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ABSTRACT

We propose a class of iterative aggregation algorithms for solving discounted dynamic programming problems.
The idea is to interject aggregation iterations in the course. of the usual successive approximation method. An
important new feature that sets our method apart from earlier proposals is that the aggregate groups of states change
adaptively from one aggregation iteration to the next, depending on the progress of the computation. This allows
acceleration of convergence in difficult problems involving multiple ergodic classes for which methods using fixed
groups of aggregate states are ineffective. No knowledge of special problem structure is utilized by the algorithms.

SECTION 1: Introduction

We consider a Markov chain with finite state space S = {l,...,n} and transition probability matrix P. Let a £
(0,1) be a discount factor and g e Rn be a given cost vector. We want to find the unique solution J e Rn of the
equation

J = T(J) - g +aPJ. (1)

This is the discounted dynamic programming equation [1] associated with a single policy. We discuss later the
extension of our method to the case of multiple policies.

Equation 1 can be solved by a direct method such as Gaussian elimination. However, in the absence of specific
structure, the solution requires O(n3) operations, and is impractical for large n. The alternative is to use iterative
techniques such as the successive approximation method having a typical cost of O(n2 ) per iteration for dense
matrices P (see the survey [2]). Several interesting proposals for accelerating the convergence of iterative methods
are based on aggregation- disaggregation ideas (Miranker [4], Chatelin and Miranker [5], Schweitzer, Puterman and
Kindle [6], Verkhovsky [7], and others [8]). In [5], Chatelin and Miranker describe the basic aggregation technique
and derive a bound for the error reduction. However, they do not provide a specific algorithm for selecting the
directions of aggregation or disaggregation. In [7], Verkhovsky proves the convergence of an aggregation method
which uses the current estimate of the solution J as a direction of aggregation, and a positive vector as the direction
for disaggregation. This idea was extended in [6] by selecting fixed segments of the current estimate J as directions
for aggregation, and certain nonnegative vectors as directions for disaggregation. By using the current estimate of
the solution to generate directions for aggregation, the iteration becomes inherently nonlinear, and convergence is
difficult to establish.

There is an important difference between our algorithms and those developed by the previous authors. In our
work, aggregation and disaggregation directions are selected adaptively based on the progress of the algorithm. In
particular, the membership of a particular state in an aggregate group changes dynamically throughout the iterations.
This is in contrast with Schweitzer, Puterman and Kindle's approach, where the aggregate groups are fixed through
all iterations. We show via analysis and experiment that the adaptive aggregate group formation feature of our
algorithm is essential in order to achieve convergence acceleration for difficult problems involving multiple ergodic
classes. For example, when P is the n x n identity matrix no algorithm with fixed aggregate groups can achieve a
geometric convergence rate better than a. By contrast, our algorithm converges at a rate better than 2 a /m where m
is the number of aggregate groups.

The rest of this paper is organized as follows. In section 2, we provide some background material on iterative
algorithms for the solution of eq. 1, including bounds on the solution error. In section 3, we derive the equations of
aggregation and disaggregation as in [5], and obtain different characterizations of the error reduction produced by an
aggregation step. In section 4, we describe and motivate the adaptive procedure used to select the directions of
aggregation and disaggregation. Section 5 analyzes in detail the error in the aggregation procedure when two
aggregate groups are used. In section 6, we discuss and justify the general iterative algorithm combining adaptive
aggregation steps with successive approximation steps. Section 7 contains a discussion of experimental results.
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SECTION 2: Successive Approximation and Error Bounds

The successive approximation method for the solution of eq. 1 starts with an arbitrary vector J, and
successively computes T(J), T2 (J), ... where the mapping T was defined in eq. 1. Since P is a stochastic matrix and
a e (0,1), it follows that T is a contraction mapping with modulus a. Hence, we have

Tk(J) = T(Tk-l(J)) (2)

lim Tk(J) = J* (3)
k-->o

where J* is the solution of equation 1. The difficulty with equation 3 is that the matrix P is stochastic, and hence
has spectral radius of 1. Hence, eq. 3 will converge at a geometric rate a, which is quite slow when a is close to 1.
The rate of convergence can often be substantially improved thanks to the availability of error bounds derived by
McQueen [9] and Porteus [3] (see [1] for a concise derivation) which we discuss next.

Let J(i) denote the ith component of the vector J. Let e denote the n-dimensional vector of all ones. The
McQueen-Porteus bounds are based on the residual difference of T(J) and J. Let y and [3 be defined as

= min [T(J)(i) - J(i)] (4)
i

3 = max [T(J)(i) - J(i)] (5)
i

Then, the solution J* of eq. 1 satisfies

T(J) + acr e < J* < T(J) + a B e (6)
i-a 1-a

Furthermore, the bounds of eq. 6 are monotonic and approach each other at a rate equal to the complex norm of the
subdominant eigenvalue of uP, as discussed in [2] and shown in Section 4 of this paper. Also, the bounds are
invariant under translation of J by a multiple of e. Hence, the iteration in eq. 2 can be stopped when the difference
between the lower and upper bounds in eq. 6 is below a specified tolerance. The value of J* in this case is
approximated by selecting a value between the two bounds.

