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Abstract

The idea of investigating the relation of option and stock prices just based on the no-
arbitrage assumption, but without assuming any model for the underlying price dynamics
has a long history in the financial economics literature. We introduce convex, and in partic-
ular semidefinite, optimization methods, duality and complexity theory to shed new light
to this relation. For the single stock problem, given moments of the prices of the underlying
assets, we show that we can find best possible bounds on option prices with general payoff
functions efficiently, either algorithmically (solving a semidefinite optimization problem) or
in closed form. Conversely, given observable option prices, we provide best possible bounds
on moments of the prices of the underlying assets as well as on the prices of other options
on the same asset by solving linear optimization problems. For options that are affected by
multiple stocks either directly (the payoff of the option depends on multiple stocks) or indi-
rectly (we have information on correlations between stock prices), we find bounds (but not
best possible ones) using convex optimization methods. However, we show it is NP-hard to
find best possible bounds in multiple dimensions. We extend our results under transactions
costs as well.
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1 Introduction.

A central question in financial economics is to find the price of a derivative security given

information on the underlying asset. Under the assumption that the price of the underlying

asset follows a geometric Brownian motion and using the no-arbitrage assumption, the

Black-Scholes formula provides an explicit and insightful answer to this question. Natural

questions arise, however, when making no assumptions on the underlying price dynamics,

but only using the no-arbitrage assumption:

(a) WVhat are the best possible bounds for the price of a derivative security with a general

payoff function based on the k moments of the price of the underlying asset?

(b) Conversely, given observable option prices, what are the best possible bounds that we

can derive on the moments of the underlying asset?

(c) Given observable option prices, what are the best possible bounds that we can derive

on prices of other derivatives on the same asset?

(d) How can we derive best possible bounds on derivative securities that are based either

directly (the payoff of the option depends on multiple stocks) or indirectly (we have

information on correlations between stock prices) on multiple underlying assets, given

partial information on the asset prices and their correlations?

(e) WVhat is the effect of transaction costs in the above questions?

The idea of investigating the relation of option and stock prices just based on the no-

arbitrage assumption, but without assuming any model for the underlying price dynamics

has a long history in the financial economics literature. Cox and Ross [3] and Harrison and

Kreps [9] show that the no-arbitrage assumption is equivalent with the existence of a proba-

bility distribution r (the so-called martingale measure) such that that option prices become

martingales under . The idea that it is possible in principle to infer the martingale mea-

sure from option prices has been introduced by Ross [18]. The idea of using optimization to

infer the martingale measure based on option prices is present in the work of Rubinstein [19]

who, extending earlier work of Longstaff [15], introduces the idea of deducing the martingale

measure from observed European call prices by solving a quadratic optimization problem

that measures the closeness of the martingale measure to the lognormal distribution. For

related work, see Dupire [5] and Derman and Kani [4]. Closer to the theme of this paper

are the papers by Lo [14], who derives best possible closed form bounds on the price of a
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European call option given the mean and variance of the underlying stock price, and by

Grundy [8], who extended Lo's work for the case when the first and the kth moments of

the stock price are known.

Our overall objective in this paper is to shed new light to the relation of option and

stock prices, and to demonstrate that the natural way to address this relation, without

making distributional assumptions for the underlying price dynamics, but only using the

no-arbitrage assumption, is the use of convex optimization methods. In particular, we

give concrete answers to the previous questions (a)-(e) using convex, and in particular

semidefinite, optimization techniques, duality, and complexity theory.

In order to motivate our overall approach we formulate the problem of deriving optimal

bounds on the price of a European call option given the mean and variance of the underlying

stock price. Following Cox and Ross [3] and Harrison and Kreps [9], the no-arbitrage

assumption is equivalent with the existence of a probability distribution (the so-called

martingale measure) of the asset price X, such that the price of any European call option

with strike price k is given by

q(k) = E[max(O, X - k)],

where the expectation is taken over the unknown distribution wr. Note that we have assumed,

without loss of generality, that the risk free interest rate is zero. Moreover, given that the

mean and variance of the underlying asset are observable:

E,rX] = [, and Var,[X] = a2

the problem of finding the best possible upper bound on the call price, written as

max E,[max(O, X-k)],
x (,2)+
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(where the + operation means that X is defined on [0, o)) can be formulated as follows:

maximize E[max(O, X - k)]

subject to E[X] = 

Var,[x] = a 2

j r(x)dx = 1

7r(x) > 0.

The closed form solution for this optimization problem is due to Scarf [20], in the context

of an inventory control problem. Lo [14] observed the direct application of Scarf's result

to option pricing. Grundy [8] introduced as open problems several of the problems that we

solve here: using known option prices, find sharp upper and lower bounds on the moments

of the stock price, and on the price of an option with a different strike price. These problems

can be formulated as follows:

max/min E,[X], or E[X2 ],or E[max(0, X-k)]

subject to E[max(0, X- ki)] = q, i = 1,..., n.

j ir(x)dx = 1

(x) > o.

For a multidimensional example, suppose we have observed the price ql of a European

call option with strike k 1 for stock 1, and the price q2 of a European call option with strike

k2 for stock 2. In addition, we have estimated the means Ml, A2, the variances c 2, a 2 and

the covariance a22 of the prices of the two underlying stocks. Suppose, in addition, we are

interested in obtaining an upper bound on the price of a European call option with strike

k for stock 1. Intuition suggests that since the prices of the two stocks are correlated, the

price of a call option on stock 1 with strike k might be affected by the available information

regarding stock 2. We can find an upper bound on the price of a call option on stock 1 with

strike k, by solving the following problem:
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maximize E,[max(O, X1 - k)]

subject to E,[max(O, X1 - k1)] = q,

E,[max(O, X 2 - k2)] = q2

E,[X1 ] = ul

Er[X2] = 2

E,[X] = a2 + (1)

E7r[X2 = 22 + A

E,[XlX 2] = a122 + 1/ 2

1000 j( IT(X1, X2)dxilx 2 1

r(xz, 2) > 0

More generally, questions (a)-(d) above are special cases of the following general opti-

mization problem:

max/min E[O(X)]

subject to E,[fi(X)] = qi, i = 0, 1,..., n. (2)

T(x) > , E R,

where X = (X 1,...,X,m) is a multivariate random variable, and : R+ - R is a real-

valued objective function, f R+ -+ R, i 1, . . ., n are also real-valued, so-called moment

functions whose expectations qi E R, referred to as moments, are known and finite. We

assume that fo(x) = 1 and qo = E,[fo(X)] = 1, corresponding to the implied probability-

mass constraint. Questions (a)-(d) introduced earlier can be formulated as follows:

(a) Question (a) for European call options can be formulated as Problem (2) with

O(x) = max(0, - k), fi(z) = xi , i = 1,..., k,

where qi is the ith moment of the price of the underlying asset.

(b) Question (b) for European call options can be formulated as Problem (2) with

O(x) = x, or (x) = x2, and fi(x) = max(O,x - ki), i= 1,..., n.
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(c) Question (c) for European call options can be formulated as Problem (2) with

O(x) = max(0, x - k), and fi(x) = max(0, z - ki), i = 1,..., n.

