] on

a steel. Short cylinders of Al 2024-T351 with different aspect ratio in this study were also

compressed, which was extensively reported in Chapter 4. As shown in Fig. 5.24, the

failure locus of A12024-T351 also falls into Eq. (5.9). It clearly indicates that the failure

locus is independent of materials.

x Crack formation
.0 - -Eq. (5.9)

'.00

- Steel

-ezz

Fig. 5.23 Strain path in the region of potential crack formation for various aspect ratios

and friction coefficient and a limiting straight line failure locus

(after Kudo and Aoi [6])
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Fig. 5.24 Strain path in the region of potential crack formation for various aspect ratios

and a limiting straight line failure locus in Al 2024-T351

When there is no friction between die surfaces and cylinders, no barreling will develop

and the compression will be homogenous. The strains at the lateral surface of cylinders

are then uniform. The relation between the hoop and axial strain can be found from

volume conservation (See Eq. (3.2)).

Thus,

h. (d ) 2

h do

Taking the logarithm of both sides of Eq. (5.10), we have

h dni-
In ho = 21n( )

h do

This gives,

1
-CO +-ez = 0

2

(5.10)

(5.11)

(5.12)
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By comparing Eq. (5.9) for the compression with barreling and Eq. (5.12) for the

compression without barreling, one can find that the barreling effect is essentially

responsible for a departure of strain trajectories from the straight line given by Eq. (5.12).

It should be noted that eso and 9, in Eq. (5.9) are the "ultimate" values of strain at crack

formation. They should be distinguished from the current values eO and F, so that the

final accumulated strains are

e,, = fd e.

(5.13)

ez = Jdez

Clearly, the radial stress a,, is zero at the outer surface of cylinders because of zero

surface traction. The shear stress orZ vanishes due to symmetry. Also, the radial gradient

-- of all quantities is negligible in the equatorial region, so the stress state is essentially
ar

plane stress in the equatorial region. Also, shear components of the stress and strain

tensors and their rate tensors vanish because of rotational symmetry.

With the approximate plane stress and the absence of shear components, the yield

condition becomes

S= --2 (5.14)

Inverting the Levy-Mises flow rule and neglecting the elastic deformation one can show

that all the remaining components of the stress tensor can be expressed in terms of the

strain rate ratio a.

1

2 2 (5.15)
1+a+a2

1+-
2 22- = (5.16)

1+a+a2
- = + a (5.17)V i3 +a+a 2

and
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dr= 1+ a+ a2 de (5.18)

where

a de (5.19)

Introducing now Eq. (5.13) and (5.19) into the failure locus (Eq. (5.9)), Eq. (5.9) is then

transformed to

(a+ 1-)de, = CU (5.20)
2

Note that the strain increment ratio a does not need to be constant. The present

derivation is therefore valid for non-proportional as well as proportional loading. The

crucial step in the derivation is to divide and multiply the integrand of Eq. (5.20) by

21+a+a
2

1
a+- 2

f 2 2 2 3 1+a+a2de = CU
1 l+a+ a

From Eq. (5.17), depends on the parameter a. Replacing a with

becomes

g f

2

1+0m 12-27 aM
3 U F

2
3Um + 122E 

=CU
12 - 27

By diving both sides by Cu then, we have

am~ ('7M )

f3 1m ;F1-2 &

2CU 3U + 12 - 27 )
6- 6F

(5.21)

, Eq. (5.21)

(5.22)

(5.23)
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It is worth to mention that the first term in Eq. (5.21) is recognized as proportional to the

normalized hoop stress -q (see Eq. (5.15)). According to Eq. (5.18) the second term
4 6-

is simply the increment of the equivalent strain d '. Thus, Eq. (5.21) can be put in the

equivalent form

Cf4

fd =4C =CCL
S0- 3

(5.24)

Because a, is the maximum (tensile) principal stress a as shown in Fig. 5.25 from

numerical simulations, Eq. (5.24) is similar to the well-known Cockcroft and Latham

[68] crack formation criterion which was postulated rather than empirically derived. This

conclusion is also confirmed by numerical simulations. As shown in Fig. 5.26, the

following equation is valid at the equatorial area all the time during upsetting tests.

1 3 _-
600 + -E = ---- (5.25)

2 4 o-

0 0.5 1 1.5 2 2.5 3 3.5
Displacement (mm)

4 4.5 5

Fig. 5.25 Stresses at the equatorial area of upsetting specimens
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Fig.5.26 Comparison of the integrand of Eq. (5.20) and Eq. (5.24)

By comparing Eq. (5.23) with Eq. (5.4) and determining the constant Ce from Fig. 5.24,

we can get the fracture locus in the negative stress triaxiality range.

8f,(4) = 0.07*
3am+12-27(E)23 +

2(1+ 12-27(_)2_
- U

In addition, it has been shown in Chapter 4 that the hydrostatic stress criterion (Eq.

(1.36)) works well for the high stress triaxiality range. Similarly, by diving both sides

with the constant CH which can be determined from the test, the fracture locus in the

high stress triaxiality range can be described as

o( 0.16
S(-'-- a

(5.27)

A good correlation of Eq. (5.26) and Eq. (5.27) with the experimentally determined

fracture locus (Fig. 5.20) is found as shown in Fig. 5.27. It indicates that the experimental
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obtained fracture locus by taking average stress triaxiality as an approximation is

satisfactory.

ef

1

0.8

0.6

0.4

0.2

A1 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 5.27 Comparison of analytically
a )a v

and experimentally determined fracture locus

5.3 Cut-Off Value of Stress Triaxiality

One of the most important findings of the present thesis is determination of limiting value

of the stress triaxiality below which fracture could never occur. The existence of a such

cut-off value comes from the analysis of the results of the upsetting tests performed by

the many authors in the past including Kudo and Aoi's [6], Kuhn and Dieter [106],

Thomason [113, 114], Ganser et al. [115] and the present author. Compression test pieces

in the above papers were manufactured from different types of steels and various

aluminum alloys. In all cases, it was found that fracture initiates at the equatorial area of

the short cylinders whenever the strain trajectory in the space of principal strains reaches

the straight line limiting curve given by Eq. (5.9). From Figs 5.23 and 5.24, it is clear that
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the line corresponding to , / U = -1/3 never intersects the fracture locus, Eq. (5.9).

Another proof for the existence of the cut-off value for fracture comes from the

consideration of the Cockcroft-Latham criterion for fracture initiation, Eq. (5.24). It was

shown earlier in the thesis that this equation is an alternative representation of our

empirical fracture criterion (5.9). It should be noted that according to Eq. (5.24), fracture

can initiate only under the presence of tensile secondary hoop stress, a00 / U > 0 . This is

equivalent to the requirement of c. / & > -1/3.

Perhaps the most straightforward proof of the existence of the cut-off value of stress

triaxiality comes from the analysis of Eq. (5.26), which again is a restatement of the

empirical fracture locus, Eq. (5.9) transformed into the space of the stress triaxiality and

the equivalent strain. It is easy to see that in the limiting case, ar / & - -1/3 the

numerator of the equation (5.26) tends to zero. This means that the equivalent strain to

fracture f must be infinite.

Even though the above conclusion seems to be straightforward, no one has pointed out on

this property.

It is interesting to see if the existence of the limiting value of stress triaxiality is

consistent with earlier tensile tests on round bars conducted under different hydrostatic

pressures. The most comprehensive experimental program in the above test configuration

was performed by Bridgman and described in his famous book [93]. A more recent

follow up was described in a series of papers by French and Weinrich [5, 116, 117]. We

shall analyze first the results of that Australian team and then go into the interpretation of

a large volume of experiment data by Bridgman.

For illustration, let us consider a commercial copper tensile specimen subjected to the

tensile deformation with a superimposed hydrostatic pressure. French and Weinrich [5]

presented a graph showing the histories of mean stress as a function of the tensile strain

(which is almost identical to equivalent strain, see Fig. 3.13), Fig. 5.28. In each test, the

138



hydrostatic pressure was held constant while the axial strain was gradually increasing all

the way to fracture in the universal testing machine.

+ "300
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Ape

PA PU
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Fig. 5.28 Evolution of mean stress in tensile tests with hydrostatic stress on a copper

(after French and Weinrich [5])

Therefore, the hydrostatic stress which is the sum of the pressure and stress components

due to the tensile loading was monotonically increasing as shown in Fig. 5.28. In order to

transform the above data to our coordinate system [(am /a-)av , ], the time history of

the equivalent stress & should be known. This information was not given by the authors.

In the absence of any additional information, we have normalized the mean stress am

(which is known) by the ultimate tensile strength of the copper, converted into the true

value & ~270 MPa. The plot shown in Fig. 5.28 was made by the authors using the

Bridgman formula for stress triaxiality, Eq. (3.12). We have shown earlier that Eq. (3.12)

are inaccurate for deep necks. A more exact numerical analysis on the necking problem

summarized in Fig. 3.14 points out on the need of increasing the stress triaxiality by a
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factor of 1.4. Because of the linearity of the function shown in Fig. 5.28, the average

stress triaxiality is equal to one half of the sum of the initial and final values.

( - ) inital + ( )final] (5.28)

The expression for the initial stress triaxiality at the beginning of tensile tests is

( ) initial = - + (5.29)
6- & 3

where, p is the magnitude of the hydrostatic pressure. The expression for the final stress

triaxiality of tensile tests, using the Bridgman correction is

('n a = -- L+ 1.4 [+ +n(1 + a )](5.30)
F & 3 2R

The results of calculation for four cases considered by the authors are summarized in

Table 5.1.

In conclusion, the average stress triaxiality corresponding to the two highest hydrostatic

pressures were respectively 0.18 and 0.06. Both these values are above the cut-off value

of -1/3. At the same time, one can see from the above table that the initial stress

triaxiality was in some cases smaller than -1/3. However, fracture is an incremental

process in which the history of stress triaxiality rather than the initial value counts. In the

deformation process, the triaxiality actually changed to large positive values, so that in all

cases the average stress triaxiality agreed with newly introduced concept of a cut-off

value.

Table 5.1. Summary of the tests by French and Weinrich [5]

Pressure Initial stress Final stress Average stress Strain to
Comments

(MPa) triaxiality triaxiality triaxiality fracture

0.1 0.33 0.8 0.57 1.6

200 -0.47 0.82 0.18 2.5

300 -0.78 0.86 0.06 3

400 -1.15 N.A. N.A. N.A. Incomplete data

on final stage.

140



Bridgman in his famous book [93] presented a wealth of experiment data regarding the

hydrostatic pressure tests of metals. In fact, he studied twenty different types of steels and

with each type several different heat treatments. For each particular steel and heat

treatment, tensile tests were performed under several constant levels of hydrostatic

pressure ranging from 0 to 2700 MPa. All together over 350 tests were fully or partially

documented in his book. For the purpose of the present proof of the correctness of our

concept of limited triaxiality parameter, we have analyzed only 46 most representative

cases and constructed an interesting plot shown in Fig. 5.29. The vertical axis denotes the

estimated average stress triaxiality while on the horizontal axis is the number of sample

cases. Tests in which fracture was observed are indicated by the empty circles while

those results in which no fracture occurred are denoted by the stars. Typical data

presented by Bridgman include the following information from which points shown in

Fig. 5.29 were evaluated. We show an example of raw data in case of a stainless steel

Specimen number 17-0-2,

Hydrostatic pressure p = 1550 MPa

Logarithmic strain to fracture ef =2.29

Fracture/No fracture: fracture

Average stress at maximum load (engineering) Su = 1764 MPa

Neck profile a / R = 1.29

Substituting the above values into the equations 5.28-5.30, the resulting triaxiality

parameter ( )a, =0.3 (point labeled with an arrow in Fig. 5.29)
a-
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fractured) are separated by a line with an ordinate -1/3. In another words, the existence of

cut-off value of the average stress triaxiality for fracture has been independently

confirmed through a "statistical" evaluation of representative tests out of a pool of four

hundreds tests performed by Bridgman.

