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Abstract

A framework is proposed for the segmentation of brain tumors from MRI. Instead of
training on pathology, the proposed method trains exclusively on healthy tissue. The
algorithm attempts to recognize deviations from normalcy in order to compute a fitness
map over the image associated with the presence of pathology. The resulting fitness map
may then be used by conventional image segmentation techniques for honing in on
boundary delineation. Such an approach is applicable to structures that are too irregular,
in both shape and texture, to permit construction of comprehensive training sets.

We develop the method of diagonalized nearest neighbor pattern recognition, and we use
it to demonstrate that recognizing deviations from normalcy requires a rich understanding
of context. Therefore, we propose a framework for a Contextual Dependency Network
(CDN) that incorporates context at multiple levels: voxel intensities, neighborhood
coherence, intra-structure properties, inter-structure relationships, and user input.
Information flows bi-directionally between the layers via multi-level Markov random
fields or iterated Bayesian classification. A simple instantiation of the framework has
been implemented to perform preliminary experiments on synthetic and MRI data.
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Chapter 1

Introduction

1.1 Motivations

On Friday, November 8, 1895, German physicist Withelm Conrad Roentgen recorded a
photograph of his wife’s hand with mysterious rays labeled “X” for unknown. Doctors’
future dependence on internal imaging was so immediately apparent, that exactly 3
months later, X-rays were first used clinically in the United States.

That dependence has grown dramatically in the subsequent century as
technological innovations have increased the value of doctors’ “X-ray vision”. While the
original radiographs revealed only 2D projections, today’s Computed Tomography (CT)
scanners rotate the imaging apparatus to reconstruct 3D volumetric maps of X-ray
attenuation coefficients. Furthermore, instead of producing contrast between only bones
and soft tissues, today’s Magnetic Resonance Imaging (MRI) scanners can differentiate
between various soft tissues. They accomplish this by detecting radio frequency signals
emitted by the excited magnetic dipoles of each tissue’s constituent molecules. In
addition to these modalities for gathering anatomical data, functional information can be
acquired by functional MRI (fMRI) or Positron Emission Tomography (PET). fMRI
measures the indirect effects of neural activity on blood flow and oxygen consumption.
PET can distinguish metabolically active tumors from necrotic areas by detecting the
gamma rays emitted by positrons that collide with the brain’s electrons. These positrons
originate from the breakdown of radioactive tracers that are injected into the circulatory
system to concentrate in regions of high blood flow and metabolism.

While the advances in medical imaging have been impressive, the need for
scientific progress does not end with the image acquisition process. Post-processing, or

computational analysis of the image data, has attracted researchers in artificial



intelligence, pattern recognition, neurobiology, and applied mathematics. Many clinical
applications of medical image analysis rely on computers to embody the capability to
understand the image data to some degree. This understanding involves comprehension
of knowledge of the image content. Hence, the basic component of image understanding
is image segmentation. Segmentation is the process of labeling a scan’s volume elements,

or voxels, according to the tissue type represented. A subset of the clinical applications

dependent on segmentation are outlined below.

Figure 1.1. Advances in Internal Medical Imaging (Left:) In 1895, X-ray vision of
Bertha Roentgen’s hand and wedding ring fascinated the public and puzzled scientists.
(Right:) Today, "augmented X-ray“ vision is enabling doctors to optimize patient
diagnosis, treatment, and monitoring, as well as improve surgical planning and
guidance. In this example, the 3D Slicer [Gering01] is used to fuse anatomical MRI data
of a tumor (green) with functional MRI data that localizes visual verb generation (blue),
auditory verb generation (red) and the motor cortex (yellow).

1.1.1 Surgical Planning

Many surgeries are delicate operations that require pre-operative planning to ascertain the
operability, or identify the optimum approach trajectory. The benefits of planning vary
widely with the circumstances encompassing each case, but planning is most critical in
cases where the target tissue is situated either deeply or within fragile surroundings.

Consider neurosurgery, where tumors can either infiltrate functional tissue, or push it
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aside. A tumor that invades eloquent cortex can be considered inoperable for the sake of
preserving the quality of life rather than its longevity. For example, the patient depicted
in Figure 1.1 had a tumor in Broca’s area where 96% of speech is generally processed.

The 3D integrated visualization clearly demonstrated that speech activity had migrated to

the right side, proving the operability of this lesion.

Figure 1.2. Lightbox vs. 3D Graphics (Left:) 3-D data is traditionally viewed by
radiologists as a set of consecutive 2-D slices. (Right:) Multiple data sets (MRI, fMRI,
MR Angiography) are registered, or aligned, and the surfaces of critical structures are
rendered to reveal their spatial relationships: vessels (red), tumor (green), pre-central
gyrus (pink), post-central gyrus (yellow), and motor cortex (blue).

Accurate visualization is vital in a variety of other neurosurgical cases. For
malignant tumors, the complete resection of diseased tissue is required for prolonged
survival. For biopsies and benign tumors, the tolerance for error is significantly lower
given that the risks of complications, such as speech impairment, blindness, paresis, or

hemorrhaging, threaten to outweigh the benefits of operating. Since the operational
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hazards are structures arrayed in 3D space, they lend themselves to 3D explorative
viewing from novel trajectories not physically possible. Figure 1.2 illustrates the contrast
between the traditional approach of viewing a sequence of slices on a 2D sheet of film,

and the 3D visualization made possible by computational analysis [Gering99b].

1.1.2 Surgical Guidance

Surgeons can benefit not only from pre-operative planning, but also online guidance for
precise, intra-operative localization [Gering99a), as depicted in Figure 1.4. Patients can
benefit from the smaller access holes, shorter hospital stays, and reduced pain made
possible by minimally invasive surgery [Jolesz97, Black97]. Therefore, surgical guidance

aims to equip the surgeon with an enhanced vision of reality that enables the surgeon to

approach the target tissue without inflicting harm to neighboring healthy structures

Figure 1.3. Systems for Surgical Guidance The surgeon stands within the gap of an
Intervention MRI suite [Schenk95], monitoring the 3D display screen that presents the
results of computational analysis. (Images appeared in [Grimson99]. Used with
permission.)

While an unassisted surgeon can see the surfaces of exposed tissues, the internal
structures are invisible. Image-guided surgery provides “X-ray” vision of what lies
beyond the exposed surfaces, what types of tissue are seen, and what functions the tissues

serve. Different types of tissue may be difficult to distinguish with the eye alone, but
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appear markedly different on certain medical imaging scans. Similarly, tissues that
handle critical functions, such as voluntary movements, speech, or vision, appear
identical to companion tissue, but can be highlighted by a functional exam.

Surgical guidance systems, such as Instatrak (GE Nav, Lawrence, MA) and
Signa-SP (GE Medical Systems, Waukesha, WI), track surgical instruments for rendering

their position relative to anatomical structures within the 3D operating theater, as

depicted in Figures 1.3 and 1.4.

Figure 1.4. Tracking and Rendering Instruments for Surgical Guidance (Left:) The
surgeon resects a cavernoma by maneuvering the instrument (yellow wand) to avoid the
hazards posed by the vasculature (red) and visual cortex (yellow). (Right:) Photograph
of the tracked wand in surgery.

1.1.3 Volumetric Analysis

Quantitative measurements often contribute to disease characterization, treatment
planning, and progress assessment. Traditional metrics have been crudely based on 2D
geometry. For example, muscle volume was characterized by radius, and joint range-of-
motion studies were drawn on X-ray films with rulers and protractors. Computational
image analysis allows true volumetric measurements to be performed, as shown in Figure

1.5 in a study of female incontinence [Fielding00, DumanliO0].
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Figure 1.5. Volumetric Analysis and Studies of Dynamics 3D models of the female
pelvis such as bones (white), bladder/urethra (yellow), vagina (blue), uterus (green),
rectum (gray), and the levator ani muscle (pink) can be visualized and quantified in 3D
space — independent of the orientation of the slice acquisition. The purple line between
two blue markers is measuring the distance of the pubococcygeal line (level of the
pelvic floor, and minimum width of the birth canal).

1.1.4 Time Series Analysis

Certain forms of quantitative analysis are not performed at a single snapshot in time, but
rather, over a series of many imaging exams covering several days or decades. Example
studies include responsivity of pathology to pharmacutical treatments, effects of exercise
on certain tissues, and the time course of disease such as schizophrenia and Alzheimer’s

disease [Guttmann99].

1.1.5 Computer Aided Diagnosis

While the applications listed above have focused on treatment, computational analysis
has recently begun to focus on computer-aided diagnosis (CAD) as well. Particular
attention has been given to breast and respiratory system lesions, and we refer the reader
to [Giger00, Ginneken02] for survey articles pertaining to each of these two applications.
Technological trends suggest that the need for CAD will expand beyond such niche
applications. CT scanners have recently progressed from scanning not one slice at a time,

but 16 slices concurrently. Similarly, commercial MR scanners have progressed from
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having two independent receivers to currently featuring eight or more. These advances in
data acquisition enable unprecedented applications such as 4-D cardiac exams and non-
invasive, rapid, whole-body screening. As a corollary to Moore’s law for the growth of
semiconductor chip densities, the amount of medical data is growing exponentially
despite the fact that the human brain — and therefore a radiologist’s capacity — does not
adhere to Moore’s law. Understanding such massive amounts of data will eventually
become too costly and time-consuming, or even impossible, for human radiologists. With
the number of US radiologists growing a mere 3% annually [BusinessWeek02], we
believe the future of CAD will align less with attempting to perform tasks at which

human radiologists excel, and more with performing tasks that humans simply cannot do.