(d) Question (d) for a general option with payoff (zxl,..., x) that is based on m under-

lying assets can be formulated as Problem (2) with

fi(x) = X l, i . .,m, f(x) = xixz, i, j = ,. .m, q = i, qj = ij.

When (x) = Xs in Problem (2) is the indicator function of a convex set S, and fi are

power functions, then Problem (2) models the problem of finding the best possible bounds

on the probability that a multidimensional random variable X belongs in the convex set S,

given some joint moments on X. In this context, Problem (2) has received a lot of attention

in the 1950s and 1960s. The major duality results from this period are due to Isii [10] and

Karlin (see Karlin and Studden [13], p. 472) for the univariate case, and by Isii [11] for the

multivariate case. The interested reader is referred to the book of Karlin and Studden [13]

for a comprehensive coverage, to Bertsimas and Popescu [2] for a modern treatment, and

to Smith [21] for applications in decision analysis.

The contributions and structure of this paper are as follows:

1. WVe provide in Section 2 an efficient (polynomial time) algorithm for question (a) for

a general payoff function (zx) by solving a single semidefinite optimization problem,

thus generalizing earlier work of Lo [14] and Grundy [8]. This result leads to an

unexpected connection between finance and semidefinite optimization, the first to the

best of our knowledge.

2. We derive in Section 3 closed form optimal bounds on call and put prices given prices

of other calls and puts on the same stock, thus answering question (b).

3. We derive in Section 4 best possible bounds on the mean and variance of the underlying

stock price, when prices of options on this stock are given, thus answering question

(c) .

4. WVe extend in Section 5 the previous results by taking into account transaction costs,

thus answering question (e).
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5. We present in Section 6 an efficient (polynomial time) algorithm to provide bounds

(although not best possible ones) for options that are affected by multiple stocks using

convex, and in particular semidefinite, optimization methods, thus answering question

(d). We also show that it is NP-hard to find optimal bounds in multiple dimensions.

2 Bounds On Option Prices Given Moment Information.

We are given the n first moments (ql, q, ,.. ., qn), (we let qo = 1) of the price of an asset,

and we are interested in finding the best possible bounds on the price of an option with

payoff q(z). An example is a European call option with payoff O(x) = max(O, x - k). In

Section 2.1, we propose an efficient algorithmic solution for general payoff functions, while

in Section 2.2 we provide a new proof based on duality of the closed form upper bound of

the price of a European call option derived by Lo [14].

2.1 Bounds Based on Semidefinite Optimization.

As we discussed in the previous section the problem of finding the best upper bound on the

price of a European call option with strike k can be formulated as follows.

maximize E[max(0, X - k)] = j max(0, x - k)7r(x)dx

subject to E4[X i] = xir(x)dx = q = 1, . . ., n, (3)

r(x) > 0.

In the spirit of linear programming theory (see Smith [21] and Bertsimas and Popescu

[2]), we write the dual of Problem (3) by associating a vector of dual variables y =

(Yo, Y1, y) to each of the constraints in Problem (3). We obtain the following problem:

n

minimize E yiqj
r=O (4)

subject to E yrXr > max(0, x - k), Vx E R+.
r=O

Isii [10] shows that strong duality holds, i.e., the optimal solution values of Problems

(3) and (4) are equal. Thus, by solving Problem (4), we obtain the desired sharp bound.
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In this section, we show that the general problem (3) can be reformulated as a semidef-

inite optimization problem for which very efficient, both theoretically (see Nesterov and

Nemirovski [17] and Vandenberghe and Boyd [221) and practically (see Fujisawa, Kojima

and Nakata [6]), are known. The results in the following proposition are inspired by Ben-Tal

and Nemirovski [1], p.14 0-14 2. The proofs are contained in Bertsimas and Popescu [2].

Proposition 1
n

(a) The polynomial g(x) = yzrx satisfies g(x) > 0 for all x E [0, a] if and only if there
r=O

exists a positive semidefinite matrix X = [xij],j=o,...,n, such that

r=O r)a

0= E xI
i,j: i+j=21-1

,r = v X

i,j: i+j=21

X >- 0.

i j,

(5)

n

(b) The polynomial g(x) = L Yrxr satisfies g(x) > 0 for all x E [a, co) if and only if there
r=O

exists a positive semidefinite matrix X = [xij]ij=o ... ,n, such that

O= E x
i,j: i+ j=21-1

Lr = Xi

i,j: i+j=21

X >- 0.

i ,

(6)

k

(c) The polynomial g(x) = >j yrxr satisfies g(x) > 0 for all x E [a, b]
r=O

exists a positive semidefinite matrix X = [:ij]ij=o,...,n, such that

yr (mI r ar-mb
rm =O rm- m

0= L x:
i,j: i+j=21-1

m 

i,j: i+j=21

X > 0.

The next theorem shows that Problem (3) can be solved as a semidefinite optimization
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problem.

Theorem 1 The best upper bound on the price of a European call option with strike k given

the n first moments (ql, .. , q) (qo = 1) of the underlying stock is given by the solution of

the following semidefinite optimization problem:

n
minimize yiqi

r=O

subject to 0= ij, =1 ..., n,
i,j: i+j=21-1

Yr (_r k = -z I = O. .... n,
r=O i,j: i+j=21

zij,O= E
i,j: i+j=21-1

(8)
k

(yo + k) + (y - 1)k + E rkr = 00o
r=2

k

(y-1) k + rrkr i= xij
r=2 i,j: i+j=2

E Yr ( k =
r-'l i,j: i+j=21

xij

X, Z >- 0.

Proof:

We note that the feasible region of Problem (4) can be written as

E y r > 

r=O

- l)x + yrX > 0
r=2

for all x E [0, k],

for all x E [k, oo).

by applying Proposition 1 (a), (b) we reformulate Problem (4) as the semidefinite optimiza-

tion Problem (8). C]

8

(yo + k) + (yi



We next consider an option with payoff function given as follows:

o(x), x E [,k],

(X), X E [ki, k,

¢(X) = ' ' (9)

c pd1(X), Xz [kd-1, kd],

Od(Z), E [kd,0 ),

where the functions b,r(x), r = 0, 1,..., d are polynomials. Given the generality of the

payoff function (9), we can approximate the payoff of any option using the payoff function

(9). In this case the dual problem becomes:

n

minimize L yiqi
r=O

Oo(x), x E [O, k],

(x), E kl,k 2 ,] (10)

subject to E yx" >
r=O | dtd-1(), x E [kd-1, kd],

d(), x E [kd, ),

The next theorem shows that the problem of finding best possible bounds on an option

with a general piecewise polynomial payoff function is efficiently solvable both practically

and theoretically as a semidefinite optimization problem.

Theorem 2 The best possible bounds for the price of an option with a piecewise polynomial

payoff function (x) shown in (9), given moments of the underlying asset, can be solved

efficiently as a semidefinite optimization problem.