Porteus discusses in [2] a number of variations of extrapolation methods based on these bounds. Most of these
variations achieve the same rate of convergence as the techniques above. In addition, [2] mentions other iterative
schemes such as Gauss -Seidel iteration, successive over-relaxation [10], and Jacobi iteration. For specific problems,
the convergence rate of any one of these techniques may be better than the rate of the successive approximation
iteration of eq. 2. However, for general stochastic P matrices, these techniques offer no significant advantages over
successive approximation.

Note that all of the preceding acceleration techniques converge at a rate of a when P has more than one ergodic
class, in which case the subdominant eigenvalue of P has a norm of unity.

SECTION 3: Aggregation Error Estimates

The basic principle of aggregation-disaggregation is to approximate the solution of eq. 1 by solving a smaller
system of equations obtained by lumping together the states of the original system into a smaller set of aggregate
states. We start with an initial guess J to the solution of eq. 1, and we carry out a successive approximation step,
obtaining T(J). The idea is to make an additive correction to J of the form Wy, where y is an m-dimensional vector
and W is an n x m matrix, so that

J + Wy - J* (7)

Assumption 1. Q, an m x n matrix, and W an n x m matrix, are chosen so that Q( I- a P)W is nonsingular.
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From eq. 1, we get

T(J) - J= (I - aP ) (J* -J) (8)

Multiplying eq. 8 on the left by Q yields

Q (T(J) - J) = Q (I- aP) (J* -J) (9)

Substituting the approximation of eq. 7 in the right hand side of eq. 9 yields

Q (T(J) - J) = Q (I - aP)W y (10)

Eq. 10 can be solved for y, to obtain an approximate solution

J1 = J + Wy = J + W [Q(I - aP)W]-1Q (T(J) - J) (11)

The aggregation step is the conversion of eq. 8 to eq. 10. The disaggregation step is the use of eq. 11 to
approximate the solution J*. A successive approximation iteration of J1 yields

T(J 1) = T(J) + a P W y (12)

It is important to characterize the error T(J1) - J* in terms of the error J - J*. For general W, Q, we get from eq.
12

T(J1)- J* = (T(J) - J) + (J -J*) + a PWy (13)

which, using eqs. 7 and 10 yields

T(J1) - J* = aP{ I - W [Q(I - aP)W]-1Q (I- aP)} (J -J*) (14)

Note that the matrix W [Q(I - aP)W]- 1Q (I- aP) above is an approximation to the identity, and is a projection on the
range of W. Indeed, if eq. 8 was exactly satisfied for some y, the right-hand side of eq. 14 would be exactly 0.
Hence, the only contributing errors come from the components of J-J* which are outside of the range of W. We will
assume that QW=I, which is a typical choice in aggregation methods.

Assumption 2. QW = I, the m-dimensional identity.

Under assumptions 1 and 2, Wy is what is known as the Galerkin solution to eq. 8 using the projection
matrix

FI = WQ. (15)

If rI is symmetric (as it will be in this paper) then rI is an othrogonal projection matrix on the range of W.
Eq. 14 is in effect the same error equation obtained by Chatelin and Miranker [5] to characterize the error

obtained by additive corrections based on Galerkin approximations. It applies to general linear equations where the
matrix P is not necessarily stochastic. In order to better understand this equation, we will derive an expression for
the error in the residual obtained after an aggregation-disaggregation step. From eqs. 14 and 8, we get

T(J1) - J1 = (I - aP){ I - W [Q(I - aP)W]- 1Q (I- alP) }(J* -J)
= {I - (I- aP) W [Q(I- aP)W]-lQ} (I- axP) (J* -J)

= (I - 1) (T(J) -J) + {W[I - aQPW] - (I - aP) W}[I - aQPWI-1Q (T(J) -J)
= (I - 1l) (T(J) -J) + a(I - 11) PW [I - aQPW]-1Q (T(J) -J) (16)
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Equation 16 is the basic error equation which we will be working with. Our choice of W and Q will be based
on trying to minimize a measure of the first error term on the right above. The second term is a measure of how
well is the action of the stochastic matrix P represented by the aggregation-disaggregation projections based on W.
Note that, if the range of W was invariant under P, the second term would be zero since, from eq. 15 and
Assumption 2, (I - In)W = 0. Hence, the second term is small when the range of W is closely aligned with an
invariant subspace of P. When this is not the case, note that the inverse in this second term can lead to unstable
iterations.

