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Abstract

This thesis reviews limit theorems and their applications for stability problems in
geotechnical engineering.

Rigorous numerical solutions of limit analyses can be obtained through finite
element discretization of the soil mass and formulation of the limit theorems within a
linear programming framework. The current research uses a formulation proposed by
Sloan et al. (1988) and extended in a recent Ph.D. thesis by Ukritchon (1998) to include
soil-structure interactions.

The thesis details the input and output required for numerical limit analysis and
presents an example application for the stability of a broad excavation for the MUNI
Metro Turnback project in San Francisco. This well documented case study involves a
13 M deep excavation within a deep deposit of May Mud that was supported by an SPTC
wall with three levels of cross-lot bracing. The numerical limit analyses calculate factors
of safety, FS = 1.03 - 1.36, against basal instability. The factor of safety used in the
original design (FS = 1.2) is contained in this range. The results illustrate that numerical
limit analysis offers a practical alternative to limit equilibrium methods in evaluating the
stability of braced excavations.
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Chapter 1. Introduction

Upper and lower bound limit theorems are fundamental principles of plasticity

that provide a means to estimate collapse loads for materials that exhibit rigid-perfectly

plastic behavior by bounding the exact collapse load (Drucker et al., 1952). The lower

bound theorem leads to a lower bound estimate of collapse by considering a statically

admissible stress field, where stresses are in equilibrium and do not exceed yield criteria

anywhere, and where stress boundary conditions are satisfied. The upper bound theorem

leads to an upper bound estimate of collapse by considering a kinematically admissible

velocity field, where displacements and velocities satisfy the plastic flow rule, and

velocity boundary conditions are satisfied. Statically and kinematically admissible

conditions will be discussed in more detail in the following chapters.

Atkinson (1978) explains the principles behind the limit theorems concisely as

follows:

"If there is a set of external loads which are in equilibrium with a state of stress
which nowhere exceeds the failure criterion for the material, collapse cannot occur and
the external loads are a lower bound to the true collapse loads."

"If there is a set of external loads and a mechanism of plastic collapse such that
the increment of work done by the external loads in an increment of displacement equals
the work done by the internal stresses, collapse must occur and the external loads are an
upper bound to the true collapse loads."

These two principles have numerous beneficial implications for geotechnical

engineers. Their first major benefit is their simplicity. Finding a complete solution for

failure of a geotechnical engineering problem involves solving the complete field

equations (i.e. equilibrium, kinematics, and constitutive behavior) using a constitutive

model that can represent the non-linear stress-strain-strength behavior of soils. As

opposed to many practical structural engineering problems where elements can often be

simplified to one dimension, even the simplest geotechnical engineering problems are

multi-dimensional (2D or 3D), with shear strength properties that depend on confining

pressure and density. This difficulty often makes these theoretically complete solutions

impractical, thus forcing engineers to make simplifications to be able to estimate collapse
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loads. Indeed, approximate limit equilibrium methods are widely used in geotechnical

practice, although the accuracy of these methods is often unknown.

The simplicity of limit theorems allows the engineer to circumvent the difficulty

of these problems. Limit theorems require only the shear strength criterion (as opposed to

the complete stress-strain behavior). This makes the problem significantly easier to solve.

Moreover, the resulting lower and upper bounds provide the engineer with a built-in

check on the accuracy of the collapse load from the computed range between the lower

and upper bound loads. Furthermore, the simplifications that are required to apply limit

theorems in the context discussed in this paper (e.g. finite element discretization and

linearization of yield surfaces) are chosen deliberately so they only affect the precision of

the results, not their validity.'

The purpose of this paper is to introduce limit theorems and their applications to

stability problems in geotechnical engineering. The paper develops the required

background theory and practical knowledge necessary to analyze the case that is

discussed later in the paper.

Chapter 2 discusses the formulation of the limit theorems. The chapter starts by

proving both limit theorems, and then focuses on the formulation of limit theorems within

a linear programming framework.

Chapter 3 forms the link between limit theorems and their applications to real

problems by discussing how to use the programs that solve the linear programming

problem.

Chapter 4 is the numerical limit analysis of the MUNI Metro Turnback project in

San Francisco. The theory and practical knowledge developed in Chapters 2 and 3 are

applied here to an interesting case study of a deep excavation in clay.

Finally, Chapter 5 concludes the paper with the author's conclusions and

recommendations. The author discusses the limitations of the limit theorems and their

numerical formulations, and makes recommendations so that these limitations can be

avoided in the future.

For example, the size of the range that bounds the actual solution decreases with increasing mesh
fineness. However, a coarse mesh will still produce a range containing the actual solution.
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Chapter 2. Formulation of Limit Theorems

2.1 Proof of the Limit Theorems
This section discusses the proofs of the lower and upper bound limit theorems.

Both proofs are taken from Atkinson (1978).

2.1.1 The Flow Rule

Tensors of strain increments can be decomposed into tensors of elastic and plastic

strain increments by the following equation:

decg = dE',+dey, (2.1)

where the e subscript indicates elastic strain increments, and the p subscript indicates

plastic stain increments. Elastic strain increments can be calculated from elastic theory.

Plastic strain increments are calculated from the following equation from plasticity

theory:

d eyP = d A , (2.2)

where

deif is the second order tensor of plastic strain increment,
dX is a scalar that controls the magnitude of plastic strain increments,
and Pi3 is a second order tensor controlling the direction of plastic
strain increments.

A special case of equation 2.2 occurs when the failure criterion serves as a

potential for plastic strains, and the plastic strains are normal to the failure criterion. This

condition is referred to as associated flow. For this case, equation 2.2 can be rewritten as

deP = dA F (2.3)

where

F is the failure criterion,
and -ij is the second order stress tensor.

Substituting equation 2.3 into 2.1 gives
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de =dee, +d aF (2.4)
a ai

For perfectly plastic materials, elastic strains are zero at failure (denoted J) and equation

2.4 becomes

If F
de! =dA . (2.5)

Therefore, if the flow rule is associated, then incremental postfailure strains of perfectly

plastic materials will be normal to the failure criterion. The proofs of the limit theorems

require equation 2.5 to hold; therefore, the proofs of the limit theorems assume soils are

perfectly plastic and the flow rule is associated.

2.1.2 Proof of Lower Bound Theorem

F

Figure 2.1 Proof of the Lower Bound Theorem (Atkinson and Bransby, 1978).

Figure 2.1 shows a hypothetical failure criterion for a perfectly plastic soil. The

subscript c indicates the actual stresses and strain increments during collapse, while the

subscript 1 indicates the stresses and strain increments corresponding to the lower bound

estimates. The o-, vector corresponds to a stress state on the failure surface, while the a,

vector lies just inside the failure surface (with an infinitesimally small gap). The plastic

strain increment, ok, is normal to the failure surface in accordance with the associated

flow rule.