Here at MIT, we do not have a specialized equipment to perform a combined tensile test

with hydrostatic pressure. Instead, we have performed a "virtual" test in which 2024-

T351 aluminum alloy round specimens were subjected to tension under a constant

hydrostatic pressure. In particular, we wanted to see if indeed the constant hydrostatic

pressure increase the ductility (equivalent strain to fracture) of the specimen, so that a

much deeper necks are observed. Another advantage of the "virtual" test is a precise

determination of the stress and strain states at the point of crack formation.
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The dimensions were identical to the round tensile specimen described in Chapter 3.

Several runs were made with increasing magnitudes of hydrostatic pressure which were

held constant in each "virtual" test. A series of deformed meshes of the specimens at the

point of crack formation (center of the neck) is shown in Fig. 5.30. It is seen that the

depth of the neck increases with the hydrostatic pressure while the neck radius R is

decreasing. The above results were obtained using the fracture locus for 2024-T351

aluminum alloy defined early in this Chapter.

p =400 MPa p = 600 MPa p =I OGOMPa

Fig. 5.30 Deformed meshes of the specimens at the point of crack formation under

combined tension and hydrostatic pressure

It is interesting to determine the accuracy of Bridgman correction for stress triaxiality, for

tensile tests with a hydrostatic stress as compared to the more exact ABAQUS

calculation.

a + +ln(a2+ 2aR-r2
& 5 3 2aR

(5.31)

The plot of the stress triaxiality parameter as a function of radial coordinate in the

symmetry plane of the neck is shown in Fig. 5.31. It can be seen that Bridgman formula

underestimates the true stress triaxiality at the center of the specimen by approximately a
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factor of 2. Such large error is observed for deep necks where the Bridgman's formula

becomes increasingly inaccurate. In order to construct Fig. 5.29 we were using the 1.4

correction factor. If the correction factor further increases, this will move all the empty

points in Fig. 5.29 somewhat higher.

0

-0.2 F

-0.4

,m /&
-0.6

-1

0 0.2 0.4 0.6 0.8 1

r/a

Fig. 5.31 Comparison of Bridgman and ABAQUS prediction of stress triaxiality for a

deep neck

It can be observed that the ductility of 2024-T351 aluminum alloy is relatively low

compared to the material tested by Bridgman [93] and French and Weinrich [5]. The

diffuse neck corresponding to zero pressure is very shallow (See Fig. 30). In order to

produce deep necks, we have artificially double the ductility of 2024-T351 aluminum

alloy and made additional computer runs. The resulting shapes of the neck at the point of

fracture are shown in Fig. 5.32. Now, the calculated "virtual" deep neck for 2024-T351

aluminum alloy with double ductility under 1000 MPa and the deep neck for a copper

under 500 MPa reported by French and Weinrich [5] is shown Fig. 5.33.
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p = 400 MPa

Fig. 5.32 Deformed meshes of the specimens at the point of crack formation under

combined tension and hydrostatic pressure with artificially doubled ductility of Al 2024-

T351

(after French and Weinrich [5])

Fig. 5.33 Calculated "virtual" and reported deep neck

It can be concluded that the present fracture criterion with the triaxiality function taking

an infinite asymptotic value for stress triaxiality approaching -1/3 captures most of the

features reported in the present and earlier experiments with high negative hydrostatic

stress.
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5.4 Mode Transition

The question of mode transition was raised for the first time by Wierzbicki and Muragishi

[108] who showed that the weighting function was not smooth and, at least for steels,

must be composed of two branches. Subsequently, a qualitative explanation of this

behavior was given by Hooputra et al [110] who suggested that there are two different

crack formation mechanisms depending on the range of a triaxiality parameter.

It is clear from the study of the physical mechanisms of ductile crack formation in

Chapter 2 that there are two different mechanisms, i.e. "shear fracture" dominating at

negative stress triaxialities and void nucleation, growth, and linkage dominating at

negative stress triaxialities. Also, there is a clear transition from "shear fracture to void

nucleation, growth, and linkage in the intermediate stress triaxiality range. The two

different mechanisms and the transition can also be confirmed from the fracture locus

shown in Fig. 5.20 where two monotonic decreasing curves in the negative stress

triaxiality range and the high stress triaxiality range, respectively, are connected by an

increasing curve in the intermediate stress triaxiality range.

The appearance of two mechanisms of ductile crack formation and the combination of

those two in the transition zone makes the calibration procedure difficult. Although, the

transition zone for A12024-T351 is 0 < a-m / <0.4 and the curve is increasing as a

parabolic from 0.2 to 0.45, the transition region can be narrow or wide and the jump

between could be (positive or negative) large or small as shown in Fig. 5.34 for different

materials. For example, for the SAE 1045 steel tested by Bridgman [78] and Al 2024-

T35 1, the equivalent strain to crack formation increases with the stress triaxiality in the

transition region, while for the stainless steels and high carbon steels tested by Bridgman

[78] and the copper tested by French and Weinrich [5], the equivalent strain to crack

formation decrease with increasing of the stress triaxiality in the transition region. Still it
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is not quite clear how does transition occur from the "shear" dominating crack formation

to crack formation due to void nucleation, growth, and linkage.

Intermediate triaxiality

High triaxiality
Void nucleation,

41 growth, and linkageNegative triaxiality g
"shear fracture"

-1/3 am

Approx. 0.4 for Al

Fig. 5.34 A possible mode transition between the void growth dominated mode and

"shear fracture" dominated mode

However, in the main stream of research it was postulated that f (am / 6) is a

monotonically decreasing function of its argument ( eg. Rice and Tracey [17], Johnson

and Cook [74, 118], Borvik et al. [119, 120]). Furthermore, most of the calibration data

reported in the literature was obtained from tensile tests on un-notched and notched

specimens (eg. Alves and Jones [104], Johnson and Cook [74]). These correspond to

moderate or large stress triaxialities, i.e. am / U >1/3 . Extrapolating the function

87 (a, / 6) into small, zero or negative triaxialities, as it was done by Johnson and Cook

[74] and Borvik et al [120] is a risky procedure that may lead to substantial errors. It was

shown in Chapter 4 that crack formation in compression (upsetting) can not be correctly

predicted from calibration performed in tension and vice versa. A need for constructing

fracture envelope in the entire range of stress triaxiality is apparent.
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5.5 Conclusion and Discussion

A new methodology of prediction of ductile crack formation for industrial applications

was developed based on the mechanisms of crack formation described in Chapter 2.

Since "shear fracture" dominates in the negative stress triaxiality range, void nucleation,

growth, and linkage favors in the high stress triaxiality range and in between ductile

crack formation is under a transition from "shear fracture" to void nucleation, growth,

and linkage with the stress triaxiality, different weighting functions were introduced for

different stress triaxiality ranges. Those weighting functions were determined by

performing a number of different tests from which a relationship of the equivalent strain

to crack formation and the stress triaxiality was found. An extensive experimental

program to determine the above relationship in a relatively wide range of stress

triaxialities was reported. Eleven different specimens were tested under compression,

shear, tension and combined loading. It was found that the fracture envelope of A12024-

T351 constructed on the plane of the equivalent strain to crack formation and the stress

triaxiality consists of three different branches. Two regimes correspond to "shear

fracture" and void nucleation, growth, and linkage in the negative stress triaxiality range

and the high stress triaxiality range, respectively. There must also be a transition area in

the intermediate stress triaxiality. This is an entirely new finding because it was

previously believed that the fracture locus is a monotonic function of the stress triaxiality

parameter. Three new configurations of specimens for the intermediate stress triaxiality

range, which give relatively constant stress triaxialities during deformation, were

developed. It is recognized that the fracture locus is specific for a given material. The

main contribution of the thesis is not necessarily the derivation of such a locus for a

particular aluminum alloy but rather a development of a general methodology for

constructing the fracture locus for any ductile material. In addition, an analytical solution

of the fracture locus of the negative stress triaxiality range was derived from the reported

failure locus of upsetting tests.
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The new type of compression specimen was designed that successfully removes the

friction effect. However, the equivalent strain to crack formation for the new compression

test was higher than the conventional upsetting test on cylinders for the same amount of

the stress triaxiality (See Fig. 5.27). The discrepancy of the results obtained from these

two types of compression tests should be explained in the future study. It would appear

though that in the new compression specimen, the gauge section developed considerable

amount of orange skin deformation. Therefore it was very difficult to observe visually the

true crack formation.

The expression for the weighting functions was formulated in this chapter in terms of

invariants of the stress and strain tensors, Z, o-,,, and &. The tests performed in this

Chapter were restricted to plane stress and axial symmetry. It is recognized that other

types of stress or strain conditions and other variables such as stress and strain ratio,

rotation, surface/subsurface, strain and stress gradient, strain hardening, anisotropy of

materials and specimen size were not included. The effects of some of those variables

will be discussed and quantified in Chapter 6.

The preceding analysis and the calibration method applies strictly to a homogeneous and

isotropic material that has not been subjected to any prior loading history. However, such

raw materials hardly exist in practice. Steel mills and foundries and aluminum companies

are supplying customers with semi-products such as sheets, hot or cold-formed profiles,

extrusions, castings and components made by forging, stamping, etc. Each metal forming

operation introduces a deformation-induced history. Hooputra et al. [110] recognized that

plastic deformation introduced into a given part during forming or deep drawing will

change the crashworthiness properties of that part. They also developed a practical

method of tracking down the effect of the loading path on the forming-limit diagrams.

The effect of prior loading history on fracture properties of semi-products or structural

components has not been well understood. However, since the present approach to

predict crack formation is based on the accumulation of damage, it is reasonable to

superimpose the damage caused by manufacturing to the total damage as a first

approximation to account for any possible pre-loading in industry applications.
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Finally, it should be pointed out that since the test conducted did not include torsion tests

and a different mechanism may appear in torsion tests [121], the application of the

present approach for torsion tests remains open. Also, it is difficult to deal with crack

formation with the effect of heat treatment, and for welded components the effect of the

heat affected zone with the present approach. Clearly, determination of weldment

strength and failure requires a much more detailed analysis and this topic falls outside the

realm of the present study.
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Chapter 6

Effect of Other Variables on

Crack Formation

In Chapter 5, damage accumulation was measured in terms of invariants of the stress and

strain tensors, T, 3 and o-.. It is recognized that other variables, ratio of stress and

strain components, specimen size, anisotropy of materials, gradient, strain hardening,

surface/subsurface, and rotation might also play a role in ductile crack formation. The

effects of some of those variables are discussed and quantified in this Chapter.

Additional tensile tests on flat specimens, flat-grooved plates, thick-walled pipes and

solid square bars were conducted to study the effect of stress and strain ratio together

with the tensile tests on smooth and notched round bars. The effect of plate thickness and

size was evaluated from 18 plates with different thickness and hole sizes. Finally short

cylinders cut from different direction of the material were compressed to study the effect

of anisotropy.
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6.1 Effect of Strain and Stress Ratio

In this context, again, ductility is the ability of a material to accept large amount of

deformation without crack formation. In many practical problems, equivalent strain to

crack formation at the critical location in tensile specimens is taken as a measure of

ductility [3, 4, 77, 122, 123]. Different types of tensile test pieces are often used such as

flat, round specimens. However, equivalent strain to crack formation is dependent on the

stress state, which is related to boundary and shape of specimens and clearly is not the

same in tensile tests on specimens with different geometries. Consequently, different

specimens do not necessarily have the same fracture ductility. Clausing [122] observed

from the tests on flat-grooved plates (shown in Fig. 6.1) that tensile ductility of structural

steels was substantially reduced when the stress and strain state was changed from

axisymmetric (round specimen) to combined plane strain and stress (flat-grooved plate).

The degree of difference was found dependent on hardness of steels.