SECTION 4: Adaptive Aggregation

We will estimate errors using the following pseudonorm:

F(J) = Max (J(i)) - Min (J(i)) (17)
i i

Note that, for a vector J, the scalar F(T(J) - J) is proportional to the spread between the upper and lower bounds in
eq. 6. Hence, reducing F(T(J) - J) to 0 is equivalent to having the upper and lower bounds converge to each other,
therefore obtaining J*.

We will select W and Q such that QW = I and the matrix QPW is also a stochastic m-dimensional matrix. As
a result, Assumptions 1 and 2 will be satisfied. Partition the state space S = {1,2, .. ., n) into m disjoint sets Gj, j

= 1, ... m (also called aggregate groups). Define the vectors wj in Rn as:

wj(i) = 1 if i e Gi (18)
= 0 otherwise.

Let the matrices W and Q be defined as:

W = [w 1,. ., wm] (19)
Q = (Trw) -WWT (20)

Note that WTW is a diagonal matrix, where the i-i entry is the number of elements in group Gi. If one of the groups
is empty, then, we can view the inverse above as a pseudoinverse.

Lemma 1. Assume Q and W are defined by eqs. 18, 19, 20. Then,
i. QW = I
ii. Pa = QPW is a stochastic matrix.

Proof: Part i is immediate from the definition of W. Showing part ii is a matter of straightforward verification
and is left for the reader. q.e.d.

In order to specify W and Q, we must specify the partition Gj,
j 1, .. ., m. We select this partition to minimize the error in the first term on the right hand side of eq. 16 as
measured by the pseudonorm F. We write eq. 16 as

T(J1)-J 1 = R1 (J) + R2 (J) (21)

where
R1 (J) = (I - 11) (T(J) -J) (22 a)
R2(J) = a(I - I) PW [I - cxQPW]-IQ (T(J) -J) (22 b)

= a(PW - W Pa) [I- czPa]-Q (T(J) -J)

We want to select the partition Gj such that F[R1(J)] is minimized. For a given value of F(T(J) - J), and number of
aggregate groups m, the following procedure, based on residual size, is minimax optimal against the worst possible
choices of P and J. The idea is to select Gj so that the variation of residuals within each group is relatively small.
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Consider

y = min [T(J)(i) - J(i)]; 3 = max [T(J)(i) - J(i)]
i i

Divide the interval [y,3] into m equal length intervals, of length L, where

L = a -? = F(T(J) - J) £23)
m m

Then, for j < m, we select

Gj = {i I y + (-1)L < (T(J)-J)(i) < y + jL I (24a)

Gm = {i I + (m-1)L . (T(J)-J)(i) < F } (24b)

To understand the idea behind this choice, note that if j(i) is the index of the group containing state i and nj(i) the
number of states in Gj(i), the ith coordinate of a vector fix is

(LIx)(i) = A x (k) (25)
k 8 Gj(i) ni(i)

i.e. the average value of Fix over the group Gj(i). Therefore, the ith coordinate of R1 (J) = (I - l[)(T(J) - J) is the
difference of the ith residual and the average residual of the group containing the ith coordinate. As a result of the
choice of eqs. 23 and 24, the coordinates of R1 (J) are also relatively small.

Figure 1 illustrates the choice of Gj for a typical vector T(J) - J using three aggregate groups. In figure 2, we
display the vector R1(J). Note that the spread between the maximum element and the minimum element has been

reduced significantly. We have the following estimate.

Lemma 2. Let Gj be defined by eqs. 23 and 24. Then, for m > 1,

FR 1(IJ)L < 2 (26)
F[T(J)-J] m

Proof: From eq. 25, HI (T(J) -J) is the vector of average values of residuals within each group Gj. The operation
(I - rj) (T(J) - J), as shown in fig. 2, subtracts the average value of the residuals in each group from the value of the
residuals in each group. Since all of the residuals in each group belong to the same interval in [y,3], so does the
average value, which establishes that:

F[ (I- Il)(T(J)-J) ] < 2L . (27)

The result follows using eq. 23. q.e.d.

We note that the argument in the proof above can be refined to give the improved estimate

F[Ri(J)l < 2 [.5nl (28)
F[T(J) - J] m ([.5n] + 1)

where [x] denotes the largest interger less than x. For large n, the improvement is small. Also, the bound above is
a worst-case estimate. In practice, one usually gets a reduction factor better than l/m (as opposed to 2/m). This has
been varified computationally and can also be deduced from the proof of Lemma 2.

Lemma 2 establishes the rationale for our choice of W and Q in equations 18-20, 23, 24. With this choice, we
get a guaranteed reduction in the error term Ri(J) which is proportional to the number of aggregate groups. Hence,
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Residual

(T(J) - J)(i)
5 -P~~~~~~~~~~~~~~ x
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x group 2
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Y x
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State i

Figure 1: Formation of Aggregate groups is based on magnitude of the residuals. Here the three
aggregate groups are obtained by dividing the residual range into three equal portions
and grouping together the states with residuals in the same portion.