The principle of virtual work can be written:

F 4w =J- dV,
(2.6)
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where

F is an external force,
6w is the increment of displacement where F is applied,
a is the internal stress,
and 6c is a strain increment where -is applied.

The corresponding equation for the exact collapse loads and stresses becomes:

Y F -Sw,= Ja -c edV, (2.7)
V

and the corresponding equation for the lower bound estimate is:

Y F, -6w,=f a, -gedV. (2.8)
V

For simplicity, we can assume 45F has a value of unity, and the dot products on the right

hand side of equations 2.7 and 2.8 become simply the component of the corresponding

stress vector, o or a, in the direction of incremental strain at failure, de, as shown by the

constructions in the figure. These constructions reveal that

r, .e 5 Oc -&eC, (2.9)

because of the convexity of the yield function, which implies that F, < Fc. Therefore F, is

a lower bound on the actual collapse load, F.

2.1.3 Proof of Upper Bound Theorem

The proof of the upper bound theorem is very similar to that of the lower bound

theorem. Figure 2.2 shows a hypothetical failure criterion for a perfectly plastic soil. The

subscript c again indicates the actual stresses and strains during collapse, while the

subscript u indicates the stresses and strains corresponding to the upper bound estimates.

The figure shows that both o- and a, vectors are touching the failure surface because

either stress would cause collapse. The reader will note that here, as opposed to the lower

bound proof, the component of incremental strain, S, can be drawn from the head of the

cu vector, since it also causes collapse; therefore 4Se is drawn normal to the failure

surface at this point in accordance with the associated flow rule.
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FF

F

Figure 2.2 Proof of the Upper Bound Theorem (Atkinson and Bransby, 1978).

The principle of the upper bound theorem says that collapse must have occurred if

F, -9w, = a, -9edV, (2.10)
V

which has the same form as the equation of virtual work. Therefore, we can also write

ZFc -9w, = cc - edV (2.11)
V

from the principle of virtual work and compare this to equation 2.10.

Again assuming that 5e has a value of unity, the dot products on the right hand

side of equations 2.10 and 2.11 become the components of the corresponding stress

vectors, a, and or, in the direction of the incremental strain, 6e, as shown by the

constructions in the figure. These constructions reveal that that

a. - e r > cc -9-c (2.12)

because of the convexity of the yield function, which implies that F, > F. Therefore F, is

an upper bound on the actual collapse load, Fc.

2.1.4 Treatment of Non Perfectly Plastic Materials

The proofs just discussed assume Equation 2.5 is valid for the relevant material.

Actually, for this assumption to hold for a Mohr-Coulomb shear strength criterion, the

angle of dilation, Vf, must equal to the soil's friction angle, #. This requirement does not

present a problem in undrained loading (for undrained stability of clay V = 0 and # = 0).

However, the requirement does present a problem when loading is drained, since

generally t # #. Consequently, equation 2.5 no longer holds because the failure criterion
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is no longer a plastic potential, and the integrity of the limit theorems is compromised.

For this reason, it is necessary to address this issue before proceeding to use limit

theorems with confidence in a soil mechanics context.

For upper bound theorem, this problem is easily avoided because there is a

theorem in plasticity that says:

"Any set of loads which causes collapse for a perfectly plastic material for
which the normality condition holds [ Vf = #] will also cause collapse for a
material with the same failure criterion, but for which vectors of strain
increment at failure are not normal to the failure envelope."
(Atkinson, 1978)

This is implicitly considered in the proof of the upper bound theorem discussed above,

since the proof did not require anything to be said about the actual incremental strain at

failure, &,, even though the normality condition was still assumed when drawing 45C.

The same logic cannot be applied to the lower bound proof because the proof

depends on the normality of Sc, to the failure criterion. An assumption is needed to avoid

the problem that arises for drained loading. Therefore, we assume that

Vi = 0, (2.13)

so that equation 2.5 still holds and the proof of the lower bound theorem is still valid. A

major disadvantage of this assumption is that the calculated lower bound of the problem

is theoretically no longer a rigorous lower bound. However, Palmer (1966) suggested that

this assumption gives an accurate lower bound for a soil with the same friction angle, #,

but with V= 0. We can now apply limit theorems to soils.

2.2 Numerical Limit Analysis

The author has used computer programs to solve limit theorems for an excavation

problem based on the formulations proposed by Sloan (1988) and Sloan and Kleeman

(1995). The original formulations have been modified by Ukritchon (1998) to account for

the strength of structural members involved in the problem, such as footings or walls.

This section sets up the optimization problem corresponding to each of the limit theorems

when applied only to soil.
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2.2.1 Numerical Formulation of the Lower Bound Method

The lower bound estimate requires a statically admissible stress field. To

guarantee a statically admissible stress field, it is necessary to impose the restrictions that

characterize static admissibility, i.e. equilibrium conditions, boundary conditions, and

conditions imposed by failure criteria. These conditions appear in this formulation as

constraints on the nodal stresses. These constraints are discussed in the following

sections.

Since any statically admissible stress field produces a lower bound estimate, then

the best lower bound estimate is one that maximizes the external loads of a statically

admissible stress field. The formulation of this optimization problem for the lower bound

theorem in plain strain is covered in this section, and is taken from Ukritchon (1996),

Ukritchon (1998), and Sloan (1995).

2.2.1.1 Discretization
First, the soil is discretized into triangular elements defined by three nodes2 as

shown in Figure 2.3. Unlike other finite element discretization schemes, here each node is

unique to a triangular element.

3-noded triangular

(Oelement (* x A2 z2'

Figure 2.3 Typical Lower Bound Triangular Element (Sloan and Kleeman, 1995)

2 The lower bound formulation generally also uses what are known as extension elements to simulate a soil
continuum. These elements may have four nodes. However, extension elements were not used in this
project and are not discussed here. The reader is referred to Ukritchon (1996) for further information on
extension elements.
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Each node has a qx, a,, and r, associated with it as shown in Figure 2.3 (denoted

qxj, oyi, and ryi). Stresses are allowed to vary linearly within each element such that the

stresses at any point in the element are given by:

3

ox = N1 p
1=1

3

0, = 'Niup (2.14)

3

z",, = Ni rxi

where Ni are standard linear shape functions given by:

N, = (x 2 Y3 -X 3Y2)+(y 23x+x 32Y)

2( - x3X.Y2 - YO)- (3 - X2X(3 - YI

N 2 = (x 3Y1 X1Y 3)+(y31x+ x 13Y) (2.15)
2( - x3X72 - Y3)-(X3 -X2X(Y3 - Y1

N, -- Y.2 - X21 Y) +(.Y12X + X21. Y)
21(x 1 -x 3 )(y2 -y3)-(X3 -X 2 )(y3 -yI(

and

x 32 =3 -2

x13 = -3

X21 = X- (2.16)
F23 - s2 - e3

Y31 - 3 ~ Y1

Y12 ~I -1 ~ 2

Figure 2.4 shows an example of a final discretized section.
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Figure 2.4 Example of a Discretized Section for an Excavation.

