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ABSTRACT

Rhodococcus sp. 124 is a Gram-positive soil bacterium being developed for the
manufacture of (-)cis-(1S,2R)- -aminoindan-2-ol, a key precursor in the production of
the HIV-1 protease inhibitor CrixivanTM , from the aromatic hydrocarbon indene.
Rhodococcus sp. 124 was grown by batch fermentation in the presence of naphthalene
and indene to measure changes in gene expression and aromatic hydrocarbon metabolism
with DNA microarray technology. Genes were selected for microarray analysis based on
functional annotation assignments made by the Consensus Annotation by Phylogeny
Anchored Sequence Alignment (CAPASA) program, a high throughput system for
automated functional annotation assignment of DNA sequence similarity search results.
CAPASA was validated by comparison to several methods of annotation, and the
agreement to other methods ranged from 75-94%. Microarray results were analyzed by
the newly described method of trigonometric deconvolution, a mathematical system for
the measurement of changes in gene expression across multiple growth conditions with a
minimal number of hybridizations. The combined analysis of aromatic metabolism and
gene expression reveal the differential expression of multiple polycyclic aromatic
hydrocarbon dioxygenases in a substrate and growth phase dependent manner.
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Title: Professor of Microbiology
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CHAPTER I

Introduction
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Biotechnology and Bioinformatics, A Historical Perspective

The biological sciences are in the throes of a paradigm shift in what it means to "study

biology". The first tremors of this change occurred in 1953 with the description of the

structure of DNA (Watson et al. 1953), and fully erupted with the publication of the draft

of the human genome sequence (Lander et al. 2001; Venter et al. 2001). Many events

over the last fifty years have all contributed to the advent of this new biology, where the

focus of study is on an entire system instead of a single functional unit. The translation

of the genetic code (Khorana 1959; Tener et al. 1959) allowed biologists to understand

the relation between the information storage function of DNA and the biological activity

of protein. DNA (Maxam et al. 1977; Sanger et al. 1977) and protein sequencing (Edman

et al. 1967) technologies were invented, and eventually became inexpensive enough to

become routine tools of analysis. The advent of these tools required the development of

tools and methods for digital storage, tracking, and manipulation of large amounts of

biological information. The solution to the data overflow came in the form of the first

vacuum tube computer, invented by International Business Machines in 1952. The IBM

701 could perform 17,000 calculations per second (17 kHz) and was housed in a very

large room by the government and large corporations, which were the only organizations

able to afford it. In 2003, computers weighing less than eight pounds can perform more

than 306,000,000 calculations per second (180,000 times faster than the IBM 701) at

costs within the range of most university students. The advent of the low cost personal

computer allowed early bioinformaticists to construct the foundation of what would

become some of the most useful tools for recombinant DNA technology, rapid sequence
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similarity searches like FASTA (Pearson 1990) and BLAST (Altschul et al. 1990), and

the field of genomics itself.

The early co-evolution of DNA and protein sequencing technology and the computer

was a serendipitous coincidence whose value can be measured by the history of sequence

databases. The first protein sequence database was a book and sequence similarity

searches were performed by hand (Smith 1990; Hagen 2000). These were soon followed

by computerized versions, which eventually grew into the Genbank database of the

National Center for Biotechnology Information (Dayhoff 1974; Smith 1990; Benson et al.

2003). The compilation of DNA and protein sequence data was rapidly followed by the

development of sequence alignment algorithms by mathematicians (Needleman et al.

1970; Smith et al. 1981). The alignment of multiple protein sequences enabled the

measurement of amino acid residue use and sequence specific change to understand the

evolutionary relationship of proteins across phylogeny and function to construct the Point

Accepted Mutation (PAM) and BLOcks Substitution Matrix (BLOSUM) residue
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Biocatalysis, An Industrial Introduction

The biotechnology community has spent the last century developing and refining

processes for the overproduction of almost every compound known in metabolism

(Manual of Industrial Microbiology 1986; Burton et al. 2002). Many native products of

microbial systems have long been the basis of billion dollar industries including amino

acids for livestock feed (Guillouet et al. 1999), production of industrial grade ethanol, and

manufacturing of antibiotics to treat disease (Glazer 1995).

Recombinant DNA technology opened the door to protein therapeutics for the novel

treatment of human diseases, which is still in the early stages of realizing actual benefits

almost 20 years later. As the science of biotechnology continues to influence the

business of manufacturing, there are new tools and forces affecting the pursuit of

efficiency. Biotechnological process development is poised to maximize production at a

minimal cost. Through systematic analysis, every aspect of the system from raw material

feed stock delivery and reagent selection to reactor system and product recovery is

refined to meet these goals (Doran 1995; Thomas et al. 2002). The discipline of process

development is a science unto itself, but it has long been the domain of engineers. The

rise of biological systems as a tool for material manufacturing has introduced a need to

cross the lines between engineering and biology.

The chemical manufacturing industry has long sought the commercial scale

production of fine chemicals from low cost biological feedstock to eliminate the world's

reliance on environmentally damaging and nonrenewable petrochemicals (Dua et al.

2002). In spite of the vast potential gains of biocatalyst technology, limited advances

have been made in the actual application of biological systems to the development of
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novel manufacturing solutions. Advances in biocatalytic manufacturing by companies

such as BASF (Heidelberg, Germany; (Schmid et al. 2001) and Lonza (Basel,

Switzerland; (Shaw et al. 2003) serve as examples to the industry that such biological

tools can make for commercially viable processes. Rhodococcus erythropolis has been

successfully utilized to produce chiral sulfoxides from crude oil, simultaneously reducing

smog-producing pollutants and creating useful synthetic reagents (Shaw et al. 2003).

Still, analysis of 134 industrial biotransformation reactions reveals that the majority of

reactions are performed by hydrolases (44%) and redox systems (30%) (Shaw et al.

2003). The truth of the matter is that designing and engineering novel biological systems

for the manufacture of xenobiotic compounds is not a trivial undertaking.

The primary biocatalysts being developed are purified enzymes engineered to have

more desirable reaction properties. Development of such reagents involves design of de

novo activities by rational protein design (Bolon et al. 2002), directed evolution of

enzyme properties to increase activity, altering substrate utilization or engineering new

functional activity by mutagenesis (Farinas et al. 2001; Zhao et al. 2002), site specific

mutagenesis of active site residues (Panke et al. 2002), and engineering enzymes to

function in nonaqueous solvents (Khmelnitsky et al. 1999). Multisubunit enzymes and

oxidative reactions requiring cofactor recycling often require the use of whole cells

grown in fermentation cultures (Thiry et al. 2002). Using whole cells has several

advantages including the ability to grow cultures to high density before introducing the

reaction substrate, easy recovery of product from liquid culture medium (if it is water

soluble), and having an easily renewable source of catalyst (Schmid et al. 2001).

Research is ongoing to improve overall production (Zhang et al. 2002) and solvent
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tolerance (de Bont 1998) of whole cell systems. The main decision of whether to use

purified enzymes or whole cells, how to configure the reactor system, and which

purification processes to use all depend on the physical and chemical properties of the

product, what biological systems are in place, and experience.

Chiral Synthons in Pharmaceutical Manufacturing

The stereospecific interaction of small molecule therapeutic agents is an area of

intense interest in the pharmaceutical industry today. Racemic mixtures of an active

compound can have decreased efficacy (Ariens 1993) or tragic side effects. These

reasons, as well as growing regulatory pressures, have led to the increased production of

single enantiomer drugs (Persidis 1997).

CrixivanTM

Indinavir sulfate (Figure 1) is a member of the class of HIV protease inhibitors that

prevent the intracellular cleavage of the viral polyprotein into active subunits (Vacca et

al. 1994) required for the construction of an active virus particle. The five chiral centers

of indinavir sulfate provide the potential for 32 stereoisomer configurations, only one of

Parker, page 9 of 92



product are contained in this intermediate, and a technically challenging synthesis

reaction is employed to fulfill the manufacturing needs of scalability and downstream

processing (Reider 1997). Stereospecific catalysis in a biphasic aqueous/ organic reactor

system enables the efficient synthesis of the activated precursor 1,2-indene oxide

(Senanayake et al. 1996; Hughes et al. 1997). The activated epoxide is aminated with

acetonitrile through a Ritter-type reaction to from the final (-)-CAI product (Senanayake

et al. 1995).

Salen-Mn(III) complexes were discovered in the early 1990's that could readily

catalyze the epoxidation of alkenes by sodium hypochlorite in a stereospecific fashion

with a regular enantiomeric excess (ee) on the order of 70% (Figure 2a). The

stereospecificity of this reaction was increased by 20% for some substrates by modifying

the side groups surrounding the catalytic metal center in a logical fashion to physically

block undesirable substrate approach paths (Jacobsen et al. 1991).

The final product (salen)Mn(III)Cl (MnLCl, or the Jacobsen catalyst; Figure 2b) is

able to catalyze the epoxidation of a range of olefins with product yields of 63-96% with

89-97% ee. Utilizing just 1.5 mol% MnLCl with 12% aqueous NaOCl in chlorobenzene,

indene is converted to the 1,2-epoxide with a yield of 88% and 86% ee. In spite of the

exceptional product yield, the Jacobsen salen catalyst had several shortcomings under

these conditions including loss of 40% of catalyst per hour to degradation and only 70%

utilization of the indene substrate after four hours of reaction (Senanayake et al. 1996).

Catalyst instability and reaction completion issues were solved by the addition of 4-(3-

phenylpropyl) pyridine N-oxide (P3NO; Figure 2b). P3NO improved catalyst stability by

decreasing the degradation rate to about 5% per hour, thus allowing the reaction to run to
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completion within two hours. P3NO had the added effect of decreasing the amount of

catalyst needed per reaction to only 0.25 mol%. The minimal improvement in product

yield to 90% with 88% ee is overshadowed by the massive decrease in the amount of

catalyst needed per reaction. These results were scalable to a multi-kilogram process

(Senanayake et al. 1996). P3NO has such dramatic effects in this reaction because it acts

as a surfactant shuttle, carrying the active oxidant HOCl into the organic chlorobenzene

layer to activate the catalyst (Figure 2c). Various kinetic studies revealed that this

activation step is rate limiting in the reaction, independent of indene concentration

(Hughes et al. 1997). P3NO increases the active reactor volume to include the entire

organic phase of the system; without it, the oxidation step would be limited the aqueous/

organic interface.

The amination of 1,2-indan oxide by a Ritter-type reaction with acetonitrile under

acidic conditions has been shown to proceed by a mechanism that strictly maintains the

stereochemistry at the C2 carbon (Senanayake et al. 1995; Senanayake et al. 1995).

Strong acid is used to open the epoxide ring at C1 to form a reactive carbenium ion,

which exists in equilibrium with a nitrilium intermediate with the acetonitrile. The

reaction is driven by the formation of a stable cis-5,5-ring derived methyl oxazoline.

Acid catalyzed hydrolysis releases the free cis-aminoindanol with a yield of 60-65% and

100% ee (Senanayake et al. 1995; Senanayake et al. 1995). Due to the lower yield of the

Ritter reaction, the total yield of (-)-CAI from indene is on the order of 60% but the 88%

ee of the epoxidation reaction is maintained. The complete (-) cis-(1S,2R)-l-

aminoindan-2-ol is readily fed into the remaining synthesis of CrixivanTM (Reider 1997).

The combination of epoxidation and amination establishes two of the five chiral centers
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in the CrixivanTM molecule; in addition it produces the toxic waste products

chlorobenzene, P3NO, and degradation products of the Jacobsen salen catalyst.

Biocatalytic Synthesis of (-)cis-(1S, 2R)-l-aminoindan-2-ol

One possible biocatalyst for the production of (-)cis-(1S,2R)-1-aminoindan-2-ol is the

polycyclic aromatic hydrocarbon (PAH) dioxygenase class of enzymes. These redox

enzymes have been studied in vivo for decades (Butler et al. 1997) to analyze their ability

to chemically activate the chemically stable aromatic hydrocarbon ring. The classical

arrangement of these systems is a three-part electron transport system which shuttles

electrons from NADH through the reductase and ferredoxin components, to a Rieske

iron-sulfur center in the terminal oxygenase, which incorporates both atoms of dioxygen

into the aromatic nucleus (Figure 3). Classically, this activation is followed by

dehydrogenation and ring cleavage reactions eventually degrading the aromatic substrate

to catechol; which is fed into the normal aromatic amino acid degradation metabolism.

The substrate range and stereospecificity of the oxygenation products is determined by

the configuration of the terminal oxygenase (Resnick 1996; Boyd et al. 1998). More

importantly, unnatural substrates can be incompletely metabolized by these systems and

used as a source of chiral synthons for incorporation in other synthetic reactions (O'Brien

et al. 2002).