Proof:

The constraint set for Problem (10) can be written as follows:

r Z E [ki-l,k-], i= 1,. .. ,d 1,
r=O

with ko = O, kd+l = cc. Let qi(x) = L airxr, and assume without loss of generality
r=O,...,mi
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that mi < n. Then, the constraint set for Problem (10) can be equivalently written as

mi n

~(y,-a;a)x + E X>0, E [k k, i . d+ 1.
r=O r=mi+l

For the the interval [ko, k 1] we apply Proposition 1(a), for the intervals [ki_1, ki], i = 2, ... , d,

we apply Proposition 1(c), and for the interval [kd, co), we apply Proposition 1(b), to express

Problem (10) as a semidefinite optimization problem. C

2.2 Closed Form Bounds.

In this section, we provide a new proof from first principles of a closed form optimal bound

of the price of a European call option with strike k.

Theorem 3 (Optimal upper bound on option prices, Lo [14]) The optimal upper

bound on the price of an option with strike k, on a stock whose price at maturity has a

known mean and variance a2, is computed by:

1 2 + o2
2 [-L k) + 2 + +(Ak)2 , if k > +2

max E[max(O,X - k)] 2 2 2
/X - k + k 2 if k < +

Proof:

The optimal upper bound on the price of a European call option with strike k is given as

the solution of Problem (4), which in this case is formulated by associating dual variables

Yo, Y1, Y2 with the probability-mass, mean and respectively, variance constraints. We obtain

the following dual formulation:

minimize (p 2 + C2) Y2 + Y1 + Yo

subject to g() = y 2
2 +y + 0yo > max(0,x-k), Vx > 0.

A dual feasible function g(-) is any quadratic function that, on the positive orthant, is

nonnegative and lies above the line ( - k). In an optimal solution, such a quadratic should

be tangent to the line (x - k), so we can write g(x) - (x - k) = a(x - b)2 , for some a > 0.

The non-negativity constraint on g() can be expressed as a(x - b)2 + x - k > 0, Vx > 0.
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1
Let xo = b - be the point of minimum of this quadratic. Depending whether ox is

nonnegative or not, either the inequality at x = x0 or at x = 0 is binding in an optimal

solution. We have two cases:
1 1

(a) If b > 2- then -4 + b - k = 0 (binding constraint at x = o);
1

Substituting a = in the objective, we obtain:
4(b - k)

max E[max(O,X- k)] = min
X_(,a2)+ b 4(b- k)

2= k) -, 2 + -2+ (- k)2 ,

/ 2 + r2 1 2
achieved at bo = - . Let ao 4( . This bound is valid whenever bo > - = 2(bo - k),

4(bo- k) - 2ao

that is 2 < k.

(b) If b < 2a then ab2 - k = O (binding constraint at x = 0).

Substituting a = in the objective, we obtain:

k (P2 +-2) k 2

max max ax(O, X - k)] = min -(/ 2 + c 2) - 2 k = -k + 
X,.(~,-2)+b b b AL2 2

2 + o,2 1 b2
achieved at b - + . Let ao = 2. This bound is valid whenever bo < 

2 2

3 Bounds On Option Prices Given Other Option Prices.

In this section, we derive closed form optimal upper and lower bounds on the price of a

European call option on a single stock, when prices of other options with the same exercise

date but different strikes on the same stock are known. For simplicity and without loss

of generality, we assume that the risk-free interest rate is zero. In this section, we ignore

transaction costs, the effect of which will be discussed in Section 5.
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3.1 Bounds on Call Prices.

Let X be the random variable that represents the price of the underlying stock. We are

given prices q(ki) = q = E[max(0, X - ki)] of call options on the same stock with strikes

0 < k1 < k2 < ... k< k and the same exercise date, and we want to compute optimal upper

and lower bounds on q(k) = E[max(O, X - k)], for a given strike price k.

For notation purposes we set k0 = 0 and qo = q(O) = E[max(0,X - 0)] = E[X]. In

some cases it may also be useful to assume an upper bound If on the price X of the stock

at the time of maturity of the calls. This information can be easily integrated in this

framework by defining kn+l = K and q+l = q(K) = E[max(0, X - K)] = 0. If no such

upper bound is assumed, then we assume kn+ = co. WVe say that a given function q(.) is

a valid call pricing function if there exists a distribution of the stock price X, such that

q(k) = E[max(0, X- k)], V k > 0.

Theorem 4 (Optimal Bounds on Call Prices)

Given valid prices qi = q(ki) = E[max(0, X - ki)] of call options with strikes 0 < kl < k2 <

... < k, on a stock X, the range of possible valid prices for a call option with strike price

k, where k (kj, kj+1), for some j = O,..., n is [q-(k) , q+(k) ], where:

q- (k) = max qkj ki - qj-1 k /k1 + 2 k -J j+2 2 k+l
k--kj k-- k kj+ - j+ j+2 - kj+l 

q+ (k) V= kj+l - k jl k - kj
V+(k) = qjkj+l - k - qj+l - kj

In order to obtain some intuition on the nature of these bounds we note that for a given

function q(-) to be a valid call pricing function, we need the existence of a nonnegative

random variable X such that q(k) = E[max(0, X - k)], V k > 0. Clearly, q(-) is decreasing

and convex. What Theorem 4 proves is that the necessary and sufficient conditions for q(.)

to define a valid call pricing function is for it to be decreasing and convex. In particular, the

values of q-(k) and q+(k) given above are precisely determined by the monotonicity and

convexity of the call pricing function q(-). Figure 1 depicts the construction of the bounds

q-(k) and q+(k) geometrically in a concrete example. Moreover, the range of prices of a

call option with strike price k E (k, kj+l) is constrained only by the prices qj-_, qj of the

two options with the closest strikes to the left of k and to the right of k, qj+l and qj+2.
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Figure 1: The optimal upper and lower bounds on the price of a call option, given prices of calls on
the same stock, with different strikes and the same maturity date. (actual data quoted from The Wall
Street Journal, July 7, 1998: Microsoft July '98 call options with: ki = [95, 100, 110, 115, 120], qi =
[128, 8, 18,8,];k = 105, q(k) = 4). Note that the bounds are derived by the convexity and
monotonicity of the the price function q(-).

The bounds (11) are only relevant when the given options are correctly priced. Inter-

estingly, this is not always the case, as one can see in the actual examples given in Figure

2, where some of the call pricing functions are clearly non-convex, and so the upper bounds

computed by Theorem 4 may turn out smaller than the respective lower bounds (see the

explanation in the caption of Figure 2).

Proof of Theorem 4:

The Lower Bound Problem. We first consider the lower bound problem and formulate

it as a continuous optimization problem over all feasible stock price densities r(x), as follows:

q-(k) = minimize j(x - k) r(x)dx

subject to (x - ki)7r(x)dx = qi, i = 1,...,n,

(1:2)
(x)dx = 1,

7r(X) > , z E R+.
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Figure 2: The optimal upper and lower bounds for each call price, determined by the prices of the

neighboring calls. Clockwise: S&P100 July '98, S&P500 Sep '98, Yahoo Aug '98, Amazon July '98.

Call prices from The Wall Street Journal July 7, 1998. This apparent mispricing can be explained

by noting that these are closing prices, so these prices might not all be present simultaneously.