Shoulder

Gauge section

Shoulder

Fig. 6.1 Flat-grooved plate
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The interpretation for the difference is qualitative and limited to the degree of physical

constrain. Therefore, detailed study on fracture ductility of tensile specimens with

different geometries for a same material will certainly contribute to a more complete

picture. As shown in Chapter 5, crack formation depends not only on the equivalent strain

alone but also on the stress triaxiality. In this section, additional tensile tests on flat

specimens, flat-grooved plates, thick-walled pipes and solid square bars were conducted.

Those tests together with the tensile tests on smooth and notched round bars give not only

different stress triaxiality but also different stress and strain ratio. They certainly provide

a good way to study the effect of stress and strain ratio on crack formation and also the

effectiveness of the measurement of the damage accumulation in terms of the equivalent

strain and the stress triaxiality.

6.1.1 Theoretical Considerations

6.1.1.1 Flat Specimen

For ductile metals, necking occurs usually before crack formation in a flat specimen

under uniaxial tension. Obviously, necking is an important mechanism in flat specimens

under tension for crack formation prediction. The deformation analysis of local stress for

necking under plane stress was conducted by many authors such as Hill [124] and

McClintock et al. [7]. The necking is spread over a length of the order of the width w

shown in Fig. 6.2 while the rest of the structure remains rigid. This is called diffuse

necking. The diffuse necking occurs in uniaxial stress states when the slope of the

equivalent stress-strain curve reaches

dW -W(6.1)
de7

For a power-law material which has the relation

5 = o Z" (6.2)

the corresponding equivalent strain is

7= n (6.3)
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where, o and n are two material constants for power law materials.

If diffuse necking continues, localized necking also shown in Fig 6.2 may occur over a

length of the order of the sheet thickness. The localized necking occurs when the slope of

the equivalent stress-strain curve reaches

-- = -
(6.4)

de 2

For a power-law material, the corresponding equivalent strain is

c = 2n (6.5)

The surroundings of the localized neck, the so-called shoulders remain rigid and the

strain parallel to the localized neck vanishes. From Mohr's circle of strain the localized

necking turns out to be inclined to the loading at an angle of

0= )+ sin -'(I) ~ 54.70 (6.6)
4 2 3

The above analysis for necking is not sufficient for crack formation prediction since in

most cases for ductile metals, crack formation occurs at a certain stage inside the neck

after localized necking occurs.

P

Rigid Body

Shape before
necking at
uniform strain

Diffuse neck

Localized neck

'd

Rigid body

P

Fig. 6.2 Tensile necking in a flat specimen (after McClintock and Zheng [7])
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6.1.1.2 Round Solid Bar

Round bars are most often used in tensile tests to get material properties including

fracture properties. For ductile materials, necking also occurs in round bars before crack

formation. The necking occurring in a round bar is similar as the diffuse necking in a flat

specimen.

Obviously, neck is the most highly stressed and strained part and therefore is the critical

area for this specimen. The most widely used approximately analysis of the stress state in

the neck is the one carried out by Bridgman [78] (Eq. (3.9)-(3.12)) which however does

not give an accurate calculation of stress triaxiality and equivalent strain [104, 109, 112]

(See Chapter 3). In the present thesis, a more exact solution is used instead of Bridgman

solution.

6.1.1.3 Flat-Grooved Plate

Compared to flat specimens and round bars, flat-grooved specimens are not widely used

for fracture calibration. The specimen shown in Fig. 6.1 was introduced by Clausing

[122] who investigated fracture ductility of steel experimentally. During his tests, the

crosshead was stopped at frequent intervals after the specimen yields. The load and

crosshead position just prior to the stopping of the crosshead were recorded. With the

crosshead stopped, the thickness of the minimum section was measured. Then the strain

was calculated each time from

e = ln( to) (6.7)
t

where to is the original thickness in the gauge section, and t is the current thickness of

the minimum section. The strain was plotted against the crosshead displacement and the

resulting curve was extrapolated to the known value of the crosshead displacement when
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final fracture occurred. Finally, the corresponding strain at final fracture was read from

the curve. However, the strain obtained from Eq. (6.7) is only good when the strain is

uniform along the minimum section while this condition is difficult to achieve because of

necking and possible end effects. In addition, unloading and reloading during the tests

might also play a role in crack formation. Finally, this method also clearly depends on the

accuracy of the extrapolation.

McClintock and Zheng [7] studied a similar specimen and found that the stress and strain

were uniform across most of the width which is so called transverse plane strain (TPS)

zone shown in Fig. 6.3. The specimen was modeled with two distinct zones: plane stress

and TPS zones (Fig. 6.3). To correct for the uniaxial and transition effects (Fig. 6.3), it

was proposed that a uniaxial stress cps exists in transition zones near the edges (Fig.4)

and that

a,, = a, J F/2 (6.8)

W,, = tan 5 4 .7 (6.9)

where u is the stress of the TPS zone, w,, is half of the total transition zone and 10 is

original length of the gauge section (Fig. 6.3).

The equivalent stress & and strain Z in the TPS region were expressed by the following

two equations.

P/ wt
2 (6.10)

1- - )( X )tan54.70
2 wo

2 l -t
0 In (6.11)
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where, P is the load, w, t and 1 are the width, thickness and length, respectively, wo , to

and 10 are initial values of w , t and l, respectively.

transition
zone

TPS zone

-----------------------------

Uniaxial 54.70 Necking
stress

I 10

a)

wps wpn

1-4

b)

Fig. 6.3 McClintock's plane strain zone boundaries (a) and stress distribution (b) in gauge

section of the flat-grooved specimen

As described above, the analytical models by Hill, Bridgman, Clausing and McClintock

provide a clear picture of the plastic deformation of flat specimens, round bars and flat-

grooved plates under uniaxial tension, respectively. However, those models involve

assumptions, such as the uniform strain distribution along the minimum cross section,

which may lead to errors in strain and stress calculations at the critical locations. In this

study, the stress and strain at the location of crack formation were obtained by

performing parallel numerical simulations.
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6.1.2 Experiments

Additional tensile tests on flat specimens, flat-grooved specimens, solid bars with a

square cross section and thick-walled pipes were carried out using a universal testing

machine (Model 45G, MTS System Corporation, Eden Prairie, MN) with a 200 kN load

cell at a loading rate of 0.2 mm/sec, as shown in Fig. 6.4. All those specimens were cut

from the same block of 2024-T351 aluminum alloy. The dimensions of those specimens

are listed in Table 6.1. During the test, an extensometer with 25.4 mm gauge length was

used to measure the displacement. Load-displacement responses were recorded using

TestWorks software (Sintech Division, MTS). Tests were stopped at system instability

with a corner on the load trace. Crack formation occurred inside the gauge section for all

the five cases. Fractured specimens are shown in Fig. 6.5. As expected, diffuse necking

and later localized necking occurred in the flat specimen. Circumferential necking was

observed in the thick-walled pipe, while the flat-grooved specimen experienced some

diffuse necking. Diffuse necking in two transverse directions developed in the solid

square bar and no clear localized necking was found in this specimen.

a) flat specimen b) round pipe c) solid bar d) flat-grooved

Fig. 6.4 Initial set up of tensile tests on different specimens
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Table 6.1 Dimensions of tensile specimens (units: mm).

a) fractured flat specimen

b) fractured thick-walled pipe

c) fractured solid bar

d) fractured flat-grooved specimen

Fig. 6.5 Fractured tensile specimens
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Specimen Gauge length Width Thickness Outer diameter Inner diameter

Flat specimen 25.4 12.5 3 N/A N/A

Thick-walled pipe 25.4 N/A N/A 9 1.8

Solid square bar 25.4 9 9 N/A N/A

Flat-grooved plate 8 50 1.6 N/A N/A



___________________ _____________________ - - -jul--i-- -

6.1.3 Numerical Simulations

Numerical simulations of the additional tensile specimens under tensile loading were

performed using ABAQUS STANDARD 6.2. In all simulations, a finite velocity was

applied to one end of the model while the other end was fixed. Two or three different

meshes for each case were developed to study mesh size sensitivity. As an example, the

finite element meshes for the solid square bar are shown in Fig. 6.6. The difference

between different meshes used in stress and strain calculation was found small (within

4%) for all four cases. An extensive numerical study on round bars has been presented in

Chapter 4.

coarse mesh fine mesh

Fig. 6.6 Finite element models for the square solid bar
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6.1.3.1 Flat Specimen

The specimen was molded by 4-node shell elements. As shown in Fig. 6.7, the numerical

simulation successfully captured diffuse necking and localized necking, which are main

features of tensile tests on flat specimens and are clearly displayed in the tested specimen.

Final width of the minimum cross section obtained from the numerical simulation was

10.6 mm, which was close to 10.4 mm measured from the test. Amazingly, even the

angle of the shear band from the test and the numerical simulation was found the same as

the analytical result (Eq. (6.6)), which was 54.70 (Fig. 6.7). In addition, the correlation of

the force-displacement response between the numerical simulation and test up to crack

formation was almost perfect (Fig. 6.8). The stress triaxiality versus equivalent strain is

presented in Fig. 6.9.

Localized necking Diffuse necking

Fig. 6.7 Deformed flat specimen

(color-coded map is the equivalent strain distribution)
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Fig. 6.8 Comparison of force-displacement response (flat specimen)
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Fig. 6.9 The stress triaxiality versus the equivalent strain at crack formation location (flat
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6.1.3.2 Thick-Walled Pipe

The thick-walled pipe was modeled by 4-node axisymmetrical elements. The material can

flow inward during the deformation. The numerical simulation corrected well with the

experiment both in the deformation shape and force-displacement response up to crack

formation (Fig. 6.10, Fig. 6.11). Final diameter obtained from the numerical simulation

was 7.6 mm while the value was 7.5 mm measured from the test. The stress triaxiality

versus equivalent strain is illustrated in Fig. 6.12.

neck

... . -. . . . -. ... - - - - --- . ........

axisymmetrical model

Fig. 6. 10 Deformed thick-walled pipe

(color-coded map is the equivalent strain distribution)

3X 10,
3

25-

2 Crack for iation

- ASAOUS
Experiment

2 1-5-

05

0
0 1 2 3 4 5 6 7

Displacement (mm)

Fig. 6.11 Comparison of force-displacement response (thick-walled pipe)
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Fig. 6.12 The stress triaxiality versus the equivalent strain at crack formation location

(thick-walled pipe)

6.1.3.3 Square Solid Bar

8-node solid elements were used in order to model the general 3-D stress state in the solid

bar. The model developed successfully captured the diffuse necking in two directions

(Fig.6.13), which is different from the flat specimen. Same deformation shape and force-

displacement response up to crack formation as shown in Fig. 6.13 and Fig. 6.14,

respectively, were obtained from experiments and numerical simulation. Final dimension

of the minimum cross section was 7.6mm X 7.6 mm obtained from the numerical

simulation, while the value was 7.5 mm X 8 mm measured from the test. The stress

triaxiality versus equivalent strain is illustrated in Fig. 6.15.
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necking

Fig. 6.13 Deformed square solid bar

(color-coded map is the equivalent strain distribution)
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Fig. 6.14 Comparison of force-displacement response (square solid bar)
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Fig. 6.15 The stress triaxiality versus the equivalent strain at crack formation location

(square solid bar)

6.1.3.4 Flat-Grooved Specimen

Since the flat-grooved specimen and the loading condition was symmetric in all three

directions, only 1/8 specimen was modeled by 8-node solid elements instead of plane

strain elements. Diffuse necking occurring in the experiment was also observed in the

numerical simulation (Fig.6.16). Final width of the minimum cross section was 48.6 mm

both obtained from the numerical simulation and test. Correlation of the force-

displacement response between numerical simulation and test up to crack formation was

good (Fig.6.17). The stress triaxiality versus equivalent strain is illustrated in Fig. 6.18. It

was found that a plane strain zone (Fig. 6.16) developed at the center region of the gauge

section. This region was highly stressed and strained (Fig. 6.16). As shown in Fig. 6.19,

the length of the plastic zone obtained from the simulation is 70% of the total width,
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while the estimated value using McClintock and Zheng [7]'s formula (Eq. 6.9)) is 80% of

the total width for this case based on Eq. (6.9) and Fig. 6.3.

necking

zoom

Plane strain zone

Fig. 6.16 Deformed flat-grooved specimen

(color-coded map is the equivalent strain distribution)
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Fig. 6.17 Comparison of force-displacement response (flat-grooved specimen)
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Fig. 6.18 The stress triaxiality versus the equivalent strain at crack formation location

(flat-grooved specimen)
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6.1.4 Result and Discussion

Critical Crack Location

Generally, it is not easy to see the location of crack formation because the crack

propagates fast and mostly starts inside the specimens instead of on the surface. In the

classical tests on flat specimens and round bars, the crack starts at the center of the neck,

which is confirmed by sectioning. The critical location in this study is taken as the most

possible one along the path of the final crack obtained from the test based on the fracture

locus shown in Fig. 4.27. The crack formation location is at the center of the neck for the

flat specimen and round bar. It agrees with the classical observation. The critical location

is also at the center of the neck for the solid bar and flat-grooved specimen while it is at

the inner free edge of the minimum cross section for this thick-walled pipe. In all the

tests, there is a sudden load drop and system stability, which is taken as an indicator of

crack formation.