2.2.1.2 Equilibrium Conditions
The equations of equilibrium in two dimensions are given by:

x+ TV=0
ax ay

a a y (2.17)

ax ay

where y is the gravitational body force. This constraint can be imposed on the nodal

stresses by substituting the derivatives of Equation 2.14 into Equation 2.17. For three-

noded elements, this results in two linear constraints that are conveniently represented in

matrix form as

[A1][o] [B 1], (2.18)

where

[A 1] is a matrix of linear coefficients resulting from the
differentiation of equation 2.14,

[a,] is the vector of the nodal stress components at the three
nodes in an element in a Cartesian reference frame,

[BI] is the vector [ 0, Y ]T.

16



2.2.1.3 Stress Compatibility between Adjacent Elements
Static admissibility requires that the traction components of stress at a point be

unique on a given plane; therefore, tractions along the interfaces between adjacent

elements must be equal. The author refers to this as stress compatibility.

x3

Figure 2.5 Stresses at Interfaces between Adjacent Elements
(Sloan and Kleeman, 1995)

Figure 2.5 shows the interface of two adjacent elements. Because stresses vary

linearly within each element, it is only necessary that the tractions at the two points

defining the interface be equal. For example, for the elements in Figure 2.5,

nl n2

Un3 (2.19)

Or, more generally, this constraint can be written as

071 a (2.20)

where i and j represent a pair of nodes on one end of an interface of adjacent elements.

This condition guarantees that the tractions are compatible along the length of the

interface. To write the constraint on the nodal stresses for this condition, it is necessary to

transform these tractions into their Cartesian components by using the standard

transformation equations:

n= sin 2 Oq + cos2 OUY - sin 2r'X (2.21)
r = -sin 0 cos Ooy +-sin 0 cos 00a + cos 20z,

where 0 describes the orientation of the interface. The constraint can then be written in

matrix form as

17



[A2)] [2]=[B2], (2.22)

where

[A 2] is a matrix of linear coefficients resulting from equation 2.21,3
[u2] is the vector the nodal stress components at the four nodes defining

an interface in a Cartesian reference frame,
and [B 2] is the vector [ 0 , 0 , 0 , O ] T.

The reader should note that this condition only imposes constraints on the tractions along

interfaces; it does not impose constraints on any other component of the stress tensor.

This gives rise to an interesting feature of the lower bound method: there will be stress

discontinuities along the interfaces of adjacent elements.

2.2.1.4 Stress Boundary Conditions
Static admissibility also requires that stress boundary conditions be satisfied along

boundaries where they are prescribed. Stress boundary conditions can be either uniform

(constant) or linear.

Figure 2.6 Stress Boundary Conditions (Sloan and Kleeman, 1995)

Figure 2.6 shows an example of a stress boundary condition. Stress boundary

conditions are handled in the same way as stresses at interfaces of adjacent elements

(Section 2.2.1.3). That is, the tractions on a boundary edge must be equal to the tractions

imposed by boundary conditions at both ends of the boundary edge. Again, this

3 The matrix [A 2] is constructed such that the difference of the tractions of a nodal pair defining an end of
the interface is calculated. Because the tractions in a nodal pair should be equal, this difference is zero,
which is why [B 2] is a zero vector.

18



guarantees that the boundary condition is satisfied along the length of the boundary edge

because stresses vary linearly through the elements. Therefore, boundary conditions can

be specified as:

'7nk q (2.23)

k= tk

where

q and t are the normal and shear components of the surface traction
vector,
and i and k are nodes at either end of a boundary edge,

The reader should note the similarity between equation 2.23 and equation 2.20.

These nodal tractions are then transformed into their Cartesian components, and

the constraint can again be conveniently expressed in matrix notation as

[A3 ][U31= [B 3 ], (2.24)

where

[A 3] is a matrix of linear coefficients again resulting from equation
2.23,'

[u-] is the vector the nodal stress components at the two nodes defining
a boundary edge in a Cartesian reference frame,

and [B 3] is the vector [qi, ti, qj, j ] T.

2.2.1.5 Failure Criteria
Finally, static admissibility requires that the stresses not exceed the failure criteria

anywhere in the soil mass. For this project, the soil has a Mohr-Coulomb failure criterion:

c '+ -'tan 0'. (2.25)

Equation 2.25 can be rewritten in a more convenient form by defining a function, F, as

follows:

4 The matrix [A 3] cannot be constructed as a difference of tractions like [A 2 ] because the boundary
conditions are prescribed as constants (equation.2.25) instead of linear functions. This explains why [B 3] is
the vector of the tractions on the boundary edge and not a zero vector like [B2].

19



F = al U3 _ +-3 sin# -c cos 0. (2.26)
2 2

It is not difficult to show F has the following properties:

1. When F = 0, failure occurs.

2. When F < 0, failure does not occur.

3. F > 0 is unattainable.

Equation 2.28 can then be rewritten in terms of the Cartesian stresses by standard

transformations as follows:

F = ((-, - U,)2 +(2r )2 -2c cos #+(a, + a,)sin 01 (2.27)

Y =2,

X8+ Y"= Ra
(Mohr-Coloumb
yield function)

k= I (2k-I

R R cosn/p X =(-.)
k=3

linearised Mohr-Coloumb
k=2 yield function (p= 3 )

Figure 2.7 Linearization of Failure Criterion for Lower Bound
(Sloan and Kleeman, 1995)

Equation 2.27 describes a non-linear relation among the stress components. The

current formulation is based on a linear programming framework, so the yield function

must be linearlized. To do this, stresses are conveniently transformed as follows:

20



X=UT U

Y = 2r, (2.28)

R = 2ccosq +(ax + a,)sin #,

such that the yield criterion can be represented as a circle in (X, Y) space:

X2+y 2 =R 2 . (2.29)

To linearize this failure criterion, an equidimensional polygon is inscribed into this circle.

The polygon is inscribed on the inside of the circle, as shown in Figure 2.7, to guarantee

rigorous lower bound solutions. The new linearized failure criterion can be written as:

F A , + B, + Ckr, - D, (2.30)

where

p = number of sides of the polygon

k =1...p

Ak = cos(2zk I p) + sin # cos(f / p) (2.31)
Bk = sin # cos(i/ p) - cos(2zk / p)

Ck= 2 sin(2zk / p)

D = 2c cos bcos(ff/ p).

Since the friction angle is constant (and cohesion can vary linearly through the elements),

all the terms in the right side of equation 2.30 vary linearly, so F also varies linearly.

Therefore, to guarantee that the yield condition is not exceeded anywhere in an element,

it is only necessary to impose the constraints specified by 2.30 on the nodal stresses.