Moreover, transaction costs are ignored.

If we restrict our horizon to stock price distributions p, = P(X = x) over a discrete range

of values S C R+, that include the strike prices ki E S, i = 1, n. . .,, we can formulate the

restricted problem as:

qR(k) = minimize ( - k)p
x>k

subject to E (x - ki)px
x>ki

E P =-- 1,
>0

p~>_LO,

=qi, i= 1,...,n,

(13)

V E S.

Clearly q(k) > q-(k), since the minimization in Problem (13) is over a restricted set of

distributions. We will show that q(k) = q-(k). We construct the corresponding dual

problems by associating a dual variable ui, i = 1, n. . ., with each of the first n constraints,
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and a dual variable v for the probability mass constraint. The dual of Problem (12) is:

n

q- (k) = maximize v + E qiui

subject to g(x) = v+ (x - ki)ui { 0 ,
ilki <x x - k,

0 x < k, (14)

x > k.

The dual problem of the restricted problem (13) is the same as (14), except the constraints

need only hold on the discrete set of points x E S, where X ranges. We denote its optimal

solution values as qRD(k). Notice that for both problems, the dual feasible function g(x) is

piecewise linear, in which the slope changes at the points k, i = 1, ... , n, and therefore it

is sufficient to solve each problem with constraints only at the points ki. Thus the two dual

problems are equivalent to:

qD (k) = maximize V + qiui
i=1

subject to

g(kl)

g(k 2)

< 0

= V + (k 2 - l)ul

= V

= V

= V

+ (kj - k1)u

+ (k- kl)ul

+ (kj+1 - kl)ul

+...+ (kj -kj_)uj_l <

+... + (k--kj) uj <

+ -. - (k+ - kj)uj <

: :

+...+ (kn,-k-l._)u,- 1 <

+-.. -+ u, <

where the last constraint is meant to capture the limiting situation as x -+ co. WVe have

qD(k) = qRD(k), and weak duality holds for both primal-dual pairs, which means: q(k) >

q-(k) > qD(k). Moreover, strong duality holds for the discretized version (13), since these
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g (kj)

g(k)

g(kj+i)

0 (15)

g(k,) = v + (k -k)

u + U2

0

ki+l- k

k -k

1,



are linear optimization problems, and therefore, q(k) = qD(k) -q(k). This shows that

q-(k) = qR(k) = qD(k). (16)

Moreover, there exists a discrete stock-price distribution that achieves the bound q-(k).

We next proceed to solve Problem (15). This is a linear optimization problem with

n + 2 constraints and n + 1 variables whose optimum, if it exists, is achieved at a basic

feasible solution. In an optimal basic feasible solution, n + 1 of the constraints must be

binding, including the one at k, that is the constraint g(k) < O. In this case, the constraints

g(kj) < 0 and g(kj+1 ) < kj+ - k cannot be simultaneously binding. We have two cases:

Case 1. Constraint g(kj) < 0 is not binding: In this case we obtain the following

optimal solution:

, x < kj_-,

k= ks-K (x-ki_), x E (kj_1 ,kj),
(x) k-j - kI-X

{ x-k, x > k,

that is the corresponding dual variables are:

kj - k
uj_ - k - kj_l '
Uji =

kj - kj-l

= VO, ij-l,j,

v =O.

The corresponding dual optimal objective value in this case is:

ql (k) = qj ' + qj -
Case 2. Constraint g(k) k - is not binding: In kcase we obtain the

Case 2. Constraint g(kj+l) < kj+i - k is not binding: In this case we obtain the
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following optimal solution:

0, x _< kj+l,

kj+2 - +g(x) j= k 2 - k (x - kj+l)), E (kj+1,kj+2),

x - k, x > kj+2

The corresponding dual variables are:

kj+2 - k
kj+2 - kj+l

k - kj+
Uj+2 = kj+2 - kj+l'

Ui = 0, Vi j+ 1,j+2,

= O.

The corresponding dual optimal objective value in this case is:

q2 (k) = qj+l kj+2 - qj+2
-k'+2 - j+2j+2 - kj+l

The desired optimal lower bound is given by: q-(k) = max (qT (k), q2 (k)), which leads

to the lower bound expression in Eq. (11). Note that an extremal distribution of the stock

price X that achieves this bound is given by the corresponding optimal solution of the

discretized primal problem.

The Upper Bound Problem. Using the same procedure, we formulate the optimal

upper bound problem as a continuous optimization problem over all feasible stock price

densities r(x):

17



q+(k) = maximize
CO

fk (x - k)wr(x)dx

subject to (x - ki)'(x)dx = qi,
ki

J r(x)dx = 1,

7r(x) > 

and solve the corresponding dual problem:

q+ (k) = minimize
n

v+ qiui

subject to g(x) = v + (x - ki)u <
i I ki_<: {

0, O < x < k,

x -k, x > k.

Similarly to the lower bound problem we prove that strong duality holds, the primal is

equivalent to its discretized version, and it is sufficient to solve the dual problem with

constraints only at the points ki, i = 1, ... , n. We obtain that

0,

kj+l - k

(x- k,

x <k j,

x E (j, kj+,),

x > kj+l,

and the corresponding dual variables are:

kj+ - k
- k

kj+l - k'
k - kj

j+1 = j+l - kj'

Ui = 0, V i7A j,j + 1,

v = 0.

The corresponding dual optimal objective value in this case is:

kj+l - k
q(k) = q kj+ -

3ji-k

k- kj
+ qj+l -
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3.2 Bounds on Prices of Mixed Options.

We now extend the results of the previous section to put options and combinations of calls

and puts. Let p(k) be the price of a put option with strike k and the same exercise date.

Then p(k) = E[max(O, k - X)]. Since the price of a call with the same strike satisfies

q(k) = E[max(O, X - k)], then

p(k) - q(k) = k - E[X].

Clearly the function p(-) is increasing and concave. Similarly to the case of calls, these

conditions are in fact necessary and sufficient for put pricing functions to be valid. In other

words, if the prices pi of only puts are known with strikes ki, then the best possible bounds

for the price of a put with strike k E (kj, kj+l) are p-(k) < p(k) < p+(k) with

kj+l- k k- kj
p-(k) = pj kj+- kj +Pj+ 

k - k-j_ kj-k kj+2 - k k-kj+l 
p+(k) = min m PJkj - k Pj-kj - kj_ 1kj+2 - kj+l kj+2 - kj+l

(19)

Suppose that we are given prices of call and put options with various strikes ki, and we

want to find optimal bounds on prices of a call or put option with strike k. Notice that if

we know the prices of both a call and of a put option with a certain strike k, then we can

derive the expected stock price from the put-call parity formula E[X] = qi - pi + ki. Now,

if we know the expected price of the stock E[X], the problem can be directly reduced to

the one we solved in Section 3.1, by simply writing all option prices in terms of call prices,

using the put-call parity result.