(i) Pseudomonas putida

Strains of Pseudomonas putida were known as early as 1993 that can metabolize

toluene completely as a sole carbon source (Gibson 1993). Research scientists of the

Merck Bioprocess Research and Development group employed mutation and selection

methods to isolate P. putda strains that could metabolize indene to cis-(1 S, 2R)-indandiol
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in a toluene independent fashion in a two phase, aqueous/soybean oil fermentation

reactor system (Connors et al. 1997). Cis-(1S, 2R)-indandiol can be chemically

converted to (-)cis-(1S,2R)-l-aminoindan-2-ol by the same Ritter reaction with

acetonitrile previously described. Further analysis of this system revealed the production

of the monooxygenation products 1-indenol and 1-indanone, as well as the downstream

dehydrogenase product 1-keto-2-hydroxyindan. At best, the P. putida system was able to

produce cis-(lS, 2R)-indandiol at 220 mg/L with 95% ee. The low yield but high

enantiomeric excess suggested that a cis-(1R, 2S)-indandiol specific dehydrogenase was

responsible for resolving the racemic mixture to high stereopurity, but the loss of total

product yield was unacceptably high.

(ii) Eschericia coli

Further advances in the biocatalytic production of cis-(1S, 2R)-indandiol focused on

the development of recombinant E. coli expressing the P. putida toluene dioxygenase

(TDO) genes (Reddy et al. 1999). Merck researchers were able to increase the total

product yield of cis-(1 S, 2R)-indandiol to 1200 mg/L with ee of 98% when scaled up to a

23L fermentation (again using the aqueous/ soybean oil two phase system) by eliminating

the competing side reactions and dehydrogenase degradation. Regardless of the vast

improvement in production yield, E. coli and P. putida have a fundamental flaw for use

in indene bioconversion, both are sensitive to indene and its metabolites. However,

Merck scientists were confident because "the well-developed genetic manipulation

system for E. coli should greatly help to overcome these problems rapidly through

approaches such as directed evolution and protein engineering" (Reddy et al. 1999). No
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other reports on the development of indene metabolizing E. coli strains have been

released from Merck.

(iii) Rhodococcus sp. 124 and B264-1

The greatest success of biocatalytic production of cis-(1S, 2R)-indandiol by Merck

Bioprocess R&D was achieved with two strains of the genus Rhodococcus isolated by

selection for growth on naphthalene or toluene as a sole carbon source (Chartrain et al.

1998). The strain Rhodococcus sp. B264-1 was found to contain only toluene degrading

activity, but it was able to biotransform indene to cis-(1 S, 2R)-indandiol with a total yield

of 2.0 g/L with 99+ % ee in a 14 L fermentation system. The other strain, Rhodococcus

sp. 124 was found to posses both naphthalene and toluene degrading activities and a cis-

(1S, 2R)-indandiol production yield of 1.4 g/L trans-(1R, 2R)-indandiol with a greater

than 98% ee, which can also serve as a precursor for (-)cis-(1S,2R)-l -aminoindan-2-ol

(Buckland et al. 1999). Chartrain et al. (1998) were able to partially dissect the

regulation systems employed by Rhodococcus sp. 124 for indene bioconversion through

induction studies by growing the cells in the presence of naphthalene or toluene and

adding indene to monitor metabolite production (Chartrain et al. 1998). They found that

cells induced with naphthalene predominantly produced cis-(1R, 2S)-indandiol, while

cells pre-induced with toluene produced cis-(1S, 2R)-indandiol. Additionally, the

naphthalene induced cells immediately produced the trans-(1R, 2R)-indandiol product.

As with the P. putida, Rhodococcus sp. I24 was found to also produce 1-indenol, 1-

indanone, and 1-keto-2-hydroxyindan. The induction metabolite profile of this bacterium

suggested the presence of a toluene inducible dioxygenase responsible for the cis-(1 S,2R)

indandiol product, a naphthalene inducible dioxygenase activity producing the cis-

Parker, page 14 of 92



(1R,2S) metabolite, and a naphthalene inducible monooxygenase responsible for the

trans-(1R,2R) indandiol product by way of a spontaneously hydrolyzed epoxide

intermediate (Chartrain et al. 1998). Later refinement of this model by scientists at the

Massachusetts Institute of Technology (M.I.T.) clarified that both cis-indandiol products

were further metabolized by stereospecific dehydrogenases to the final ketohydroxyindan

(Treadway et al. 1999; Yanagimachi et al. 2001), while the trans-(1R,2R) indandiol was a

metabolic end product as shown in Figure 4a.

Rhodococcus sp. 124 indene bioconversion at M.I.T. initially focused on genetic

characterization (Treadway et al. 1999) and metabolic flux analysis (Yanagimachi et al.

2001) to identify targets for cloning and control of the indene metabolism network.

Treadway et al. (1999) successfully employed a cosmid library screen to identify the

naphthalene inducible dioxygenase (nid, Figure 4b) gene cluster responsible for synthesis

of cis-(1R,2S) indandiol. Additionally, the nid gene cluster was also found to be

responsible for the production of 1-indenol and 1-indanone.

Metabolic flux analysis is an analysis method to quantitate the flow of compounds

through a metabolic network to determine the key points were perturbations can be

applied to maximally alter the flow to desired products (Stephanopoulos 1998).

Yanagimachi et al. (2001) used '4C-radiolabeled indene to study the flow of indene

metabolites through Rhodococcus sp. KY1, a spontaneous mutant of Rhodococcus sp. 124

which lost the toluene metabolism pathway. By measuring transmembrane uptake and

secretion, as well as intracellular changes in metabolite concentration, Yanagimachi et al.

(2001) were able to determine that the major route of indene metabolism in the KY1

strain was through the monooxygenation of indene to (1S,2R) indene oxide and a pH
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dependent stereoselective spontaneous hydrolysis to cis-(1S,2R) and trans-(1R,2R)

indandiol (Stafford et al. 2002).

Rhodococcus sp. 124 Genomic Analysis

Pulsed Field Gel Electrophoresis

The spontaneous generation of the Rhodococcus sp. KY1 strain was a reproducible

and stable phenomenon that resulted in the loss of naphthalene metabolism. Pulsed field

gel electrophoresis (PFGE) analysis of Rhodococcus sp. 124 and KY1 revealed the

presence of a 50 kb and 340 kb extrachromosomal element in the 124 strain, while the

KY1 strain only possessed the 50 kb element (H. Priefert et al., manuscript in

preparation). Southern blot analysis, promoter fusion studies, and transconjugation

experiments with the smaller element revealed that the naphthalene metabolizing enzyme

activities reside on the 50 kb element, while the toluene activities were carried on the 340

kb element (H. Priefert et al., manuscript in preparation). Sequence analysis and

transconjugation studies strongly suggest that the extrachromosomal elements carry all

genes necessary for the complete metabolism of naphthalene or toluene as a sole carbon

source.

Genomic Sequencing

Integrated Genomics Inc. (IG; Chicago, IL) was engaged in 2000 to determine the

entire genome sequence of Rhodococcus sp. 124 to better characterize the array of

metabolic activities it contained. Genomic characterization was performed using a

comparative analysis to determine the function of the putative open reading frames

(Overbeek et al. 2003). The original annotation identified approximately 5500 open

reading frames listed for the Rhodococcus sp. I24 genome, about half of which had no
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functional annotation associated after being processed by automated sequence homology

searches and metabolic reconstruction analysis (Overbeek et al. 2000; Osterman et al.

2003). In order to evaluate the methodologies utilized by Integrated Genomics, I

performed a check of about 20 sequences by BLASTx sequence homology to personally

evaluate what the functional assignments were. I disagreed with about half of the IG

assignments based on the output of the BLASTx output. This led to a situation where

previously characterized genes could still have no functional annotation assigned in cases

where different analysis methods disagreed, and created a need to develop alternative

methods of genome annotation. In order to confirm the function of the genome and

supply functional information I developed a system to perform multiple BLASTx

searches in parallel batches, and the results of these searches were evaluated by hand to

assign function to all of the open reading frames of the genome.

Global Analysis of Indene Bioconversion by Rhodococcus sp. 124

Several advances occurred in parallel during the time following the manual annotation

of the Rhodococcus sp. 124 genome. First, the ability to grow multiple fermentation

cultures in parallel was introduced. The Infors Sixfors six vessel fermenter from
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Chemists, biologists, mathematicians, and computer scientists are redrawing the

classical models of biotechnological research to create a new era of system wide analysis

and functional genomics. The research presented in this thesis represents initial efforts in

a global view of biocatalyst development (Figure 5) where genetic transcription is

correlated with metabolic activity This model can be expanded to include whole genome

microarrays and measurement of all metabolic activities of an organism in parallel and in

vivo. The first question is "what genes are present in Rhodococcus sp. 124?". In chapter

2, I describe the development of an automated system for the large-scale functional

annotation of DNA open reading frame sequences, the Consensus Annotation by

Phylogeny Anchored Sequence Alignment (CAPASA) program. CAPASA analyzes the

output of a translated DNA versus protein database alignment search to evaluate

sequence homology, taxonomic similarity, and functional annotation relevance to

determine the single best description of the query sequence. The second area of inquiry

is focused on determining the metabolic profile of Rhodococcus sp. I24 activity on the

aromatic hydrocarbons indene and naphthalene, and how the expression of a class of

enzymes correlates to these. In chapter 3, targeted DNA microarrays of known and

suspected aromatic hydrocarbon dioxygenases of Rhodococcus sp. 124 are used to

analyze this transcription. Also, I introduce novel methodologies for the analysis of

DNA microarray data to measure the actual changes in transcription between

physiological conditions directly, as opposed to the current method of presenting the log2

fold induction. Together these methods reveal a two component regulatory mechanism

of aromatic metabolism that is dependent on the growth phase of the culture, and the

particular aromatic substrate present.
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Biocatalysis for the production of novel small molecules that do not exist in nature

requires the integration of multiple fields. Biology, chemistry, materials science,

computation, informatics, and engineering will all play a role in developing the industrial

systems of the future. The interdisciplinary nature of this work will force the fall of

traditional barriers between previously distinct fields of study and lead to more

customization of research training and cross-discipline collaboration to achieve the goals

of individual researchers.
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Figure 1. The structure of CrixivanTM (Vacca et al. 1994).

0
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Figure 2a. The chemical reaction scheme to produce (-)cis-(1S,2R)-l-aminoindan-2-ol

(far right) through the stereospecific epoxidation and amination of indene (left) through

the reactive intermediate indene oxide (center) (Senanayake et al. 1995).

0.7%(S,S)-MnII(salen)Cl/ NaOCI (aq)

PhCI

3%PNO

'ilIOH

omc

88% yield 65% yield
86% ee 100% ee

Figure 2b. The structure of the catalytic activation process of MnLCl by P3NO

(Senanayake et al. 1996). The large tertiary-butyl (t-Bu; -C(CH3)3) groups surrounding

the reactive manganese core restrict the possible approach angles of substrate molecules,

leading to the high stereospecificity of the catalyst species.

t-Bu
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Figure 2c. The cyclic oxidation of indene by NaOCl through MnLCl in the biphasic

reactor system resembles the enzymatic electron transfer system of bacterial oxygenase

systems, shown in figure 3 (Senanayake et al. 1996).

'lX _%' 1 _ T · * ·

NaCULl Mn(III)salen

0

t
XTTf'] Mn(V~salen

Indene oxide

Inrlan
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Figure 3. The enzymatic oxidation of polycyclic aromatic hydrocarbons is achieved by

transporting electrons from NADH+H+ through a three-subunit enzyme complex to the

terminal dioxygense. The dioxygense subunit contains a Rieske Fe-S center, which

serves as the electron acceptor and activation center for molecular oxygen. The activated

oxygen molecule attacks the aromatic nucleus of the substrate through an enzyme-

coordinated mechanism.

NAD(P)H + H

NAD(P)

2H +
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Figure 4a. Rhodococcus sp. 124 is able to metabolize indene to multiple products

including cis-(IS, 2R)-indandiol and trans-(lR, 2R)-indandiol, both of which can serve as

precursors for cis-(1 S)-amino-(2R)-indanol (modified from Treadway et al. 1999).

"-,IIIiOH

/
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hyc

hydrogenase

OH
Monoxygenase . [
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C
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2-keto-1-hydroxyindan
(unstable intermediate)

nid

cis-(1R, 2S)- indandiol

1-keto-2-hydroxyindan
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Figure 4b. The chromosome structure of several dioxygenase systems from

Rhodococcussp. 124. Groups contain a large (nidA, tidA) and small (nidB, tidB, nimA)

terminal dioxygenase subunit, and a dehydrogenase (nidC, nimC). The naphthalene

inducible monooxygenase is characterized by its single subunit putative monooxygenase

enzyme (nimB) (Treadway et al. 1999).
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Figure 5. The global analysis plan for analysis of aromatic hydrocarbon metabolism in

Rhodococcus sp. I24 from genome sequence and aromatic hydrocarbon metabolism to

DNA microarrays and measurement of gene expression changes across multiple

physiological conditions.
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Abstract

Recent advances in DNA sequencing technology, targeted DNA microarray design,

and metagenomic analysis of uncultured microorganisms have revealed the need for

automated methods of functional annotation. We have developed the Consensus

Annotation by Phylogeny Anchored Sequence Alignment (CAPASA) for the analysis of

sequence similarity search results and automated annotation of the query sequence.