1.2 Brain Tumor Segmentation

All the applications discussed thus far have relied on computers embodying the capability
to understand the image data as a result of performing segmentation. Widespread clinical
use of segmentation is hindered by two shortcomings: the inordinate amount of a user’s
time required to generate the segmentations, and the inter- and intra-operator variability.
For example, the 3D figures displayed above each required several hours of an operator’s
time to manually trace the outline of each anatomic structure on every slice — typically
124 per volume. Figure 1.6 details this painstakingly long process. There is a significant
amount (~15%) of both inter- and intra-operator variability resulting in an inconsistency
between experts, and a lack of repeatability for a single expert. Therefore, automatic and
nearly automatic techniques can potentially assist clinicians by greatly reducing the

requisite time while increasing the repeatability.
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Figure 1.6. Manual Tumor Segmentation Process for 3D Surface Generation (Top
Left) The operatator traces the outline of the tumor boundary, (Top Right) and repeats
this process on every slice in the volume. (Bottom Left:) A 3D surface is then generated
to encompass the segmentation [Lorensen87] (Bottom Right) and smoothed to remove
digitazation artifacts [Schroeder92].

1.2.1 Related Work

The literature is rich with techniques for segmenting healthy brains — a task simplified by
the predictable appearance, size, and shape of healthy structures. See [Clarke95,
PhamO0Ob] for survey articles. Many of these methods fail in the presence of pathology —
the very focus of segmentation for image-guided surgery. Furthermore, the techniques
that are intended for tumors leave significant room for increased automation and
applicability.

Specifically, we consider the task of segmenting large brain tumors such as gliomas,
meningiomas, astrocytomas, glioblastoma multiforme, cavernomas, and Arteriovenous
Malformations (AVM). In practice, segmentation of this class of tumors continues to
rely on a combination of manual tracing and semi-automation using low-level computer
vision tools such as thresholds, morphological operations, and connective component

analysis. Automatic techniques tend to be either region- or contour-based. (Note that the
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term “automatic” has been applied very liberally in the literature. Automatic algorithms
greatly reduce, but rarely completely remove, user interaction. )

Region-based methods seek out clusters of voxels that share some measure of
similarity. Most methods reduce operator interaction by automating some aspects of
applying low-level operations. From early on, these methods were grounded in a
statistical modeling of each tissue class, combined with morphological operations such as
smoothing and connectivity [Cline87, Cline90]. Threshold selection can be assisted
through histogram analysis [Joe99], and logic can be applied to the application of low-
level vision techniques through a set of rules to form a knowledge-based system
[Clark98]. Another approach is to perform unsupervised clustering with the intention that
the tumor voxels will congeal into their own cluster [Capelle00]. Such methods,
although fully automatic, only apply to enhancing tumor, that is, tumor that appears
markedly hyper-intense on MRI following admission of a contrast agent such as
gadolinium. Since statistical classification alone may not allow differentiation between
non-enhancing tumor and normal tissue, anatomic information derived from a digital
atlas has been used to identify normal anatomic structures. Of these approaches, the most
successful has been the iteration of statistical classification and template matching as
developed in [Warfield95, Warfield00, Kaus01]. However, there remains a reliance on
several minutes of the operator’s time for patient-specific training. For good results, the
template needs to be closely similar to the patient’s anatomy, and the tumors must be
homogenous. The use of morphological operations has the drawback of making a very
crude assumption about the radius parameter that is both application-dependent
(anatomy) and scan-dependent (voxel size). Furthermore, such operations destroy fine
details and commit to irreversible decisions at too low of a level to benefit from all the
available information — thus violating Marr’s principle of least commitment [Marr82].

Contour-based methods evolve a curve based on internal forces (e.g. curvature) and
external forces (e.g. image gradients) to delineate the boundary of a tumor. Since they
experience similar drawbacks as the region-based approaches, methods that claim to be
fully automatic can do so only because they apply to tumors that are easily separable
from their surroundings. (See [Zhu97] for an example using a Hopfield neural network to

evolve a snaking contour). Level set based curve evolution [Kichenassamy95, Yezzi97]
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has the advantage over region-based approaches in that the connectivity constraint is
imposed implicitly rather than through morphological operations. However, 3D level-sets
find limited use in medical practice due to their reliance on the operator to somehow set
the sensitive parameters that govern the evolution’s stopping criteria. Furthermore, the
more heterogeneous a tumor may be, the more user interaction is required.

Both region- and contour-based segmentation methods have ignored the bias field, or
patient-specific, signal inhomogeneity present in MRI. While acceptable for small
tumors, an accurate segmentation method cannot overlook the bias. One reason it is
overlooked 1s the difficulty in computing an inhomogeneous field over an
inhomogeneous tumor (and the fact that inhomogeneous tumors have been largely
overlooked due to their difficulty anyway). Regardless, the bias field is slowly varying,
and therefore its computation from the regions of healthy tissue could be extrapolated
over tumor tissue to provide some degree of benefit. Methods for segmenting healthy
brains have incorporated the EM algorithm [Dempster77] to simultaneously arrive at both
a bias field and a segmentation into healthy tissue classes [Wells96b]. There have been
several extensions, such as collecting all non-brain tissue into a single class
[Guillemaud97], handling salt and pepper noise with Markov random fields [Held97],
using a mean-field solution to the Markov random fields [Kapur99], incorporating
geometric constraints [Kapur99], using a digital brain atlas as a spatially-varying prior
[Leemput99a], automating the determination of the tissue class parameters
[Leemput99b], and identifying MS lesions as hyper-intense outliers from white matter
[LeemputOla]. Coincident with our work in [Gering02b], [Moon02] also extended EM-
based segmentation to apply to brain tumors, but only those that enhance with
administration of contrast agents. The technique does not apply to the single-spectrum

MRI considered in our study.

1.3 Contributions

The two primary contributions of this thesis are the approach of recognizing deviations
from normalcy, and the framework for a contextual dependency network that

incorporates context — both immediate and broad.
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1.3.1 Recognizing Deviations from Normalcy

In contrast to the aforementioned methods for tumor segmentation, the novel hypothesis
underlying this thesis is that we can segment brain tumors by focusing not on what
typically represents pathology, but on what typically represents healthy tissue. Therefore
all training is performed exclusively on healthy brains, and all other forms of a priori
knowledge that are embedded into the algorithm represent descriptors of normal
anatomy. Our method extends the EM-based segmentation to compute a fitness map over
the image to be associated with the probability of pathology. That is, we extend the
segmentation algorithms for healthy brains in order to make progress toward solving the
recognition problem encountered when segmenting tumors. Indeed, the entire motivation
behind the Live Wire semi-automatic approach [Falcao98, Falcao00, O’Donnell01] was
an acknowledgement that segmentation tightly couples two processes: recognition and
delineation. While computers have been adept at delineation (specifying the precise
spatial extent of an object), humans — by nature of their global knowledge — are far better
suited for recognition (roughly identifying an object’s whereabouts). Rather than leaving
that aspect for humans, the goal of this thesis is to improve the computer’s capability for
recognizing brain tumors, and thereby address the drawbacks to the existing region- and

contour-based methods.

1.3.2 Contextual Dependency Networks (CDN)

We designed a framework for Contextual Dependency Networks that incorporate context,
both immediate and broad. We extended EM-based segmentation with region-level
properties such as shape descriptors, and we derived a novel multi-level MRF approach.
Inherent ambiguity necessitates the incorporation of contextual information into the
brain segmentation process. Consider the example of non-enhancing tumor tissue that
mimics the intensity of healthy gray matter, but is too thick to be gray matter. An
algorithm’s low-level computer vision techniques could first classify the tissue as gray
matter, and a higher-level stage — through its broader understanding of context — could
correct the classifications of the first-pass. This example motivates the introduction of
hierarchical context into the segmentation process. A voxel’s classification could be

considered on several levels: the voxel itself, the voxel’s immediate (Markov)

17



neighborhood, the voxel’s region (entire connected structure), the global setting (position
of the voxel’s structure relative to other structufes), and user guidance. Just as a voxel-
wise classification must be computed prior to a neighborhood-wise refinement, a voxel’s
region must be classified before features regarding the size and shape (or other intrinsic

properties) of that region can be computed.

Table 1.1. A Contextual Dependency Network is a framework that features no
decisions made by certain layers that permanently (and perhaps adversely) affect other
layers. Information flows between the layers (bidirectionally depending on
implementation details) while converging toward a solution

# Layer Definition Our Simple Computation
5 User Spatially specific points clicked | Mouse clicks trigger re-
(oracle) on by the user on the fly as | iteration.

corrective action.