Finally, suppose we are given prices qi of calls with strikes ki, i = 1,. . ., n and prices

Pi of puts with strikes c, i = 1, ... , m, such that ci - kj for all i, j. WVe are interested in

finding the best possible bounds for a call with strike k. In this case we cannot determine

E[X] uniquely from the put-call parity. By the put-call parity we can transform the given

put prices to corresponding call prices q' given by:

q = pi + E[X] - ci.
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We sort the strikes k and c. We want the call prices q to be consistent. We apply

Theorem 4 for the calls with strikes ci as well as the call with strike k. This leads to

linear inequalities involving the two unknowns q(k) and E[X]. Solving the resulting linear

optimization problem with the objective of maximizing or minimizing q(k) gives optimal

upper and lower bounds on q(k).

4 Bounds On Mean And Variance Of The Stock Price, Given
Option Prices.

In this section, we determine optimal bounds on the mean and variance of a stock price

X, when prices of options with different strikes and same exercise date T on that stock are

known.

4.1 Bounds on the Mean.

Call Options. The bounds on the expected stock price given call prices information are

easy to derive, since we can interpret E[X] = E[max(0, X - 0)] = q(0) as the price of a

call option with zero strike. The result of Theorem 4 can be applied in this case to find the

following optimal bounds on E[X] = q(0) E [q-(0), q+(O) ] :

q-(0) qlk 2 - q2 kl M-

k2-k1 k(20)

q+(0) = q1 +kl = M + .

Notice that these bounds only depend on the prices of the two calls with smallest strikes.

Mixed Put And Call Options. Now suppose we are given miscellaneous prices of either

calls or puts with different strikes. The optimal bounds M- and M + on the expected stock

price E[X] can be determined by converting the put prices into call prices by the put-call

parity result, and then constraining the call pricing function to be decreasing and convex,

using the bounds from Theorem 4.
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4.2 Upper Bounds on the Variance.

In order to compute bounds on the variance we need to assume a finite upper bound K on

the stock price X at time T. We incorporate this information by introducing a call option

with strike K with price equal to zero, i.e., k+l = KI and qn+l = q(k+l) = 0.

Call Options. Suppose first our information consists of call prices only. We want to

determine optimal upper bounds on the variance Var[X] = E[X2 ] - E[X]2 of a stock price

X, when prices qi of call options with strikes k, i = 1, . . ., n on that stock are known.

We can formulate this as an optimization problem as follows:

K K , i- · i" 2 · (·dI i~""l·a,) 2
V+= maximize x 2 xr)d x- (j x~r(x)dx)

subject to (x - ki)r(x)dx = qi, i = 1 n,
(21)

i (z) d = 1

r(x) > 0, x E [0, K].

Theorem 5 (Optimal upper bound on the variance of the stock price.)

(a) Given prices qi of European calls with strikes ki, and assuming that the mean M of

the stock price is known, the optimal upper bound on the variance of the stock price is

given by:

V+ (M) = Z(k+1 - k_1 )qi + kM - M2 . (22)
i=l

(b) If the mean price is not known, then the optimal upper bound is given by:

nl k qlk 2 - q2k, k1
-,(ki+i- ki_) + 41 if Q2 k 2 1 <2 '

V+ Z=1
n qlk + - q2 1 qlk 2 - q1k

2 qq1k2 - q2k1 k,
i=1 i k 2 -ki k 2 -k )' if k2 kl - 2

(23)

Proof:
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(a) We first solve Problem (21) for a fixed value il/ = E[X] obtaining an optimal value

V+(M), which we then optimize over all feasible values of ,I¥ E [-, fl+]. We solve the

following auxiliary problem with arbitrary fixed expected stock price E[X] = -I.

Z+ (/) = V+(M) + + 2 = maximize 2r(x) d

K
subject to j xr(x)dx = N = qOo

(x - k)(x)dx = qi, i = 1,...,n
Ki

X 7r(x)dx = 1

7r(X > 0, x E [, IK] .

We consider the corresponding dual problem:

n

ZD( (M) = minimize v + uoM + E ui qi
i=l

subject to g(x) = v + uox + E (x-ki)ui > x 2 , O < x < K.
i I ki<x

Again, the optimum is obtained by forcing the constraints to be binding at the points ki:

g(ki) = k2 , i = 0,...,n + 1. The corresponding dual solution is v = ko = 0 , u =

k , u = ki+ - kid-, i = 1,..., n, and the optimal objective value is Z+ (M) = ZD+(M) =
n

k 1M + (ki+ 1 - ki- 1)qi. Thus, given the mean price M, the optimal upper bound on the
i=1

variance of X is given by Eq. (22).

(b) We next optimize over all feasible values of M E [M-, M +] to determine the upper

bound on the variance:

n

V+ = maximize (ki+l - ki-_)qi + klMV - M 2

i=1

subject to M- - qlk 2 - q2 k < M < M + = q + k1.
k2 - k - -

This is a concave quadratic optimization problem that can be solved in closed form leading

to the closed form bound (23). a
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Mixed Put And Call Options.

Suppose now that we are given either call or put prices for various strikes qi = q(ki)

for all i E Q, and pi = p(ki) for all i E P, where P and Q are two sets of indices so that

PU Q = 1,..., n+ 1} and n + 1 E Q, since we assumed q+l = q(k+l) = q(K) = 0. We

transform the puts to corresponding calls with prices:

q = p - ki + M, i E P.

We sort the strikes in P U Q, and apply the bound (22) for the sequence of calls with prices

qi, i E Q and q, i E P. Note that if P and Q are not disjoint, then we can determine the

value of M = E[X] from the put-call parity result for a pair (pj, qj) with j E P n Q. When

the sets P and Q are disjoint, we can obtain an interval [M-, IM+], in which M lies using

the technique of Section 4.1. Applying the bound (22), we will find that a optimal upper

bound for the variance of the price given M is a concave quadratic function V+ ( M ) of IM.

Then, the optimal upper bound on the variance given M is given by

V + = max V+ (V).
ME[M-,M+]

4.3 Lower Bounds on the Variance.

Call Options. Suppose for now that the available information consists of call prices only.

We denote q0 = M and k0o = 0. We prove the following result:

Theorem 6 (Optimal lower bound on the variance of the stock price)

(a) Given prices qi of European calls with strikes ki, and assuming the mean MI = qo of

the stock price is known, the optimal lower bound on the variance of the price is given

by

n+1

V-(M) = tik2 _ Z(M) - M2, (24)
i=O
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where Z(vM) is the objective value of the following quadratic network flow problem:

n+l

Z(il1) = minimize E ti d2
i=0

subject to d d_l > ci, = ... ,+ (25)

di > , i -1,..., n +-di >_ O, i - O. .- ., -1

with ti = Ti- - Ti > O, Ti =- i+l i = O,...,n, (T- 1 = 1, T+l = 0), and
ki+l -ki

ci = ki - ki-1 0.