Search results are parsed into filtered training sets, quantified by sequence similarity

scoring metrics and the collective agreement of taxonomic relationships and functional

nomenclature between multiple search results. CAPASA was validated by comparison to

several methods of annotation, and the agreement to other methods ranged from 75-94%.

CAPASA is a system for the rapid functional annotation of DNA or protein sequences

amenable to the average computer user and suitable for whole genome analysis.

The resources and methods described in this manuscript utilize public databases made

available through the National Center for Biotechnology Information, the National

Library of Medicine, and National Institutes of Health via the Genbank sequence

databases, BLAST sequence alignment search programs, and taxonomy database. The

source code of the CAPASA program and supplementary tables of results, are available

for download at http://web.mit.edu/biology/sinskey/www/home.html in the publications

section.

Introduction

Functional annotation refers to the characterization and assignment of biological

activity to a gene product by experimentation, protein domain activity prediction,

sequence homology, or many other methods for inferring the activity of a particular
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biomolecule. Experimental validation is the most reliable of these methods, but this is a

nontrivial undertaking with extreme cost both in terms of monetary consideration and in

the time and labor associated. Automated sequence database searching that transfers the

function of the highest similarity match to the query is a common practice, which is fast

and simple to execute but often results in dubious functional assignments with no

measure of annotation confidence (Brenner 1999; Koski et al. 2001). Choosing a method

of functional annotation often involves a balanced choice by the researcher based on cost,

time, computational resources, and familiarity with the different systems.

Advances in DNA sequencing technology and computational analysis have enabled

the completion of the first draft of the full human genome, as well as the genome of rice,
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We have developed an automated system for assigning functional annotations,

implemented in the PERL scripting language: Consensus Annotation by Phylogeny

Anchored Sequence Alignment (CAPASA). The flexible modular system architecture of

our software streamlines the execution and analysis of a sequence alignment search

output to select the best functional assignment to a query sequence from the search results

relying on several parameters meant to mimic discriminations made in manual sequence

similarity based annotation. CAPASA quantifies the sequence similarity, organism

phylogenetic relatedness (using taxonomic lineage as a rapid approximation), and the

name components of functional assignments within the output of a BLAST sequence

similarity search (Altschul et al. 1990; Benson et al. 2003).

Methods

CAPASA release 1.0 (development version 8.0) was scripted using ActivePerl version

5.8.0.805 in the Windows 2000 OS environment. Full source code and installation

instructions are available for download at

http://web.mit.edu/biology/sinskey/www/home.html in the publications section. All

processing was run on a DELL (Round Rock, TX) Dimension 4100 model XPS-Z with

933 MHz Pentium IIIc processor and 512 Mb DIMM RAM during evening hours (EST)

to reduce the burden on NCBI computational resources.

BLASTx Sequence Alignment Search

The BLASTx search for CAPASA queued to the National Center for Biotechnology

Information (NCBI) BLAST server from a local host via the QBlast URL API with gap

introduction cost of 11, gap extension cost of 1, BLOSUM 62 substitution matrix, a

maximum E-score of lx102 , and low complexity sequence filtering with the output in
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HTML format and no graphical table

(http://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html).

Results

CAPASA Software development

CAPASA was developed for the Windows operating system using the PERL scripting

language (Wall 2000). The CAPASA algorithm quantifies the output of a BLASTx

translated DNA versus protein database sequence similarity search (Gish et al. 1993). A

feeder module of our software allows automated processing batched sequences in

FASTA format, or HTML formatted BLAST search result files. The parameters of the

BLASTx search are designed to reduce the selection of low homology and unrelated

sequences from the Genbank non-redundant (nr) protein sequence database. Each

alignment (x) will be associated with zero to several entries (y), each from a different

contributing database. Each BLASTx alignment has both a bit score (S') which is a

measure of absolute sequence similarity, and E-score (E) an approximation of the

probability of finding a better scoring sequence where:

I S-lnK Eq. 1
ln2

and

E = mn2 -s Eq. 2

The actual probability of such an alignment occurring is:

P = 1- e-E Eq. 3

(See Altschul et al. 1990; Karlin et al. 1990; Altschul 1991 and Gish et al. 1993 for a

thorough discussion of BLAST scoring parameters). Sequence alignments with lower E-
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scores have a high probability that there is not another sequence in the database that

would match as well.

The CAPASA annotation score (a) of an entry is determined from three BLAST

derived factors: the homology score (rl) of the sequence, the taxonomy score () of the

organism which is an approximation of phylogenetic relatedness, and the consensus score

(y) of the function name of the entry (Figure 1)

1Exy = TlX +Ty +y Eq. 4

The scoring of each component is elaborated in the following sections.

CAPASA parses the information of the BLASTx sequence alignment search for the

query sequence into several training data sets. The alignment and entry information is

quantitatively filtered and scored. Only one entry from each contributing database per

alignment is used to construct the data training set to prevent skewing the data set by

over-representation of a single source. The entry with the highest annotation score is

selected as the best description of the query sequence and the annotation is transferred to

the query as the CAPASA function.

(i) Sequence Homology Score (rl)

The BLASTx sequence similarity search of query sequence will return some total

number of results (Xtot) from the database depending on the length and complexity of the

query. The size of Xtot will vary from as low as zero for short or non-complex sequences

that do not satisfy the BLASTx alignment parameters, to several hundred for highly

conserved functions. The homology score is a single measure that accounts for the

absolute sequence alignment to the query, the relative quality of the alignment relative to

other alignments in the output, and the probability that the current alignment was selected
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by chance from the nr sequence database. The homology score is the bit score ratio of

each alignment ( Sx ) over the best bit score (Sa x ) multiplied by a correction factor E*

7 ( S"S 1E* Eq. 5

where

E*= -log 1 o (Ex) Eq. 6
180

The major component of the E-score is the term X within the exponential bit score S'. By

using the negative logarithm of the E-score we change the importance of the component

factors such that the most influential term is now the length of the query sequence n,

because the residue length of the database (m) is large enough to be effectively constant.

The E* term reduces the large positive contribution to the total annotation score of strong

alignment to low quality query sequences that will occur if the best sequence alignment

in the BLASTx output has a low E-score. Secondly, the E* term serves to linearize the

calculation of the probability that a better sequence does not exist in the database across

the range of all E-scores (Figure 2).

(ii) Taxonomy Relation Score ()

We have developed a method of constructing a composite source organism for the

query sequence based on the homology and taxonomic lineage of the entries (Ytot)

associated with each alignment entry as an approximation of their phylogenetic

relationship. CAPASA parses the entry information for each organism (from one entry

per contributing database per alignment) into an abbreviated taxonomic lineage using

information from the NCBI Taxonomy Database (Benson et al. 2000; Wheeler et al.

2002) into lists of taxons for each major category ( = Superkingdom, 2 = Kingdom,
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X3 = Phylum, x4 = Order, 5 = Class, Z6 = Family, X7 = Genus, x8 = Species/strain).

The value of a particular taxon in the category is its homology-weighted frequency ( y ),

which is the average bit score for the taxon times its frequency in the taxonomic category

P)y = (Sx)y X (taxon frequency)xtot Eq. 7

Information derived from higher homology sequence alignments should be more reliable

for annotation transfer to the query sequence. The combined homology weighted

frequency increases the reliability of the particular taxon measurement by measuring both

the sequence confidence and its reliability based on its selection by other members of the

scientific community who deposited the information in the sequence and taxonomy

databases. The taxonomy score of the entry (y) is one-eighth of the sum of the ratio of

the entry homology weighted frequency over the best homology weighted frequency for

each of the eight taxonomy categories measured with CAPASA multiplied by a

correction factor

X=8 ( x 1- Eq. 8
X=1 (Pxmax

The factor ty is the number of sequences present in the Genbank protein database

associated with the organism y, while v is the total number of protein sequences

contained in Genbank at the time the BLASTx search is performed. If a particular

organism is represented by an appreciably large number of sequences in the nr protein

database the likelihood of selecting a sequence derived from that organism by chance

increases. The database correction factor (1-gy/v) is the probability that the organism is

not associated with the alignment by chance. For most organisms ,ty is relatively small

versus the total number of sequences in the protein database and this term is irrelevant,
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however for many model organisms or species whose full genome sequence has been

determined the taxonomy database correction factor is crucial to properly calculating the

CAPASA taxonomy score.

(iii) Consensus Name Score (y)

The most important feature of CAPASA is the transfer of a putative functional

assignment to the query sequence. CAPASA constructs a training set for name selection

based on the individual words that comprise the gene product name or function. Words

that are shorter than two characters, words composed of more than 40% numbers, words

that imply less certainty such as "hypothetical", and certain common language words are

not included in the training set. Importantly, the words "conserved", "homolog",

"probable", "putative", and "similar" are included in the construction of the training data

set because they often indicate the particular entry was annotated by sequence homology

comparison instead of experimental validation. The value of a particular word is the

homology-weighted frequency of the word (y ) in the training set of words

qPy = (Sy) x (word frequency),ot Eq. 9

Like the taxonomy lineages, only one function name per contributing database per

alignment is used to construct the training set of words. The total value of a particular

function name (y) is the sum of the homology weighted frequency ratio of the

component word over the best homology weighted frequency normalized by the length of

the name (Ny)

((P /P max )

N Y~~~q1
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As with the taxonomy, the homology-weighted frequency ratio quantifies both reliability

and popularity of the component words for each gene name. By quantifying the

individual words, as opposed to whole names, it is possible for CAPASA to differentiate

between minor differences in gene names, select against misspellings (Gilks et al. 2002),

and select against overly specific or descriptive annotations.

CAPASA Software Validation

The performance of CAPASA annotation selection and transfer was benchmarked by

comparison to several automated or manually supervised methods of annotation

assignment. A variety of prokaryotic and eukaryotic sequence sources were used in the

evaluation to highlight the robustness and flexibility of CAPASA to work with any

sequence that can be analyzed by BLASTx search. Comparisons were made to

annotations assigned by human experts against a set of expressed sequence tags (ESTs)

from monocot plants (Rice Anchor Set) (Van Deynze et al. 1998), the genome of the

yeast Saccharomyces cerevisiae annotated from literature curation by a committee of

experts from the Saccharomyces Genome Database (Issel-Tarver et al. 2002; Weng et al.

2003), and a selection of sequences annotated by the GeneQuiz automated annotation

system (Andrade et al. 1999; Iliopoulos et al. 2001). Lastly, the validated CAPASA

program was applied to the annotation of the full Rhodococcus sp. 124 genome from the

ERGOTM database of Integrated Genomics Inc. (Chicago, IL.) (Overbeek et al. 2003).

The annotations derived from the external sources will be referred to collectively as the

"expert annotations".

The accuracy of annotation assignment was determined by text string comparison of

the CAPASA annotation to the expert annotation. Initial matches were determined by
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computational matching (identical text string or embedded substring matches where the

full text on one annotation was embedded within the other), secondary matches were

assigned by manual inspection of the two annotations to determine if their biological

meaning was clearly similar. A query sequence was deemed unscoreable if the "expert

annotation" or CAPASA assigned annotation was noninformative. An annotation

assignment was noninformative if: it was empty (expert annotations with no assignment

or failed BLASTx searches), the annotation contained no information about biological

function (enzyme activity, cellular phenotype, or some sort of biological function), the

annotation was a database identifier (e.g. "Ydr524cp; CAI: 0.14" as a descriptor for the S.

cerevisiae gene AGE1). Many sequences could not be processed by CAPASA because

the BLASTx search failed to find any database sequences with minimal homology. The

full set of genome scale annotations is available online at

http://web.mit.edu/biology/sinskey/www/home.html in the publications section.

(i) Rice Anchor Set

The Rice Anchor Set is a collection of plant cDNA clones selected for their ability to

hybridize to a wide variety of grass genera for comparative hybridization and genome

analysis (Van Deynze et al. 1998). The collection contains ESTs selected from the

agriculturally important plant species Avena sativa (oat), the fully sequenced Oryza

sativa (rice), and Hordeum vulgare, (barley). Van Deynze et-al. (Van Deynze et al.

1998) reported annotations of the anchor set cDNAs based on manual examination of

BLASTx search results. We used CAPASA to assign functional annotations to these

cDNA sequences and compared our results with the previously published annotations.