4 Inter-structure | Relative position of a voxel’s | Distance from other region

(global) structure to other structures. boundaries.
3 Intra-structure | Relative position of a voxel | Distance from own
(region) within its own structure. boundary.
2 | Neighborhood | Classification of a voxel’s | Mean Field MRF
(local) immediate neighbors,
1 Voxel Classification based on voxel’s | EM, ML or MAP
(point) intensity.

Figure 1.7 previews the results from Chapter 6 to demonstrate that by recognizing
deviations from normalcy, the same algorithm can identify both hyper-intense and hypo-

intense tumors.
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Figure 1.7. Preview of Results. The original input images on top were segmented to
produce the results on the bottom. The algorithm has knowledge of the expected
properties, with respect to both intensity and shape, of healthy tissues only. Colors
represent tumor (green), white matter (white), gray matter (gray), CSF (blue), and
vessels (red).

1.4 Roadmap

In the next two chapters, we develop the rationale for our unique approach to tumor
segmentation. And in the following three chapters, we present the enabling technology.

In all, this thesis exhibits the following organization by chapter:
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Chapter 1: Introduction
Motivations, brain tumor segmentation, contributions, roadmap
Chapter 2 Imaging Model
Imaging model, experimental data
Chapter 3: Recognizing Deviations from Normalcy
Feature detection vs. anomaly detection, deviations from normalcy, nearest
neighbor pattern matching, contextual dependency networks
Chapter 4: CDN Layer 1: Voxel Classification
Mathematical background, robust bias estimation, spatially-varying priors,
computing a probability of pathology, and generative models
Chapter 5: CDN Layer 2: Neighborhood Classification
Markov and Gibbs random fields, MRF design, MRF optimization, factorizing the
joint distribution, algorithmic comparisons, recognizing deviations from normalcy
Chapter 6: CDN Layers 3-5: Intra-structure and Inter-structure Classification
The ACME segmenter, multi-layer MRF, correcting misclassified voxels,
correcting misclassified structures, user interaction, and results on real data
Chapter 7: Conclusions and Future Work

Summary, future work
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Chapter 2

Imaging Model

To set the stage for the experiments ahead, this chapter introduces our imaging model and

the data sets used throughout this thesis.

21 Imaging Model

Before we begin experimenting, we need to model the image generation process. There

are four reasons to construct such a model:

1. The image generation process is incredibly complex, but minor subtleties can be
ignored, resulting in much greater simplicity. Constructing a model is our process
for discerning which aspects to include, and which to exclude, from our
algorithm.

2. The model will support all assumptions that we make while deriving algorithms
throughout this thesis.

3. The model will be computer-simulated to generate synthetic data to use in
experimentation. Although synthetic data should not be used for final validation
of an algorithm designed for real data, it is very useful for the designer to have
control over various image aspects in order to better explore both the problem and
its solution.

4. Because ground truth is known, model-generated data is useful for validating the

correctness of the software implementation of an algorithm.
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The image generation process consists of two main components: an object
function that describes the spatial extent of the object with perfect resolution, and a
mapping function that maps object space to image space. This mapping function is
essentially the image acquisition process, taking an object as input, and producing an

image as output, as shown in Figure 2.1.

Mapping

Figure 2.1. Image Acquisition Process. The image acquisition process performs a
mapping from the object function to image space.

The mapping function’s components are depicted in Figure 2.2, and each will be
described in detail below. Recall that this is intended to be our working model, but not a

fully accurate description of the real process.

Figure 2.2. Image Generation Process. The image acquisition process combines
functions of space (x), tissue type (w), and discretization (n).

The first step in the image acquisition process is to convolve the object function O(x)

with a system response function h(x), which is also referred to as a point spread
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function. This convolution operation models the system’s limited resolution by blurring

the object so that sufficiently fine structures become unresolvable. Note that if 4(x) were

the impulse function, then image voxels would be statistically independent. However,
MR scanners physically perform the Fourier transform, so image reconstruction involves
applying the inverse transform to recover an image. Finite and discrete computation
results in sinc-shaped Gibbs ringing surrounding each voxel’s signal. Scanning protocol
parameters (including voxel size described in a later stage of this acquisition process) are
chosen to minimize the signal’s spread over neighboring voxels, but a very small quantity
of correlation does exist.

The second step in the imaging process is the sampling that produces a discrete
lattice of image voxels. This digitization of a continuous function is responsible for
introducing partial volume artifacts, which we will examine in Chapter 6.

The next stage in the process introduces additive white noise with tissue-
dependent variances. Noise in MR images has peculiarities caused by rectification during
image reconstruction. MR signal detection is performed in quadrature, producing real and
imaginary signals. Medical images are produced by taking the magnitude of these signals,

which rectifies both the signal and the noise:

magnitude image = SQRT[(real signal + real noise)? + (imag. signal + imag. noise)?]

As a result that is elegantly derived in [Henkelman85], the noise in the presence
of strong signal has a nearly Gaussian distribution [Simmons96], but noise near low
signal, such as in the background, is best modeled with a Raleigh distribution
[Haacke99].

The final stage in the pipeline involves combination with a multiplicative bias

field b(x) to model spatial inhomogeneity. Present in every medical imaging modality,

the cause of the bias field varies greatly. For example, the bias field is attributed to
dissipation with depth in Ultrasound, Compton scattering in CT, and asymmetric
positioning of reception coils, among other effects, in MRI [Simmons94, Sled98].

The above imaging model will form the basis for making a number of

assumptions throughout this thesis. The model reveals that the problem of classifying
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image voxels is very ill-posed. According to [Tikhonov77], a problem is mathematically
ill-posed if its solution does not exist, is not unique, or does not depend continuously on
the initial data. In our case, the solution is not unique because the model accounts for five
major voxel intensity modifiers, as summarized in Table 2.1. Therefore, additional
constraints are needed to guarantee the uniqueness of the solution, and convert this ill-
posed problem into a well-posed one. Computer vision algorithms have long relied on
regularization to make a problem well-posed, as surveyed in [Poggio85]. The approach
taken by this thesis will be to impose the typical smoothness constraints in addition to
novel contextual constraints. Observe that an approach of searching for deviations from
normalcy renders an ill-posed problem to be even more ill-posed because an extra voxel
modifier of pathology is effectively added to Table 2.1. Regardless, this approach has the
benefit of allowing general tumor recognition, so we will confront the challenge of

making the problem well-posed by adding contextual constraints.

Table 2.1. Voxel Intensity Modifiers

Effect Cause
Tissue heterogeneity Object Function
Voxel correlation System Response Function
Nonuniformity Bias Field
Partial volume artifacts Sampling Function
Additive noise Detector noise, and rectification

2.2 Experimental Data

This section introduces the data sets that will be used for experimentation throughout this

thesis.

2.2.1 Synthetic Data

Synthetic data will be shown to be useful in the experiments of the subsequent chapters.
This is because the ground truth is known, and vast amounts of data can be easily
produced. We must be careful to ensure that the synthetic data spans an interesting and
important space of possible cases. Therefore, we generated the synthetic data set by

simulating each stage of the pipeline developed in Section 2.1.
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2.21.1 Synthetic Object Function

The object function for 2-D brains was simulated by generating white matter that was
shaped as a disc with its radius modulated by a sine wave. The white matter was then
surrounded with a layer of cortical gray matter, which was surrounded with a coating of
CSF, which was enveloped by a perimeter of scalp. Then, subcortical gray matter, the left
ventricle, and the right ventricle were each added as overlapping discs near the brain
center. Finally, vessels were added as arcs. With uniform distributions governing the
parameters for shape and position, there are 2.5x10"7 equally probable “healthy brains”
from the object function. Figure 2.3 depicts several examples to demonstrate the

variability. Furthermore, 5.8x10° different circular tumors can be randomly added.

25



Figure 2.3. Synthetic Object Function. Several examples drawn at random from the
simulated Object Function are shown as ground truth segmentations. Color coding:
white matter (white), gray matter (gray), CSF (blue), scalp (tan), vessel (red).

2.21.2 Synthetic Imaging Function

Given a tissue labeling from the object function, the imaging process is simulated by
adding Gaussian-distributed intensities to form an image. Statistical parameters for each
tissue class were measured from computing the mean and variance of voxels in one of the
scans in the real data set. To prevent partial volume artifacts from corrupting the
measurements, the tissue was segmented, and then the segmentation was eroded to

remove boundary voxels (Figure 2.4). Table 2.2 lists the resultant measurements both
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before and after erosion. We will reference this table again in the discussion of handling

partial volume artifacts in Chapter 6.

Figure 2.4. Measuring Statistical Parameters. Parameters were measured from a real
scan (left) by segmenting a tissue (center) and eroding its boundary (right). Pictures are
shown for CSF in the ventricle, and Table 2.2 lists the results for all tissue types.

Table 2.2. Statistical Measurments for Synthetic Data. The model used the values
obtained without partial volume artifacts (PVA) to avoid inaccurately inflated variances.