First Error
Term
R1 (J)(i)= (I-n)(T(J)-J)(i)

x x x x

, , , .... , l , , , ,' State i
x x

Ax x x

Figure 2: Illustration of the first error term R1(J) for the case of the residuals of figure 1. R1(J)
is obtained from (T(J) -J) by subtracting the average residual over the group that contains
state i.
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the acceleration step will work best in problems where the second term R2(J) is small. To illustrate this, consider
the following examples.

Example 1: P = I, the n x n identity

In this case, R2(J) = 0, because PW = W. Hence, the aggregation-disaggregation step reduces the spread between the
upper and lower bounds in eqs. 4 and 5 as:

F[T(J1) - J1] 2 FT(J) - J] (29)
m

In this case, the geometric rate of convergence is accelerated by a minimum factor of 2/m.

Example 2: m = 1, W = e

In this case,we obtain an extrapolation method [2] known as the error sum extrapolation. Starting from J, a
successive approximation step is used to compute T(J). Then, an aggregation step is used to compute T(J 1) directly
as:

n
T(J1)(i) = T(J)(i) + a I (T(J) - J)(i)

n(1-a) i=l
This aggregation step is followed by a sequence of successive approximation steps and aggregation steps. The rate
of convergence of this method can be established using eq. 16. The residual produced by the second successive
approximation step is given by

T(T(J1)) -T(,)-= aP(R1(J) + R2(J))
= a P (I- lI) (T(J) -J)

since R2(J) vanishes (P is a stochastic matrix and Pe=e). After n repetitions of successive approximation and
aggregation steps, the residual rn will be

rn = an [P (I - )] n (T(J) -J)
= an P (I- I) pn-1 (T(J) -J) (30)

because from eq. 25, P II = II which implies that (I - II) P(I - II) = (I - II) P. Consider a decomposition of pn-1
(T(J) -J) into a linear combination of the eigenvectors of P. The eigenvector corresponding to a unity eigenvalue is e
and is annihilated by (I - FI) (cf. eq. 25). Therefore, rn will converge to 0 geometrically at a rate determined by the
modulus of the largest eigenvalue of caP in a direction other than e (the subdominant eigenvalue).

Example 3: P is block-diagonal and the aggregate groups are aligned with the ergodic classes.

In this case we assume that P has multiple ergodic classes and no transient states. By reordering states if necessary,
we can assume that P has the form

P = diag { ,p 2 , ... Pr} (31)

We assume also that each aggregate group Gj, j = 1,..., m consists of ergodic classes of states (no two states of
the same ergodic class can belong to different groups). The matrix W then has the form

... 0... 0 .... O
... 0 1... 1 0 .... O

W

~118111o]
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and it is easily seen that PW = W. Therefore, the second error term R2(J) vanishes and the favorable rate estimate of
eq. 29 again holds. Note that it is not necessary that each aggregate group contains a single ergodic class. This
restriction would be needed for fast convergence if the aggregate groups were to remain fixed throughout the
computation.

The case of a block diagonal matrix P is important for several reasons. First, block diagonal matrices P
present the most difficulties for the successive approximation method, regardless of whether the McQueen-Porteus
error bounds are employed. Second, we can expect that algorithmic behavior on block-diagonal matrices will be
replicated to a great extent on matrices with weakly coupled or sparsely coupled blocks. This conjecture is
substantiated analytically in the next section and experimentally in section 7.

The favorable rate of convergence described above is predicated on the alignment of the ergodic classes and the
aggregate groups. The issue of effecting this alignment is therefore important. We first remark that even if this
alignment is not achieved perfectly, we have observed experimentally that much of the favorable convergence rate can
still be salvaged, particularly if an aggregation step is followed by several successive approximation steps. We
provide some related substantiation in the next section, but hasten to add that we do not fully understand the
mechanism of this phenomenon. We next observe that for a block-diagonal P, the eigenvectors corresponding to the
dominant unity eigenvalues are of the form

ej = [O . .. 0 1 . . . 1 0 ... 0] T j = 1, . .,r

where the unit entries correspond to the states in the j-th ergodic class. Suppose that we start with some vector J and
apply k successive approximation steps. The residual thus obtained will be

Tk(J)- Tk-l(J) = ((cx)k-l(T(J)- J)

and for large k, it will be nearly a linear combination of the dominant eigenvectors. This means that Tk(J) - Tk- 1(J)
is nearly constant over each ergodic class. As a result, if aggregate groups are formed on the basis of the residual
Tk(J) - Tk-l(J) and eqs. 23 and 24, they will very likely be aligned with the ergodic classes of P. This fact suggests
that several successive approximation steps should be used between aggregation steps, and provides the motivation
for our algorithm to be given in Section 6.