Only 34 of the 152 sequences listed in the paper were directly scoreable against
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CAPASA as many query sequences returned no result in our BLASTx search, or because

there was no descriptive annotation in the reference. 32 of the 34 (94%) scoreable

annotations from the paper agreed with annotations assigned based on the sequence

homology search results by CAPASA. The two scored mismatches were RZ244R,

described by Van Deynze et al. (Van Deynze et al. 1998) as "ferric leghemoglobin

reductase" and RZ995, "hypothetical ferripyochelin binding protein". The CAPASA

annotation to RZ244R "putative dihydrolipoamide dehydrogenase precursor" matched

the annotation of RZ244F (the forward sequence primer of the same clone), while the

CAPASA description of RZ995 "transferase hexapeptide repeat family" had no relation

to its counterpart in the literature.

(ii) Saccharomyces Genome Database

The Saccharomyces Genome Database (SGD) is one of the foremost global stores of

sequence, physiology, and metabolism of the model organism S. cerevisiae. The

information maintained in the SGD is based on continuous literature curation by a

committee of experts in the yeast research community. Protein coding DNA sequences

and gene annotation assignments were obtained from the SGD (http://genome-
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BLASTx results was 93.7%. The majority of mismatched CAPASA assignments were

annotated as various uncharacterized functions ("hypothetical protein", "unnamed protein

product"), highly conserved functions (transcription regulators, ribosomal proteins), or

noninformative locus assignments. The total processing time for annotation of the yeast

genome was just over eight hours with the BLASTx-CAPASA combination running 11

routines in parallel (49 annotations per hour per copy of the program).

(iii) GeneQuiz

GeneQuiz is an internet analysis and viewing system for transfer of functional

annotation to novel protein sequences developed by the European Bioinformatics

Institute (Cambridge, UK) (Andrade et al. 1999; Iliopoulos et al. 2001). The GeneQuiz

system employs modular system architecture of multiple database maintenance tools,

sequence alignment tools, and lexical analyses (http://jura.ebi.ac.uk:8765/ext-genequiz/).

The number of sequences compared between CAPASA and GeneQuiz was limited to 24

due to constraints imposed on throughput of the GeneQuiz email queuing system. These

sequences were selected from the Rice Anchor Set and SGD yeast sequences. The Rice

Anchor Set DNA sequences were translated to their protein counterpart using the EBI

Translation Machine (http://www2.ebi.ac.uk/translate/) in the frame of the highest

homology selection returned by the BLASTx. SGD ORF translation sequences were

used as the yeast sequence dataset data set for GeneQuiz analysis. Only two annotations

disagreed between the two systems, both of which were listed with marginal reliability

scores by GeneQuiz, although these two CAPASA annotations agreed with the expert

source annotations from SGD (TABLE 1).
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(iv) ERGOTM Genome Database

Rhodococcus sp. 124 is a Gram-positive nocardioform actinomycete capable of

degrading naphthalene and toluene as sole carbon sources (Chartrain et al. 1998;

Treadway et al. 1999). The genome sequence was determined by Integrated Genomics

Inc. and is available via the ERGOTM database at

(http://ergo.integratedgenomics.com/ERGO/) (Overbeek et al. 2003). ERGOTM is a

subscription accessible database, which uses genome comparison methods to determine

the function of novel genes in newly sequenced or poorly characterized organisms by

chromosomal synteny, metabolic pathway prediction, and missing gene analysis (Bork et

al. 1998; Consortium 2001). The Integrated Genomics ERGOTM database contained

6098 open reading frame sequences for Rhodococcus sp. 124 in 2003, not all of which

possessed an annotation assignment. A total of 3037 of these contained scoreable

annotations from both ERGOTM and CAPASA for comparison. Of these 135 (4.4%)

were identical text matches between ERGOTM and CAPASA annotation assignments, 896

(29.5%) were matched by text substring comparison, while 1453 (47.8%) were assigned

as matches by inspection. The remaining 553 (18.2%) annotations disagreed between

ERGOTM and CAPASA. A total of 3061 sequence annotations were not scoreable. Of

these, 1997 ERGOTM entries had no information; 1064 annotations from either ERGOTM,

CAPASA, or both were noninformative. CAPASA was able to assign functional

annotation to 445 of the sequences that had no information assigned from the ERGOTM

database. The total processing time for annotation of the Rhodococcus sp. 124 genome

was just over eight hours with the BLASTx-CAPASA combination running 13 routines

in parallel (39.5 annotations per hour per copy of the program).
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Discussion

As the speed of sequence generation increases it will be crucial for the scientific

community to develop and use automated annotation assignment methodologies as a first

step in creating a framework for investigating and determining the purpose and function

of newly sequenced genes. CAPASA is a new method to be included in the global

toolbox of annotation systems. The advantage of CAPASA over other systems is that it

does not require a large amount of computing power. It is fully functional on a desktop

computer running PERL in the Windows environment. Its small size (165 kb) and

flexibility (DNA or protein sequences and previously generated BLAST output files can

be used as input for different modules) makes CAPASA readily available to the small

sequencing efforts initiated by individual researchers as well as the large-scale

sequencing consortium. CAPASA is fast enough to complete genome scale projects in a

matter of days while being simple enough for the average researcher to implement on a

desktop computer without IT support. CAPASA is based on well-established sequence

similarity search systems and objective selection rules. The annotations transferred to the

query sequence are rigorously analyzed and are based on the most complete information

publicly available at the time the BLAST search is executed.

The Consensus Annotation by Phylogeny Anchored Sequence Alignment algorithm

for functional annotation transfer successfully assigns annotations to query sequences

with good agreement to several other methods including expert selected literature

curation (Saccharomyces Genome Database), manual selection from BLAST search

results (Rice Anchor set), complex computational database analysis (GeneQuiz), or

genome comparison methodologies (ERGOTM). CAPASA performed at a level of 82-
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94% agreement to these various systems at speeds that allowed for the annotation of full

microbial genomes overnight. These results were achieved with a desktop computer and

the popular PERL programming environment. The premise that similar sequences from

similar organisms perform similar functions has successfully been captured by CAPASA.

Most importantly, the annotation score of CAPASA assignment is a strong measure of

alignment quality combining information about both the sequence alignment similarity as

well as the combined agreement of the global research community about functional

assignment and organism relatedness.
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S BLAST raw homology score
X BLAST sequence composition metric
K BLAST sequence distribution metric
S' BLAST bit score
E BLAST expect score
m Size of Genbank database in amino acid residues
n Size of query sequence in amino acid residues
x Alignment number in BLASTx output
y Entry number within a BLASTx alignment
axy CAPASA annotation score
rIX CAPASA homology score of the alignment 'x'
·'y CAPASA taxonomy score of the entry 'y'
Pyy CAPASA consensus name score for the entry 'y'
E Un-E-score, log transformation of the BLAST expect score
pt Homology weighted frequency of the taxonomy score

(pY Homology weighted frequency of the consensus name score
X Taxonomic category
gy, Number of sequence entries from the organism of entry 'y' in Genbank non-
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redundant protein database
v Total number of sequences in the Genbank non-redundant protein database
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Figure 1. Schematic representation of CAPASA workflow. The BLASTx search output

is parsed into homology, taxonomy, and annotation components. The taxonomy lineage

and functional annotation associated with each alignment entry is used to construct

training sets to quantify the homology-weighted frequency of each component. These are

combined to determine the annotation score for each entry. The entry with the highest

annotation score is assigned as the putative function of the query sequence.

Phase I Phase ll
4 Construct data sets and measure - .. -Calculate annotation score--

homology weighted frequencies for each alignment entry

Parker, page 48 of 92



Figure 2. A comparison of probability () and E* () versus the E-score of an alignment

sequence. The probability saturates very quickly at uninformative high E-scores. E* is

linear across the entire range of E-score possibilities, allowing for a fine discrimination of

the quality of sequence similarity between highly homologous sequences.
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Table 1.

Table 1. Results of functional annotation of 24 sequences by GeneQuiz (Andrade et al.

1999) and CAPASA. The grey highlighted entries indicate entries whose annotations

disagreed between the two systems. The annotations for these two genes from the

Saccharomyces Genome Database are CTM1: cytochrome c methyltransferase and

OKP 1: outer kinetochore protein (Dwight et al. 2002).
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CDO1081F Avena satia 70 ENDO-POLYGALACTURONASE-LIKCE PROTEIN 0.99 (clear) polygalacturonase, putative 2.606
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RZ400 Oryza satta 122 Ras-related protein RHNI 0.99 (clear) GTP-binding protein Ara6) 2.265
RZ476 Oryza satia 49 Elongation factor I -gamaa (EF-I -gamma) (eEF-IB gamma) 0.99 (clear) Elongaon factor -gamma 2.965
RZ508 Oryza satia 80 Catalase isozyme B (EC 1.11.1.6) (CAT-B) 0.99 (clear) catalase (EC 1.11.1.6) 1 2.922
RZ567 Oryza saltia 64 KINESIN LIGHT CHAIN (FRAGMENT) 0.99 (clear) utative kinesin light chain 2.472
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AAC I Saccharomyces erevisiae 309 ADP,ATP carrier protein I (ADP/ATP translocase 1) (Adeni te nucleode transloca I (lear) ADP/ATP translocator 2.604
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KNHI Saccharomyes cerevisiae 268 Cell wall sytthesis protein KNH I precursor I (clear) Knh lIp 2.750
LYS20 Saccharom s cerevisiae 428 Homocitmte synthase, cytosolic isozyme (EC4.1.3.21) I (clear) Homocitrate synthase,cytosolic isezyme 2.331
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RPCII Saccharomyces erevisiae 110 DNA-directed RNA polymerase llI 12.5 kDa polypeptide (EC 2.7.7.6) I (clear) DNA-directed RNA polymerases I 12.5 kD plypeqide 1.9%
RPL37B Saccharomyces cerevisiae 88 60S ribosomal protein L37-B (L35) (YP55) 0.99 (clear) ribsomal protein L37 e.B, cytosohc 1.429
SOL4 Saccharomyces cereisae 255 Probable 6-phosphogluonolactonase 4 (EC 3 1 1.31) (6PGL) I (clear) Probable 6-phosphogluconolactonase 4 2.671
SUT I Saccharom ces cerevisiae 299 Probable terol carier I (clear) involved in sterol uptake; Sutlp 2.286
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Chapter III

Trigonometric deconvolution analysis of DNA microarrays from Rhodococcus sp.
124 aromatic hydrocarbon fermentations.
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Abstract

The genus Rhodococcus is gaining value as a versatile platform for biocatalytic

manufacturing of chiral intermediates and small molecules (O'Brien et al. 2002).

Rhodococcus sp. 124 was grown by batch fermentation in the presence of naphthalene

and indene to measure changes in gene expression and aromatic hydrocarbon metabolism

with DNA microarray technology. We describe the theory and application of

trigonometric deconvolution analysis for the measurement of changes in gene expression

across multiple growth conditions with a minimal number of labeled cDNA

hybridizations. The analysis of gene expression and metabolite synthesis from different

aromatic substrates across mid-log and late stationary growth indicates that genes

associated with hydrocarbon metabolism are regulated by substrate specific and growth

phase dependent mechanisms.

Introduction

The genus Rhodococcus has shown increasing utility as a platform system for fine

chemical manufacturing with biocatalytic processes. Multi-ton production of acrylamide

(Yamada et al. 1996), environmental remediation of halocarbons (Swanson 1999), and

production of chiral synthons (Orru et al. 1999; O'Brien et al. 2002) represent just a few

of the activities available in the metabolic repertoire of these organisms (Warhurst et al.

1994). The study of this group is complicated by recent reclassification as a genus

distinct from the closely related Corynebacteria, Mycobacteria, and Nocardia (Bell et al.

1998). There have been regular fluctuations in classification criteria (Goodfellow et al.

1998) and only limited tools for modification and manipulation of genetic systems

Parker, page 54 of 92



(Larkin et al. 1998). Novel genomic analysis tools may enable solutions to overcome the

numerous challenges to classical biological characterization of Rhodococci.

Past studies by our research group have explored the use of Rhodococcus sp. 124 for

the bioconversion of indene to 2R-indandiol, a critical precursor for the HIV protease

inhibitor CRIXIVAN TM (Vacca et al. 1994; Reider 1997). Current manufacturing

methods for CrixivanTM production rely on an expensive stereospecific manganese salen

catalyst for the production of (-)cis-(1S,2R)-l-aminoindan-2-ol, or (-)-CAI (Senanayake

et al. 1996; Hughes et al. 1997). Our long-term goal has been the genetic engineering of

a biological system for the production of 2R indandiol for incorporation into the

CRIXIVANTM production process. Transcriptional regulation (Chartrain et al. 1998),

cloning studies (Treadway et al. 1999), and metabolic flux analysis (Yanagimachi et al.