Since k varies from 1 to p, Equation 2.30 imposes p linear yield constraints for each node

in the mesh. Since these constraints are linear, they can also be written simply in matrix

form as

[A4][ 4 ] = [B4 ], (2.32)

where

[A 4] is a matrix of the linear coefficients of equation 2.30,
[u4] is the vector of the nodal stress components at the three nodes

in an element in a Cartesian reference frame,
Tand [B41]is the vector [ D, Di ,. ,DiI
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2.2.1.6 Objective Function
Optimization of the lower bound load is achieved by maximizing the external

loads in a statically admissible stress field. The external loads are determined by

integrating the normal nodal stresses along the boundary of interest as follows:

Qext Jrds. (2.33)
S

Because stresses vary linearly, we can write Equation 2.33 as

Qext = -- (a k +,), (2.34)
2

where i and k are the two nodes defining the edge of interest. In order to get ci and Uk

from their respective Cartesian components, we must again use the transformation

equations, and Equation 2.34 can then be written in matrix form as

Qext = [c][07] (2.35)

where

[c] is the matrix of linear coefficients resulting from the
transformation equations

[us] is the vector of the nodal stress components at the two nodes
defining the edge in a Cartesian reference frame,

For the purpose of excavations, which are the focus of this paper, the external

load of interest is the vertical stress caused by the retained soil at the excavated grade

elevation:
n

-,= y (2.36)

where yi and Hi are the unit weights and layer thickness corresponding to each layer

respectively.

At this point, we note that there is a single representative unit weight, y,, that will

result in a vertical stress equivalent to that of Equation 2.38, such that

o Y= yZ Hi. (2.37)
i =1
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Since Bi are given, yr is the only variable in Equation 2.39. Therefore, for excavations,

the objective function seeks to maximize y,.

Because the vertical stress at the excavation depth occurs along a horizontal line,

there is no need for transformations because a, is simply a- at any of the nodes at the

depth of the excavation. Consequently, the objective function for excavations can be

rewritten as

Q =[c] i, (2.38)

where [c] is the vector [1]. Equation 2.38 is maximized to obtain the best lower bound

estimate.

2.2.1.7 Assembly of Complete Optimization Problem
As we have mentioned, the objective here is to maximize the external loads given

the constraints of static admissibility. The complete problem formulation can then be

written as:

Maximize:

Subject to:
[A][aI]= [BI]
[A2 ]u2] = [B2]
[A3 ] [ca] = [B3]

[A, ] [q, ] = [B4 ]

Table 2.1 Summary of Lower Bound Optimization Problem

2.2.2 Numerical Formulation of the Upper Bound Method

The upper bound estimate requires a kinematically admissible velocity (or

displacement) field. This can be achieved by imposing velocity boundary conditions and

restrictions on the flow rule. These conditions appear in this formulation as constraints on

the nodal velocities, which are discussed in the following sections.
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Since any kinematically admissible velocity field produces an upper bound

estimate, then the best upper bound estimate is one that minimizes the external loads in a

kinematically admissible velocity field. The formulation of this optimization problem in

plain strain is covered in this section, and is taken mostly from Ukritchon (1998) and

Sloan (1995).

2.2.2.1 Discretization
In this paper, the meshes that were utilized for the upper bound analysis were

identical to those of the lower bound analysis. That is, the nodal coordinates of the upper

bound mesh for a particular case are identical to those of the lower bound mesh.5

However, the variables associated with each node are different.

(u3 , v3)
(U3U1 V3)

11"( 29 V2)

y, V

(u1 , vI)

x, U

Figure 2.8 Typical Element in an Upper Bound Mesh (Sloan and Kleeman, 1995)

Figure 2.8 shows a typical element in an upper bound mesh. Each node has

associated u and v components corresponding to velocities in the x and y direction

respectively. These velocities are allowed to vary linearly within each element such that

the velocities at any point in the element are given by:

5 Lower bound analysis usually requires finer meshes for good lower bound estimates.
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3

u= NU

(2.39)
3

v = Nivi,
i=1

where

(ui,vi) are the nodal point velocities,
and Ni are standard linear shape functions that were given in 2.15.

2.2.2.2 Flow Rule Constraints Within 3-Noded Elements
Section 2.1 showed that the associated flow rule is an inherent assumption of the

upper and lower bound theorems. The flow rule is not explicitly observed in the lower

bound formulation because the lower bound theorem deals only with the conditions of

static admissibility. In the upper bound theorem, on the other hand, the flow rule imposes

the first set of constraints on nodal velocities.

The components of engineering strain rates in Cartesian coordinates (with

positive in compression sign convention) are given by:

au
ax

av
E= ---

a, (2.40)ay
(XY au +av

ay ax
Incremental strains (i.e. linearized strain rates) are given by the flow rule:

aF
AFX =AA a

' FAaF =A a (2.41)

aF

where ) is the scalar plastic multiplier and F is the yield function defined by Equation

2.27.
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Y =2 r

x 2+ Y* = R"
(Mohr-Coloumb
yield funcUon)

R

k=3

k~I..-

X =o-,

linearised Mohr-Coloumb
yield function (p=3)

Figure 2.9 Linearization of Failure Criterion for Upper Bound
(Sloan and Kleeman, 1995)

Combining Equations 2.40 and 2.41 gives velocity constraints. However, the yield

criterion must first be linearized in order to use these equations within the linear

programming framework. This is done using a polygonal linearization similar to lower

bound formulation (Section 2.2.1.5) with one minor difference. Instead of inscribing the

equidimensional polygon on the inside of the circular failure criteria, the polygon

inscribed on the outside, as shown in Figure 2.9. This guarantees a rigorous upper bound

estimate. Adjusting the procedure described in 2.2.1.5 to reflect this difference gives the

following similar result:

F, A kC+ Ba, + Ckr, -D, (2.42)

where
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p = number of sides of the polygon

k =1...p

Ak = cos(2;Tk / p)+sin 0 (2.43)

Bk= sin $-cos(27rk I p)

Ck= 2sin(2zrk / p)

D = 2ccos#

Finally, differentiating Equations 2.39 and 2.42 and substituting the results into Equation

2.41 gives the following constraints on the nodal velocities:

3 DN.
-@ + Z, A =0

-yvi + Z Bk = 0 (2.44)
i=1 k=1

p3 .N.
- ,+ -- V+ ZAk Ck 0.