SECTION 5: Adaptive aggregation with two groups

In this section we study in detail the effects of the adaptive aggregation- disaggregation procedure for the case
when two aggregate groups are used (m=2). Experiment and in some cases analysis show that the qualitative
conclusions drawn from consideration of this case carry over to the more general case where m>2. We will focus on
analyzing the contribution of the second error term R 2 (J) of eq. 16 or 22 b. Assume that W, Q have been selected
according to eqs. 18 - 20. By appropriate renumbering of the states, assume that W is of the form

W= r ...... o]T
Lo .. . O1 ...

Let k be the number of elements in the first group. Then a straightforward calculation shows that

1-b b (33)
Pa (33)

c 1-c

where
k

b = L I bi (34a)
k i=l

n
c =L Z ci (34b)

n- k i=k+l
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n
bi = P il..,k (35a)

j=k+l

k
ci = IX Pij i = k+l, ... ,n. (35b)

j=1

The right eigenvectors and eigenvalues of Pa are

=[ 11]T ; v2 = [1 -c/b T (36)
; l=1 ; X2 = 1 -b -c. (37)

Note if b = 0 that v2 can be chosen as

v2 = [ 0 1]T (38)

Note also that

1 0
= k 1( WT (39)

0 (n-k)
We can decompose the term Q(T(J) - J) of eq. 16 into its components along the eigenvectors v1, v2, as

Q(T(J)-J) = alvl + a2 v2 (40)

Note that

W [I - aPal-lvl = (1-a) -l e (41)

Hence, using the fact that e lies in the range of W,

ca(I - rI) PW [I - aPa]-lvl = a (1-a)-1 (I - I)Pe = 0 (42)

Thus, the only contribution to R2 (J) comes from the second component of equation 40, in the direction of v2.

Using eqs. 33, 36, and 37 we obtain

[I - (XPa-lv2 = [ 1-a + a(b + c) ]-1 v2 . (43)

From eqs. 32 - 35, we can calculate the (i,l) element of the matrix PW - WPa to be
(PW -WPa) () = b - bi if i • k (44)

= -c + ci if i>k

Similarly,

(PW - WPa) (i,2) = (PW - WPa) (i,1).

Thus, from eq. 22 b

R2(J) = a (PW - WPa) [ 1-a + a(b + c) ]-1 a2 v2

= a a2 F(v2 )h (45)

where h is the vector with coordinates

h(i) = b-b i if i<k (46)
1 - a + a(b+c)



11

= -ci -c if i >k
1 - a + a(b+c)

and F(v2 ) = 1 + c/b (cf. eq. 36). From eqs. 34, 35, and 46 we see that in order for the coordinates of h to be small,
the probabilities bi and ci should be uniformly close to their averages b and c. If this is not so then at least some
coordinates of R2 (J) will be substantial, and it is interesting to see what happens after a successive approximation
step is applied to R2 (J). The corresponding residual term is the vector

q = aPR2 (J).

From eqs. 45 and 46 we see that the ith coordinate of q is

~q(i) -g 2 E) k n
q(i) = t2a2F(¥vS2l [I Pij (b - bj) + I Pij (cj -c)] (47)

1- ca + (b+c) j=l j=k+l

Since b and c are the averages of bj and cj respectively, we see that the coordinates of q can be small even if the
coordinates of h are large. For example if P has a totally random structure (e.g. all elements are drawn independently
from a uniform distribution), then for large n the coordinates of q will be very small by the central limit theorem.
There are several other cases where either h or q (or both) are small depending on the structure of P. Several such
examples will now be discussed. All of these examples involve P matrices with subdominant eigenvalues close to
unity for which standard iterative methods will converge very slowly.

Case 1: P has uniformly weakly coupled classes of states which are aligned with the aggregate groups

The matrix P in this case has the form

P = 3 p (48)
P P

where Pl is k x k and the elements of p2 and P3 are small relative to the elements of P 1 and P4 . From eqs. 34, 35,
45, and 46 we see that if b and c are considerably smaller than (1 - ca), then R 2(J) =0. This will also happen if the
terms bi and ci of eq. 35 are all nearly equal with their averages b and c respectively. Even if R2(J) is not near zero,

from eq. 47 we see that q = O if the size of the elements within each row of Pl, p2, p3 and P4 is nearly uniform.

What happens when the groups identified by the adaptive aggregation process are not perfectly aligned with the
block structure of P? We examine this case next.

Case 2: P block diagonal with the upper k x k submatrix not corresponding to the block structure of P.