Stress and Strain State

Although all the specimens are under tensile loading, the stress and strain states are quite

different as summarized in Table 6.2. This is mainly due to the different geometry of the

specimens and also the different necking formation. It is understandable that the

equivalent strain to crack formation Tf , which is a measure of fracture ductility, is not

the same for all the tensile specimens. The difference between the round bar and the flat-

grooved specimen is very large. The equivalent strain to crack formation of the flat-

grooved specimen is only about half of the round bar. The round smooth bar and two

round notched bars have different stress triaxialities and different fracture ductility

though they have same stress and strain ratios. In comparison, the flat specimen and

round bar, the flat-grooved specimen and the round notched bar with R = 12mm and
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a = 4mm have similar stress triaxialities and similar fracture ductility though they have

different stress and strain ratios. Furthermore, as shown in Fig. 6.20, the result of the

additional four types of tests falls fit in the fracture locus of Fig. 5.20 in the equivalent

strain to crack formation and the stress triaxiality space. It seems that the equivalent

strain and the mean stress triaxiality are the two most important parameters, while stress

and strain ratios do not come in to the picture or are of only secondary importance.

Table 6.2 List of the parameters form FEA

Specimen (a 2  a) (8C2 8 )

(Or- - aO) (Ci - 83)

Flat specimen 0.44 0.38 0.1 0.33

Round bar 0.45 0.4 0 0

Thick-walled pipe 0.33 0.34 0.08 0.08

Square bar 0.32 0.36 0 0

Flat-grooved plate 0.26 0.62 0.45 0.5

Round notched bar
0.28 0.65 0 0

(R = 12mm ,a = 4mm)

Round notched bar
0.16 0.95 0 0

(R =4mm,a = 4mm)

o- 2 and a3 are maximum, medium and minimum principal stresses, respectively.

81, 2 and 83 are maximum, medium and minimum principal strains, respectively
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Fig. 6.20 Fracture locus in
T351. Open circles

the equivalent strain and the stress triaxiality space of A12024-
indicate the five points obtained in the present Chapter.

6.2 Effect of Specimen Size

The effect of specimen size on fracture has been studied in the literature. However, the

focus of those studies was on fracture toughness in pre-cracked structures (eg. Bluhm

[125], Taira and Tanaka [126], Chow and Nho [127], Pardoen et al. [128, 129], Minami

et al. [130] ). However, the literature still lacks studies of size effect on crack formation

in uncracked bodies. Recently, Okazawa et al. [131] studied necking bifurcation in tensile

steel specimens. The importance of the 3-D analysis for thick steel plates was emphasized

in their work but the difference between 2-D analyses and 3-D analyses was not

quantitatively assessed.
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In this section, the dependence of specimen size on crack formation in uncracked bodies

is investigated in the problem of rectangular plates with a circular hole at the center (Fig.

6.21) subjected to tensile loads. Eighteen specimens with different thicknesses (to =2mm-

12mm) of the plate and different diameters of holes (d,0=10mm-40 mm) were tested in

order to get a wide range of the ratio of thickness to ligament and the ratio of diameter of

hole to ligament. The ligament is defined as l,0 = (wo - d10)/2 as shown in Fig. 6.21. A

solid element finite element model as well as a shell element model for each case was

developed to study effectiveness of shell element formulation on local stress and strain

and then fracture ductility quantitatively.

rdet

Fig.6.21 Geometrical parameters describing the specimen for size effect
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6.2.1 Experiments

Tensile tests on 18 different specimens shown in Fig. 6.22 were carried out using a

universal testing machine (Model 45G, MTS System Corporation, Eden Prairie, MN)

with a 200 kN load cell at a loading rate of 0.2 mm/sec. As shown in Fig.6.21, the

specimens are characterized by width w0 , thickness to, diameter of hole d'o and ligament

i,.. In this study, all plates had the same width of 50mm, but different thickness. Detailed

dimensions of the specimens are listed in Table 6.3. All those specimens shown in Fig.

6.22 were cut from the same block of 2024-T351 aluminum alloy. During the test, an

extensometer of 50 mm gage length was used to measure the displacement. Load-

displacement responses were recorded using TestWorks software (Sintech Division,

MTS). Tests were stopped as soon as either the crack formation was observed by naked

eye or a sudden drop of the load starts to occur. Initial setup and final deformed and

cracked specimens are illustrated in Fig. 6.23 and Fig. 6.24, respectively. As an example,

the deformed shape for a thin plate (to =2mm, d,o=20mm), a medium thick plate

(to =5mm, d,0 =40mm) and a very thick plate (to =12 mm, dto=40mm) together with a

color-coded equivalent strain distribution (obtained from numerical simulation which will

be discussed in the following section) are shown in Fig. 6.25, Fig. 6.26 and Fig.6.27,

respectively. An important feature of the design of specimens was that crack started at the

same location, which was middle of the circumferential surface of holes perpendicular to

the load (See Fig. 6.24, 6.25(a), 6.26(a) and 6.27(a)). The presence of the hole prevented

necking at the critical location thus avoiding complicated issues caused by necking

during the entire plastic deformation. However, it should be noted that the location of

crack formation would change to the center of the ligament for the holes with infinite

radius. In the deformed specimens illustrated in Fig. 6.25 (a), Fig. 6.26 (a) and Fig.

6.27(a), there was a clear necking at the both edges of the plate, but not at the edges of

the hole because of the inhomogeneous stress and strain fields caused by the hole.
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Fig. 6.22 Specimens with different thickness and size of holes

a) dt0 =10 mm b) dt 0=20 mm c) dt 0=30 mm d) d,0 =40mm

Fig. 6.23 Initial setups for specimens with different holes
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Table 6.3. Geometry of specimens for studying thickness and size effect

. Width Thickness Diameter of hole Ligament _ to d
Specimen wo (mm) to (mm) d 0 (mm) 10 (mm) ito Ito

1 50 2 10 20 0.1 0.5

2 50 3 10 20 0.15 0.5

3 50 4 10 20 0.2 0.5

4 50 5 10 20 0.25 0.5

5 50 2 20 15 0.133 1.33

6 50 3 20 15 0.2 1.33

7 50 4 20 15 0.267 1.33

8 50 5 20 15 0.333 1.33

9 50 2 30 10 0.2 3

10 50 3 30 10 0.3 3

11 50 5 30 10 0.5 3

12 50 2 40 5 0.4 8

13 50 3 40 5 0.6 8

14 50 4 40 5 0.8 8

15 50 5 40 5 1 8

16 50 8 40 5 1.2 8

17 50 10 40 5 2 8

18 50 12 40 5 2.4 8

a) dta=10 mm b) dt=20 mm c) dt=30 mm d) dto =40mm

Fig. 6.24 Final deformed shapes of specimens with different holes (to = 2 mm)
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6.2.2 Numerical simulations

Parallel numerical simulations of all the 18 tests were performed using the commercial

finite element code ABAQUS/STANDARD in order to obtain individual components of

stress and strain tensors at the location of crack formation.

In the numerical simulations, all specimens were modeled as 8-node solid elements ( eg.

Fig. 6.28 (a)) as well as 4-node shell elements (eg. Fig. 6.28 (b)) to evaluate the

effectiveness of shell element discretization. A finite velocity was applied to one end of

the model while the other end was fixed. In all simulations, two or three different meshes

for each case were developed to study mesh sensitivity. The difference of local strain and

stress was small (within 4%)).

Comparisons of deformed configurations from experiments and numerical simulations

for a thin plate (to =2mm, d,0 =20mm), a medium thick plate (to =5mm, d,0 =40mm) and

a very thick plate (to=12mm, d 0 =40mm) are displayed in Fig. 6.25, Fig. 6.26 and Fig.

6.27, respectively. The solid element model successfully captured the necking and the

thinning in both the thin and the thick plate. The shell element model was able to capture

the necking in both the thin and thick plates, but failed to capture the thinning in the thick

plate. Comparisons of force-displacement responses between tests and numerical

simulations for all the 18 specimens are shown in Fig. 6.29-6.32. Correlations of the

experiments and solid element models were almost perfect for both thin and thick plates.

Correlations of the experiments and shell element models were also perfect for thin

plates, while there were 10% differences in thick plates. The final dimensions of the

specimens obtained from the experiment and solid element model are listed in Table 6.4.

The difference was within 5%.
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b) solid element (equivalent strain distribution)

c) shell element (equivalent strain distribution)

Fig. 6.25 Comparison of deformed shape from experiments and numerical simulations

(to =2 mm, dto =20 mm, t= 0.1, d = 0.5)
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9

a) experiment b) solid element (equivalent strain distribution)

c) shell element (equivalent strain distribution)

Fig. 6.26 Comparison of deformed shape from experiments and numerical simulations

(to=5 mm, d, =40 mm, t=1, d =8)
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b) solid element (equivalent strain distribution)

c) shell element (equivalent strain distribution)

Fig. 6.27 Comparison of deformed shape from experiments and numerical simulations

(to=12 mm, d 0 =40 mm, T= 2.4, d =8)
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U pill -

dt 0 =20mm, to =2mm dto=40mm, to =5 mm d 0=40mm, to=12 mm

a)

dto=20mm,

solid element models

d,0 =40mm

b) shell element models

Fig. 6.28 Finite element models of the specimens for size effect
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Fig. 6.30 Comparisons of force-displacement responses (d 0 =20mm)
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Fig. 6.32 Comparisons of force-displacement responses (d,0 =40mm)
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Table 6.4. Final dimensions of specimens for studying thickness and size effect

Thickness tf (mm) Ligament 1f (mm)
Specimen ABAQUS (Solid TEST ABAQUS (Solid TEST

element model) element model)
1 1.72 1.7 19.6 19.4

2 2.54 2.6 19.5 19.4

3 3.5 3.5 19.6 19.2

4 4.42 4.7 19.6 19.2

5 1.75 1.7 14.5 14.8

6 2.59 2.62 14.4 14.2

7 3.47 3.53 14.4 14.0

8 4.26 4.37 14.3 13.8

9 1.77 1.78 9.5 9.47

10 2.52 2.62 9.3 9.2

11 4.28 4.4 9.3 9.0

12 1.7 1.7 4.37 4.2

13 2.58 2.65 4.46 4.32

14 3.4 3.28 4.42 4.3

15 4.32 4.38 4.51 4.3

16 6.9 6.79 4.52 4.3

17 8.7 8.6 4.56 4.4

18 10.5 10.3 4.59 4.53

6.2.3 Results and Discussion

There was a sudden load drop in the force-displacement responses obtained from tests

(Fig. 6.29-6.32). This drop is taken as crack formation in this study. The test for one of

the specimens (d, 0 =10 mm) was successfully stopped just after crack formation as shown
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in Fig. 6.24 (a). The corresponding load-displacement response of this case still

experienced a rapid drop, but not to zero. Therefore, it is reasonable to take the start of

this drop as the displacement to crack formation.