2001) have revealed the presence of multiple competing or non-productive pathways

acting in indene metabolism (Figure 1). These same metabolic pathways allow

Rhodococcus sp. 124 to consume other polycyclic aromatic hydrocarbons (PAHs) such as

naphthalene and toluene as a sole carbon source.

Our current study describes efforts to correlate well-characterized aromatic

hydrocarbon metabolism with data from DNA microarrays to dissect the interplay

between biocatalysis and gene expression. Detailed analysis of aromatic metabolite

production during batch fermentation, measurement of glucose co-utilization, and the

innovation of trigonometric deconvolution analysis of DNA microarray data begin to

reveal a more complete picture of the complex network of chemistry and biology at work

within this system.
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Materials and Methods

Fermentation

Fermentation inocula were precultured in LB medium (Difco, Detroit, MI) overnight.

Fermentation cultures were grown in a defined medium as described (Stafford et al.

2002) without MOPS buffer and with 0.25 mL P2000 polypropylene glycol antifoam

(Sigma-Aldrich, St. Louis, MO) per L culture in an Infors Sixfors (Appropriate Technical

Resources, Laurel, MD) six-vessel fermentation system. 20 mL of inoculum was

sterilely injected into each fermenter containing 500 mL gas- and temperature-

equilibrated defined medium. Each culture was independently controlled at 300 C with

1000 5 RPM agitation. The pH was maintained at 7.0 ± 0.1 by addition of 2 M NaOH

or 2 M HCI (Mallinkrodt, Paris, KY). Oxygen tension was maintained at saturation by an

internal feedback controlled system with 50% 0 2 /N 2 mixture (BOC Gases, Cambridge,

MA). Aromatic hydrocarbon feeding was initiated at an OD600 of 2. Indene (Sigma-

Aldrich) was added to the system with a 100 mL/ min filtered nitrogen stream (BOC

Gases). Naphthalene (Sigma-Aldrich) was added to the system as solid flakes. All gas

tubing and fittings were composed of polytetrafluoroethylene (PTFE) (Cole Parmer,

Vernon Hills, IL). 250 OD units of cells were harvested around mid log phase at an

OD600 of 5 and at the beginning of stationary growth, flash frozen in liquid nitrogen, and

stored at -800 C until needed for RNA isolation. All fermentations were performed in

duplicate.

High Performance Liquid Chromatography

1 mL samples from cultured cells were extracted for aromatic hydrocarbon analysis

with 1 mL of 50% (v/v) isopropanol-acteonitrile (Mallinkrodt) and cleared by
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centrifugation at 13,800 g. Cleared samples were filtered through a 0.22 polyvinylidene

difluoride (PVDF) syringe filter (Alltech, Deerfield, IL.) into glass vials. Indene and

naphthalene metabolite concentrations were measured by reverse phase HPLC with an

Agilent Zorbax RX-C8 column coupled to a Hewlett Packard (Palo Alto, CA.) series

1050 UV detector. Analysis was performed as previously described (Treadway et al.

1999; Stafford et al. 2002).

Glucose determination was performed by HPLC analysis of aqueous extracted media

samples as previously described by Guillouet et al. (Guillouet et al. 1999) with an

Aminex HPX-87H column (Bio-Rad, Hercules, CA.) coupled to an Agilent Series 1100

refractive index detector.

RNA Purification

Frozen bacterial cells were thawed on ice, centrifuged for 3 min at 4105 g at 40 C, and

suspended in 11 mL ice cold RLT buffer (RNEasy Midi-kit; Qiagen, Valencia, CA)

containing P-mercaptoethanol (Sigma-Aldrich). Cells were mixed with 12 mL cold 0.1

mm Zirconia-Silica beads (Biospec Products, Bartlesville, OK) and lysed at 0°C in a

Biospec Products Bead Beater (model 1107900) with six 30 sec pulse / 30 sec pause

cycles. RNA was purified using an RNEasy Midi Kit (Qiagen) following manufacturer's

instructions. Residual genomic DNA was removed by 15 minute incubation with DNAse

I (Qiagen). RNA concentration and integrity were measured at the MIT BioMicro Center

(Cambridge, MA) with an Agilent 2100 Bioanalyzer by microfluidic electrophoresis.

Oligo probe design and selection

DNA microarray oligo probes were designed against the genome of Rhodococcus sp.

124 with the ArrayOligoSelector program (Bozdech et al. 2003) with oligo length of 60
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and target GC content of 73%. Genome sequencing was performed by Integrated

Genomics Inc. (Chicago, IL). Probes chosen for inclusion in DNA microarray printing

were selected based on known or suspected participation in aromatic hydrocarbon

metabolism pathways (Table 1)(Treadway et al. 1999). Each of the selected sequences

was obtained from MWG Biotech (High Point, NC) and Proligo (Boulder, CO), except

for sequences from contigs 2214, 2224, 2226, and 2247 which were procured from

Proligo only.

Microarray printing and blocking

Oligo DNA microarrays were printed with a BioRobotics (Huntingdon, UK)

MicroGrid TAS printing robot with a sixteen pin print head and BioRobotics MicroSpot

2500 quill pins. Arrays were printed onto Coming Life Sciences (Acton, MA) GAPS-2

or ULTRA slides, Full Moon Biosystems (Sunnyvale, CA) cDNA or PowerMatrix, and

SCHOTT Nexterion AG (Mainz, Germany) Nexterion slides. The oligo array was

printed in duplicate per slide, each spot printed in sextuplet within the array. DNA oligos

were resuspended in an aqueous solution of 50% (v/v) dimethylsulfoxide (DMSO,
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Rhodococcus RNA. 5 ng of control Arabidopsis thaliana RNA (Spot Report 3 kit,

Stratagene) corresponding to control spots printed on the microarray was also included in

the labeling reaction. After labeling, the RNA template was destroyed by alkaline lysis

treatment with 0.1 M NaOH (Sigma-Aldrich) at 650 C for 15 min. Unincorporated dye

and enzyme removal and buffer exchange was accomplished using a QIAquick PCR

purification kit (Qiagen) following manufacturer's instructions, with the final elution

performed with MilliQ water (pH 8.0). Labeled cDNA samples were dried under

vacuum before hybridization.

Microarray hybridization and scanning

Hybridization and post processing were performed as described in (Loos et al. 2001)

using a Coming hybridization chamber (catalog number 2551). All hybridizations were

performed as "dye swapped" pairs. That is, one array on each slide was hybridized with

experimental RNA labeled with Cy3-dUTP and reference RNA labeled with Cy5-dUTP,

and the other array on the same slide was hybridized with Cy5-dUTP labeled

experimental RNA and Cy3-dUTP labeled reference RNA. Microarrays were analyzed

using an ArrayWoRx E CCD scanner (Applied Precision, Issaquah, WA). The Cy3 color

channel was scanned with a 0.1 sec exposure time whereas Cy5 was scanned with a 0.3

sec exposure time. Images of each fluorescence channel were exported as 16 bit

grayscale TIFF images. Spot detection and fluorescence intensity measurements were

made with the MolecularWare Digital Genome software package (Cambridge, MA) with

contour intensity calculation shape, annulus background calculation with 15 percent inner

diameter, 85 percent outer diameter, and no ratio normalization. The total signal intensity

(xs), signal and background number of pixels (Ns and Nb respectively), mean background
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intensity (x b), and signal and background standard deviation per pixel ( and b

respectively) were exported to Microsoft Excel (Redmond, WA) for further analysis.

Microarray analysis

Statistical normalization was used to calculate the channel combined weighted

average pixel intensity for each labeled cDNA (Brown et al. 2001; Loos et al. 2001). The

standard deviation for each measurement was maintained through each calculation using

standard methods of error propagation (Taylor 1997). All spots with a total signal-to-

noise ratio less than one and genes represented by fewer than two spots on a single array

were removed from analysis. References to a particular "gene" are meant to include

those microarray spots with a common oligo probe sequence, oligo manufacturer, and

print buffer.

(i) Normalized weighted average pixel intensity: The mean pixel signal and

background intensities and the standard deviations of the mean for each spot in each array

on a given slide were calculated from the measurements exported from the

MolecularWare image analysis software as:

Eq. 1
Xb CYb

b Nb Xb

Mean background subtraction was applied to give the background subtracted average

pixel intensity (BSAPI), which was used to normalize the total channel intensity of the

Cy3 and Cy5 channels for each array on the slide. The scanner normalization factor

(SNF) equalizes the scale of fluorescence intensity within an array of the slide such that
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XsCy3SN
Z x-b3 /SNF Eq. 2

XC ys6(SNF)

Solving Eq. 3 gives the value of the SNF:

:&3 vcy3 y3 G Cy5
SNF y 53 CY Ju Eq. 3/b1 sbb J

Cy3 Cy5

The scanner normalized intensities were log transformed and expressed as a fraction of

the sum of the log transformed intensity for the channel of each array. The intensity

normalized average pixel intensity for each gene's spots were combined into a single

weighted average measurement for each cDNA as the combined values for the labeled

cDNA intensity from both arrays of a slide (Loos et al. 2001).

Cy3+Cy5/ Xs- Eq.4

Cy3+Cy5 s-b cy5 _Cy3+Cy5 Cy3+Cy5

Genes with weighted average coefficient of variance greater than 10% were not included

in trigonometric deconvolution analysis.

(ii) Trigonometric deconvolution: The weighted average combined fluorescence

intensity of a labeled cDNA to a gene probe from both arrays of a slide represents the

fraction of bound cDNA expressed by the gene. Considering the experimental and

reference cDNA separately, we were able to compare changes in transcription between

two physiological conditions (growth phase or aromatic substrate) by a two-dimensional

graphic system with axes of reference and experimental cDNA intensity (Figure 2). The

weighted average experimental and reference cDNA intensities for a given gene describe

its position in the plane of transcription as the coordinate point (refl, expl) for the first
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physiological state, and (ref2, exp 2) for the second. Trigonometry was used to derive the

percent change in transcription between growth conditions as the distance between the

intensity points perpendicular to the normal, or:

Ag x = /2 ( -exp 1)- - (ref 2 - ref 1) Eq. 5
2 2

It is important to only consider the change in transcription perpendicular to the normal

because fluorescence intensity ratios along the normal are equal.

Results

Fermentation

We grew several 500 mL cultures of Rhodococcus sp. 124 in the presence or absence

of indene or naphthalene to measure the effects of different aromatic hydrocarbons on

gene expression. Growth of Rhodococcus sp. 124 cultures was monitored by hourly

measurement of OD600 and bi-hourly sampling for glucose determination. Aromatic

hydrocarbon was introduced into the system when the culture reached an OD60 0 of about

2. Indene was fed by way of a secondary gas feed with nitrogen at 100 mL/ min. About

1 g of naphthalene was added as solid flakes; crystals persisted in the culture medium

until completion ensuring a saturating amount of naphthalene through the duration. Both

naphthalene and no aromatic (non-induced) cultures were treated with 100 mL/ min

nitrogen to replicate the secondary gas feed used with the indene grown cultures. The

correlation of OD600, glucose consumption, and aromatic hydrocarbon metabolism for a

representative culture with each aromatic hydrocarbon is shown in FIGURE 3. The

maximum specific growth rate was 0.157 0.004/h for non-induced cultures, 0.074 +

0.002/h naphthalene cultures, and 0.160 0.01/h for indene cultures. The naphthalene
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specific growth rate is most probably lowered by the five fold higher concentration of

aromatic hydrocarbon consistently present in the culture medium.

Aromatic hydrocarbon metabolism analysis

Polycyclic aromatic hydrocarbon dioxygenase expression in Rhodococcus sp. 124 has

been shown to be differentially regulated by different substrates (Chartrain et al. 1998);

(Treadway et al. 1999). Aromatic hydrocarbon metabolite samples were measured every

hour until the end of the fermentation. The metabolite profile of each substrate and the

co-consumption of glucose are shown in FIGURE 3. Rhodococcus sp. 124 can consume

naphthalene completely as a sole carbon source (Chartrain et al. 1998; Treadway et al.

1999), and these same pathways are partially responsible for the metabolism of indene.

The differential regulation of aromatic metabolism activities is most apparent in the

indene grown cultures (Figure 3c). 1-indenol is first detected about four hours after the

indene nitrogen feed is started, followed three hours later by cis-indandiol, and three

hours later by trans-indandiol. The separation of different metabolites is indicative that at

least three independent activities are responsible for indene metabolism.