Without loss of generality, assume that i = 1,. ..., ml < k are all elements of one group of ergodic classes of
P, while i = m2 +1, ... , n, m2 > k, are elements of the complementary group of ergodic classes. Note that the
states ml < i < m2 are not aligned with their ergodic classes in the adaptive aggregation process.

In this case, we have

m2
bi = Pij if i < ml

j=k+l

n
= Pij if k > i > ml (49)

j=m2+1
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ml
ci j= Pij if m2 > i >k

j=1

k
-= Pij if m 2 < i < n (50)
j=ml+l

Suppose

k-ml = m2 -k; k= n/2 ; k- ml << k (51)

so that the aggregate groups are nearly aligned with the block structure of P. The ergodic classes corresponding to
group 1 consist of the set of states i = 1,. . ., ml and i=k+l, .. ., m2, while the remaining states correspond to the
ergodic classes in group 2. From eq. 49 we see that bi will tend to be small for i= 1,.. .,ml and large for
i=ml+l,...,k. Similarly ci will tend to be small for i=m2+1, ...,n and large for i=k+l, ... ,m2. It follows from eq.
46 that

h(i) > 0 if i= 1,..., m l or i = k+l,..., m2 (52)
h(i) < 0 otherwise.

Hence, R2(J) is contributing terms of opposite sign to the ergodic classes in groups 1 and 2. By following the
aggregation step with repeated successive approximation iterations, this contribution will be smoothed throughout
the ergodic classes. Thus, the next aggregation step will be able to identify groups which are aligned with the block
structure of P, thereby reducing the error as in case 1. The following example illustrates this point.

Example 4: Let P be the 20 x 20 matrix

o .1 o .le
P =O (53).le' 0 .1 0 . (53)

! *le 0 F 

where P1, p2 are 9x9 blocks with uniform entries .1, and e is a 9 dimensional vector of all is. Note that one ergodic
class has states i = 1, ... , 9 and i = 11, while the rest of the states are in the second ergodic class. Assume that J is
such that

(T(J) - J)(i) = 1 if i < 10
=-1 if i> 11.

In this case, the aggregation matrix W is defined by

wl(i) = 1-w 2(i) =1 if i<10,
=0 if i> 11.

Note that the groups are almost aligned with the ergodic classes of P. Using eqs. 44, 49 and 50, we get

b =c = .18
h(i) = .08 [ 1-ca + a(.36) ]-1 if i< 9
h(10) = - .72 [ 1-a + a(.36) ]-1
h(ll) = .72 [ 1-a + a(.36) ]-1
h(i) = -. 08 [ 1-a +a(.36) ]-1 if i > 11.

From eqs. 36 and 40, we evaluate F(v2) = 2 and a2 = .8. Hence,
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F(R2(J)) = a 1.44 [ 1-a + a(.36) ]'1(.8)2 < 6.4 (54)

Note also that R1(J) = 0 for the choice of T(J) - J of this example.We can now see the effect of the aggregation step.

We started out with F(T(J) - J) = 2 and ended up with F(T(J 1) -J1) = 6.4 (assuming at - 1). Therefore the residual

error as measured by F has increased substantially as a result of the aggregation step.
Consider now the effect of a successive approximation step subsequent to the aggregation step. Since

(Ph)(i) = .144 [ 1-a + a(.36) ]-1 if i < 9 or i = 11
= -.144 [ 1-a + a(.36) ]-1 otherwise.

we see that the corresponding residuals (T2 (J1) - T(J1))(i) will be constants of opposite sign over the two ergodic

classes. (The smoothing of the error after a single successive approximation step in this example is a coincidence.
In general, several successive approximation steps will be required to diffuse the effect of the initial aggregation step
throughout the ergodic classes.) The end effect is to align the aggregate groups with the ergodic classes at the next
aggregation step.

Note also that using eq. 47 we have

F( T2 (J1) - T(J 1)) = F(acPR 2(J)) = F(q)

= a2 .288 [ 1-a + a(.36) ]-1(.8) 2 < 1.28.

Therefore, after a single successive approximation step, the error will be reduced substantially below the starting
error F(T(J) - J) = 2. Thus, we see that the aggregation step itself causes an increase in the error as measured by F.
Yet, it produces a vector that is oriented sufficiently away from the dominant eigenvectors of P so that the
subsequent successive approximation step is highly effective. This phenomenon was consistently observed during
our experimentation and has also been observed by Chatelin and Miranker [5].

Case 3: P has sparsely-coupled classes of states

In this case, P has the general form

P = p3 P4

where elements of P 1, p4, p2, p3 are of the same order, and pw, p4 are dense while p2, p3 are very sparse. Assume
that the groups are aligned with the block structure of P. Then we have

n-k
bi n= P2 ij if i< k (55a)

j=1

k
Ci = i P3 i. if i > k. (55b)

j=1 

As in case 1, if bi and ci are small (of the order of (1-a)), or vary little from the corresponding averages b and c, then

R2(J)=0. If the size of the elements within p1 and P4 is nearly uniform, then from eq. 47 we see that q-O.