(b) If the mean price is not known, then the optimal lower bound is given by:

V- = min V-(M), (26)
ME[M-,M+l

with M- and M + = q + k l.

k2 - k1
Proof:

(a) Formulating a minimization optimization problem analogous to the maximization prob-

lem (21), and taking the dual, we obtain that given M = qo, the lower bound is given by:

n

V- (M) + M2 = maximize v + E qiui
i=O

subject to g(x) = v + E (x- ki)u 2, 0 < x < K.
i k<xz

For the upper bound problem, we just needed the constraints at the points k to be

binding, namely: g(ki) = ki2, i = 0,..., n + 1. This is not sufficient for the lower bound. To

insure feasibility, we also need to make sure that the line segment (g(ki), g(k +l)) lies below

the quadratic x2, on each interval x E [ki, ki+1]. This can be interpreted geometrically

as follows. Consider the line tangent from the point (ki,g(ki)) to the quadratic x2. The

constraint says that if the tangency point occurs within the interval (ki, ki+l), then the line

segment connecting g(ki) and g(ki+l) has to lie below the tangent.

In order to express this algebraically, notice that the constraints at the points ki 

g(ki) < k, can be formulated by denoting d = k - g(ki) > 0, i = 0, . .. , n + 1, with

di > 0. Then the x-coordinate of the tangency point equals ki + di, hence the slope of the
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tangent is 2(ki + di). The constraint for the interval (k., ki+l) can be expressed as follows:

if ki + di < kil, then ki - 1 < k - 2(k + di )(k+l - kI).

The last inequality can be written as d+ > (di - - ki)) 2. By definition d > 0, i =

0,.. ., n+1, so the constraints can be restated as di+1 > max(O, ki+I-ki-di) , Vi = 0,..., n.

In terms of di's, we can write:

(ki - d+l) - (k - d) (k - d) - (kL? - dL)

ki- ki-1

=(k - d) - (ko - )
uo = 1 -

k - ko
and v = k - d =-d 2.

By regrouping the terms in the objective, we can write the dual problem in terms of the

di's as follows:

V-(M) + M 2 = maximize
n+l

1 (c2- d2) (Ti - Ti)
i=O

subject to di > max(O, ki - ki-1 - di-l)

where T i+l - qi i = ,.. ., n, T_1 = 1, and Tn+ 1 = 0. The
can thus be rewritten as- ki
can thus be rewritten as

optimal bound V-(M)

n+l

V-(M) = C tiki2 - Z(M) - M2,
i=O

where Z(M) is the objective value of the following quadratic network flow problem:

n+l

Z(M) = minimize > ti di

subject to d + d-1 >c, i = 1,..., n + 

di > O , i = o . . ., n + 1

where we denoted t = Ti-_1 - Ti > 0 , ci = ki - ki-_1 > .
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(b) In order to compute the overall optimal lower bound on the variance, independent from

the mean, it remains to minimize V-(M¥/) over all feasible values 1/1 E [iAI-, M+], where

Vil-, i+ are given from the bounds in Eq. (20). C

Problem (25) is a separable quadratic optimization problem over network flow con-

straints. Because of its special structure it can be solved by the following dynamic pro-

gramming algorithm:

Choose do and let:

kl k± 1 - k - d, if ki+ > k + d,
di+l = { ki+l ki - d;,

0, if ki+ < k + di.

To obtain the optimal solution, one has to optimize over all initial choices of do > 0. A

heuristic solution, that performs very well in practice, starts with do = 0.

Geometrically, this iterative construction can be visualized (see Figure 3) as follows: at

each step (i + 1), from the point (ki,g(ki)) draw the positive slope tangent to the curve

f(x) = x2. The x-coordinate of the tangency point equals ki + di, and according to whether

or not this falls within the next interval [ki, ki+l], we have two cases:

* If ki + di < ki+, then draw the next segment of g(x), x E [k, ki+1] to be the tangent.

* If ki + di > ki+, then draw the next segment of g(x), z E [ki, ki+1] so that g(ki+1) =

ki+l .

Figure 3: The dynamic programming algorithm.

Mixed Put And Call Options. In the case when both call and put prices are given, we
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first transform all information in terms of calls, and find the best possible bounds iM-, M+

on the mean AM, using Theorem'4. In order to find a optimal lower bound on the variance,

we solve again the Problem in Theorem 6(b).

4.4 Computational Results.

In this section, we discuss the quality of the upper and lower bounds on the mean and

variance of a stock price. In Table 1, we report results on the January '99 Microsoft stock

price, computed using information on European call prices from The Wall Street Journal of

July 7, 1998. The current stock price is S = 10713 and the listed call options have strikes

k: = [80, 95, 100, 110, 120, 140], and are sold at closing for q = [31, 19, 16, 10, 6, 2.25]. We also

incorporate in our calculations the listed risk-free interest rate, listed as r = .0557. Call

prices are given by:

q(k) = e-r(T-t)E[max(O, X - k)],

where T - t is the time to maturity, measured in years. In this case T - t = 0.5.

Using the Black-Scholes option pricing formula, we estimate from the data an implied

volatility of sss = 0.3241. The corresponding estimates for the mean and standard devi-

ation of the forward stock price, under the risk neutral valuation, are £ss = S er(T- t) =

110.8573 and cBS = Ser(T-t)/eS2 (T-t) - = 26.7394.

Using M = 110.8573 and assuming an upper bound K = 160 on the stock price, we apply

the upper bound given in Eq. (22) and the lower bound given in Eq. (24) to obtain that

the standard deviation of the stock price a belongs in the interval: E (26.6677, 26.9851).

If from the standard deviation we were to compute the implied volatility, as implied by the

Black-Scholes formula, we would obtain s E (0.3223, 0.3259), which indeed is very close to

the direct Black-Scholes forecasts.

If we do not use any information from the Black and Scholes model, but we only apply

the bounds on the mean given by Eqs. (20) we obtain that the average stock price M is

in the interval M E [M-, M +] with M- = 97.6829, and M + = 111.8755. In Table 1, we

vary the mean MN in the interval [97.6829, 111.8755], and report the corresponding interval

[c-, Cr+] of the standard deviation of the stock price. For a given M, we observe that the

bounds we derive on the standard deviation are extremely tight. As Mlf varies in the interval
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MI 1 - I + '
97.6829 49.1709 49.2101
98.1723 48.5859 48.6306
98.6617 47.9888 48.0391
99.1.511 47.3790 47.43 52
99.6405 46.7563 46.8184

100.1299 46.1199 46.1882
100.6193 45.4693 45.5440
101.1087 44.8040 44.8852
101.5981 44.1232 44.2111
102.0875 43.4262 43.5212
102.5769 42.7122 42.8145
103.0663 41.9804 42.0903
103.5557 41.2298 41.3476
104.0451 40.4594 40.5854
104.5345 39.6679 39.8027
105.0239 38.8542 38.9980
105.5133 38.0168 38.1702
106.0027 37.1540 37.3175
106.4921 36.2642 36.4384
106.9815 35.3451 35.5307
107.4709 34.3946 34.5924
107.9603 33.4099 33.6207
108.4497 32.3878 32.6128
108.9391 31.3248 31.5651
109.4285 30.2165 30.4736
109.9179 29.0577 29.3333
110.4073 27.8422 28.1384
110.8967 26.5621 26.8815
111.3861 25.2076 25.5535
111.8755 23.7660 24.1427

Table 1: Optimal bounds on the standard deviation
option prices.

for various values of the mean M given

[97.6829, 111.8755], we obtain that the standard deviation is within 23.7660 < a < 49.2101.