Tissue Type With PVA Without PVA
Mean Variance Mean Variance
White matter 117 55 120 33
Gray matter 91 43 90 29
CSF 32 97 28 48
Scalp 198 1919 217 1150
Vessel 179 631 183 200

Using the mean values shown in the right side of Table 2.2, a 512x512, high-
resolution, intensity image is produced from the object function’s label map. Then, to
simulate the system response function, this image is convolved along each dimension
with a Gaussian kernel (1,4,6,4,1), and down-sampled to form a 256x256 image. Figure
2.5 reveals that the result accurately depicts the limited resolution and partial volume
artifacts of real scanners. Next, additive white noise is simulated by adding random
samples drawn from a 0-mean, Gaussian process. (For convenience, we used the same

variance of 36 for all tissues, where this value was chosen based on inspection of the

right side of Table 2.2.)
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Figure 2.5. Partial Volume Artifacts. Close-ups of the portion of the synthetic brain
where ventricle, subcortical gray matter, and white matter converge are shown. An
image with PVA (right) is computed as a blurred, down-sampled version of a high-
resolution image without PVA (left).

Furthermore, spatially-varying bias fields are included by modulating the image
with a smoothly varying function. We experimented with a linear ramp and a low-

frequency sinusoidal wave, as pictured in Figure 2.6.
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Figure 2.6. Bias Field. Synthetically generated bias ficlds that vary linearly (top left)
and sinusoidally (top right) are applied to an original image (bottom left) to produce the
bottom center and right images, respectively.

2.2.2 Real Data
Besides using synthetic data, experiments were performed on a publicly available
database of 10 tumor scans [BWHSPL]. To understand this data set, we briefly describe

the nature of multi-spectral MRL

2221 MRI

MR imaging is performed by measuring the radio signal emitted by magnetic dipoles
(hydrogen nuclei) as they relax back to their equilibrium position following excitation by
a momentarily-applied magnetic field. The dipoles cannot merely align themselves with
the magnetic field as little bar magnets would, because the laws of quantum physics
restrict these dipoles to be in one of two states. They precess like spinning tops, and the

"tops" can make one of two angles with the axis of rotation. The applied magnetic field
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excites approximately one in a million of the dipoles to flip states, and the total sum of all
these miniature magnets is a magnetization that decays once the field ceases to be
applied.

This decay has two separate components referred to as T1 and T2 relaxation. T1
relaxation occurs as the dipoles return their orientation to the equilibrium position, and
T2 relaxation results from the precession of the dipoles falling out of phase with each
other. The rate of T1 and T2 decay varies depending on the molecular chemistry of the
tissue inhabited by the hydrogen nuclei. Scanning parameters can be set so that the
source of image contrast (light and dark regions) is weighted more toward either the T1
or T2 relaxations.

In many instances, physicians acquire both T1- and T2-weighted MRI. For
example, extracting a well-defined tumor boundary from diagnostic images may be
hindered by surrounding edema. Edema, or liquid diffused between cells, spreads finger-
like into the white matter, while avoiding the gray matter and cortex whose cell packing
is too dense to harbor as much fluid [Youmans96]. The extra-cellular fluid of edema and
increased intra-cellular fluid of tumors can be confused when ascertaining the
tumor/tissue interface. Ambiguity can be diminished by having both T2-weighted MR
images and T1-weighted MR images with contrast. A contrast medium (liquid that
appears bright on MRI) is administered to the patient, and taken up more by the areas of
active tumor tissue. The contrast agent forms a hyperintense region on MRI where the
agent leaks out of vasculature into tissue. This occurs where the blood-brain barrier
breaks down, and is thus an indication of a high grade, rather than a low grade, glioma (a
mass created in the brain by the growth of abnormal cells, or the uncontrolled
proliferation of cells).

Brain segmentation techniques have long exploited the increased soft-tissue
contrast available from multi-channel MRI [Vannier85]. Standard diagnostic protocols
involve collection of proton density, T2-weighted, T1-weighted pre-contrast, and T1-
weighted post-contrast images. Therefore, if we can demonstrate our framework to
function reasonably well given only noisy, single-channel data, then results will be that
much better on better data. The fact remains that humans can easily recognize tumors to a

large degree from noisy, single-channel MRI. For example, although edema is
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remarkably clear given both T1- and T2-weighted scans, radiologists do tend to identify
edema from T1-weighed imagery alone. Our motivation is to progress toward endowing

computers this human-like ability.

2.2.2.2 Tumorbase

The tumorbase [BWHSPL)] is an especially difficult data set with which to work because
it contains only single-channel, post-contrast MRI with poor gray-matter / white-matter
contrast. For performing validation, one slice of each scan was segmented by 4 different
experts, and the entire volumes were segmented by one expert. Table 2.3 lists the patient

characteristics. The acquisition protocol was:

SPGR T1 POST GAD
resolution:
pixel size:
slice thickness:

slice gap: 0.0 mm

acquigition order: LR

Table 2.3 Tumorbase

256x256x124
0.9375 x 0.9375 mm
1.5 mm

Case # Tumor Type Tumor Location Slice #
1 | Meningioma Left frontal 44
2 | Meningioma Left parasellar 58
3 | Meningioma Right parietal 78
4 | Low grade glioma | Left frontal 35
5 | Astrocytoma Right frontal 92
6 | Low grade glioma | Right frontal 81
7 | Astrocytoma Right frontal 92
8 | Astrocytoma Left temporal 39
9 | Astrocytoma Left frontotemporal 31

10 | Low grade glioma | Left temporal 35

The slices listed in the righthand column of the above table are depicted in Figure

2.7.
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Figure 2.7. Tumorbase The central tumor slice of each of 10 scans
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Chapter 3

Recognizing Deviations from Normalcy

In this chapter, we develop the rationale for our unique approach to tumor segmentation.
By viewing the problem from a general perspective, we describe tumor recognition as a
form of anomaly detection rather than feature detection. By taking this posture, we
position ourselves to derive our method for diagonalized nearest neighbor pattern

recognition, and also our framework for contextual dependency networks.
3.1 Feature Detection vs. Anomaly Detection

3.1.1 Tumor Segmentation Based on Feature Detection

Much of the related work in tumor segmentation reviewed in Chapter 1 can be classified
as signal processing and pattern recognition. Signals, taking the form of imagery, are
generally processed through a three-stage pipeline consisting of preprocessing, feature
extraction, and classification [DudaOl]. Stages are sometimes combined, or applied in
iteration, such that intermediate results are fed back into earlier stages for re-processing.
Nonetheless, in general, each stage serves to simplify the operations of the subsequent
stage.

The first stage, preprocessing, simplifies feature extraction by reducing noise or
inhomogeneity. Some algorithms perform nonlinear filtering designed to reduce noise
while preserving object edges [Gerig92]. We cited several methods in Chapter 1 that
correct for the non-uniform bias field present in MRI. Others require scaling images in

intensity or extent to match certain templates.
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The second stage, feature extraction, strives to reduce the amount of data passed
on to the classifier. This data reduction is achieved by measuring features, or properties,
that characterize the objects to be recognized. The measurements are chosen so that
measurement values are similar for objects that share the same class membership, but are
quite different for objects belonging to other classes. The goal, then, is to identify
features that are both distinguishing, and invariant to irrelevant transformations of the
data. Due to their ease of computation, segmentation features are typically intensities and

distances.
The third stage, the classifier, decides the class membership of each object. While

the final segmentation may display the assignment of each object to a single class, the
classifier typically solves the more general problem of computing the probability of
membership of each object with each class. If the features are ideally chosen to linearly
separate the object classes in feature space, then the design of the classifier can be as
simple as a threshold. On the other hand, a poorly designed feature extractor requires a

more intelligent classifier, as illustrated in Figure 3.1.

Figure 3.1. Features and Classifiers

A common task used in the literature to
evaluate a segmentation method is to
discern buildings from trees and shrubs.
However, consider this photograph from
Boston’s historic Beacon Hill district. Its
| sheer complexity suggests a need for an
extremely intelligent classifier.

However, if one were to photograph it
again in early autumn (after the tree leaves
have turned bright yellow while the vine
remains deep green), and again in late
autumn (after the vine has also lost its
leaves), the three images would comprise
a feature vector of colors. Only a simple
classifier would be required to operate on
this feature vector because the objects
(building, vine, and tree) are -easily
] separable across the new dimension of
time.
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3.1.2 Tumor Segmentation Based on Anomaly Detection

Existing work in tumor segmentation has tended to reduce the problem to a form of
pattern recognition, with a focus on feature extraction. Given this stance, the central

question that the algorithm designer seeks to answer is:

1.) “What features will separate tumors from their surroundings?”

Given the answer to this question, the designer subsequently asks:

2.) “What preprocessing is required to facilitate extraction of these features?”

3.) “Which classifier will perform best on this feature set?”

However, the goal of this thesis was to shift the focus from the features to the classifier,
and to consider the problem not just as pattern recognition, but within the more general
scope of artificial intelligence. Consequently, we replaced the above questions with the

following:

1.) “How does a doctor recognize tumors?”
While answers may vary, we believe that a doctor’s knowledge of normal anatomy
permits recognition of any form of pathology. As before, the answer to the first question

leads us to two follow-up questions:

2.) “What is normal?”

3.) “How is abnormality measured?”