Furthermore, the behavior observed in case 2 will be replicated in this case where, when the aggregate groups are not
aligned with the block structure of the P matrix, the term R2(J) forces the next aggregation step to be better aligned

with the block structure of P.

In conclusion, the cases studied in this section indicate that, for classes of problems where there are multiple
eigenvalues with norm near unity, a combination of several successive approximation steps, followed by an
aggregation step, will minimize the contribution of R2 (J) to the error, and thereby accelerate the convergence of the
iterative process as in lemma 2. In the next section, we formalize these ideas in terms of an overall iterative
algorithm.
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SECTION 6. Iterative Aggregation Algorithms

The method for imbedding our aggregation ideas into an algorithm is straightforward. Each iteration consists
of one or more successive approximation steps, followed by an aggregation step. The number of successive
approximation steps in each iteration may depend on the progress of the computation.

One reason why we want to control the number of successive approximation steps per iteration is to guarantee
convergence. In contrast with a successive approximation step, the aggregation step need not improve any measure
of convergence. We may wish therefore to ensure that sufficient progress has been made via successive
approximation between aggregation steps to counteract any divergence tendencies that may be introduced by
aggregation. Indeed, we have observed experimentally that the error F(T(J) -J) often tends to deteriorate immediately
folowing an aggregation step due to the contribution of R2 (J), while unusually large improvements are made in the
next few successive approximation steps. This is consistent with some of the analytical conclusions of the
previous section. An apparently effective scheme is to continue with successive approximation steps as long as
F(T(J) - J) keeps decreasing by a "substantial" factor.

One implementation of the algorithm will now be formally described:

Step 0: (Initialization) Choose initially a vector J, and scalars E > 0, p1,32 in (0,1), olp- oo and (02 - 0.

Step 1: (Successive approximation step) Compute T(J).

Step 2: (Termination Test) If F(T(J) -J) < e, stop and accept

T(J) + .5 o (1 - xa)-l[ max (T(J)-J)(i) - min (T(J)-J)(i)]
i i

as the solution (cf. the bounds in eq. 6). Else go to step 3.

Step 3: (Test for an aggregation step) If

F(T(J)-J) ol (56)

and
F(T(J)-J) 0)o (57)

set ol):=[ 1 F(T(J) -J) and go to step 4. Else, set c02:=32 F(T(J) -J), J:=T(J) and go to step 1.

Step 4: (Aggregation Step)Form the aggregate groups of states Gj, j = 1,..., m based on T(J) - J as in eq. 25.
Compute T(J 1) using eqs. 10 and 12. Set J:=T(J 1), c02 oo, and go to step 1.

Note that ol is reduced by a factor of at least [1 for each time we carry out an aggregation step. As a result,

the test of eq. 56 enforces convergence, since it guarantees that, before step 4 is entered, F(T(J) - J) is reduced to a
level below the target col, and col converges to zero when an infinite number of aggregation steps are performed. If

only a finite number of aggregation steps are performed, the algorithm reduces eventually to the convergent
successive approximation method. The purpose of the test of eq. 57 is to allow the aggregation step only when the
progress made by the successive approximation step is relatively small (a factor no greater than [32).

An alternative implementation is to eliminate the test of eq. 57 and perform an aggregation step if eq. 56 is
satisfied and the number of consecutive iterations during which an aggregation step was not performed exceeds a
certain threshold.

There is a similar algorithm that can be used for dynamic programming problems where we want to solve the
system of equations

n
J(i) = T(J)(i) - min { a Pu(i,j)J(j) + gu(i) }, i = 1,..., n (58)

u£U j=l
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where U is a finite set, and Pu, gu are transition matrices and cost vectors parametrized by u. The key idea is to
employ an approximate policy iteration algorithm in the spirit of Puterman and Shin [11], [12], whereby the policy
evaluation step is carried out approximately using the earlier algorithm, i.e., one or more cycles each consisting of
multiple successive approximation steps followed by an aggregation step.

SECTION 7: Computational Results

A large number of randomly generated problems with 100 states or less were solved using the adaptive
aggregation methods of this paper. The conclusion in summary is that problems that are easy for the succcessive
approximation method (single ergodic class, dense matrix P) are also easy for the aggregation method; but problems
that are hard for succcessive approximation (several weakly coupled blocks, sparse structure) are generally easier for
aggregation and often dramatically so.