5 Bounds With Transaction Costs.

Up until now we have assumed a frictionless economy, and developed our results based on

the theory of asset pricing under the no-arbitrage assumption, ignoring transaction costs.

In this section, we derive bounds in the presence of transaction costs, using the no-arbitrage
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assumption. When transaction costs are taken into account the price of an option is within

an interval defined by the bid-ask spread. A call pricing function is then defined as a pair:

tc : R+ -+ R, qt(k) = (qbid(k) = q-(k), qask(k) = q(k))

In a frictionless market, the asset pricing theory of Harrison and Kreps [9] insures the

existence of a risk-neutral martingale measure that uniquely determines a valid linear pricing

rule for all assets. Suppose we are given n call options with strikes k, and bid-ask prices

qi , q, i = 1,.. ., n. In the presence of transaction costs, Jouini and Kallal [12] show that

there is no arbitrage if and only if there exists a probability measure ,r such that

q? < E[max(O, X-ki)] < q, = ,..., n.

By Theorem 4, this is equivalent to the existence of a convex decreasing function q*:

R+ -+ R+, such that q*(ki) E [q?, q+], for all = 1,..., n. If no convex decreasing function

can be fitted between the bid (q-) and ask (q+) processes, then the given set of bid-ask

spreads is not valid, and an arbitrage opportunity exists. This provides an easy test for

arbitrage opportunities in a market with transaction costs.

The next theorem extends the results from the two previous sections by replacing the

equality constraints in each respective primal problem by:

qi Toj(x-k-)7r(x)dx<qt,i=1,..., n.

WVe thus introduce corresponding dual variables ui, u, which are non-negative for upper

bound problems and non-positive for the lower bounds. The corresponding dual function

becomes

g(x) = v + E (- )u-,
i k_<x

where ui = u+ - u7. With the notation q = q+ - qi (> 0), we can write (for all problems)

the dual objective as:

n n n n n

v + (q+ u - q u) = v + q ui + qi = v + q7 ui + qi + .

i=l i=l i=1 i=l i=l
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By optimizing the corresponding dual, and using very similar techniques as in Theorems 4,

5, and 6 we prove the following result.

Theorem 7 (Bounds under transaction costs) Given bid and ask prices q and q+

for European calls with strikes ki, i = 1, ... , n, then:

(a) The optimal bounds on a call with strike k is given by:

q-(k) = max(
^ - j-1 kj - k

q3 kj - k_- + q- - kel '
k- - klc-- ` k - - k j-1 

kJ+2 - k
q+1 kj+2 - kj+l

k - kj+l
qj+2 kj+2 - kj+)

= +l kj+l - kjq+(k)= q kj+l - kj + i+_ A

(b) The optimal bounds on the mean stock price are:

M- ql k 2 - q kl
k2 - kl

M + = q+ +k

(c) The optimal lower bound on the variance is:

n+l

V-(M) = E tik2 - Z(M) - A2,
i=O

where Z(M) is the objective value of the following quadratic network flow problem:

n+l

Z(M) = minimize E ti d2

i=O

subject to di + dl ci, i= 1,..., n + 1

di> O, i = O,...,n+l

with t = Ti_1 - Ti > O, Ti

ci = ki - ki- 1 > O.

_- qi+l- qi i = 0,..., n, (T 1 = 1, T+ 1 = 0), and
ki+l - ki'

The optimal upper bound on the variance is:

n

V+(M) = E(ki+ - ki- 1)qi + kM - MI2.
i=1
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6 Bounds in Multiple Dimensions.

In this section, we consider generalizations of the bounds we considered in earlier sections

when we have information about a set of m different stocks. In particular, we have an option

with payoff function O(x), : Rm - R, and a vector of n moment functions f = (fl,..., fn)
(we let fo(x) = 1), fi: R -+ R, i = 1, . . ., n, and the corresponding vector of moments

q = (ql, .. , qn) (we let q0 = 1). We address in this section the upper bound problem (2):

maximize E[O(X)]

subject to E,[fi(X)] = qi, i= 1,...,n.

(27)
j r(x)dx = 1

r(x) > 0, X E R,

where the expectation is taken over all martingale measures defined on Rm. We can solve

the lower bound problem by changing the sign of the objective function 5 in Problem (27).

In Theorem 9 we show that solving Problem (27) is NP-hard. For this reason, we find

a weaker bound by optimizing over all martingale measures defined on R as opposed to

R?. For this reason we consider the following problem:

maximize E[O(X)]

subject to E,[fi(X)] = qi, i= 1,...,n.

fw0x0 dx= 1 (28)
f ()dz = 1

-oo

1(X) > O, x E Rm ,

and its dual:

n

minimize yo + Yiqi
(29)

subject to yo + n=l1 yifi(x) > (x), Vx E Rm .
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Isii [11](see also Karlin [13], p.472, or Smith [21]) shows that under weak conditions1 on

the moment vector q implies that strong duality holds, i.e., the optimal solution values of

Problems (28) and (29) are equal.

The best possible upper bound corresponds to the optimal solution value of Problem

(27). Since Problem (28) is a relaxation of Problem (27), we obtain an upper bound,

although not necessarily the optimal one, by solving Problem (28), and by strong duality,

Problem (29). In the next theorem we identify cases under which we can solve Problem

(29), efficiently.

Theorem 8 An upper bound on Problem (27) can be solved in polynomial time in the

following cases:

(a) If and fi, i = 1,..., n are quadratic or linear functions of the form

+(x) = x'Ax b'x + c

fi(x) = x'Aix + bx + c, i = 1,..., n (30)

then Problem (29), and thus Problem (28), can be solved in polynomial time by solving

the following semidefinite optimization problem:

n

minimize Z yqi
i=l

subject to - = a O.a
yibi - b /2 E yiAi-A -

(b) If q and fi, i = 1,..., n, are quadratic or piecewise linear functions of the form

¢(x) = x'Az + bx + ck E Dk, k = 1,..., d,
(32)

fi (x) x'Aix + bikx+ Ck, E Dk, i=1,...,n, k=1,...,d,

over the d disjoint polyhedra D1, . ., Dd that form a partition of R m , and d is a poly-

nomial in n, m, then Problem (29), and thus Problem (28), can be solved in polynomial

time.
1An example of such a condition is as follows: If the vector of moments q is interior to the feasible moment

set M = {E[f(X)] I X arbitrary multivariate distribution }, then strong duality holds.
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Proof:

(a) We consider first the case when all the functions 6 and f are are quadratic or linear as

in Eq. (30). In this case, Problem (29) becomes:

minimize Yo + Z YiJli
i=l

subject to g(x) > 0, Vx E Rm,

where

n

g(x) = Yo + Z yifi(x) - O(x) = x'Ax + b'x + a,
i=1

with

n

A = Z yiAi - A,
n

b = y-b - b,
i=l

n

c = E yici + Yo - c.
i=1

Thus, the constraints g(x) > 0 are equivalent to

x'Ax + 6'x + a > 0,

or equivalently

( ) b/2 A] () 

Eq. (33) holds if and only if

2b/2

i.e., the matrix

the semidefinite

a b'/2 1
L6b/2 A
optimization

is positive semidefinte. Thus, Problem (29) is equivalent to

problem (31), which is solvable in polynomial time (see for

example Nesterov and Nemirovski [17] and Vandenberghe and Boyd [22]).