These are the two questions on which we will focus in considerable detail as we

develop our framework for a tumor segmentation system.
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3.2 Deviations from Normalcy

3.2.1 Expressing Abnormality

Given a univariate, normally-distributed, random process, the answers to our two guiding
questions are straightforward: normalcy is defined as the population mean, and
abnormality is measured as some distance from the mean. The units of measurement for
this distance should be standard deviations because a Gaussian process is fully
characterized by its mean and standard deviation. For variable x with mean u and

standard deviation o, expressing distance in this way is commonly known as the

2 3.1

P EEY) G-D
L 2
[e)

Next, consider a multivariate process of n independent variables. Like a Euclidean

Mahalonobis distance:

distance for Cartesian space, abnormality can be expressed as the square root of the sum

of squared Mahalonobis distances for each variable:

(3.2)

2 2 2
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Finally, consider a multivariate process of correlated variables. The expression for
abnormality begins as above, but contains additional cross-terms under the radical.

Combining the variances and covariances into a convariance matrix X, we have:

d, =J(x-m T (x—p) G-3)

With medical applications, however, access to all variables is rarely obtainable.
For example, physical health could be expressed as a single quantity using the above
equation for distance from normalcy. Such a distance could be computed from the set of
status and DNA contents of each cell, yet the normalcy of newborn babies is merely
expressed with the five non-invasive measurements of the Apgar Score [Sears93]: heart
rate, breathing effort, color, muscle tone, and response to stimulation. That is, all the

possible axes of variation are reduced to a very small and manageable feature set.
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This analogy shares two similarities with MRI. First, we do not have access to the
complete condition of the brain; we have only the measurements expressed as the
intensities of the image voxels. Brains do not have voxels; images do. Given that the
image itself is a non-ideal representation of the brain, it is reasonable to consider further
representational abstractions for convenient computation. Second, all the axes of
variation can be compressed into a small and manageable set, which we will explore next.

We can regard an MR image as a set of voxels that specify the Cartesian
coordinates of a point with respect to a set of axes — one axis per voxel. In this
interpretation, each image can be thought of as a point in an abstract space of images. A
set of N images represents a cloud of N points in image space. We can perform data
dimensionality-reduction by deriving a set of degrees of freedom which may be adjusted
to reproduce much of the variability observed within a training set. (Informally, imagine
creating a small set of knobs which may be turned to generate reconstructions of all the
image instances.)

Brains, being similar in overall configuration, will not be randomly distributed
throughout a huge image space, and thus can be described by a relatively low
dimensional subspace. For example, consider having a stack of brain images that could
be ordered in such a way that when viewed in rapid succession, they formed a nearly
seamless movie. Whenever this is achievable, then those images lie along a continuous
curve through image space. Generating the entire sequence of images can be achieved by
altering only one degree of freedom, the curve’s parameterization. That is, brain
variability is reduced to a one-dimensional curve that is embedded in a high-dimensional
image space, where the number of dimensions is equal to the number of voxels per
image. By reducing the data dimensionality of normal brains to one, the expression of
abnormality becomes simple: the distance from the curve. When one dimension is not
sufficient to capture an adequate amount of variability, several may be used, producing
not just a curve, but a surface or manifold in image space. We next examine very briefly
how to discover such a manifold.

While newborn measurements were chosen partly for convenience, the axes of
variability for brain images can be found automatically given a training set. There are

several mathematical methods [Chatfield80, Turk91, Bregler95, Hinton95, Basri98,
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TenenbaumO0, Roweis00, Cox01] that can discover the underlying structure of brain
mmages (different from that of cardiac images, for example) in order to map a given data

set of high-dimensional points into a surrogate low-dimensional space:
XeR"=YeRY, d<<D 34

For example, Principle Component Analysis (PCA) replaces the original variables of a
data set with a smaller number of uncorrelated variables called the principle components.
If the original data set of dimension D contains highly correlated variables, then there is
an effective dimensionality d < D that explains most of the data. This representation has
two advantages. First, the fact that the new variables are uncorrelated means that equation
3.2 can be used instead of equation 3.3. Second, the presence of only a few components
of d results in more efficient computation, and it makes it easier to label each dimension
with an intuitive meaning, such as “height”. The earliest descriptions of PCA were
presented in [Pearson1901] and [Hotelling33], and we refer the reader to [Gering02b] for
detailed derivations and comparisons of both linear and non-linear data dimensionality

methods.

3.2.2 Partitioning Abnormality

To summarize the discussion thus far, we have concluded that computing the
Mabhalonobis distance using every MR image voxel would be too cumbersome, and we
therefore wish to reduce the data dimensionality. However, we cannot simple run PCA on
a vast training set of brain images because we are not seeking to measure the total
abnormality of a brain. Rather, we aim to recognize the abnormal tissue within a brain,
and label those areas as pathology. Thus, our goal is to partition the space into healthy
and diseased regions.

Partitioning can be achieved through concentrating on local image patches. If we
divide the brain into a large number of sub-regions, PCA (or a similar variant) could be
performed on each local patch. However, this approach faces the two hurdles of
somehow reconciling a given brain sample with some appropriately chosen subdivision
process, and training on an extensive set of brain imagery. How should the image be
subdivided into local patches? We will answer this question during our development of

nearest-neighbor pattern matching in the next section.
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3.2.3 Defining Normal using Symmetry

Throughout the above discussion, answers to the questions of what is normal, and how to
measure abnormality, were dependent on possessing a training set of example instances
of normal images. In the absence of an extensive training population, a definition for
normal can be derived from an exploitation of symmetry. For example, it has been
proposed that computer-aided diagnosis algorithms for detecting breast and respiratory
lesions could exploit left/right symmetry to define normal as the healthy breast or lung.
(See [Giger00] for a survey article). In practice, however, texture from a single healthy
breast has been insufficient to capture all the variability, requiring a training set of many
scans. We perform experiments here to judge how well normal brain anatomy can be
defined as the healthy hemisphere. The problem of recognizing brain tumors may be
better suited to exploiting symmetry because the application is for treatment planning
rather than screening. Consequently, while breast tumors can appear minutely small on a
routine screen, brain tumors tend to not be scanned until their size has grown sufficiently
large to become symptomatic.

With symmetry providing examples of normal texture, abnormality can be
measured using an appropriate distance metric such as the sum-of-squares distances for a
Euclidean space. This leads us naturally to the method of nearest neighbor pattern

recognition, developed below.

3.3 Nearest Neighbor Pattern Matching

In this section, we experiment with applying nearest neighbor pattern matching (NNPM)
to segmenting brain tumors. This method forms the basis of an initial study for measuring
deviations from normalcy in our application. The results represent a baseline against
which we can benchmark the more sophisticated methods developed during the
remainder of this thesis.

The main idea is to compute a map of the probability of pathology, and then
segment this map instead of the original input intensity image. Alternatively, the map
could be used as a feature channel in an existing tumor segmentation method, such as
[Kaus00]. Figure 3.2 illustrates the concept of segmentation based on an abnormality map

computed as the set of Mahalonobis distances.
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Figure 3.2. Segmenting Abnormality Maps instead of Intensity Images. Top: basic
semi-automatic segmentation steps applied in sequence to an intensity image. From left
to right: threshold, internal island removal, external island removal, erosion/dilation.
Bottom: same sequence of steps applied to the map of abnormality computed using
NNPM with a database of 300 normal images.

3.3.1 NNPM Algorithm

As diagrammed in Figure 3.3, a simple pattern matcher can be constructed from two
elements: a container and a comparator. The container holds a set of template patterns,
and the comparator computes a distance value, according to an appropriate metric,
between each template and the sample under study. The template with the smallest
distance is the nearest neighbor to the sample. Classification can be accomplished with
NNPM by classifying the sample by assigning it the label associated with its nearest
neighbor [Duda01]. We will adapt NNPM for use as a means of measuring deviations

from normalcy.
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Figure 3.3. NNPM Pattern Matcher

For our application, define a sample to be a small rectangular window surrounding
a certain voxel of the patient’s image. Let there be a different container C; of templates 7;

for each sample S; in the patient image. Then perform the following algorithm:

For each sample S; in the patient image:
For each template T; in container Cj:
Compute disparity between S; and T,

Record the lowest distance as pixel i of the result

We next consider how NNPM can be used to answer our two guiding questions of what is

normal, and how to measure abnormality.

3.3.2 Measuring Abnormality with NNPM
Let us express the above algorithm mathematically. The method searches for the template
with the smallest distance:

d, =mind, 3.5)
Je€,

We next need to define dj;: the distance between the i™ sample in the image, and the j™

template in C;. If we were to treat each variable within a window as independent, we
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could adapt equation 3.2. Then, in place of the mecan value rcpresenting “normal” in
equation 3.2, we use the reference value. Instead of normalizing with standard deviations,
we normalize with window size W to accommodate comparing the results achieved using
various window sizes. These substitutions result in the following equation, which is

kTH

essentially the root-mean-squared error. Let Sj{k] represent the voxel of the i'"

sample, and let 7}[k] represent the corresponding voxel in the j'" template.