RNA analysis

All RNA samples were processed with an Agilent 2100 Bioanalyzer to measure

concentration and sample integrity. As shown in Figure 4, all samples except number 10

(F5 ind-2) were isolated with minimal degradation of ribosomal RNA, with average

yields of 0.35 ptg/gL. Aliquots from all RNA samples except number 10 were pooled for

use as the reference RNA for microarray hybridizations.
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Microarray analysis

RNA labeling and hybridization to the spotted DNA oligos was measured by

electronic scanning of fluorescence intensity. Intensity measurements of the grayscale

TIFF images were used to determine the amount of labeled experimental and reference

cDNA bound to each gene spot on the array. Changes in gene expression were measured

by trigonometric deconvolution to determine the distance between gene expression levels

of two growth conditions perpendicular to the normal. We developed this analysis

method to enable the measurement of gene expression changes between two experimental

conditions without comparing them directly to each other by comparison to a common

reference sample. Because samples do not have to be compared directly in a pairwise

fashion the total number of hybridizations is reduced, data from multiple hybridizations

of common conditions can be combined to refine expression measurements, and the total

standard error of measurements is minimized. Gene expression changes were calculated

by comparing transcription levels on growth substrate (non-induced vs. aromatic) at mid-

log and early stationary growth phase, as shown in Figure 6. Aromatic metabolism

activity increases in later stages of growth, as indicated by the HPLC measurement of

aromatic metabolites of naphthalene and indene. The late growth phase increase in

metabolism is reflected by changes in transcription of certain genes associated with

aromatic hydrocarbon metabolism. Changes in gene expression are described as the

percent change in expression from the non-induced cultures to the aromatic-induced

cultures as measured by trigonometric deconvolution analysis.

Non-induced cultures were compared to naphthalene-induced cultures at mid-log and

early stationary growth. Cultures at mid-log show a down regulation of the putative tid
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genes (-29.4% for tidAB and -14.4% for tidC) believed to be responsible for synthesis

and dehydrogenation of cis-(1S,2R)-indandiol (Priefert, manuscript in preparation). The
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non-induced), which increases to +43.0% at late stationary. Also, the naphthalene

inducible dioxygenase genes nidAB and nidC were up regulated +15.3% and +18.0%

respectively at mid-log, and went up to +41.8% and +37.7% respectively at the late

stationary phase of growth. The uncharacterized 2214, 2226 and 2247 gene clusters

showed average changes in gene expression of +15.5%, +21.5%, and +11.7%

respectively at mid-log growth. The same genes were up regulated to +29.7%, +33.8%

and +32.5% in early stationary growth.

Discussion

Rhodococcus sp. 124 was grown in batch fermentation under non-induced or aromatic

induced conditions. RNA samples from mid-log and early stationary phase were labeled

and hybridized to targeted DNA microarrays to measure the expression of several genes

believed to participate in polycyclic aromatic hydrocarbon metabolism. Analysis of

fermentation cultures by HPLC measurement of aromatic metabolites revealed an

increase in metabolic activity during later stages of culture, which was reflected in

changes in gene expression. Statistical normalization and trigonometric deconvolution

were applied to pairwise hybridizations between growth conditions to analyze patterns of

temporal and substrate induced gene expression changes (Figure 6). The pattern of gene

expression suggest that transcription of the aromatic hydrocarbon metabolism pathways

are regulated by particular substrates as well as physiological conditions associated with

growth phase.

The tid-associated genes are significantly down regulated under all conditions, both

naphthalene and indene substrates as well as mid-log and early stationary phases of

growth, relative to expression levels of non-induced cultures. However, the expression of
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the tid genes increases about 10% under both aromatic substrate inductions as the culture

continues from mid-log to early stationary growth. These results would suggest that the

tid genes are transcriptionally repressed by an element which is partially responsive to

growth phase dependent signals, but neither indene nor naphthalene function as an

activating substrate.

Alternatively, the nid gene cluster is strongly repressed at mid-log when grown with

naphthalene, but up-regulated 15% over non-induced with indene at the same stage of

growth. The expression of the nid dioxygenase is increased in early stationary when

grown with both naphthalene and indene by about 20% over mid-log. The results suggest

the nid gene repressor requires two signals for expression to be activated. High-level

expression is activated in late stages of growth, possibly by some sort of quorum sensing

signal. Aromatic specific expression is indicated by the up-regulation in mid-log on

indene, but repression at the same growth phase with naphthalene. The differential

pattern of expression at mid-log would indicate that indene is able to de-repress the nid

regulator. The most likely substrate giving rise to this de-repression is the

monooxygenated 1-indenol or 1-indanone, the first substrate activity arising from indene.

Unfortunately the pattern of sampling cannot resolve the inducing substrates responsible

for changes in other indene metabolite production.

The nim genes associated with a putative epoxidation reaction is specifically

responsive to indene. The naphthalene grown cultures showed consistently low

expression around 4-6% over non-induced cultures at both mid-log and early stationary

growth phases. However, the indene grown cultures showed expression about 20% over

non-induced at mid-log and over 40% above non-induced at late stationary. The
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epoxidation reaction has been shown to be the source of trans-(1R,2R)-indandiol by

spontaneous hydrolysis (Stafford et al. 2002), suggesting that its expression begins

several hours before the onset of stationary phase when the trans-indandiol is first

produced.

The scientific community has been investigating DNA microarrays for several years,

and there are almost as many methods of data analysis available as there are methods of

designing DNA microarrays (Brody et al. 2002; Pan 2002; Quackenbush 2002; Datta

2003; Park et al. 2003). The log 2 normalized Cy5/Cy3 ratio presents a useful

description of the fold change in expression of a single gene relative to two physiological

conditions, and this is completely adequate to describe the change between those two

conditions (Brown et al. 2001). However, the fold change in expression becomes less

useful when trying to compare more than two conditions directly. In fact, it is useless as

anything other than a qualitative means of showing stronger up or down regulation across

multiple conditions such as a time course or series of substrates. The fluorescence

intensity ratio, or the more accurately described relative fraction of bound cDNA, is

constant along the normal when data has been log transformed. If this line is treated as

the actual measure of gene expression it is possible to measure the actual percent change

in gene expression between any two physiological conditions, as long as each sample

RNA is hybridized against a common reference sample. The methods presented in this

work accomplish just such a comparison with a reference sample composed of a mixture

of experimental condition RNAs from different time points in the growth phase (mid-log

and early stationary) of cultures grown with multiple aromatic hydrocarbon substrates

(none, naphthalene, or indene). However, the reference sample can be composed of any
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other nucleic acid composition that contains a representative of each probe on the

microarray (Dudley et al. 2002). Secondly, we propose that the measurement of single

channel fluorescence intensity on a pixel-by-pixel basis is a more robust presentation of

DNA microarray measurements. The division of the DNA microarray "spot" into

hundreds of pixel measurements effectively increases the number of data points available

for analysis. The resulting amplification in the number of measurements allows the

calculation of fluorescence intensity as the weighted average of pixel intensities across

arrays and even across slides of replicate hybridizations with robust error propagation

throughout subsequent calculations, and error reduction through application of the

standard deviation of the mean (Eq. 1)(Taylor 1997).

Statistical normalization transforms all data points of a single hybridization

experiments into a common form across all experiments involving the particular

reference sample. Ideally, the total amount of cDNA from the experimental and

reference conditions loaded onto each array are the same. When the same quantity of

cDNA is applied to both arrays of a single slide the total cDNA bound to each array will

also be the same. The total fluorescence within each array was within 4% of equality for

Full Moon Biosystems cDNA slides, and 19% for Coming GAPS2 slides. The other

slide types used in this investigation had larger discrepancies, on the order of 50-60%.

The equivalence of total hybridization intensity between intra-slide arrays should increase

as the coverage of the target genome and overall RNA quality increase. Therefore, the

sum of fluorescence of the cDNAs within both arrays should be equal, as is calculated by

our normalization methods. As shown in Figure 5a, the distribution of raw fluorescence

values from the two arrays can vary widely within a slide, but they do cluster along
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similar trends within an array. Scanner normalization of the individual color channels

(Cy3 and Cy5) within each array (A and B) reduces the effects of dye bias during the

enzymatic labeling reaction, differential scanner sensitivity for the two dyes, and

localized differences in DNA concentration across the array (Figure 5b). The log

transformation of a data set is a standard method of making it both linear and normal, and

thereby amenable to statistical analysis (Figure 5c)(Sokal 1987). Lastly, the scanner

normalized log transformed data set is expressed as the fraction of the total intensity per

color channel in the array to transform the fluorescence intensity data back into an

expression of cDNA bound per spot (Figure 5d). The gene expression of two

experimental conditions can be plotted as single points in a two dimensional system with

axes of experimental hybridization and reference hybridization (Figure 2, pink and blue

respectively). The total change in gene expression between the two conditions is the

distance between the lines parallel to the normal representing the ratio of experimental to

reference cDNA hybridization. Specifically, the change in experimental cDNA

hybridization is the altitude of the right triangle with sides equal to the difference in

experimental cDNA binding, while the change in reference cDNA binding is similarly

the altitude of the right triangle with sides equal to the change in reference cDNA

hybridization. Using standard trigonometric methods, the total change is calculated by

Eq. 5. As an added benefit, the same formula is able to indicate the direction of the

change in gene expression as upregulated or downregulated by the sign of the value of

the change being positive or negative respectively. The formula presented in Eq. 5

measures both the absolute percent change in gene expression between the two conditions
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in question, as well as indicates the up- or downregulation of that change in a single

value.

The genetic picture of aromatic hydrocarbon metabolism by Rhodococcus sp. 124 is

complicated by the presence of multiple pathways, aromatic and growth phase dependent

regulatory mechanisms, and highly variable morpho-physiological growth (Finnerty

1992; Bell et al. 1998; Goodfellow et al. 1998; Larkin et al. 1998; Treadway et al. 1999).

Future developments such as full genome microarrays, high density time point

experiments (RNA sampling every 15-30 minutes), and a full survey of aromatic

substrates metabolized by this strain will aid in the resolution of this problem. An

understanding of which genes are responsible for indene metabolism at the various time

points when individual activities are induced will allow the isolation and full

characterization of the exact genetic pathways responsible for production of 2R-

indandiols and the development of a production scale biocatalytic system.
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Figure 1. Rhodococcus sp. I24 is able to metabolize indene to multiple products

including cis-(IS, 2R)-indandiol and trans-(1R, 2R)-indandiol, both of which can serve as

precursors for cis-(1S)-amino-(2R)-indanol (modified from Treadway et al. 1999).

1H

'IllIOH

/
sp
hy

!hydrogenase

0

Monoxygenase 111O

OH OH

-r~ ~ *B~ g.''IIiOH L
trans-(1R,2R)-indandiol - roxnan

L2-keto- -hydroyindan
(unstable intermediate)

tautome

OH
I~~~~~~~~~~ 

rization

5'V-IOH

1-keto-2-hydroxyindan

Parker, page 72 of 92

I

, AA

C



Figure 2. Trigonometric deconvolution. Changes in gene expression between two

physiological conditions are described by the point coordinates of the intensity of the

experimental and reference cDNAs of the gene. The change in expression is the distance

between the two points perpendicular to the normal, as calculated using standard

trigonometric methodologies. Background spots are plotted for explanatory value.

Fractional intensity of
__ __ _. I>___ ~ |A

2

-- (exp2
2

ial
Control
+ Cy5)

2 z(Ctc2 - ct 1)

Parker, page 73 of 92

Percent change in
r.....:_.:A r ..-- l - ir



Figure 3. Fermentation of aromatic hydrocarbons. Rhodococcus sp. 124 fermentation

cultures were monitored for about 35 hours of growth. Vertical lines through each graph

indicate time points where RNA samples were harvested for DNA microarray analysis.

Each graph is from measurements of a single fermentation; although all fermentations

were performed in duplicate.

Noninduced

F *-.

,,, I,.. I I i. . .l I ll ll

0 5 10 15 20 25

Time (hours)

S

:

00

10

5
o

n'

I * Glucose(g/L) 

30 35 40

40

, 20
o

(D

10

0

0.8

E
s 0.4

0.2

0

Naphthalene

W.,, I

0 5 10 15 20 25 30
Time

........ i

· OD600 

J · Glucose (gL) 

* Naphthalene (mM)
· Dihydro naphtha lenediol
* Dihydroxyraphthalene

35 40

Parker, page 74 of 92

16

0
0

a

0Dn

v

Q)
U)

D

8

U

40

30

20

10

0

.............. I

*, 

. , .. ...I , .. I

·.......

.,,I .... I

. I ..1 . ...I ...I l .- . . . i

· ·

. 0

.~~~· e
e

',,,1 . ..... .1,,. '.',';: t

''' I.... I

r.o 

, *-+r r
I.tY

......................... ......... - I... - -I........... .... I .... I1...
. - -

w . . , .............. . -

. I ........