As shown in Fig. 6.33-6.36 the stress triaxiality at the critical location is almost a

constant during the deformation. Moreover, the magnitude of the mean stress triaxiality

of all the cases is similar and is close to 1/3 which characterizes the uniaxial tension.

Therefore, the integrand in Eq. (5.4) is the same and constant for all the 18 specimens

under the present proportional loading. Then, Eq.(5.4) reduces to

Ef = Const (6.12)
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Fig. 6.33 Evolution of normalized maximum principal stress and stress triaxiality at the

critical location (d 0 =10 mm)
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Fig. 6.36 Evolution of normalized maximum principal stress and stress triaxiality at the

critical location (d,0 =40 mm)

The two non dimensional parameters t , d defined in Table 5.3 are used to represent the

specimens. The equivalent strains to crack formation is determined from numerical

simulations of both solid element model and shell element model as the equivalent strains

at the critical locations at the stage of crack formation which was obtained from the tests.

Comparison of results obtained from the solid element model and shell element model is

displayed in Fig.6.37. The difference is within 5% for I 0.5, while it becomes larger

and is as high as 40% for the thickest plate. Note that the difference in the predicted load-

displacement curves between solid and shell element model is much smaller. For thin

plates (t 0.5), the strain distribution across the thickness is uniform and the plate can

be approximately taken as in a plane stress condition (Fig. 6.25 (b)). The model using

shell elements with 5 integration points is able to predict the correct strain at the critical

location. However, for thick plates, the strain distribution across the thickness is not

uniform as shown in Fig. 6.26 (b) and Fig. 6.27 (b). Cleary, the shell element model is

insufficient to get the right strain at the critical location for thick plates (f > 0.5 ).
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Fig. 6.37 Comparison of solid and shell element model in predicting crack formation

The dependence of the equivalent plastic strains to crack formation Ef on the ratio of

thickness to ligament it and the ratio of hole diameter to ligament d from the solid

element models is shown independently in Fig. 6.38 and Fig. 6.39, respectively for all 18

data points. Eq. (6.12) gives quite good prediction (within 10 % difference) for different

sizes of specimens (0.1 t ! 2.4 ,0.55 d 8).

Size effect or stress and strain gradient effects were also expressed in statistical terms (eg.

Weibull [132], McClintock [133], Minami [134]). Most of the specific ductility

distribution proposed in the literature is either stress or strain based but not both of them.

McClintock [133] used a strain based specific ductility distribution. An effective length

for stress or strain gradient was obtained. It is clear that stress or strain only is not enough

to characterize ductility. The application of statistical model with either stress or strain

based specific ductility distribution must be limited to specific cases. A more general

model should be related to both strain and stress. Following the concept of statistical
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model, ductility is less for larger specimen. However, it is hard to find this trend in Fig.

6.38 and Fig. 6.39.
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Fig. 6.38 Equivalent strain to fracture vs. normalized thickness (solid element model)
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Fig. 6.39 Equivalent strain to fracture vs. normalized diameter (solid element model)
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An interesting behavior is observed from the graph (Fig. 6.38). The equivalent strain to

crack formation E_ is seen to increase with the ratio of thickness to ligament t when

t 5 1.0. It reaches maximum around i = 1.0 and then decreases. This dependence of

Ef on t could be more precisely understood as the dependence of C' on the aspect ratio

of the cross section of the rectangle (Fig. 6.38). Note that specimens with the same aspect

ratio should have the same fracture ductility. For example, specimens with the ratio of

thickness to ligament i of 0.5 and 2.0 essentially have the same aspect ratio of the cross

section. And those two specimens have the same fracture ductility.

6.3 Anisotropy

Most of steels and aluminum alloys including Al 2024-T351 are often assumed isotropic

in the literature and also in industry. However, due to the process of manufacturing the

material may exhibit different behaviors in different directions. It should be mentioned

that for FCC materials such as aluminum alloy, it is almost isotropic elastically and

plastically. Here we consider possible anisotropy in crack formation. The specimens

tested in the previous sections were machined from the rolling direction as shown in Fig.

6.40. The loading acting on the specimens during the test was in the rolling direction.

Rolling

In-plane
transverse

t-plane
transverse

Fig. 6.40 Orientation in a material block
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Hancock and Mackenzie [4] conducted a series of tensile tests on notched specimens cut

from the two transverse directions on three different steels (Qi, HY130 and ESR) using

the Bridgman formula. It was found that the difference of equivalent strain to crack

formation with same stress triaxiality obtained from the specimens cut from the two

different transverse directions was small (within 15%) in ESR, while the difference of

equivalent strain to crack formation was large (more than 40%) in both Q1 and HY130.

However it should be pointed out again the result needs revisited due to the inaccuracy of

the Bridgman formula (See Chapter 3). Lesuer [135] performed an experiment study on

Ti-6A1-4V titanium and 2024 -T3 aluminum in the three different directions for

compression and in the two in-plane directions for tension. No difference of strain at

crack formation in tensile specimens of Ti-6A1-4V cut in the two in-plane directions was

found, while small difference (less than 15%) was observed in compression in the three

different directions. The difference in ductility of 2024-T351 aluminum alloy was very

small (less than 3%) in tension in the two in-plane directions (no data was given in

compression).

To further study the possible anisotropy of Al 2024-T45 1, short cylinders with a height of

12.5 mm and diameter of 12.5 mm were cut from the current block of A12024-T351

along the in-plane transverse direction shown in Fig. 6.40. Recall that cylinders machined

along the rolling direction with the same geometry have been studied in Chapter 4.

Comparison of the force-displacement response is displayed in Fig. 6.41. The difference

of the maximum force before crack formation is within 3%. The difference of the

displacement to crack formation gives a small difference in equivalent strain to crack

formation. The equivalent strain to crack formation in compression in the rolling

direction is 0.36 while it is 0.34 in the in-plane transverse direction. The difference is in

consistent with the texture of this material illustrated in Fig. 6.42. The particle has an

orientation along the rolling direction, which maybe responsible for the small difference

of the force-displacement response and also the strain to crack formation. It should be

mentioned that the difference of ductility between the rolling direction and the out-of-

plane transverse direction may be larger.
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b) Etched specimen

Fig. 6.42 Texture of Al 2024-T351
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Chapter 7

Ductile Crack Formation under a

Single Reversal of Strain

7.1 Introduction

Previous chapters deal with crack formation under monotonic loading. However, in

reality, the loading path of a material element can be complex. Structures can experience

unloading and even reverse loading. For example, in the crushing of a square tube,

material at the location of folds experiences a complex compression-tension loading path.

The tube is under compression before any fold develops while when fold forms tensile

stress and strain develop at the location of the fold. Through-thickness crack propagation

in bending is another example. The material points which are originally on the

compressive side go into tension as the bending axis of the beam moves with propagating

crack. Also, offshore platforms and ships under wave loading, buildings under seismic

loading and aircrafts under air current are good examples. Moreover, man-made
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structures are usually preloaded during manufacturing. Dell et al. [136] pointed out that

due to the geometrical complexity of some parts which result from functional

requirements, there will be highly pre-strained regions resulting from the manufacturing

process. In case of car crash the local strain history in certain members is a result of its

forming process as well as subsequent deformation. The deformation of a member should

be viewed as a two-stage process. It is suggested in Chapter 5 that as a first

approximation, damage due to pre-loading caused by manufacturing can be superimposed

to the total damage especially for the cases that two processes are in the same stress

triaxiality range.

It is recognized that the effectiveness of the idea of linear superposition of damage

accumulation determined in monotonic loadings strongly depends on the degree of

coupling of those two stages. Probably this idea is good for processes that do not involve

any reverse or cyclic loading. The effectiveness of this idea for the processes involving

reversed loading is questionable since it is well known that Bauschinger effect, which is

characterized by a reduced yield strength upon load reversal after plastic deformation has

occurred during the initial loading, occurs during reverse loading. It is likely that similar

phenomena may also exist in stress and strain to crack formation under reversed loadings.

McClintock [137] emphasized that surface roughening and the resulting strain

concentration under cyclic loading can contribute to crack nucleation. Seok et al. [138]

investigated effect of cyclic loading on fracture resistance curves in C(T) specimens and

showed that the resistance curves decreased with decreasing minimum-to-maximum load

ratio and decreasing incremental plastic displacement. Harvey [139] tested specimens of

cold worked and annealed Nickel 270 in strain controlled cycling followed by monotonic

tensile loading to fracture and examined the fracture surface using the scanning electron

microscopy (SEM). He found that cyclic loading increased the total number of

microvoids while the aspect ratio of microvoids was independent of precycling and was

only a function of the monotonic tensile loading. Other studies were mostly focused on

the effect of pre-loading on fracture toughness crack tip opening displacement (CTOD), J
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integral and J-R resistance curve (eg. Cosham [140], Fields and Miller [141], El-Fadaly et

al. [142], Miyata et al. [143] Homma et al. [144] and Hagiwara et al. [145] )

The objective of this chapter is to evaluate the effect of reverse loading on crack

formation quantitatively. In this study, crack formation occurs due to plastic overloading,

which is different from high cycle fatigue which includes hundreds or thousands or even

more cycles. 0-20% pre-compression followed by monotonic tension to fracture at strains

of typically 20-30% are investigated. A modification to the criterion developed in

Chapter 5 is presented.

7.2 Experiments

The conventional compression test and tensile test are not suitable for compression-

tension reverse loadings. A special specimen and experimental step up were then

designed. The specimen consists of long shoulders with screw threads and a smooth

circumferential notch at the center. A fractured specimen showing the long screw thread

is displayed in Fig. 7.1. The dimensions given in Fig. 7.2 were determined such that the

specimen would not buckle in compression and both the stress triaxiality and equivalent

strain are the largest at the center under tensile loading to make sure fracture starts at the

center. A setup of the test is illustrated in Fig. 7.3. One adapter and two nuts at each end

were used to connect the specimen to the testing machine and to make the specimen tight

enough to provide a smooth transition from compression to tension. A light extensometer

with 25.4 mm initial gage length was attached to the specimen to measure the

displacement. Specimens were carefully tightened with adapters and nuts to avoid

preloading.
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Fig. 7.1 Fractured compress-tension specimen

22 mm

12 mm

R =12 mmn

Fig. 7.2 Main dimensions of the compression-tension specimen

nut

adaptor

nut,
specimen

extensometer

Fig. 7.3 Setup of the compression-tension test
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Totally 8 specimens cut from the same block of A12024-T351 were tested. Two

specimens were pulled directly to fracture without any pre-compression. Two were

compressed to 4% and then pulled to fracture. Although it does not have a practical

meaning since the section inside the gauge length is different, for convenience the degree

of compression 17 is defined as

1 = 0 (7.1)
R/2

where, 1: current reading of the extensometer; 10: initial gage length of the extensometer

= 25.4 mm.

Another pair of specimens were compressed to 8 % and then pulled to fracture. The last

two specimens were compressed to 14 % and 20 %, respectively, and then pulled to

fracture. Since repeatable results were obtained in loading case 1, 2 and 3, only one

specimen each was tested for both loading case 4 and 5. A summary of the test is given in

Table 7.1.