Equation 2.44 is usually reported in matrix form as

[Ai][ui]±[A1 2] =[O], (2.45)

where

[All] is a matrix of the linear coefficients that result from differentiating
the linear shape functions, Ni,

[ul] is the vector of the nodal velocity components at the three nodes
in an element in a Cartesian reference frame,

[A 12] is a matrix of the linear coefficients of equation 2.45,

[A ] is the vector [A I , A2 , .. PI

and [0] is a zero vector [O , 02, .. ,

2.2.2.3 Flow Rule Constraints At Element Interfaces
The upper bound approach essentially requires a failure mechanism for its

calculation. Section 2.2.2.2 described the plastic flow constraints in zones of continuous

straining (i.e., within an element). However, the formulation also allows velocity

discontinuities in both normal and tangential strains (and velocities) along element

interfaces. The velocity discontinuities must obey the flow rule.
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(114x,"4)

(SloanT and3 K"3)n,19

Aya

(U2 , V2)

-X, U

Figure 2.10 Velocities at Interfaces between Adjacent Elements
(Sloan and Kleeman, 1995)

The flow rule at a velocity discontinuity for any Mohr-Coulomb material takes the

form

Av, =AuI tan qf, (2.46)

where Avn and Au, are the magnitudes of the normal and tangential velocity jumps

respectively. As we mentioned in section 2.1.4, we assumed Vf = #, so Equation 2.46

becomes

Avn = Au, I tan #. (2.47)

We can easily solve for Av and Au, as functions of the nodal velocity components of a

nodal pair to get

Aui = (u1 -u,)cos 0+(v, -vi) sin 0

where i and j represent a pair of nodes on one end of an interface of adjacent elements

(e.g. nodes 1 and 2 in Figure 2.10), and 0 is the inclination of the discontinuity measured

from the horizontal.

28

(2/.,480)
Av =in-(U1 -U ) sin 0 +(v , - vi)cos 0



At this point, a problem arises because the absolute value sign in equation 2.47 is

not allowed within the linear programming framework. There are several ways to

eliminate this problem, most of which require the direction of shearing along a

discontinuity to be predetermined. This is clearly a disadvantage because the direction of

shearing is usually not known beforehand, especially for large meshes. Sloan and

Kleeman (1995) solved the problem by decomposing the tangential velocity jump into

two auxiliary components:

Au, =u+, -u-, (2.49)

where u , and u-, are both non-negative. Now consider the implications of the following

definition:

Au,|I= u,+u-,. (2.50)

Clearly, 2.49 and 2.50 cannot be true simultaneously unless either u4 , or u- equals zero.

We must consider when this will be the case.

Equation 2.50 can be rewritten as a piecewise function as follows:

u+, +u~, if Au, > 0

Au, =< , +u-, if Au, =0. (2.51)

-u -_u- if Au, < 0

Setting equation 2.51 equal to 2.49 gives three systems of equations, each consisting of

one equation and the two unknowns, u>, and u-,. These systems of equations will show

that either one or both of the unknowns must be zero in all cases 6; therefore we can apply

definition 2.50 without introducing error.

Substituting the second equation of 2.48 and equation 2.50 into equation 2.47

gives the constraint

(ui -uj)sin O+(vj - vi)cos 0 = (ut,, + u-,) tan 0. (2.52)

Equation 2.52 can now be written in matrix form as

[A2 [U21]- [A2 ] =[0], (2.53)

where

6 One of the unknowns always cancels out.
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[A 21] is a matrix of the linear coefficients that result from the left side of
equation 2.52,

[u 2] is the vector of the nodal velocity components at the four nodes
defining an interface in a Cartesian reference frame,

[A22] is a matrix of the linear coefficients that result from the right side
of equation 2.52,

[u,] is the vector [ u , u-, , u , tI tk I T

[0] is a zero vector,
and i, j and k, 1 represent the pairs of nodes at either end of an interface of

adjacent elements (e.g. 1,2 and 2,4 in Figure 2.10)

2.2.2.4 Velocity Boundary Conditions
Prescribed velocity boundary conditions must also be satisfied to achieve

kinematic admissibility. If a boundary condition is specified on an edge, it is only

necessary that these conditions be satisfied on the nodes defining that edge, since

velocities vary linearly through elements. Therefore, prescribed velocity boundary

conditions will impose a nodal constraint in the form

U. =U 
(2.54)

Vi =V

This constraint can also be written in matrix form as

[A3][u3]=[B31, (2.55)

where

[A3] is the identity matrix (since Equation 2.54 is in Cartesian
coordinates),

[u3] is the vector of nodal velocity components at the boundary node in
a Cartesian reference frame,

and [B 3 ] is a zero vector [ u , v ] ,

2.2.2.5 Objective Function
To obtain an upper bound estimate, we must set the rate of internal energy

dissipation equal to the rate of work done by external forces as follows:
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W <W

W =W1ie +WdiS (2.56)

We =f ,VdL + yVdA
L V

where

Wi is the rate of internal energy dissipation,
We is the rate of external work done,
Weie is the rate of internal energy dissipation due to continuous straining

within elements,
Wdis is the rate of internal energy dissipation due to slippage at

velocity discontinuities,
o-n is normal stress,

y is the unit weight of the soil,
Vn and V are velocities in the directions of u-n and y respectively.

To obtain the best upper bound estimate, the external forces are minimized for a

kinematically admissible velocity field. It is obvious from Equation 2.56 that we must

minimize Wi (and hence We) to achieve this.

The internal rate of energy dissipation occurs both within elements and along

velocity discontinuities. First consider the rate of energy dissipation within elements,

which will be simply equal to the summation of the strain energy rates, or

Wee = f(a- ± X+ U-, Y +, y, )dA. (2.57)
A

Alternately, linearized definitions of strain rates (Equation 2.44) can be used:

Wele =I [Ak(AkaQ+Bkay +Ckzr)]dA. (2.58)
A k=1

At failure, F=O and the term inside the parentheses of Equation 2.58 is equal to D (from

Equations 2.42 and 2.42). Therefore 2.58 can be written in a condensed form:

Wel = 2cos #Z.kJ cdA. (2.59)
k=1 A

As the cohesion, c, can vary linearly within each element, equation 2.59 can be written as

Weie=2-cs lk c,. (2.60)
3 k=1 i=1

In matrix form, this becomes
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Wele = [c2L [A] (2.61)

where

[c2] is the vector of the cohesion values at the three element nodes
multiplied by the linear coefficients of equation 2.60,

and [A] is the vector [A1, 22, .. , AP] T.

Now let us consider the rate of energy dissipation at element interfaces. From the

definition of work, we can write the general equation for the rate of energy dissipated at a

velocity discontinuity:

WdiS =f (rAuI+ -,Av,)dL, (2.62)
L

where Au, and Av, are given by Equation 2.48, and L is the length of the discontinuity.

Now we can substitute Equation 2.47 into 2.62 and get

Wdl - f(ITAuI-oqAu, tan p)dL
L

= |Au, (|r|- -, tan P)] dL

L (2.63)
= [JAu, (c + a-, tan # - a, tan #)]dA

L

= JAu c] dL.
L

The minus sign of the second a-, in Equation 2.63 is due to the fact that a, and v, act in

opposite directions.