, ,,,,,,...i,,,,, ,. . -. _ TT

i

49

.-VO*101"

* ** .L ..... I* . -* *- .......
n5...I

I

. . .

t



Indene

:.,.... .. .. ,1,

*a O' .080
O0

I, .... . I... I

C.....C..... l+ti
u 3

U trans-indandiol (mM)
cids-indandiol (mM)

* 1-indenol (mM)
x 1-indanone (mM)
tI indene (mM)

Time (hours)

Parker, page 75 of 92

16

0o
C3
0

8

GP

5 

11
of

a

.. * · ee

40

30

20

aa

o
I

I3

10

0
3

2.5

2o 2

E 1.5

1

0.5

0

-.

;

i -
-

.---�-� . . .| S S

.~~~~~~~~~~~

- -............,,, ,, wC I il I

I

,,,. ,. I,.

I

1n 1 I Awn ?e an



Figure 4. RNA Quantitation. RNA samples harvested from Rhodococcus sp. 124

fermentation cultures at mid-log or early stationary phase were analyzed with an Agilent

2100 bioanalyzer to measure concentration and sample integrity. The graphic

representation of peak intensity at left indicates all samples had only two major peaks

(representing the ribosomal RNAs), although sample 10 underwent some sample

degradation. The physiological state of each sample as well as the concentration is

indicated in the table at right.

1 2 3 4 5 6 7 8 9 10 11 12

Sample number Growth phase (OD ... ) Aromatic substrate Concentration ([g/uL)

1. F2 non- I mid-log (4.9) noninduced 0.41
2. F2 non-2 early stationary (I 1.5) noninduced 0.18
3. F3 non- I mid-log (5. 1) noninduced 0.56
4. F3 non-2 early stationar (I ) noninduced 0.17

5. F3 naph- I mid-log (5.0) naphthalene 0.44
6. F3 naph-2 early stationary (7.1) naphthalene 0.34
7. F5 naph- I mid-log (5.2) naphthalene 0.43
8. F5 nah-2 early stationary (7.4) naphthalene 0.35
9. F5 ind- I mid-log (4.7) indene 0.45
10. F5 ind-2 early stationary (10) indene 0.21
1 1. F6 ind- I mid-log (5. 1) indene 0.42
12. F6 ind-2 early stationary (9.1) indene 0.29
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Figure 5. Statistical normalization. The top left graph displays the distribution of

background subtracted average pixel intensities for all spots of a single slide. Scanner

normalization (top right) compresses the spread of the data by equalizing the total

intensity of each fluorescent channel within the two arrays of the slide. Log

transformation (bottom left) converts the data to a form that is both linear along the

normal and distributed in a statistically tractable form. Lastly, expressing the intensity as

a fraction of the sum of the total channel intensity per array converts the fluorescence

intensity values into a measure of the physical amount of labeled cDNA bound to the

microarray as a function of the total amount of cDNA bound.
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Figure 6. Average percent change in transcription of genes involved in indene

bioconversion measured by trigonometric deconvolution analysis of DNA microarray

data. A) noninduced vs. naphthalene induced at mid-log, B) noninduced vs. indene

induced at mid-log, C) noninduced vs. naphthalene induced at early stationary, D)

noninduced vs. indene induced at early stationary.
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TABLE 1

Operon ORF Function 60mer seauence
2214 5003 Aldehyde dehydrogenase (EC 1.2.1.3) CGGGTCGAGTCCTACATCGCCAAGGGGAAGGCCGAAGGGGCCCGGCTGACCGCCGGCGGC
2214 5004 Ferredoxin, 2Fe-2s CGACCTGCCACGTACACGTCGACCCCGAGTACGCCGAGCTGTTCGACGCGGCCACCGACG
2214 5005 Ferredoxin-NAD(+) reductase (EC 1.18.1.3) ACGCCCGAGCCCTGCGCAAGTGGGTCACGGMAGGCCGCACCCTCGCCATCATCGGCGGCG
2214 5204 Cytochrome P450-TERP (EC 1.14.-.-) CCCTGTTCGCGGCCTACAAGTGGCTGCGGGAGMAACAACCCGCTCGCCCAGGTACACGTCG
2214 5277 p-Cumate 2,3-dioxygenase alpha subunit (EC 1.14.12.-) ACTGGTGGGCATCCCGGACCGCCAGGCGTACGGCGACGACCTCGACTTCGGCAAACTCGG
2214 5281 p-Cumate 2,3-dioxygenase beta subunit (EC 1.14.12.-) TCCCGCCGGGCACACCGGGMATACCCGCACTCGGCCACCAGCCACCAGGTGTCCAACGTG
2219 2602 2-hydroxymuconic semialdehyde hydrolase GTGCGCCGATCCCATCTCCTCACCTTCGGGCTTCCGCAATCCGGTCCCGGGCTTCCGGGC
2219 2603 Biphenyl-2,3-diol 1,2-dioxygenase (EC 1.13.11.39) GCGAACTCGGTCCCGGTCTCGGAGGATGCCGATCTGGCGCGTGCACGGCATGTGCAGCGG
2219 3013 Ferredoxin-NAD(+) reductase (EC 1.18.1.3) CGCGCACGATCCCCACCTCCGGGACGCGCCCCGATCTCGTGCACTACCTGCGGACGCTCG
2219 4492 short chain dehydrogenase AGTCCTCCCGCGGCAGCATGATCTTCACCCTGTCCAACGCGGCCTTCTTCCCGGGCGGCG
2219 4493 Biphenyl dioxygenase alpha subunit (EC 1.14.12.18) TTCGTACCGMAAGGACGCGTCGCCGGAGGCCAAGGCGGGAATGCGGCGGGGCACCCAGCGG
2219 4494 Biphenyl dioxygenase beta subunit (EC 1.14.12.18) TGGTCGGAGGAGCCCCCGTCGCGCACCCGGCGGTTGCTGACCMAATGTCCGTGTCGCGCAC
2219 4495 Rieske-type ferredoxin CCCAGCATCAGCATCTTCCTGGGAGGTATCCGACGATGACGGCTGAATCATCCAGTGAGA
2224 5992 Biphenyl dioxygenase alpha subunit (EC 1.14.12.18) GCTGGGCCAGTACMAACGAGAACAAGCGCCGCGTCGCCCGCGAGCGGGTCGGGGACCGTGC
2224 5995 Ferredoxin--NAD(+) reductase (EC 1.18.1.3) GCGTGTTCGCTGCCGGCGACGTAGCTAACGGCCCCAACGAGTTCGCCGGTGGCCGGGTCC
2224 5997 Biphenyl-2,3-diol 1,2-dioxygenase (EC 1.13.11.39) CGCGGATCTGGTTGTGCTCAACGACTGTGGGCACTGGGCGCCGTTCGAGCGGCCACGCGC
2224 5999 Biphenyl dioxygenase beta subunit (EC 1.14.12.18) GCCGTCACGGTGCCGGCATCTAATCACGAATGTGCGCGTGTCGCCGTGTGCCGCGGACAG
2224 6002 Rieske-type ferredoxin CCAGATCGAGTGTGGGTGGCACTTCGCAAAGTTCTGCATCCGGACCGGAGCAGTCACGGC
2226 3393 Cis-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase (EC 1.3.1.55) CGCGCAGAGCGAGCAGGAGAAGGGCTGGTACCAGCAGATCGTGGACCAGACCGTCGACTC
2226 4759 Benzoate 1,2-dioxygenase beta subunit (EC 1.14.12.10) TACTACCCCAACCGCGGTGGCCTCGAGGACCGGGTGTTCCGCATCCGCACCGACCGCTCC
2226 4760 Benzoate 1,2-dioxygenase electron transfer component (EC 1.14.12.10) CGAGCGGGAACTCGAAGCCGCCACCAGGGCAGCCGAGGAGACCGGCCTGCCGGTGTCCCT
2226 4830 Benzoate transport protein CCTGGCACTGATCCTCCTCACCTTCGGGTTCCCGCTGCCCGTCCTGCTGACCGCGGTGGC
2226 7606 Benzoate 1,2-dioxygenase alpha subunit (EC 1.14.12.10) TGCTGTGGATGTGGTGGGGCAACCCGCAGGACCGCCCGCTCTTCCCCCGCAAGGACGAGC
2247 5468 4-hydroxyphenylacetate 3-monooxygenase (EC 1.14.13.3) GGCGGACTGCTCTACCAGCCGGCCGACGTCAGTGCGTTCGACTCCCCCATCGCGTCGGAC
2247 5469 Catechol 2,3-dioxygenase (EC 1.13.11.2) CTGAGGGGCCGCAGTACATTCATCCGGCGCGAGCCGCCCATCGCGGCGGGATCCGGGCAC
2247 5471 GAATCCGTGCACTGCGTCGTTGACGGCAGCGGCTACTCCGAGATCGGCGGGAAGACCCTG
Nid 6043 naphthalene dioxygenase large subunit CCGCGCGGAGATGGGGAACGCCTCACACTTCCGGTGCCCCTACCACGGCTGGACCTACAG
Nid 6044 Trans-O-hydroxybenzylidenepyruvate hydratase-aldolase (EC 4.2.1 .-) CCCCCATTTCTGACAGCACCCGAGGCCTATGCCGAGGGGGCGCGCGAAAACGGACGTCGG
Nid 6047 cis-naphthalene dihydrodiol dehydrogenase TATGACGCGGATGGCGGGTCTCGCGCAGTGAGGGTCGGCGCGTGGGTGGGCCACTCCTCC
Nid 6049 naphthalene dioxygenase small subunit CGTCGCGCTCACGGCACTTCGTCACCAACGTTCAAGTCGCACCGGGCGATAGCGAGGACG
Nid 6057 NidC diol dehydrogenase CTGCTTGATCAGACCACGATAATGACACACAACCTCGCCCTGATCATGTGACGGAGGAGC
Nim 617 Styrene monooxygenase large component (EC 1.14.13.-) AGGTCATCGAGGCCGATCCGTACTCGTGGCTGCGCGGGGCCGTCACCCCGACGGTGCGGC
Nim 4636 NimrnR protein GCGTCCCCGCCCCTGAGTTGAATCCGGCCGMATGGCGCGTGCCCGTCAGGGCGMAACACTG
Nim 5714 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (EC 1.13.11.-) GATCGGTCCGCCAGCAGCGGGTTATCGACACCGCCAAGGCCTTCACCAGGGGTGAGGCCG
Nim 5715 acetaldehyde dehydrogenase CTTGCGGGGCCCGGGCCTCACCATCGAGGATGCTGCAGCCGCAGTGGGGCAGGTGCTGCG
Nim 5717 4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.-) CTCGGGTGGACAGCTGGCCATGAACGACGTACGAGCGCGGATGCGCGCCTACCGAGGGGT
Nim 5719 phenol 2-hydroxylase component B GGTGCCGACCAGGAAACCGTTAGCCGGCACTTCAGTGGGCGCCCCGACCTCCTTCCAGAT
Tid 6111 Biphenyl dioxygenase alpha subunit (EC 1.14.12.18) CAGGCCTTCCCCGGGCTGAGGAAAGAAGATTGGGGCCCGCTACAGGCTCGCGTCGAGACC
Tid 6112 Biphenyl dioxygenase system ferredoxin--NAD(+) reductase component (EC 1.18.1.: CGCGAGAGTTCGCCATGGCGACCCGCCTTGTCGAGAGCGGTGCTCAGGTGGGCCGGGACG
Tid 6113 Biphenyl-2,3-diol 1,2-dioxygenase (EC 1.13.11.39) GTCGGCTCGGGACGCCGGGTGGCCAATCTCCTTCGGCCATCACACACGGCAACAGGAAAG
Tid 6114 BIPHENYL-2,3-DIHYDRO-2,3-DIOL DEHYDROGENASE (EC 1.3.1.-) GCGCGATTATCMAACTGTGACGGCGGGATGGGGGTGCGCGGCTTGGCCGAGACGGCCGGCG
Tid 6115 Biphenyl dioxygenase beta subunit (EC 1.14.12.18) AATACGCACATTTCGACGACAATGCGCAGATGATGCGAGGGCGCCTGCGCAAGATCACTT
Tid 6120 Biphenyl dioxygenase system ferredoxin component CGCCAACAACCTCAGCTTCTTCTTCTAGGAGTGACGATGGCCCTCACAAAGATATGCAGC

Table 1. Probe sequences and descriptions. Open reading frames are grouped by operons

as they are organized in the genome (http://ergo.integratedgenomics.com/ERGO/) and

coded by the Integrated Genomics number designation. Putative functions describe either

the Integrated Genomics functional annotation assignment or the predicted function based

on automated BLASTx sequence alignment analysis with the CAPASA functional

annotation application (Chapter 2).
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Chapter IV

Future Perspectives
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Rhodococcus sp. 124 as a Manufacturing Platform

The genus Rhodococcus is best known for its range of metabolic activities (Finnerty

1992). A very brief list includes production of both flocculents and emulsifiers,

biotransformation of short and long chain aliphatic hydrocarbons, complete metabolism

of polycyclic aromatic hydrocarbons to C0 2, degradation of halogenated hydrocarbons

including polychlorinated biphenyls (PCBs), and transformation of nitriles (Warhurst et

al. 1994). The diversity of metabolic activity within this class of bacteria has made it the

focus of exploration for novel sources of biocatalytic reagents by many groups.