Table 7.1. A summary of the compression-tension test

Loading case Compression degree 7 Tension degree Number of Samples

1 0 To fracture 2

2 4% To fracture 2

3 8% To fracture 2

4 14% To fracture 1

5 20% To fracture 1

The specimens fractured under 0% and 20% compression followed by monotonic tension

to fracture are shown in Fig. 7.4. Similar rough fracture surfaces can be observed.

Therefore it is reasonable to assume that the specimens failed in a same fracture mode,

i.e. void nucleation, growth, and linkage. However, it can also be noticed that the final
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diameter of the minimum cross section of the specimen under monotonic tension is much

smaller than the one under tension with 20% pre-compression.

Monotonic
tension Tension with 20%

pre-compression

Fig. 7.4 Comparison of deformed specimens under monotonic tension and under tension

with 20% pre-compression

Force-displacement responses during the tests were recorded and are displayed in Fig.

7.5. All the pre-compressed specimens went to the plastic range and followed a same path

while the tensile part was quite different depending on the degree of compression r7. A

smooth transition from the compression to tension can be seen in the force-displacement

responses. The specimen with larger ;7 experienced a higher force level in tension but

smaller final positive displacement. This result is understandable because of strain

hardening of the material and different levels of plastic strain due to the pre-compression.

The sudden drop of the force shown in Fig. 7.5 was due to fracture and is taken as the

point of crack formation.
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Fig. 7.5 Force-displacement responses of compression-tension tests

7.3 Numerical simulations

Parallel numerical simulations of all the tests were carried out using commercial finite

element code ABAQUS. As shown in Fig. 7.6, 4-node axisymmetrical elements were

used to model the specimens. A finite velocity was applied to one end of the model while

the other end was fixed.

Bauschinger effect is a common phenomenon observed in cycle loading tests. This effect

is characterized by a reduced yield stress upon load reversal after plastic deformation has

occurred during the initial loading. A number of material models (eg. [105, 146-149])

have been proposed in the literature to predict the Bauschinger effect. Among those

models, same yield function but different evolutions of kinematic hardening and the

isotropic hardening behavior were introduced The model used in this study is the
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nonlinear isotropic/kinematic model embedded in ABAQUS. The yield surface is defined

by the function

Fig. 7.6 Finite element mesh of compression-tension tests

F = f(a - a) -co = 0 (7.2)

where aO is the yield stress, a is the stress tensor and f(a - a) is the equivalent Mises

stress with respect to the backstress tensor a which is defined as

f (a -a) = (S -adev):(S -ad"v) (7.3)

where S is the deviatoric stress tensor and ad' is the deviatoric part of the backstress

tensor.

This model assumes associated plastic flow rule, which gives the relation

-aF
E =E- (7.4)

where k is the rate of plastic flow and 61 is the equivalent plastic strain rate. The

evolution of the equivalent plastic strain is obtained from the following equivalent plastic

work expression,
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0 = (7.5)

The evolution law of this nonlinear isotropic/kinematic material model consists of two

components: a nonlinear kinematic hardening component, which describes the translation

of the yield surface in terms of the backstress a, and an isotropic hardening component,

which describes the change of the size of the yield surface defined by the equivalent

stress o as a function of the equivalent plastic strain '. The evolutions of the kinematic

hardening and the isotropic hardening behavior are given in Eq. (7.6) and Eq.(7.7),

respectively.

d = C (c- -a) (7.6)

=0  + Q.(1- e~b) (7.7)

where, Ck, y are material constants related to kinematic hardening; alt is the initial yield

strength and Q., bi are material constants related to isotropic hardening.

A series of those material constants were introduced. The material properties listed in

Table 7.2 gave the best correlation of force-displacement with the experiment.

In all simulations, besides the mesh illustrated in Fig. 7.6, a coarser mesh was also

developed to study mesh sensitivity for each case. The numerical solutions (strain and

stress) obtained from those two meshes were found within 2%. Force-displacement

responses obtained from numerical simulations correlated quite well with experiments as

shown in Fig. 7.5. Shape of the specimens at the point of crack formation of the specimen

under monotonic tension and the specimen under tension with 20 % pre-compression is

displayed in Fig. 7.7. As observed in the experiment, the final radius of the minimum

cross section of the specimen under monotonic tension was much smaller than the

specimen under tension with 20% pre-compression. The final diameters of the specimens

obtained from the numerical simulation and the test were close as given in Table 7.3.
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Table 7.2. Material properties of A12024-T351

monotonic tension tension with 20% pre-compression

Fig. 7.7 Deformation at the point of crack formation of compression-tension specimen

Table 7.3 Final diameters of the specimens under compression-tension
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Young's modulus Poisson's ration Ck a l0  Q. b

E (MPa) v (MPa) (MPa) (MPa)

74633 0.3 750 10 300 220 14

Loading case Test (mm) ABAQUS (mm)

1 10.9 10.92

2 11.0 11.1

3 11.3 11.32

4 11.5 11.7

5 12.0 11.92



All points in the critical cross-section were totally under compression during the

compression stage due to the relatively small degree of compression and the

circumferential notch, which prevented the "barrel" effect often observed in conventional

upsetting tests. No positive tensile stress was found during the entire compression

process.

7.4 Fracture Criterion for Strain Reversal

The relation between the stress triaxiality and the equivalent strain at the center of the

specimen is shown in Fig. 7.8. The transition point in the figure indicates the change from

compression to tension. For the specimen under monotonic tension, the stress triaxiality

is about 0.7 which is in the high stress triaxiality range for A12024-T351, while for the

specimens with pre-compression, the stress triaxiality is about -0.7 in the compression

stage and then changes directly to a positive value in the range of the following

monotonic tension.
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Fig. 7.8 Stress triaxiality vs. equivalent strain in compression-tension
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7.4.1 Damage Superposition

The idea of damage superposition is to divide the whole process into several independent

stages and calculate the individual damage and then sum them up. It is assumed that

damage increments per strain and stress increment are independent of prior damage. In

the problems considered here, there are two different stages for each case. The idea of

superposition of damage accumulation gives

D= f c( m )dE + ff, (!-)d7 (7.8)

where, O is the equivalent strain when tension starts, f X(ML) and f,( ) are the

weighting functions for the compression and tension, respectively.

In the compression stage, the stress triaxiality is about -0.7. As shown in Fig. 5.20, there

is a cut off value at the stress triaxiality of -1/3. Thus the first term of Eq. (7.8) is zero. In

the tension stage, the stress triaxiality is about 0.7 which falls in the high stress triaxiality

range. Therefore Eq. (7.8) becomes

D = f6.7 Lkd (7.9)

It should be noted that the coefficient 6.7 was determined in Chapter 5 for A12024-T35 1.

Equivalent strains due to pre-compression and monotonic tension and the final

accumulated damage DC measured by Eq. (7.9) of the five cases are listed in Table 7.4.

The accumulated damage under monotonic loading is unit which is the condition for

crack formation. However, the final accumulated damage under monotonic tension is

more than those under compression-tension. It indicates that superposition of damage

accumulation defined in monotonic loadings is not proper for reverse loadings. The pre-

compression plays an important role in crack formation.
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Table 7.4 A summary of the damage of compression-tension tests

Loading _= _
CO E Ft ='E f - 60 DC

case

1 0 0.2 0.2 1

2 0.03 0.21 0.18 0.87

3 0.06 0.23 0.17 0.73

4 0.11 0.25 0.14 0.62

5 0.155 0.29 0.13 0.53

7.4.2 A Modification to the New Criterion

From Table 7.4, it can also be seen that the equivalent strain due to pre-compression K,

the total equivalent strain to fracture K' and the difference between those two values

P, = Z5 - K7 are not the same for different cases. The value of Z, actually is the

equivalent strain due to the tensile loading. This value is smaller for the cases with larger

degrees of pre-compression. The relation of ', and ZO is displayed in Fig. 7.9. It

approximately follows a linear relation

Z, = A -0 (7.10)

where, A = 0.2, #2 = 0.53.

However, it should be noted that this relation is obtained from the present cases with

about 0.7 stress triaxiality under the tensile loadings. Equivalent strain to fracture is

strongly dependent on the stress triaxiality. Therefore, the numerical values of the two

coefficients in Eq. (7.10) depend on the stress triaxiality. This relation cannot be used in

the cases with different stress triaxialities.
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Fig.7.9. The relation of , and 60 in compression-tension tests

A more general criterion can be developed based on the fracture locus (Fig. 5.20)

obtained in Chapter 5 for monotonic loadings. After a given pre-compression, the

microstructure is different from the original one. We can treat that for each o there is a

new material. Thus Eq. (5.1) becomes

D = f' I
SC(4o)

f (a" )dE =1
5F

(7.11)

In our test program the tensile loading is in the range of high stress triaxiality and

f(-") = -- for this range. Then we haveo~6;,

D=f 1 1
C( 0 ) &

(7.12)

Only one test is needed to find the critical value and we have that one test. Actually, the

critical value C(Z0 ) actually is the same as D, listed in Table 7.4. The relation between

the critical value C('O) and pre-compression strain e- is shown in Fig.7.10 and

approximately follows
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It is seen that pre-compression is reducining the ductility of the material. As shown in

Fig. 7.11, the pre-compression actually moves the fracture locus down. The magnitude of

the shift depends on the degree of pre-compression.
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Fig.7. 10. The relation of E, and E in compression-tension tests
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7.5 Conclusion and Discussion

A special design of a specimen and experiment setup for studying crack formation under

compression-tension reverse loadings was developed. Repeatable experimental results

were obtained with this specimen and experimental setup. Totally five different loading

cases including monotonic tension to crack formation, 4%, 8%, 14%, and 20% pre-

compression followed by monotonic tension to crack formation were carried out. A

simple criterion was developed to predict crack formation in this type of reverse loadings.

The pre-compression played a very important role in crack formation. Pre-compression

indeed reduces the ductility of the material. If we would not know about prior history of

loading we would get the right-hand picture instead of the left one illustrated in Fig. 7.12.

orm
orm

70o E,Ef

Fig. 7.12 Stress triaxiality vs. equivalent strain in the tension stage

It was shown that the idea of linear superposition of damage accumulation is not good for

compression followed by monotonic tension. This is understandable since the pure

compression plays a role in the later void nucleation, growth, and linkage although it does

not cause any direct damage accumulation as indicated in Chapter 5. The strain due to
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pre-compression certainly makes voids easy to nucleate in the following tensile stage.

Also, it might have a contribution to final linkage of voids.

In the new damage measurement proposed in this study (Eq. (7.11)), the equivalent strain

of the compression is taken as the low limit of the integral of the second term. The idea of

non-zero lower limit was first proposed by Atkins [76]. He pointed out that the question

of a threshold below which damage does not accumulate is very important. However,

although the lower limit has been taken as zero in literature that is unlikely in practical

microstructures when debonding around inclusions or inclusion cracking must first occur

to form voids. The lower limit should depend not only on materials but also on the stress

triaxiality. Unfortunately, this idea is still an unconfirmed thought. Although the

importance of the threshold remains open in monotonic loading, it is likely that a low

limit should be introduced in the reverse loadings since contributions to crack formation

due to the tensile loading and the compressive loading are different.

The pre-strain was imposed before void nucleate in this test. In those cases, pre-tensile

strain and pre-compression strain might have similar effect on final crack formation. It

certainly becomes another story for the cases when pre-strain is applied after void

nucleate or for materials with initial porosity. The effect of pre-compression strain on

later void growth and linkage clearly is different from pre-tensile strain.