Now we can substitute Equation 2.50 into the result of Equation 2.63 to get

WdlS = c(u*, +u,)dL. (2.64)
L

To perform the integration, we must write the variables of the integrand as functions of

their location along the discontinuity. Because c, u+ ,, and u- are all linear terms, we can

write
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x
C = C +-Ck -C ci

L

u*, =U* + +(u; -U 2j) (2.65)

Ut =iJ (uL-u)

u -, = u-i +-(U-k1 -Uii ,

where

i, j and k, I represent the pairs of nodes at either end of an interface of
adjacent elements (e.g. 1,2 and 2,4 in Figure 2.10),

and x is the distance along the discontinuity.

After substituting Equation 2.65 into 2.64, the integral becomes

Wdis = LfkI -c u[l) + kl uJ/u L,+ U-ij. (2.66 )

The results of this integration can again be expressed in matrix form to get

Wdis =[C3 U] (2.67)

where

[C3] is the matrix of linear coefficients resulting from the integration of
Equation 2.66,

and [u. ] is the vector [ u*,. , u-,, , u +,,kl , t,kl

Finally, the total rate of internal energy dissipation can now be written as:

W, =[C2 [A +[C31 [ (2.68)

The upper bound theorem says that this must also equal We. Therefore,

W, = [C2] +[C31 [U] (2.69)

As we have mentioned, we must minimize Wi (or consequently We) to obtain the best

upper bound estimate. Therefore, Equation 2.69 gives the objective function of this

minimization problem.

2.2.2.6 Optimization for Excavations
For the analysis of excavations, the external load of interest is the vertical stress

caused by the retained soil at the depth of the excavation. More specifically,

33



H

o =frdy, (2.70)
0

where H is the depth of the excavation.

At this point, we note that there is a single representative unit weight, yr, that will

result in a vertical stress equivalent to that of Equation 2.70, such that

H

of= yfdy. (2.71)
0

Converting o, to a force per unit length, and then writing the corresponding equation for

We and setting it equal to W gives:

W,=- fVdA=W,, (2.72)
A

where
A is the cross-sectional area above the depth of the excavation,
and V is the velocity field in the direction of y.

In order to solve for u., we enforce the following additional constraint on the velocities:

J VdA = -1 (2.73)
A

Finally, we can take advantage of the linear variation of velocities and write Equation

2.73 as

S=-1, (2.74)
e=1 i-1

where

e indicates all the elements above the depth of the excavation,
Ae is the area of the corresponding element
and vi are the vertical velocities at the three nodes within eth element.

In matrix form, Equation 2.74 can be written as

[A4][u 4] = [B 4] (2.75)

where

[A 4] is a vector of the area of the elements above the excavation depth,
[U4] is the vector of the vertical velocities of the elements above the

excavation depth,
and [B4] is the vector [ -1 , -1 ... ,1 ]T
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2.2.2.7 Assembly of Complete Optimization Problem

As we have mentioned, the objective here is to minimize the external loads given

the constraints of kinematic admissibility. The complete problem formulation is given in

the table below.

Table 2.3 Summary of Upper Bound Optimization Problem
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Maximize:

[C2] ] +[C3][U±]

Subject to:

[ A ][u]+ [2 [A] Z= [0]

[A21]1[u21]-[A22][U ] =[10]

[A3][u3]=[B3]

[A4][u] = [B4]



Chapter 3. Software Packages and Required Inputs

We have now set up the optimization problems in such a way that linear

programming methods can be applied. Many researchers have focused on producing

efficient ways to solve this large linear programming problem. As a result, two basic

algorithms that have been developed that can handle these calculations: i) the revised

simplex algorithm, and ii) the active set algorithm. Sloan (1988) discusses these two

algorithms in detail, and suggests that the active set algorithm provides a particularly

efficient means to solve this problem. The active set algorithm was originally developed

by Best and Ritter (1985), and has since been modified by Sloan (1988), Ukritchon

(1998), Prasad (2003), and others. The software that was used in this project uses an up-

to-date version of the active set algorithm to solve the linear programming problem of

numerical upper and lower bound limit analysis. For further details on the active set

algorithm, the reader is referred to Sloan (1988).

This chapter discusses in detail the programs that were used to apply the limit

theorems to the case study in Chapter 4. By doing so, this chapter provides the link that is

often missing from publications on this subject between the theory and application of

limit theorems using linear programming.

3.1 Programs for the Lower Bound Method

3.1.1 LBgen - Lower Bound Mesh Generator

LBgen is the name of the mesh generator for the lower bound optimization

problem. The purpose of LBgen is basically to discretize the soil mass into three-noded

triangular elements. Like all the analysis programs we discuss in this report, LBgen was

written in FORTRAN 77. It can be executed from the DOS command line by the

command lbgen "FILENAME" once in LBgen's directory, where FILENAME is the

name of the corresponding input file.
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To create a mesh, LBgen requires information about the geometry of the problem.

Figure 3.1 is an abbreviated and annotated example of an input file required for LBgen

(See Appendix A for full listing).7

23 total number of points defined
12 total number of regions defined by points
0 , nsel (not required here)
0 transition zone (not required here)
3 , number of boundary edges (where boundary conditions will be defined)
0 extension zone (not required here)
6 number of layers
4 , number of beam segment that define the structural element

1 0.0 -32 node data, syntax: (node number/ x coordinate / y coordinate)
2 0.0 -31

23 50 0.0
1 1 1 7 4 2 , region data, syntax : (region number / region shape / Lower left node /..
2 1 6 16 15 2 , Upper right node I Number of subdivisions in x direction /..
3 1 2 8 4 6 , Number of subdivisions in y direction)

12 1 1323 15 2

1 1 5 , boundary edge data, syntax: (boundary edge number / ISt node on boundary edge /
2 5 10 , 2" node on boundary edge)
3 14 23
1 0.0 -2 layer data, syntax: (layer number / elevation of top of layer!
2 -2 -5.3 , elevation of bottom of layer)

6 -31 -37
1 6 11 , beam segment data, syntax: (segment number / Is' node on beam segment / ...
2 11 12 , 2"d node on beam segment)
3 12 13
4 13 14

Figure 3.1 Abbreviated and Annotated LBgen Input File

The first eight lines of the input file provide summary information corresponding

to the lower bound mesh. This information simply tells LBgen where to find a particular

set of information (e.g. information about nodes) within this input file.8

The first data set LBgen requires is node coordinates. It is not necessary to define

all the nodes in the mesh at this point. It is only necessary to define the nodes that define

7 All the input files in the appendix were used in the MUNI case study in Chapter 4.
8 LBgen is capable of generating extension and transition zones. Neither of these was needed in this project

so they are not discussed here. LBgen can also generate meshes by using super elements (nsel). However,
super elements are not required to create uniform meshes like the ones used in this project, so they are not
discussed here.
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regions of constant element size. The user should also keep in mind that layer changes,

structural segments (referred to as beam segments), and strut locations are all ultimately

defined by nodes, so nodes must be created wherever any of these are desired.