(b) If the functions or f, i = 1, . . ., n are given in (32), then Problem (29) can be expressed

Vx E Rm ,

Vx E Rm. (33)

]t/ > 0A 



as

n

minimize Yo + EYiqi

i=l (34)
subject to gk(x) =x'Ax + kx+ck O, V 0 i Dk, k = 1, . . .,d,

where

`A = E yAi - A, bk = yibik-bk, k = iCik + YO- Ck
i=l i=l i=l

By the equivalence of separation and optimization (see Gr6tschel, Lovisz and Schrijver

[7]), Problem (34) can be solved in polynomial time if and only if the following separation

problem can be solved in polynomial time.

The Separation Problem:

Given an arbitrary y = (yo y, . . ., Yn), check whether gk(x) > 0, for all x E Dk, k = 1, ... , n

and if not, find a violated inequality.

We show next that solving the separation problem reduces to checking whether the matrix

A is positive semidefinite, and in this case solving the convex quadratic problems

min gk(x), k = 1,...,d.
zEDk

This can be done in polynomial time using ellipsoid algorithm (see Grotschel, Lovgsz and

Schrijver [7]). The following algorithm solves the separation problem in polynomial time:

Algorithm A:

1. If A is not positive semidefinite, we construct a vector xo so that gk(xo) < 0 for some

k = 1, ... ,. We decompose A = Q'AQ, where A = diag(A1,..., A,) is the diagonal

matrix of eigenvalues of A. Let AX < 0 be a negative eigenvalue of A. Let u be a

vector with uj = 0, for all j ~ i, and ui selected as follows: Let k be the largest root

of each polynomial if it exists. Let ui = maxk vk + 1. If all the polynomials do not

have real roots, then ui can be chosen arbitrarily. Then

Aiu2 + (Qk)iUi + k < , V k= l,...,d.

Let o = Q'u. Since the polyhedra Dk form a partition of R, then x E Dko for
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some ko. Then,

gk (o) = XzAxo + oO + k0o

= /'QQ'AQQ'uz + boQ + ck

= u'Au + (Qbk,0 )'u + 5ko
n n

= E XjuAj + (Qbko)juI + Cko
j=1 j=1

= A u- + (Qbko)U- + Eko < 0.

This produces a violated inequality.

2. Otherwise, if A is positive semidefinite, then we test if gk(x) > 0, V x E Dk by solving

d convex quadratic optimization problems:

min z'AX + bk + k, for k =1,..., d. (35)
zEDk

We denote by zx an optimal solution of Problem (35), and zk = gk(z) the optimal

value of Problem (35). If zk > 0 for all k = 1,...,d, then there is no violated

inequality. Otherwise, if zko < 0 for some ko, then we find xk such that g(x*) < 0,

which represents a violated inequality.

Thus, Algorithm A solves the separation problem in polynomial time, and thus Problem

(29), and hence Problem (28), can be solved in polynomial time. O

6.1 Examples.

Suppose we have observed the price q of a European call option with strike k for stock 1,

and the price q2 of a European call option with strike k2 for stock 2. In addition, we have

estimated the means u1, /U2, the variances c 2 , c 2 and the covariance c12 of the prices of

the two underlying stocks. Suppose, in addition, we are interested in obtaining an upper

bound on the price of a European call option with strike k for stock 1. Intuition suggests

that since the prices of the two stocks are correlated, the price of a call option on stock

1 with strike k might be affected by the available information regarding stock 2. We can

find an upper bound on the price of a call option on stock 1 with strike k, by solving the

problem we formulated in (1), which is a special case of Problem (27), with m = 2, n = 7.

From Theorem 8(b), Problem (1) can be solved efficiently. In this case, there are six sets
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Dk as follows:

D 1 = {(xl,x 2)

D2 = ((1, 2)

D3 = ((XI, X2)

D4 = {(Xl,X 2 )

Ds = {(x1, 2)

D 6 = {(xI,x 2)

As another example,

an option with payoff

Il XI > k,x 2 > k 2},
x1 > k, X9 < k2},

I kl < x1 > k, X9 > k 2},
I k1 < x > k, X2 k2 },

x < k, x 2 > k 2},

I XI < k, 2 k2}.

suppose we are interested to find an upper bound on the price of

+(z) = max(O, azx - k1, ax - k 2).

This option allows its holder to buy at maturity two stock indices: the first one (given by

the vector al) at price k1, and the second one (given by the vector a2) at price k2 . Suppose

we have estimated the mean and covariance matrix of the underlying securities. Again,

Theorem 8(b) applies. In this case there are three sets Dk that form a polyhedral partition

of Rm:

D1= {x R I ax - kl < 0, ax - k2 < 0},

D2 = {x E Rm I O < ax- kl, a'x - k2 < al - k},

D3 = {x E R m I < ax - k1 , ax - k 2 < ax - k1}.

Note that if x E D1,

$(x) = a - k2 .

¢5(x) = 0, while if x E D2 , (x) = ax - k1. Finally, if x E D3 ,

6.2 The Complexity of Optimal Bounds.

Theorem 8 provides optimal bounds in polynomial time if we optimize over Rm, but not

over R'. The next theorem shows that it is NP-hard to find optimal bounds over R+.

Theorem 9 (Complexity of finding optimal bounds) The problem of finding the op-

timal bound

max E[(X)]
x (M, )+
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is iVP-hard even if (x) = f'x.

Proof:

The dual of Problem (36) is

n n i

minimize Yo + E yji + E Y (ai + 3i;u)

z1 i=l j=l

subject to x'Yx + y'x + yo > f'x, V x > 0,

and the corresponding separation problems becomes:

Separation problem:

Given (Y, y, yo), check if min x'Yx + y'x + yo - f'x > O, otherwise find a violated inequal-
X>0

ity.

The separation problem is NP-hard, as it reduces to verifying that the matrix Y is

co-positive, which is an NP-hard problem (see Murty and Kabadi [16]). Therefore, by the

equivalence of separation and optimization (see Grdtschel, Lovisz and Schrijver [7]), it is

NP-hard to solve Problem (36). []

7 Concluding Remarks.

We have demonstrated that convex optimization is the natural way to address the relation

between option and stock prices without making distributional assumptions for the under-

lying price dynamics, but only using the no-arbitrage assumption. For the single stock

problem, we have shown that we can find optimal bounds on option prices efficiently, either

algorithmically (solving a semidefinite optimization problem) or in closed form. For options

that are affected by multiple stocks either directly (the payoff of the option depends on

multiple stocks) or indirectly (we have information on correlations between stock prices),

we can find bounds (but not optimal ones) using convex optimization methods. However,

it is NP-hard to find optimal bounds in multiple dimensions.
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