(8, [K1- T (k) G0

dll = k=1.W W

Combining the above two equations produces a mathematical expression of the

algorithm, given our metric for measuring abnormality:

Z(Sf [k]-T,[k])* 3.7

d, = miny[£E
jeC; W

3.3.3 Defining Normal with NNPM

NNPM defines normal as the set of templates in each container C;. Each template is an
example of normal texture that one would expect to find within the window of W pixels

surrounding the ;™

voxel of the patient’s image. Since no probability distributions are fit
to these templates, building collections of them is straightforward. However, enough
templates must be gathered into each container to sufficiently span the space of normal
variation within a window, and none must be examples of abnormal texture near voxel i.
This can be a significant task given that the variation within a window is comprised from
variation in both anatomy and the bias field. The next few paragraphs examine how to fill
these containers.

Consider the simple case of defining all C; to identically contain all windows
within a reference image of a healthy brain. The algorithm would effectively search an
entire reference image for the template window that best fits a given window in the
patient image. However, by searching the entire reference image, spatial information —
the location of voxel i — is ignored. For example, if the reference image contained a dark

window anywhere, then the algorithm would consider any dark windows in the patient
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image to be permissible. However, it should be considered abnormal to find a dark
window where one would expect a light window, so this approach fails as a search for
deviations from normalcy.

Therefore, a more plausible choice of C; would be the window surrounding the
one voxel of the reference image that exhibits the best correspondence with voxel i of the
patient image. Correspondence would need to be established by defining a mapping from
VOXG]S’ in the patient image to voxels in the reference image. Such a mapping could be
computed as a linear or affine transform using rigid registration, or as a polynomial
function or vector displacement field using non-rigid registration. Either way, robustness
to registration errors could be introduced by expanding C; to include all windows
centered around the small set of neighboring voxels surrounding the one voxel with the
best correspondence. The algorithmic time complexity would then be O(NMW), where N
is the image size, W is the window size, and M is the neighborhood size, and M, W < N.

How well does a single reference image capture the extent of normal variation
within a population? The sample on the left of Figure 3.4 looks little like the reference on
the right. With this thought in mind, perhaps a better approach to defining C; would
involve not one reference image, but a set of images that have been selected to be
representative of the complete population. Call this the training set of images, and define
C; to include all templates defined as follows:

e For each image ¢ of the training set:

e For the one voxel j in image ¢ that exhibits the best correspondence with
voxel i of the patient’s image:

e For each voxel £ in the neighborhood {jy} surrounding j:

e C(Create a template as the window {ky} surrounding voxel &.

The time complexity of this algorithm scales linearly with the training set size:
O(NMWT). Figure 3.4 illustrates the difference between using a single reference image,
and an extensive training set. Observe that the larger atlas alleviates the need for a larger
search neighborhood. No search neighborhood is as good as a more complete atlas,
especially for expressing concepts such as the vessels which rarely appear in exactly the

same place on any two scans, but always occur in the same general area.
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Figure 3.5 presents a measurement of the algorithm’s reliance on all the images in
the training set. A spatial map was generated by setting each voxel’s value to the index of
the atlas image (1-300) where the nearest neighbor was found. For example, if all the
nearest neighbors had been found in the same atlas image, the spatial map would appear
as a constant gray. Instead, the map appears quite speckled. The map on the right is less
homogenous than the map on the left because the search space was expanded to include
the 9x9 neighborhood the best corresponding pixel of each image in the atlas (instead of
just Ix1). Note how the tumor is conspicuous by its homogeneity — testifying to its

distance from the cluster of healthy atlas patches.
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Figure 3.4 Atlas Size and Search Space. (Top:) The “sample” image is on the left, and
one “reference” image is on the right. (Middle:) Results of running NNPM on the
“sample” using an atlas of 300 scans. From left to right, are the results of searching a
square neighborhood around the best corresponding pixel with radius 0, 2, and 16.
(Bottom:) Inferior results of NNPM using the single “reference” image instead of an
atlas of 300.
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Figure 3.5. Nearest Neighor Distribution within an Atlas of 256 Scans. (Top:) A
spatial map was generated by setting each voxel’s value to the index of the atlas image
(1-300) where the nearest neighbor was found. On the left, is the result of using 1xI
neighborhoods, and the right is the result of searching 9x9 neighborhoods. (Bottom:)
Histogram of indices for the top left image demonstrating the breadth of the distribution.
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3.3.4 Selecting Window Size

Consider selection of the window size W. For the foregoing discussion, define micro-
texture to refer to the normal intensity patterns found over small regions, and macro-
texture to refer to the patterns spread over large areas.

The optimal choice of window size is application-dependent, as it varies with the
interplay between micro- and macro-textures. Selecting a small window size would be
adequate to incorporate the context necessary to recognize normal micro-texture, and run
times would also be favorable. Large windows, on the other hand, would have the
advantage of capturing macro-texture, but they would situate the micro-texture within the
macro-texture. That is, if a certain micro-texture pattern could normally be found
anywhere, than enough macro templates would be required to express this fact by
exhibiting the certain micro texture in various situations. Thus, the run-time of the
algorithm that correctly uses large window sizes would be dramatically lengthened for
two reasons: more time is required to process larger windows, and more template
windows are required to encode more situations. We will refer to this as the double
trouble with large window sizes.

One way to handle this dilemma would be to isolate the searches for micro- and
macro-texture. This will be our goal in the next two subsections, as we derive our novel

diagonalized NNPM.

3.3.5 Multi-scale NNPM

As we seek a means to somehow isolate the searches for micro- and macro-patterns, we
acknowledge that there has been much experience within the computer vision community
with multi-scale algorithms. We employ such a tactic in Chapter 4, for example, when we
automatically align patient images to atlas images by maximizing mutual information
[Wells96a]. Our implementation applies the same algorithm to several different
resolutions of the input data. The objective of this approach is for greedy algorithms to
have greater scope to avoid local minima, as well as faster convergence toward a
solution. Coarse solutions can be reached very quickly given an input data size that is
merely a small fraction of the original. Then, finer processing can refine the coarser

solutions using progressively larger input data sizes.
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For our purposes within this chapter, we seek to exploit multi-scale computation
not to aid greedy searches or minimize time to convergence, but rather to separate micro-
and macro-texture. When the input data set is downsampled to halve the size of each
dimension, 3-D computation with the same window size proceeds 8 times more quickly,
and incorporates context from a region 8 times larger. More importantly, at progressively
smaller image dimensions, micro-textures become blurred out, allowing the computation
to concentrate on macro-textures alone. Figure 3.6 displays one of our synthetically-

generated brains at multiple resolutions.

Figure 3.6. Multi-scale Computation. The top row displays each downsampled image
at actual size, while the bottom rows displays the same images scaled for equal
comparison of detail. At small scale (left), note the disappearance of micro-texture
(vessels) and preservation of macro-texture (CSF divides scalp from white matter).

Downsampling must be performed properly to avoid the artificial introduction of
spurious features, as shown in Figure 3.7. This is the purpose of scale-space theory, and
in particular, the scaling theorem. Multi-scale analysis for extracting features from a

continuum of scales was initiated by [Rosenfeld71], and followed by the well-known
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work of Ellen Hildreth and David Marr [Marr80]. The scaling theorem arose when
[Witkin83] analyzed zero crossings over a range of scales simultaneously by plotting the
zero crossings of a Gaussian-smoothed signal over a continuum of scales. The resulting
contours form either lines or bowls as the scale progressed from small to large. Thus, the
transformation from a fine scale to a coarse scale can be regarded as a simplification.
Fine-scale features disappear monotonically with increasing scale such that no new
artificial structures are created at coarser scales. Otherwise, it would be impossible to
determine if coarse-scale features corresponded to important fine-scale features, or
artifacts of the transformation. In what is known as the scaling theorem, [Koenderink84],
[Bebaud86], and [Yuille86] each proved that the Gaussian kernel uniquely holds this

remarkable property.

Figure 3.7. The Scaling Theorem. From left to right, progressive downsampling of an
image. The bottom row depicts results using Guassian smoothing, while the top row
does not. Observe the introduction of high-frequency spurious features in the third
image from the left, top row.

3.3.6 Diagonalized NNPM

All that remains in completing our derivation of multi-scale NNPM is some means of
combining the results found using fine and coarse scales. The output of NNPM is a
spatial map of distances from normalcy. We create a probability of pathology by

normalizing this map to scale from 0 to 1. Let us define the following:

P(A) = probability of pathology at the highest resolution
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P(B) = probability of pathology at intermediate resolution
P(C) = probability of pathology at the lowest resolution
P(A,B,C) = probability of pathology

Operating on the assumption that using multiple scales is successful in isolating
micro- and macro-texture, we treat the probabilities of pathology at each resolution as if
they were independent. (Although not true in practice, we make this assumption for
tractability.) Thus, we can combine the results obtained at each resolution by scaling each

result to become a probability map, and then multiplying all the maps:
P(A,B,C) = P(A)P(BYP(C) (3.8)

Finally, we must determine the value of the window size parameter, W. Imagine a
matrix with a vertical axis of image resolution, and a horizontal axis of window width
(2*r+1). Figure 3.8 arranges the resultant images from running NNPM into such a matrix.
Instead of using identical window sizes at all scales (such as the red oval in figure
indicates for a window radius of 2), we will prove that the diagonal blue oval is a better
choice for us. We label this algorithm, where the window size increases monotonically

with decreasing resolution, diagonalized NNPM.
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Figure 3.8. Diagonalized NNPM. The red oval represents basic multi-scale NNPM for
a window size with radius 2, while the blue oval depicts diagonalized NNPM.
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Statement:
In the Diagonalized NNPM algorithm, window size increases monotonically with
decreasing resolution, resulting in larger windows at coarser resolutions.
Reasoning:
¢ Diagonalized NNPM combines the results obtained at each resolution by scaling

each result to become a probability map, and then multiplying all the maps:
P(A,B,C)= P(A)P(B)P(C) (3.9)

e The validity of this operation depends on the independence of each map.

e The independence of each map depends on the separation between micro- and
macro-texture.

e Micro-texture is most isolated with a small window so that the Gaussian
smoothing obscures the micro-features.

e Macro-texture is most isolated with a large window so that a given micro-feature
within the window cannot exert a significant influence in the calculation of
abnormality (equation 3.7).

e Thus, multiplicative combination of the maps is best achieved with window sizes
that increase with coarser resolutions.