LBgen then requires information about the regions defined by the nodes. The

region data consists of the geometry of each region (rectangular and triangular regions

are discretized differently), the nodes defining each region, and the number of

subdivisions desired for each region.9

Next, LBgen requires the user to define the boundary edges. These are not

necessarily the outer edges defining the overall geometry of the problem; they are simply

the edges in the mesh where the user wishes to prescribe a stress boundary condition. For

excavations in plain strain, the centerline of the excavation corresponds to a line of

symmetry with zero shear stress (r = 0). The stress-free ground surface (and excavated

grade) must be specified with zero normal and shear stress (r = 0, a- = 0).

The user must then input the depths that define the extents of the soil layers.

Material properties are not required at this point. Only the elevations defining the layers

are necessary so that LBgen can associate each soil element with the material number of

the corresponding layer.

Finally, LBgen requires information about location of beam segments in the

section. Again, no material properties are needed at this point. It is only necessary to

specify the nodes defining the beam segment so that LBgen can create nodes and joints to

define its geometry.

The output of LBgen is a plain text file containing only information about the

mesh. This output file must be modified so that it includes material properties, water

tables, and stress boundary conditions. These modifications are discussed in the

following section.

3.1.2 LBmain - Main Lower Bound Optimization Program

LBmain is the name of the program that solves the linear programming problem

for the lower bound. The purpose of LBmain is basically to find the lower bound estimate

and to produce results that can be plotted and analyzed. It can be executed from the DOS

9 These subdivisions create the nodal coordinates for nodes not defined within this input file.
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command line by the command Ibmain "FILENAME" once in LBmain's directory,

where FILENAME is the name of the corresponding input file.

The output file from LBgen is the input file for LBmain. This input file must first

be augmented with material properties, water tables, and stress boundary conditions

before it is used in LBmain.

Figure 3.2 is an abbreviated and annotated example of an input file required for

LBmain (See Appendix B for full listing). The first line of the input file contains a set of

commands that were taken as default for this project. The second and third lines provide

summary information about the soil mass and beam elements respectively. This

information simply tells LBmain where to find a particular set of information (e.g.

material properties) within this input file.

This input file is set up in such a way that only its beginning (material properties

and water tables) and end (stress boundary conditions) have to be modified as long as

there is only one set of material properties for beam elements and all layers are

horizontal. In this case, all beam elements are assigned the same material properties, and

all elements within each layer are assigned their respective material properties. This

default can be overridden manually by changing the set of material properties assigned to

beam or soil elements in the corresponding section of the input file (refer to Appendix B).

Figure 3.2 shows the syntax that is used to input material properties, water tables,

and stress boundary conditions. When the input file is complete, the user can run

LBmain. LBmain gives a series of output files that can then be used to analyze and plot

the results with plotting software, such as Tecplot. The text files also include y1 . The

lower bound method only addresses stress equilibrium. Consequently, output data consist

only of nodal stress data for the optimal statically admissible stress field.
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1FTTF
Print (int), mesh generation(T/F), Scale(T/F) , Steep(T/F), store (TIF)

4176 1 1392 0 0 2037 2 6 1
Soil Summary; Syntax: Number of: nodes, unique coordinates, triangular elements, triangular extension, rectangular extension, number of discontinuities, unit

weights, material no, water tables

40 20 18 3 1 , Beam Summary; Syntax: Number of: nodes, beam elements, joint element, support, material no

1 -1
2 1
Unit Weights; Syntax: Reference unit weight number, unit weight (negative unit weight indicates unit weight will be optimized)

1 Factor of safety

11

.000 0.0 0.0 30 1 24

6 1
-31.000 0.0 0.0 30 2 24.

Soil Material Properties;
Line 1; Syntax: Material reference number, soil type
Line 2; Syntax:
If soil type I (total stress analysis): reference elevation, S. at reference elevation, gradient of S , friction angle, reference unit weight number, p (number of linear
segments approximating failure criterion)
If soil type 3 (effective stress analysis): reference elevation, S at reference elevation, gradient of S, friction angle, reference unit weight number, reference water
table, p (number of linear segments approximating failure criterion)

1 1
-2 9.81
Water Table Properties;
Line 1; Syntax: Reference water table number, water table type
Line 2; Syntax: if type I water table ( hydrostatic pore pressures): elevation of water tale, unit weight of water
1 1
882
Beam Material Properties;
Line 1; Syntax: Beam material reference number, beam material type
Line 2; Syntax: Type I (limited moment capacity only): moment capacity

Node coordinate information

Joint Information

Triangular element information

Discontinuity information

Beam element information

Joint information

3 number of boundary conditions
24

12 11 60 59 468 467 516 515 564 563 612 611
660 659 708 707 1836 1835 1884 1883
1932 19312520 2519
CON NONE
T
0.0 F

0.0 F
Boundary condition information for boundary edges
Line 1; Syntax: Number of nodes on boundary
Line 2; Syntax: List of nodes on boundary
Line 3; Type of boundary condition; Syntax: Type of shear boundary condition, type of normal boundary condition
Line 4; Syntax:
If NONE (no constraint along boundary): No information required
If CON (constant stress along boundary): Flag (T if value prescribed), Value of boundary stress, Flag (T if apply FS))

Opoint loads (not used and not discussed)
0 int shear (not used and not discussed)
0 print outfor nortau (not used and not discussed)

1
3
3467 3468 3469
FTT
0.OdO F
.OdO F

Support boundary conditions;
Line 1; Syntax: Number of joints
Line 2; Syntax: Joint Numbers
Line 3; Syntax: Flags shear, vertical, and moment support
Line 4; Syntax: Values of boundary condition, Flag (T if apply FS)

0 applied force at joint (not used and not discussed)
0 , distributed load for beams (not used and not discussed)

20 Number of soil-structure interfaces
3430

108 107 41 42
F

F
Soil structure interaction;
Line 1; Syntax: Beam element number
Line 2; Syntax: Nodes defining inteiface
Line 3; Syntax: Flag for prescribed boundarv condition on intearfce
Line 4; Syntax: Value of interface stress, Flag to applvfsactor of safety

Figure 3.2 Abbreviated and Annotated LBmain Input File
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3.2 Programs for the Lower Bound Method

3.2.1 UBgen - Upper Bound Mesh Generator

UBgen is the name of the mesh generator for the upper bound optimization

problem. The purpose of UBgen is basically to discretize the soil mass into three-noded

triangular elements. The resulting mesh is slightly different than the one created by

LBgen (principally because LBgen can create extension elements and transition zones)

and boundary conditions are specified differently. UBgen can be executed from the DOS

command line by the command ubgen "FILENAME" once in UBgen's directory, where

FILENAME is the name of the corresponding input file.