A qualitative representation of void growth and linkage under tension with pre-

compression and pre-tension is illustrated in Fig. 7.13 considering an element with two

holes. For holes under compression in y direction, the space between the holes and the

dimension of holes in x direction becomes larger, while the space between the holes and

the dimension of holes in y direction becomes smaller. It is totally opposite for holes

under tension. So the shape of the holes and the space between the holes are different

before the following monotonic tension. Void growth occurs along x direction under

following tension in y direction. The space between the holes and the size of the holes

become smaller in x direction and finally two holes link together because of necking of

the ligament or simple touching of the two holes. It is likely the final shape of the element
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and also the holes are different for those two cases. It should be pointed out that the

contribution of pre-compression and pre-tension to crack formation depends also on the

mechanisms of void linkage, which is related to materials.
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y

x

IT G-iG
0 P000 GO

Jib 9 i

Initial voids Voids under pre-
compression/tension

Void growth Void linkage

Fig. 7.13 Void growth and linkage under tension with pre-compression/tension

However, this is only a qualitative explanation since in reality the shape and distribution

of holes and loading cases are more complicated, not to mention crack formation

involving more than one cycle. In the latter case, the stress that the structure experiences

changes back and forth from one stress triaxiality range to another stress triaxiality. The

damage not only involves void nucleation, growth, and linkage but also "shear fracture."

Due to the complicated processes occurs in reverse loading, detailed study on physical

mechanisms is needed to have a clearer picture on damage accumulation.
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Chapter 8

Applications

The objective of the present thesis is to formulate the condition for ductile crack

formation. Many people would question the correctness of the present approach until

evidence on component validation is presented. The author conducted one component

test, a solid aluminum 2024-T351 beam with a smooth round notch under 3-point

bending. Besides, other colleagues in the Impact and Crashworthiness Lab took the

present formulation further and presented an extensive component validation, which

includes an aluminum sandwich panel under 4-point bending, a thin steel plate under

hemispherical punch, a steel double hull structure under static conical punch loading and

the penetration of a ductile aluminum beam by a rigid projectile. Those results will be

included in respective PhD theses of my colleagues. With a permission of my thesis

advisor, a short overview of the application of my crack formation condition is presented

here.

211



8.1 3-point Bending of a Round-Notched Solid

Beam

A 260 mm long solid beam with a 20mm by 20 mm cross section and a 10 mm radius of

notch at the tensile side was tested under 3-point bending as shown in Fig. 8.1. The

diameter of the two supporting rollers was 45 mm while the diameter of the punch was 50

mm. The specimens were cut from the same block of A12024-T351 along the rolling

direction. Quite repeatable results displayed in Fig. 8.2 were obtained from two samples.

a) Initial set up

b) Final stage

Fig. 8.1 Initial setup and final stage of 3-point bending test
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Fig. 8.2 Force-displacement response of 3-point bending

In the numerical simulation, rigid surfaces were used to model the punch and the two

rollers. The solid beam was modeled by 8-node solid elements. As illustrated in Fig. 8.3,

the mesh close to the notch was much finer than other parts. A "tied" condition in

ABAQUS was defined to connect the fine part and the coarse part as shown in Fig. 8.3.

The whole finite element model of the three-point bending and the deformation shape at

the final stage is displayed in Fig. 8.4. A fracture model in ABAQUS corresponding to

Eq. (5.4) was used. The fracture locus displayed in Fig. 5.20 was introduced as an input

to the fracture model. During the numerical simulation, all the solid elements modeling

the beam were checked automatically at every time step for possible fracture. As

illustrated in Fig. 8.2, the numerical prediction with the present approach and the fracture

locus given in Fig. 8.27 gives almost the same value of displacement to crack formation

as the value found in the experiment. Also, the numerical simulation predicts the same

crack formation location, which is at the root of the smooth notch, as displayed in Fig.

8.5.
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Fig. 8.3 Finite element mesh of the solid beam

(only showing the area close to the notch)

Initial stage

C)_
Final stage

Fig. 8.4 Numerical simulation of 3-point bending
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Fig. 8.5 Crack formation in 3-point bending

A first attempt to capture crack propagation is made in this example using the present

approach. Crack propagation is understood as a sequence of crack formation. During the

numerical simulation, when the damage accumulation reaches the critical value at an

integration point, the stress is set to zero at the integration point. However, the present

approach does not predict correctly the response after crack formation (crack

propagation) shown in Fig. 8.2 though the crack propagation pattern depicted in Fig. 8.6

seems quite realistic. The experiment shows a more rapid force drop than the numerical

simulation.
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*J: Displacement of the punch

Fig. 8.6 Predicted crack propagation pattern in 3-point bending

One important reason for the difference is the strain reversal. The material points, which

were originally on the compressive side, went into tension as the bending axis of the

beam moves with propagating crack. As illustrated in Fig. 8.7, three points A, B, C

located was originally located in tensile side, neutral axis and compression side,

respectively. The evolutions of strain for the three points are different because of the

moving of the axis during crack propagation. Point C clearly experiences a compression-

tension reversal. It has been shown in Chapter 7 that the critical damage accumulation

DC is different for the material with different degree of pre compression. The critical

damage accumulation Dc with higher degree of pre compression has lower value. In the

present simulation the fracture locus obtained in monotonic loading (Fig. 5.20) was

introduced and the critical damage accumulation was set to unit for all the material points

as the one without pre compression. This artificially increased the resistance of the beam.

Therefore, the present simulation could not correctly predict the fracture of the element

which was originally in compression side.
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Fig. 8.7 Evolution of strain along the thickness

It should be noted that the effect of strain reversal did not occur until Point B failed. The

difference in the earlier stages may be due to the following two reasons.

" The present approach developed is based on the crack formation in uncracked

bodies. Once crack forms the stress and strain field changes to the crack tip fields

extensively studied in fracture mechanics (See Appendix).

* In the experiment, the crack actually is the material decohering and there is no

loss of material, while in the numerical simulation, crack is described by removal

of a series of elements.

Clearly, further studies on crack propagation are needed. However, it is not the focus of

the present thesis. The approach developed in this thesis was also applied by my

colleagues to other aluminum and steel structures under various loadings. A short

overview is presented in the following sections.
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8.2 4-Point Bending of a Sandwich Panel

The present approach of prediction of crack formation was also applied to a sandwich

aluminum panel under 4-point bending (Fig. 8.8) by Zheng and Wierzbicki [8]. The

deformation was concentrated in the central part of the panel (Fig.8.9). As shown in

Fig.8. 10, after the peak load is reached, the magnitude of the reaction force drops mainly

due to load plate buckling and the gradual lose of stiffness and strength of the

compression flange. A sudden drop in the experimentally measured reaction force

occurring at the punch displacement 5=66mm was due to crack formation in the panel.

Separate calibration of the material used in the panels was performed. At each step the

condition for crack formation was checked. The predicted displacement to crack

formation 6 =67mm agrees with the measured crack formation point. The prediction

also gives the same location as obtained in the experiment (Fig.8.8).

Experiment

Simulation

Fig. 8.8 Experiment and numerical simulation of 4-point bending

(after Zheng and Wierzbicki [8])
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Fig. 8.9 Crack location from experiment and prediction in 4-point bending

(after Zheng and Wierzbicki [8])

z

0

LL

90

80

70

60

50

40

30

20

10

0
10 20 30 40 50 60 70 80

Displacement (mm)

Fig. 8.10 Force-displacement response of 4-point bending

(after Zheng and Wierzbicki [8])
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8.3 Thin Plate under Hemispherical Punch

Indentation

Another example for verifying the present approach is a steel thin plate indented by a

hemispherical punch. The study was performed by Lee et al. [9]. Separate calibration of

the material of the thin plate was performed. The experimental punch force-displacement

curve is compared with that from numerical simulation in Fig. 8.11. Formation of a

circumferential crack is clearly indicated by sudden drop in the force-displacement curve.

It is seen that the prediction is in a good agreement with the experiment up to the point of

crack formation. Same crack formation location and crack pattern was observed in the

experiment and the numerical simulation as shown in Fig. 8.12.

200 1 1 1 1 1

- Experiemnt
- PAM-CRASH

- DYNA3D
150

Crack formation

100 -
0
0

50 -
0

0 20 40 60 80 100 120

Punch penetration: 8 [mm]

Fig.8.11 Comparison of experimental and numerical force-penetration curves

(After Lee et al. [9])
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(a) Experiment

(b) Simulation

Fig. 8.12 Comparison of experimentally and numerically obtained circumferential crack

(After Lee et al. [9])

8.4 Double Hull under Static Conical Punch

Loading

A more complex structure with clamped conditions under conical punch loading was

studied numerical by Lee and Wierzbicki [150] and experimentally by Yahiaoui et al.

[151]. The structure consisted of two plates and stiffeners in between. Separate
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calibration of the material used was also performed. Amazingly, the numerical simulation

with the present crack formation approach accurately predicts not only crack formation

but also crack propagation which is also understood as a sequence of crack formation in

both fracture pattern and force-displacement response shown in Fig. 8.13 and Fig. 8.14,

respectively.

ILl

Fig. 8.13 Comparison of experimentally and numerically obtained crack pattern

(After Lee et al.[ 150])
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Fig.8.14 Comparison of experimental and numerical force-penetration curves

(After Lee et al.[150])

8.5 Penetration of a Ductile Beam by a Rigid

Projectile

Besides static studies, the present approach was also applied in a dynamic study by Teng

and Wierzbicki [10] on high velocity perforation of a thin beam by a flat rigid projectile.

Unrealistic failure mode illustrated in Fig. 8.15 was obtained using the constant

equivalent strain criterion independent of stress triaxiality, which is commonly used in

commercial codes. Immediately after impact large compressive stresses were developed

under the flat nose projectile. It can be seen from the failure mode that elements under the

flat punch due to this large compressive stress are fractured and the material was eroded

layer by layer, which is clearly not realistic. By introducing the present ductile crack

formation criterion, the artificial erosion of elements was removed. A more realistic
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sequence of failure pattern shown in Fig. 8.16 was obtained. A shear crack mode along

the edge of the punch was developed. Again, crack propagation is understood as a

sequence of crack formation.

Elements eroded

7 7, 7A1

Elements eroded

Fig. 8.15 Progressive formation of a shear crack in a beam struck by a flat-nose rigid

projectile with the constant equivalent strain criterion

(after Teng and Wierzbicki [10])
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Fig. 8.16 Progressive formation of a shear crack in a beam struck by a flat-nose rigid

projectile with the present approach

(after Teng and Wierzbicki [10])
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8.6 Conclusion

A component validation of a solid aluminum beam with a smooth round notch under 3-

point bending was carried out by the present author. Other applications of the crack

formation condition developed in this thesis performed by my colleagues at the Impact

and Crashworthiness Lab including an aluminum sandwich panel under 4-point bending,

a thin steel plates under hemispherical punch, a steel double hull structure under static

conical punch loading and penetration of a ductile aluminum beam by a rigid projectile

were also reported. The present approach gave very good results on crack formation

prediction (time and location) in not only aluminum but also steel structures. Although

this approach is for ductile crack formation, good crack propagation patterns were

obtained in all the applications. The prediction of force-displacement response in the steel

double hull structure under static conical punch loading agreed also well with tests. The

approach seems promising for industrial applications, especially in prediction of ductile

crack formation. However, much work has to be done to put crack propagation on solid

theoretical basis. The present approach and its interpretation is new and needs further

validations for different materials at different labs.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

Experimental, numerical and analytical studies were carried out on the prediction of

ductile crack formation. A methodology for predicting ductile crack formation suitable in

industrial applications was developed based on the idea of introducing different

weighting functions for different stress triaxiality ranges where different ductile crack

formation mechanisms occur. The component validations preformed by the present

author and other colleagues in the ICL clearly have shown the effectiveness of the

method. The main accomplishment of the present thesis consists of the following points.

* A comprehensive test program on fracture of A12024-T351 was completed.

* A well-defined procedure to determine fracture locus (calibration for fracture)

was presented.

* A concept of a cut-off value for negative triaxialities was introduced.

* Two mechanisms of ductile crack formation and a transition mode were observed.

* Effects of seven variables controlling fracture were studied. Equivalent strain and

stress triaxiality were found to be of utmost importance.
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* A modified criterion was introduced for ductile crack formation under single

reversals of strain.