QED

Figure 3.9 demonstrates empirical results of applying this theorem to the synthetic

data from Figure 3.4. Although it is dangerous to compare images that have been
manually segmented and window/leveled, we would like to make an observation,
regardless. The non-diagonalized result contains artifacts and an artificially larger tumor
because the boundaries are more blurred. This is a consequence of failing to isolate the
fine structure of boundary localization from the coarse structure of general tumor

presence.
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Figure 3.9. Diagonalized NNPM. The top row of images uses a probability map for
pathology computed using the red oval in Figure 2.9, while the bottom row uses the blue
oval corresponding with Diagonalized NNPM. From left to right, the 3 images are the
map itself, segmentation using a threshold, and final segmentation following basic
morphological operations.

3.3.7 NNPM Results on Real Data
We performed experiments by running diagonalized NNPM on every case in the
tumorbase in addition to a healthy volunteer. The depicted results were generated by
defining normal as the two best corresponding slices from the healthy hemisphere of the
same patient. The diagonalization is performed using the following set of window radii
from fine to coarse resolution: {1, 1, 2, 2}. The segmentation is performed fully
automatically by applying a threshold to the 1% level of the map, and then keeping the
largest island in the intracranial cavity. The layout of each of the next several figures is as
follows:

o Left: Diagonalization matrix (same format as Figure 3.8)

e Upperright: Single abnormality map computed from the diagonalization matrix

e Lowerright: Segmentation computed from the abnormality map
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Figure 3.10. Defining Normal by Symmetry. For the first 4 cases in the tumorbase, the
top row shows the central slice of the tumor, and the bottom row shows the
corresponding slice in the other healthy hemisphere of the same patient.

Figure 3.11. Healthy Volunteer. Mostly successful, although the fixed threshold
detected a variation in cortical sulci.
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Figure 3.12. Meningiomas. Case | (top) and 2 (bottom) have hypointense tumors that
are easily recognized as abnormal. Perfect boundary delineation needs user interaction.
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Figure 3.13. Low Grade Glioma. The hypointense tumors of cases 3-4 are segmented
as well as the hyperintense ones, displaying the advantage of not training on tumors.
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Figure 3.14. Astrocytomas. Cases 5 and 7 failed to produce suffient abnormality to
cross the fixed threshold used for automatic segmentation of all cases.
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Figure 3.15. Heterogeneity. Cases 6 and 9 have very heterogenous tumors. Recognition
of the entire tumor is possible on certain cases, which is at least superior to thresholds.
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Figure 3.16. Cases 8 and 10 are typical of the fairly good results with lowgrade gliomas.
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3.3.8 Discussion of Results for Diagonalized NNPM

In every one of the real data cases, the results of fully automatic segmentation using
diagonalized NNPM are too inaccurate for clinical use. Regardless, the results are
encouraging given the goal of this thesis, which is to solve the recognition problem for
brain tumors. As described in Chapter 1, existing methods have largely focused on
boundary delineation, leaving the recognition task for humans. With the exception of case
#7, diagonalized NNPM correctly recognized the tumor well enough to initiate the
boundary delineation process using one of the existing methods. For example, NNPM
could be used to define a region of interest for applying a threshold, a seed point for
region growing, or an Initial boundary contour for curve evolution. Together,
diagonalized NNPM and these methods can form an end-to-end solution for automatic
recognition and delineation of brain tumors.

There is room for improvement following our initial experiments, and future work
is described in Chapter 7. Most notably, Figure 3.4 demonstrated that remarkably better
results can be achieved with synthetic data when a training set of 300 scans are used
instead of 1. Meanwhile, our real data experiments were performed using only 2 slices
from the healthy hemisphere.

Even with diagonalization, NNPM, as we have implemented it, is an imperfect
solution to the simultaneous incorporation of context at all possible scales. We will
attempt to improve on this shortcoming with our development of contextual dependency

networks in the next section.

3.4 Contextual Dependency Network

The goal of this section is to build on our introduction of diagonalized NNPM to derive
our Contextual Dependency Network (CDN). In applying multi-scale NNPM, we
encountered the same frustrations — manifested as imprecise tumor boundaries — as
described by [Stansfield80] in an MIT Al Lab project to create an artificial commodity
expert:

Unfortunately, smoothing a graph results in an information loss. While smoothing

does highlight large-scale features, the location of their boundaries is obscured.
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What 1 had hoped for was a series of progressively more abstract descriptions of a
graph. The high levels of abstraction would describe only the major features and

the lower levels would fill out the details.

3.4.1 Multiple Levels of Context

Recall the results of experimenting with various window sizes, which varied the breadth
of the context incorporated by the algorithm. In computer vision, experiments such as this
one are typically run to search a parameter space — window size, in this case. After
finding the optimal parameter value using a training set, the algorithm is ready to be
employed on the sample data sets. However, we discovered that no single window size
produces adequate results with NNPM. Moreover, we discovered the double trouble that
comes with increasing window size: larger windows imply more windows. This is
because incorporating macro-texture also involves situating micro-texture.

Consequently, acknowledging that the primary shortcoming of NNPM is its limitation
of being able to consider context on only one level at a time, we explored a multi-scale
implementation of NNPM. Our goal was to isolate micro- and macro-texture in order to
deal with each independently. However, multi-scale vision does not service all of our
needs. We need to incorporate context at multiple levels in a manner conducive to
answering our two questions of what is normal, and how to measure abnormality. Multi-
scale methods force the coordinate system into the inference processing, but as we
referred to earlier, images have voxels, brains do not. In the words of William James,
“We must be careful not to confuse the data with the abstractions we use to analyze
them.” [Rice95] We would therefore rather compute measurements of normality on
actual brain structures, such as cortical gray matter, than on some rectangular sub-regions

of the image lattice.

3.4.2 NNPM with Non-rectangular Windows

One approach would be to relax the constraint that windows are shaped as rectangles.
Then, each container of templates would be occupied by shapes with various sizes and
orientations. In the spirit of multi-scale algorithms, the scope of these templates would

vary as well. Some would describe detailed structures present at full resolution, while
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others would characterize macro properties best analyzed with downsampled images. The
determination of non-rectangular windows would be quite application-dependent and

complex to train, so we seek another solution.

3.4.3 Hierarchy of Layers

Diagonalized NNPM was shown to possess broad recognition capabilities, but poor
precise boundary localization. We seek a new system that meets both requirements, so
we propose a solution with multiple levels: some for breadth, and some for precision.
Beginning with the smallest possible region, and extending outward, we propose
considering the levels of context listed in Table 3.1. The rightmost column lists the
definitions of normalcy associated with each level. Our central argument in favor of such
a framework is how conveniently these definitions accommodate reasonable answers to

our two guiding questions.

Table 3.1. Levels of context that accomodate answering the two questions of what is
normal, and how is abnormality measured.

# Level of Meaning of Characterization of Normalcy
Context Context
1 | Voxel Intensity Gaussian distributions over voxel value intensity.
(point)
2 | Neighborhood | Compatability | Gibbs distributions over compatability.
(local)
3 | Intra-structure | Shape Gaussian distributions over shape descriptors,
(region) such as relative position of a voxel within its
own structure.
4 | Inter-structure | Situation Gaussian  distributions  over  situational
(global) descriptors, such as relative position of a voxel’s
structure to other structures.

Ambiguity necessitates the incorporation of contextual information into the brain
segmentation process. Consider the example of non-enhancing tumor tissue that mimics
the intensity of healthy gray matter, but is too thick to be gray matter. The lowest level of

context could first classify the tissue as gray matter, and a higher-level stage — through its
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broader understanding of context — could correct the classifications of the lower level.
Just as a voxel-wise classification must be computed prior to a neighborhood-wise
refinement, a voxel’s region must be classified before features regarding the size and
shape (or other intrinsic properties) of that region can be computed. This is a concept of
predicated context, where high-level vision is performed based on aggregated
information from low-level vision. Therefore, we organize our levels of context into a
hierarchical network, and label it as a Contextual Dependency Network (CDN).
Furthermore, to accommodate intelligent interaction with users, we add a fifth layer on
top, as shown in Table 3.2. Note that NNPM has difficulty with expressing predicated
context. How does one express that edema always borders tumor, but tumors, and

subsequently, edema, can be situated almost anywhere?