Tables 1 and 2 summarize representative results relating to problems with 75 states grouped in three blocks of
25 each. The elements of P are either zero or randomly drawn from a uniform distribution. The probability of an
element being zero was controlled thereby allowing the generation of matrices with approximately prescribed degree
of density. Table 1 compares various methods on block diagonal problems with and without additional transient
states, which are full (100%) dense, and 25% dense within each block. Table 2 considers the case where the blocks
are weakly coupled with 2% coupling (size of elements outside the blocks is on the average 0.02 times the average
size of the elements inside the blocks), and the case where the blocks are 100% coupled (all nonzero elements of P
have nearly the same size). Each entry in the tables is the number of steps for the corresponding method to reach a
prescribed difference (10-6) between the upper and lower bounds of Section 2. We have estimated that an aggregation
step requires roughly twice as much computation as a succcessive approximation step. The entries for the
aggregation methods represent the sum of the number of succcessive approximation and twice the number of
aggregation steps. In all cases the starting vector was zero, and the components of the cost vector g were randomly
chosen on the basis of a uniform distribution over [0, 1].

The methods are succcessive approximation (with the error bounds of eq. 6), and six aggregation methods
corresponding to all combinations of 3 and 6 aggregate groups, and 3, 5, and 10 succcessive approximation steps
between aggregation steps. Naturally these methods do not utilize any knowledge about the block structure of the
problem.

TABLE 1. Discount factor .99, Block Diagonal P,
3 Blocks, 25 states each
Tolerance for Stopping: 1.0 E-6

Successive (SA) 3 SA Steps 3 SA Steps 5 SA Steps 5 SA Steps 10 SA Steps 10 SA Steps
Approxirnation per aggregation, 6 aggregate 3 aggregate. 6 aggregate 3 aggregate 6 aggregate

3 aggregate groups groups groups groups groups groups

100 %
density,
0 transient 15 25 25

states 1 195 11 15 15 25 25states 1195

100%
density,
20 transient 1225 31 16 58 17 170 27
states

25%
density, 1212 23 26 29 23 27 27
0 transient
states

25%
density,
20 transient 1197 186 105 177 72 194 50
states
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Table 1 shows the dramatic improvement offered by adaptive aggregation as predicted by Example 3 in Section
4. The improvement is substantial (although less pronounced) even when there are transient states. Generally
speaking the presence of transient states has a detrimental effect on the performance of the aggregation method when
there are multiple ergodic classes. Repeated successive approximation steps have the effect of making the residuals
nearly equal across ergodic classes; however the residuals of transient states tend to drift at levels which are
intermediate between the corresponding levels for the ergodic classes. As a result, even if the alignment of aggregate
groups and ergodic classes is perfectly achieved, the aggregate groups typically contain a mixture of ergodic classes
and transient states. This has an adverse effect on both error terms of eq. 16. As the results of Table 1 show, it
appears advisable to increase the number of aggregate groups m when there are transient states. It can be seen also
from Table 1 that the number of succcessive approximation steps performed between aggregation steps influences the
rate of convergence. Generally speaking there seems to a problem-dependent optimal value for this number which
increases as the problem structure deviates from the ideal block diagonal structure. For this reason it is probably
better to use an adaptive scheme to control this number in a general purpose code as discussed in Section 6.

TABLE 2. Discount factor .99, coupled P,
3 Blocks, 25 states each,
Tolerance for Stopping: 1.0 E-6

Successive (SA) 3 SA Steps 3 SA Steps 5 SA Steps 5 SA Steps 10 SA Steps 10 SA Steps
Approximation per aggregation, 6 aggregate 3 aggregate 6 aggregate 3 aggregate 6 aggregate

3 aggregate groups groups groups groups groups groups

100 %
density, 170 17 17 22 22 37 37
2% coupling

25%
density, 167 38 33 36 32 40 40
2% coupling

100%
density, 6 7 7 8 7 7 7
100% coupling

3%
density,
100dens coupling 66 56 66 60 64 64 66

Table 2 shows that as the coupling between blocks increases (and consequently the modulus of the
subdominant eigenvalue of P decreases), the performance of both successive approximation and adaptive aggregation
improves. When there is full coupling between the blocks the methods become competitive, but when the coupling
is weak the aggregation methods hold a substantial edge as predicted by our analysis.

An interesting issue is the choice of the number of aggregate groups m. According to lemma 2, the first error
term R1(J) of eq. 22 is reduced by a factor proportional to m at each aggregation step. This argues for a large value of
m, and indeed we have often found that increasing m from two to something like three or four leads to a substantial
improvement. On the other hand the benefit from reduction of R1(J) is usually exhausted when m rises above four,
since then the effect of the second error term R2(J) becomes dominant. Also the aggregation step involves the
solution of the m-dimensional linear system of eq. 10, so when m is large the attendant overhead can become
substantial. In the extreme case where m=n and each state forms by itself an aggregate group, the solution is found
in a single aggregation step. The corresponding dynamic programming method described at the end of the previous
section is then equivalent to the policy iteration algorithm.
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