Rhodococcus sp. 124 was isolated by researchers at Merck and Co. (Rahway, NJ)

through an enrichment selection for organisms capable of consuming naphthalene or

toluene as a sole carbon source (Chartrain et al. 1998). The priority of these researchers

was to develop a strain for the manufacture of 2R-indandiol for the production of the

HIV-1 protease inhibitor CrixivanTM . Research is ongoing in our research group to

achieve this goal, but other exploration is ongoing to fully prospect the value of this

strain. Cloning studies revealed the presence of several polycyclic aromatic hydrocarbon

dioxygenases responsible for the naphthalene and toluene metabolizing activity that first

gained notice (Chartrain et al. 1998; Treadway et al. 1999); O'Brien, unpublished

results), but questions remained about what was still unknown. Initial answers arrived in

2000 as a draft version of the Rhodococcus sp. 124 genome determined by Integrated

Genomics, Inc. (Chicago, IL). One aspect of the research described in this thesis was the

development and validation of an application for automated functional annotation

transfer, the Consensus Annotation by Phylogeny Anchored Sequence Alignment

program (CAPASA). The combined information derived from the Integrated Genomics
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ERGOTM database (Overbeek et al. 2003) and CAPASA, along with genetic tools,

revealed a vast array of synthetic potential within this one strain of Rhodococcus.

The genome sequence and functional annotation of the Rhodococcus sp. 124 genome

revealed many standard activities that would be expected in any bacterium. Table 1 lists

the number of representative open reading frames determined by Integrated genomics

from a number of classes.

104 non-ribosomal peptide synthetase
34 cytochrome P450
22 PAH dioxygenase small subunit
16 PAH dioxygenase large subunit

10 aromatic extradiol (ring cleaving) dioxygenase
5 polyhydroxyalkanoate (PHA) polymerase
2 polyhydroxyalkanoate (PHA) depolymerase

Table 1

The multitude of non-ribosomal peptide synthetase subunits is a potential source of novel

polyketides and peptide based antibiotics (Harris et al. 1974; Shen 2003), while the

polycyclic aromatic hydrocarbon (PAH) dioxygenases could produce a variety of chiral

synthons for chemical and pharmaceutical manufacturing (O'Brien et al. 2002). Lastly,

multiple polyhydroxy-alkanoate polymerase and depolymerase enzymes could serve as

novel reagents for the production of biodegradable plastics with a range of properties

desirable in many materials (Madison et al. 1999).

The next steps in the development of Rhodococcus sp. 124 include completion of

genome sequencing, annotation of DNA sequences, and functional annotation assignment

(in part with CAPASA). Once a high content draft of the complete genome is available,

full genome microarrays can be designed for high-resolution time dependent

Parker, page 84 of 92



measurement of gene transcription during indene, naphthalene, and toluene metabolism

using trigonometric deconvolution analysis of microarray data. Repeating the

fermentation cultures described earlier with sampling for aromatic hydrocarbon and RNA

on the order of 15-30 minutes will allow the fine resolution of transcription at the onset of

each of the indene metabolite activity inductions, as well as a better correlation of global

gene activity with aromatic metabolism. Such an experiment will also highlight the value

of trigonometric deconvolution analysis to maximize measurement flexibility across any

set of physiological conditions with a minimal number of hybridizations, which is often a

factor when designing exceptionally high priced microarray experiments. Full genome

array analysis will also enable the identification of genes involved in other metabolic

processes of interest, allowing further analysis by cloning, gene knock outs, and over-

expression. Genome scale sequencing and computational determination of gene function

will open the door for the complete exploration of Rhodococcus sp. 124, an organism that

was initially intractable to standard methods of genetic analysis and manipulation.

The Future of Biocatalysis

The interplay of multiple research disciplines will continue to be the driving force in

the development of biocatalysis processes for the synthesis of novel products, in contrast

to biotechnology where the biological material is the product. Biological systems of

purified enzymes or whole cells will be rationally engineered to achieve a specific goal,

with predictable results. Advances in many areas must continue to be made to achieve

the full potential of this technology.
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Information Transfer

The first step in achieving the challenge of biocatalysis by design will be the

expansion and refinement of knowledge systems for biological reactions. Databases like

the University of Minnesota Biocatalysis/ Biodegradation Database (Ellis et al. 2003) and

the Kyoto Encyclopedia of Genes and Genomes (KEGG; (Kanehisa et al. 2002) are the

likely foundations for international libraries of enzyme catalyzed reactions. These virtual

knowledge stores must expand their holdings to include the maximum amount of

information about a biological reagent as possible. Information about the full substrate

utilization range will be needed, in addition to the normal physiological function. High

throughput fluidic analysis systems will be needed to measure the reaction kinetics of

native and modified forms of the enzyme in a range of solvents and temperatures. Lastly,

intramolecular regulatory mechanisms, such as feedback inhibition, must be identified

and characterized as completely as possible. As more information becomes available

such a resource can be used for the virtual design of a chemical synthetic process for

construction and implementation on the laboratory benchtop, pilot plant, or factory.

Reagent A vailability

Chemical catalysts can be ordered from any of a number of vendors. The availability

of biocatalysts must be just as widespread for the field to achieve its full potential.

Physical libraries of enzyme DNA cassettes must mirror the virtual libraries of enzyme

reactions stored in computer databases. The American Type Culture Collection

(Manassas, VA) serves as a good model of how such a collection could be organized and

maintained. As new enzymes are isolated, engineered, and characterized they need to be

deposited in a centralized facility for easy access by others. Such an agency could also
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serve as a clearinghouse for distribution of compensation to the depositor to encourage

the continued sharing of resources. Biological process design should approach the ease

of reverse engineering a reaction scheme from a desired product to ordering the necessary

enzyme components in easy to assemble standardized DNA shuttle vectors.

Training

Researchers and engineers who are equally comfortable designing a petrochemical

refinery platform and calculating the specific growth rate of cultures metabolizing crude

oil will lead the future of biotechnology and biocatalysis. Cross-disciplinary

collaboration and training should be the norm instead of the exception. Early adoption

could include the integrating introductory level courses in "external" fields as electives

during graduate academic education. Expansion and integration of computer science,

engineering, and biology will occur as necessity requires. Ultimately, depth of

knowledge and tightly focused expertise will be balanced with creative problem solving

capabilities and an ability to integrate new information.

Conclusions

The continuing evolution of biology will incorporate aspects of computer science,

chemical engineering, and mathematics in innovative ways to allow the design and

development of synthetic tools for biocatalysis. Advances in affordable computation

have enabled the management, manipulation, and analysis of the vast amounts of data

generated by global analysis tools like DNA microarrays, full genome sequence

comparison, and high throughput robotic assays. Biology is a science of complex

systems, possibly the most complex in existence. Biologists of the future will study these

systems in their native complex state with analytical tools constructed from multiple
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fields. The synthesis of knowledge created by the fusion of such skills will lead to the

ultimate goal of rational design of biological processes for the manufacture of value

added compounds, materials, and therapeutics.

Parker, page 88 of 92



References

Chartrain, M, Jackey, B., Taylor, C., Sandford, V., Gbewonyo, K., Lister, L., Dimichele,
L., Hirsch, C., Heimbuch, B., Maxwell, C., Pascoe, D., Buckland, B., Greasham,
R. (1998). Bioconversion of indene to cis (1S,2R) indandiol and trans (1R,2R)
indandiol by Rhodococcus species. Journal of Fermentation and Bioengineering
86(6): 550-558.

Ellis, LB, BK Hou, W Kang and LP Wackett (2003). The University of Minnesota
Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids
Res 31(1): 262-5.

Finnerty, WR (1992). The biology and genetics of the genus Rhodococcus. Annu Rev
Microbiol 46: 193-218.

Harris, TM, CM Harris and KB Hindley (1974). Biogenetic-type syntheses of polyketide
metabolites. Fortschr Chem Org Naturst 31(0): 217-82.

Kanehisa, M, S Goto, S Kawashima and A Nakaya (2002). The KEGG databases at
GenomeNet. Nucleic Acids Res 30(1): 42-6.

Madison, LL and GW Huisman (1999). Metabolic engineering of poly(3-
hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1): 21-53.

O'Brien, XM, JA Parker, PA Lessard and AJ Sinskey (2002). Engineering an indene
bioconversion process for the production of cis-aminoindanol: a model system for
the production of chiral synthons. Appl Microbiol Biotechnol 59(4-5): 389-99.

Overbeek, R, N Larsen, T Walunas, M D'Souza, G Pusch, E Selkov, Jr., K Liolios, V
Joukov, D Kaznadzey, I Anderson, et al. (2003). The ERGO genome analysis and
discovery system. Nucleic Acids Res 31(1): 164-71.

Shen, B (2003). Polyketide biosynthesis beyond the type I, II and III polyketide synthase
paradigms. Curr Opin Chem Biol 7(2): 285-95.

Treadway, SL, KS Yanagimachi, E Lankenau, PA Lessard, G Stephanopoulos and AJ
Sinskey (1999). Isolation and characterization of indene bioconversion genes
from Rhodococcus strain 124. Appl Microbiol Biotechnol 51(6): 786-93.

Warhurst, AM and CA Fewson (1994). Biotransformations catalyzed by the genus
Rhodococcus. Crit Rev Biotechnol 14(1): 29-73.

Parker, page 89 of 92

_



Chapter V.

Acknowledgments

Parker, page 90 of 92



I would like to thank many people for the support, assistance, patience, and love given

to me throughout my graduate career at the Massachusetts Institute of Technology. It has

been a long time and many of my colleagues have come and gone, but they will never

leave my heart even if they have left my mind.

I would like to say thank you to my family for always being there for me, inspiring me

to carry on to become the first to complete graduate school. I can only hope to serve as

an inspiration to the future generations of nieces, nephews, and cousins to always pursue

their dreams in spite of circumstances.

I would like to thank my undergraduate advisor Dr. Lynnette Padmore for never

letting me get by with anything less than 100%, even when less would have gotten an A.

I would like to thank my graduate advisor Prof. Anthony Sinskey for having faith in

me, even when my path wasn't clear to him. Thank you for allowing me to pursue my

own interests, and in the process re-find my own love of science.

Thank you to members of the Sinskey lab (past and present) including all the graduate

students, post-docs, technicians, diploma students, UROPs, MSRP students, a few over-

achieving high schoolers, and one grand daughter. If it weren't for all of you I would

have given up on this whole thing a long time ago.

In particular I would like to give a special thanks to the following members of the

Sinskey lab for contributions above and beyond the call of professional academic

relationships. Dr. Philip A. Lessard, the best educator at MIT, loving husband of

Jennifer, father of Joe, Steven, and Kate, and a model human being. Xian O'Brien, one

of the smartest people I know, and someone who just makes the world better. Good luck

in graduate school at Brown University. Dr. Laura Willis, for making sense of

Parker, page 91 of 92

L



everything, even when nothing made sense. Amie J. Strong, for listening while I had to

think out loud. Zofia Gajdos and Binbin Wang, for being so patient learning from me

while I learned to teach you. Jennie Cho, for just being Jennie-son.

I would also like to thank: Nathan, Melina, Diana, Adriane, Ellen, Aretha, Devin,

Annette, Whei, Caitlin, Nathalie, Allison, Molly, Diviya, Irene, Elaine, Amanda,

Tennyson, Andrea, Geeta, Lorien, Nancy, Horst, Supriya, Annet, Josh, Sushil, Vera, Jina,

Dan, Sheri, Sladjana, Sheila, Binbin, Kurt, Chong Yi, Kevin, Joe, Adam, Jessica, Alina,

Kazuhiko, Vu, Paolo, Joe, Robert, Erich, Eudean, and whoever else has worked in lab

while I've been there but can't remember right now for making the entire lab

environment more bearable.

A special thank you to the members of my thesis committee: Profs. Robert Sauer,

Alan Grossman, and Graham Walker of the Massachusetts Institute of Technology, and

Prof. John Archer or Cambridge University. Your insights, advice, questions, and

criticisms have contributed to making me look at the world in new ways.

Last, but definitely not least, I would like to thank the National Science Foundation,

The Bioprocess Engineering Center, The MIT Provost's Office, and E.I. DuPont de

Nemours and Company for paying me $151,375.00 over all these years.

IHTFP

1996 - 2004

JAP

Parker, page 92 of 92