Table 3.2. A Contextual Dependency Network is a framework that features no
decisions made by certain layers that permanently (and perhaps adversely) affect other
layers. Information flows between the layers bidirectionally while converging toward a
solution. (Rows are reversed in order from Table 3.1 to situate “high-level* layers above
“low-level layers.)

# Layer Definition Our Simple Computation
5 User Spatially specific points clicked | Mouse clicks trigger re-
(oracle) on by the user on the fly as | iteration.

corrective action.

4 Inter-structure | Relative position of a voxel’s | Distance from other region

(global) structure to other structures. boundaries.
3 Intra-structure | Relative position of a voxel | Distance from own
(region) within its own structure. boundary.
2 | Neighborhood | Classification of a voxel’s | Mean Field MRF
(local) immediate neighbors.
1 Voxel Classification based on voxel’s | EM, ML or MAP
(point) intensity.

3.4.4 Comparing CDN with Multi-Scale Vision

Our levels of context distinguish themselves in several important ways from traditional
multi-scale vision, such as segmentation of image texture [Bouman91] or scale-space
approaches to mammography [Karssemeijer95]. We have already mentioned that CDN
carries greater independence from the coordinate system than traditional multi-scale

vision. Moreover, unlike multi-scale vision that applies essentially the same processing at
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each level such that the only differences are in resolution and perhaps parameters, CDN
encourages entirely different algorithms to be applied at each level. Furthermore, unlike
multi-scale vision where processing can proceed each level simultaneously, CDN levels
are based on predication. That is, a given level cannot perform its processing until the
level beneath it completes its processing. The reason is that the higher level processing is
predicated on the lower level output. Finally, multi-scale vision is not designed to be
iterated, which implies that information flows only one direction — from lower resolutions
to higher resolutions. CDN can iterate to propagate information bi-directionally; after a
higher level corrects a lower level’s mistakes, the lower levels can be recomputed given
their new high-level information. These distinctions are summarized in Table 3.3. In fact,
CDN can be implemented in scale space. That is, a certain layer can perform its

processing using multiple resolutions of the data.

Table 3.3. Constrasts between multi-scale vision and CDN,

Multi-scale Vision Contextual Dependency Network

Region definitions are coordinate | Region definitions are object dependent
system dependent

Identical processing at each level | Unique processing at each level

Levels can be  computed | Higher levels are predicated on lower levels
simultaneously

Information flows one direction [teration allows bidirectional information flow

3.5 Chapter Summary

The aim of this chapter was to revisit the image segmentation problem in hope of
developing a more generally applicable approach. In contrast to treating the tumor
segmentation problem as an exercise in discovering distinguishing features, we derived
our unique approach for recognizing deviations from normalcy. Beginning with NNPM,
we developed a framework for Contextual Dependency Networks that can incorporate
context at multiple levels. Subsequent chapters will develop our first implementation of

such a framework. This implementation is designed to be a simple proof of concept. Our
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hope is that smarter components, when inserted into our framework, will further improve

its effectiveness. To summarize the important principles asserted in this chapter:

3.1 For general applicability, tumor segmentation systems could recognize
deviations from normalcy, rather than identifying known features of tumors.

3.2 Systems that recognize deviations from normalcy must answer the following two
questions:

I1.) What is normal?
2.) How is abnormality measured?

33 In NNPM, double trouble comes with increasing window size: larger windows
imply more windows. This is because incorporating macro-texture also involves
situating micro-texture.

34 In the Diagonalized NNPM algorithm, window size increases monotonically
with decreasing resolution.

3.5 CDN incorporates multiple levels of predicated context as a step toward the goal

of achieving recognition capabilities that are both broad and precise.
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Chapter 4

CDN Layer 1: Voxel Classification

In this chapter, we introduce the first layer of our framework for a contextual dependency
network. The role of the first layer is to produce a preliminary classification of each voxel
so that the next layer has a starting point from which to consider immediate context.
Without an initial context, the voxels must be considered in isolation, but the only
information offered by individual voxels is their intensity. Hence, we seek answers to our
two guiding questions of how to define what is normal, and how to measure the degree of
abnormality, based only on intensity.

This chapter is organized to review the mathematical background for Bayesian
classification and the expectation maximization (EM) algorithm, and then to address the
difficulties encountered when applying these techniques to pathological, rather than
healthy, brains. Specifically, we modify EM segmentation to avoid confusing the bias
field with pathology. Then, we examine spatially varying priors and generalize their
concept into probabilistic mappings between image space and model space. We then base
the processing for each layer of CDN on these mappings. Next, we develop a method for
computing a probability of pathology for CDN Layer #1. Finally, we conclude by

evaluating our analytical models by inverting them to produce generative models.

4.1 Mathematical Background for Model-Based Classification

Understanding what is normal involves possessing some model of what should be
expected, so we are interested in model-based mathematical techniques. As discussed in

Chapter 3, Gaussian distributions handle these questions most elegantly, provided they
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are applicable, which was shown in Chapter 2 to be the case for MRI signals with
intensities well above the noise floor. We will therefore rely on Gaussian distributions for

intensity models, and this section will discuss their application within classifiers.

4.1.1 Bayesian Classification

Bayesian classification provides a probabilistic approach to weighting the evidence
supporting alternative hypotheses. The probability of a hypothesis is determined from
both the observed data and prior knowledge, and these can be characterized by
probability distributions. This prior knowledge can be represented in either, or both, of
two ways:
e The prior P(h) for each candidate hypothesis is the probability of that hypothesis
being true prior to observing any data D.
e The likelihood P(D|h) of each candidate hypothesis is the conditional probability,
or likelihood, of the data given the hypothesis. This term is also referred to as the
measurement model because we can measure it @ priori in order to construct

application-specific models.

Bayes’ Theorem provides a quantitative method for computing the posterior probability

from the prior and the likelihood:

(D | 1) p(h) @.1)
p(h| Dy =2 280
p(D)

Using this equation, we can address the classification problem by searching for the
maximum a posteriori (MAP) hypothesis from the set H of all candidate hypotheses:

hyup = argmax p(h | D) = argmax p(D | k) p(h) 42)
When the priors are unavailable, or every hypothesis is equally probable, we can instead

search for the maximum likelihood (ML) hypothesis. This is the hypothesis under which

the observed data would be most likely to appear:

h,, =arg max p(D | h) (4.3)
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Because the logarithm function is monotonic, we can equivalently maximize the log

likelihood:
L(h)y=log p(D | h) (4.4)

This is attractive because it makes the math more tractable in two ways. First, if the
likelihood factors into multiplicative terms, then the effect of the logarithm is to separate
the factors into additive terms that can be maximized independently — effectively
decoupling the classification problem. Second, likelihoods tend to take exponential
forms, such as Gaussian and Binomial distributions, and the logarithm operation
conveniently converts exponents into multiplicative factors. The caveat is that p(D|A)
must be everywhere nonzero, which we can ensure in practice by substituting the smallest

represcntable positive number for zero.

4.1.2 The EM Algorithm

Consider the problem of determining the probability densities that generated a certain
data set. Given the general form of the densities, their governing parameters can be
estimated using ML to maximize the likelihood of the data. Suppose, however, that some
of the data is missing, hidden, or represented by latent random variables. Since we cannot
compute the likelihood of unseen data, we instead compute its expected value, and
maximize this expectation. Therefore, the name of this general approach is expectation-
maximization (EM).

Following the notation of the original EM paper, [Dempster77], let the current set
of parameters be denoted by ¢, and a revised set that we are seeking to compute be
denoted by ¢’. Suppose that we have observable data y and latent data x that is not
observed directly, but only indirectly through y. We would like to choose the parameters
¢’ that maximize log p(x,y | ¢’), but we do not know p(x,y | ¢’) because x is unobserved.
Consider what we do know, which is the marginal probability of the visible data y. The

marginal density is found by integrating the joint density over all possible values of x:

log p(y9') =D log p(x,y|¢") 4.5)
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Given that x is a random variable, we can average the log likelihood log p(x,y | ¢°) over
all possible values of x, weighting each according to its probability. This is accomplished
by inserting a term for the probability of x into the summation in equation 4.5. (We

express this probability as p(x| y,¢) instead of p(x) to denote its conditional dependence.)
(log p(x,y|97) =) p(x|y.9)log p(x,y ¢ @.6)

Observe that equation 4.6 represents the expected value of the log likelihood. The
expectation is performed over the probability of the hidden variables, and another

notation is:

(log p(x,y190) = E log p(x.y|9") @7

We repeat equation 4.7 once again just to use the notation of [Dempster77]. The authors
label the expectation with the term O(¢’|¢) to denote that we are searching for a revised

hypothesis ¢’ given the current hypothesis ¢.

Q(¢'1 9) = Ellog p(x,y | ¢} | v, 4] (4.8)

We can then choose a new ¢ to maximize this expectation:
¢'¢ argmax O(¢'| 9) (4.9)

Thus, the parameters ¢’ are set to the values that would make the complete data most
likely. However, observe <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>