A Comprehensive Testing Program

Tensile, compressive, shear and combined loading tests were performed for 2024-T351

aluminum alloy. Over 90 experiments were conducted on using seventeen different types

of specimens. For the first time, a broad range of stress triaxialities were applied ranging

from the lowest -0.26 all the way to the highest 0.95. The tests provided the global force-

displacement relationship and individual components of stress and strain tensors could

not be measured. Parallel numerical simulations were performed to determine the

individual components of stress and strain tensors and their histories.

Determination of Fracture Locus under Monotonic Loadings

The point of the departure of our analysis is the fracture initiation criterion formulated in

terms of accumulated plastic equivalent strain with the stress triaxiality as a weighting

function. The criterion by itself is not new and has been proposed by many authors in the

past and studied in the limited range of stress triaxialities. What is new in the present

thesis is recognition that the fracture locus can not be described by one smooth

monotonic function (as suggested by Johnson and Cook [74] and Borvik et al [120] etc.)

but consists of three distinct branches for low, intermediate and high stress triaxialities.

While the present failure envelope was determined in an empirical basis, there has been

some important analytical development as well. In particular, we have developed a

unified approach to fracture valid for both negative and positive stress triaxialities. Until

now, the fracture criterion given by the plastic equivalent strain with suitable weighing

functions was thought to be applicable only to the region of positive stress triaxialities.

We have shown that the fracture envelope for negative triaxialities, formulated earlier in

the space of principal strains can be in fact transformed to the same space of the
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equivalent strain and stress triaxiality. For the correlation of experimental results and

simulations, all three branches of the fracture envelope were uniquely determined in the

case of 2024-T351 aluminum alloy. Even more importantly, we have determined a

general procedure of calibrating a wide range of materials for fracture which we think

could find a wide spread industrial applications.

Determination of Cut-Off Value

Considerable evidence was collected on the existence of limiting value of stress

triaxialities below which fracture will never occur. This evidence comes from the detailed

analysis of upsetting tests as well as from revisiting famous experimental program on the

influence of the hydrostatic pressure on fracture performed by Bridgman in early fifties.

The critical value of the stress triaxiality found in the thesis is -1/3. Even though the

above finding now seems to be straightforward, no one has pointed out on this property.

Physical Mechanisms of Ductile Crack Formation

The complex mechanism of void nucleation, growth, and linkage, which occurs in the

high stress triaxiality range, was reviewed extensively. Specimens that failed in the high

stress triaxiality range as well as those that fractured under the negative stress triaxiality

range were examined and studied by using SEM and polishing techniques. Besides the

well-known void nucleation, growth, and linkage mechanism, which occurs in the high

stress triaxiality, range, a different mechanism of "shear fracture" was observed in the

negative stress triaxiality range. A combination of those two mechanisms occurs in the

intermediate stress triaxiality range, which is essentially a transition range. The above

micro mechanism observations serve as a justification of the existence of three distinct

branches in the empirically found fracture envelope.

229



Dependence of Ductile Crack Formation on Other Effects

Other effects including stress and strain ratios, specimen size, and anisotropy were

studied. The difference of equivalent strain to crack formation found in specimens with

different cross section shapes can be explained by the large difference of the stress

triaxiality. Similar equivalent strain to crack formation was found for specimens that have

similar stress triaxiality but different stress and strain ratios. Furthermore, all test points

fell well within a single fracture locus in the equivalent strain to crack formation and the

stress triaxiality space. Similarly, the fracture points corresponding to plates with

different thickness and diameters of holes were shown to fit well with the failure

envelope. Small difference in compression on specimens machined in two different

directions was found. It can be concluded that the equivalent strain and the stress

triaxiality are the two most important parameters governing crack formation while others

are probably of secondary importance.

Ductile Crack Formation under Single Reversals of Strain

A special design of a specimen and experiment setup for studying crack formation under

compression-tension loadings was developed. Repeatable experimental results were

obtained. It was found that the pre-compression plays an important role in crack

formation. Linear superposition of damage accumulation failed to predict crack formation

in compression-tension loadings. A simple criterion was developed to predict crack

formation in this type of reverse loadings.
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9.2 Future Studies

It is suggested that further research should be conducted on the following topics:

" More detailed study on physical mechanisms of "shear fracture" is needed to

reveal the process of ductile crack formation. The transition of "shear fracture" to

void nucleation, growth, and linkage should be also further investigated.

* Different types of specimens were designed for determination of weighting

functions in the present thesis. Clearly developing a universe apparatus, which

covers the entire stress triaxiality and also produces constant stress triaxiality at

the critical location during whole deformation process will be a big step forward

for a rapid industrial calibration process.

* Only a limited number of variables on crack formation were discussed in this

thesis. Other factors such as surface/sub surface sites, stress and strain gradient,

strain rate, temperature and other loading conditions such as torsion are good

subjects for future studies.

* Only one type of reverse loading was performed. Other cases involving different

stress and strain histories such as tension-compression, torsion-tension should be

further investigated. Also studies on corresponding physical mechanisms are

clearly needed.

" A generalization of the present concept of crack initiation into propagation is

needed to many industrial applications. The effect of mesh size, stress and strain

gradient, element deletion etc. should be carefully investigated.

" Most of conclusions were drawn based on the results obtained in Al 2024-T351.

Different materials have different microstructures, hardening, strength, ductility,
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response to temperature and rate, etc., which might change the behavior of ductile

crack formation. Therefore, the applicability of the present methodology to other

material should be studied.

* Limited component validations were presented in this thesis. The present

approach to fracture should be further verified at other research centers on

different materials and structures under different types of loadings.
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Appendix

Summary of "Classical"Fracture
Mechanics

In 1920s, Griffith [152, 153] found that a simple critical stress or strain criterion was not

appropriate to predict fracture by studying a uniformly loaded plate with an elliptical hole

using Inglis's solution [154]. A similar result was observed in an earlier study by

Wieghardt [155] who noticed that the stresses at the tip of a sharp crack in an elastic body

were infinite after solving the problem of a linear elastic wedge subjected to an arbitrary

concentrated force and pointed out that fracture did not occur when the stress exceeded a

critical value at a point, but only when the stress over a small potion of the body

exceeded a critical value. Griffith [152, 153] then turned to energy method and proposed

that in order to propagate a crack, the corresponding surface energy must be balanced by

elastic strain energy concept. Based on the energy balance, Griffith obtained the famous

critical stress corresponding to fracture for a linear elastic brittle material as

07 = 2Ey (A.1)
'Ta

where E is the Young's modulus, y is the specific surface energy and a is the half crack

length.

Orowan [156, 157] and Irwin [158] studied fracture behavior of metals and found

independently that the plastic work at the crack front must be considered and in fact it
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was far larger than the surface energy. It was concluded that Griffith's theory could be

used if the surface energy is replaced by the plastic work for metals. Both Irwin [159] and

Williams [160] found that the local stresses around the crack tip was governed by a single

parameter K which is called now the stress intensity factor and is generally defined as

K = 7aV- F(a/W) (A.2)

where a is a representative stress, W is the width of a plate, F(a /W) is a function of the

geometry.

Initial growth of a pre-crack occurs when the stress intensity factor K reaches a critical

value KC since the stress intensity factor determines the stress field of the region

surrounding the crack tip. This is the essence of the linear elastic fracture mechanics

(LEFM). Unfortunately, the critical value KC depends not only on materials but also on

geometries and loading modes. There are three typical modes studied in the literature,

called mode I (pure opening), mode II (in-plane shearing) and mode III (tearing or

antiplane shearing) (See Fig. A.1). Understanding of mode I fracture is relatively

complete, analyses and data for mode I can be found in the handbook or standard, while

for mode II, III and also possible mixed modes, analyses and data are rather scarce. Also,

as pointed out by McClintock and Irwin [133], the K -concept only becomes valid when

the K dominates annular region around the crack tip that is large compared to the plastic

zone. Those facts clearly limit the application of the linear elastic fracture mechanics.

Mode I Mode II Mode III

Fig. A. 1 Three fracture modes

A practical need of dealing with fracture involving large plastic deformation leads to the

development of the elastic-plastic fracture mechanics (EPFM). Well [161] introduced the
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crack tip opening displacement (CTOD) concept to model fracture of structures with an

initial sharp crack under conditions of large plastic deformation. It was assumed that a

critical crack tip opening which controls crack growth exists. Later, a similar concept, the

crack tip opening angle (CTOA) appeared in the literature. However, location where the

displacement or angle should be measured as CTOD or CTOA is not clearly defined.

Another important concept in the elastic-plastic fracture mechanics (EPFM) is the J -

integral

J = (Wdy -T -dl) (A.3)
r ax

where W is the strain energy density, T is the traction vector and ii is the displacement

vector, dl is element of the length of F.

Rice [123] has shown that in a non-linear elastic material, the line integral encircling the

sharp crack tip is path independent and its value represents the energy release rate. Thus,

fracture can be accurately predicted by taking J -integral as a measurement of fracture

toughness for no-linear elastic materials. For plastic materials, however, it can be only

approximately assumed that the crack growth is controlled by J -integral if the inner

core of non-proportional loading is small compared to a specimen's uncracked ligament

or the size of the J - controlled region since the concept of J is developed from no-linear

elastic materials and is not valid in the plastic zone near the crack tip where loading is

non-proportional for plastic materials.

Further studies on plastic materials have subsequently been performing by the fracture

mechanics community. Many valuable results have been achieved. Among those,

Hutchinson [162] and Rice and Rosengren [163] obtained the details of the singular

behavior of stresses around the crack tip for a power law hardening material by assuming

small plastic zone. On the basis of the Hutchinson-Rice- Rosengren stress field, O'dowd

and Shih [164, 165] introduced a non-singular stress called Q -stress for large plastic

deformation. They proposed that stresses near the crack tip under extensive yielding can

be described by two parameters: the J - integral which is the HRR singular term, and the
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non-singular Q - stress. However, the definition of the Q - stress is not clear. It depends

on geometries and loading conditions and has limited data in the literature.

Besides the shortcomings described above, both the linear elastic fracture mechanics

(LEFM) and the elastic plastic fracture mechanics (EPFM) including J - Q have one

common major limitation. They can only be used for structures with an initial sharp crack

or sharp crack-like defect. Clearly, this method is not applicable in crack formation.

Slip line theory is another new regime of plastic fracture mechanics. In many cases of

plan strain, field around crack tip can be approximately described by two symmetrical

intense slip-lines (planes) (Mode I) or one line for asymmetry (mixed mode). For rigid-

plastic, non-hardening and isotropic material, a number of solutions of slip line plasticity

for different cases are available. A good summary of slip line fields can be found in a

classic review of plasticity aspects of fracture by McClintock [166]. With the slip-line

solution for a given geometry and loading, normal stress across the slip line, slip

displacement across the line and the angle of the two slip lines (only for Mode I) which

are called the crack tip driving parameters (CTDPs) can be found. The idea of slip line

fracture mechanics (SLFM) is that within the region around crack tip described by

CTDPs, crack responds in a material-dependent way by initial or continuing crack

growth, as described by McClintock [167]. The crack tip response functions (CTRFs)

(eg. displacement across the slip line, CTOD, CTOA) of the CTDPs are used to

determine crack initiation and growth. The beauty of the SLFM comes from analytical

prediction of crack initiation and growth even though it is restricted to limiting case of no

strain hardening. It is certainly a great tool to validate finite element modeling of crack

initiation and growth. However, as recommended by McClintock [167], various

experiments and analyses are need to determine the validity range of the slip line fracture

mechanics and to obtain values and means of determining the crack tip driving

parameters (CTDPs) in terms of geometry and loading for specimens and structural

components and to find values and means of determining the crack tip response functions

(CTRFs) for different materials. Some interesting application of the slip line fracture

mechanics in butt welds with mis-match can be found in Hao et al. [168].
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