To create a mesh, UBgen requires information about the geometry of the problem.

Figure 3.3 is an abbreviated and annotated example of an input file required for UBgen

(See Appendix C for full listing). The format for the UBgen input is almost identical to

that of LBgen. The first seven lines of the input file provide summary information

corresponding to the upper bound mesh. This information simply tells UBgen where to

find a particular set of information within this input file.

Since neither transition zones nor extension zones were used in this project, the

only difference between the format of the input files for UBgen and LBgen is the

summary information at the beginning of the file. Otherwise, the format of the input files

is identical. However, the user should keep in mind that boundary conditions are

specified as velocities in the upper bound formulation; far field boundaries are defined by

ui = Vi= 0 and the centerline of the excavation is defined by ui = 0.
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23 total number of points defined
12 , total number of regions defined by points
0 , nsel (not required here)

3 , number of boundary edges (where boundary conditions will be defined)

0 , number of loads (not required here)

6 , number of layers
4 , number of beam segment that define the structural element

1 0.0 -32 , node data, syntax: (node number/ x coordinate / y coordinate)

2 0.0 -31

23 50 0.0
1 1 1 7 4 2 , region data, syntax : (region number / region shape / Lower left node ...

2 1 6 16 15 2 Upper right node I Number of subdivisions in x direction /..
3 1 2 8 4 6 Number of subdivisions in y direction)

12 1 1323 15 2

1 5 1 , boundary edge data, syntax: (boundary edge number/ Ps node on boundary edge!...

2 1 15 2nd node on boundary edge)
3 15 23
1 0.0 -2 , layer data, syntax: (layer number / elevation of top of layer!

2 -2 -5.3 , elevation of bottom of layer)

6 -31 -37
1 6 11 , beam segment data, syntax: (segment number / I't node on beam segment /

2 11 12 2"d node on beam segment)
3 12 13
4 13 14

Figure 3.3 Abbreviated and Annotated UBgen Input File

The output of UBgen is a plain text file containing only information about the

mesh. This output file must be modified so that it includes material properties, water

tables, and velocity boundary conditions. These modifications are discussed in the

following section.

3.4 Ubmain - Main Upper Bound Optimization Program

UBmain is the name of the program that solves the linear programming problem

for the upper bound. The purpose of UBmain is basically to find the upper bound

estimate and to produce results that can be plotted and analyzed. It can be executed from

the DOS command line by the command ubmain "FILENAME" once in UBmain's

directory, where FILENAME is the name of the corresponding input file.

Figure 3.4 is an abbreviated and annotated example of an input file required for

UBmain (See Appendix D for full listing). The first line of the input file contains a set of

commands that were taken as default for this project. The second and third lines provide
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summary information about the soil mass and beam elements respectively. This

information simply tells UBmain where to find a particular set of information within this

input file.
1 FTTF
Print (int), mesh generation(T/F), Scale(T/F) , Steep(T/F), store (TIF)

40 20 21 1 , Beam Summary; Syntax: Number of: nodes, beam elements, joint element, material no

1 -1
2 1
Unit Weights; Syntax: Reference unit weight number, unit weight (negative unit weight indicates unit weight will be optimized)

1 Factor of safety

1 1
.000 0.0 0.0 30 1 24

6 1
-31.000 0.0 0.0 30 2 24.

Soil Material Properties;
Line 1; Syntax: Material reference number, soil type
Line 2; Syntax:
If soil type I (total stress analysis): reference elevation, S,, at reference elevation, gradient of S,,, friction angle, reference unit weight number, p (number of linear

segments approximating failure criterion)
If soil type 3 (effective stress analysis): reference elevation, S at reference elevation, gradient of S,,, friction angle, reference unit weight number, reference water

table, p (number of linear segments approximating failure criterion)

1 1
-2 9.81
Water Table Properties;
Line 1; Syntax: Reference water table number, water table type
Line 2; Syntax: if type I water table ( hydrostatic pore pressures): elevation of water tale, unit weight of water
1 1
882
Beam Material Properties;
Line 1; Syntax: Beam material reference number, beam material type
Line 2; Syntax: if type I (limited moment capacity only): moment capacity

Node coordinate information

Joint Information

Triangular element information

Discontinuity information

Beam element information

Joint information

3 , number of boundary conditions
24
2519 2520 1931 1932 1883 1884 1835 1836 707 708 659 660 611 612 563 564 515 516 467 468 59 60 11 12
T F
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00
Boundary condition information for boundary edges
Line 1; Syntax: Number of nodes on boundary
Line 2; Syntax: List of nodes on boundary
Line 3; Type of boundary condition; Syntax: Flag u, Flag for v (T if boundary condition present)
Line 4; Syntax: ifflag = F, no information required; ifflag = T, list of nodal velocity boundary conditions

0 distributed stress on boundary (not used and not discussed)
0 point loads (not used and not discussed)

1 vel bcs of joint
3 ,#of joints
3499 3500 3501
TFF
0.0

Support boundary conditions;
Line 1; Syntax: Number of joints
Line 2; Syntax: Joint Numbers
Line 3; Syntax: Flags i, v, and w
Line 4; Syntax: Values of boundary condition (ifflag = T)

0 applied force atjoint (not used and not discussed)
0 , applied stress for beams (not used and not discussed)

Figure 3.4 Abbreviated and Annotated UBmain Input File

This input file is also set up in such a way that only its beginning (material

properties and water tables) and end (velocity boundary conditions) have to be modified

as long as there is only one set of material properties for beam elements and all layers are
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horizontal. In this case, all beam elements are assigned the same material properties, and

all elements within each layer are assigned their respective material properties. This

default be overridden manually by changing the set of material properties assigned to

beam or soil elements in the corresponding section of the input file (refer to Appendix D).

Figure 3.4 shows the syntax that is used to input material properties, water tables,

and velocity boundary conditions. Material properties and water tables use the same

syntax used in the LBmain input files, while the syntax for boundary conditions changes

slightly. When the input file is complete, the user can run UBmain. UBmain gives a

series of output files that can then be used to analyze and plot the results with plotting

software. The text files also include E.. Output data consist only of the nodal point

velocities for the optimal kinematically admissible stress fields.

3.5 Computation Times

The author did all of his analysis on a Pentium 4, 1.4GHz desktop computer. This

section discusses the computation times required by the software based on the analysis of

Chapter 4 and seven other cases the author briefly studied.

The mesh generators run practically instantaneously. For very coarse meshes,

computation time can be as little as about 0.25 seconds. Even for very fine meshes like

the ones used later in this paper, computation time never exceeded 3 seconds.

The computation time required for LBmain and UBmain to run is highly

dependent on the coarseness of the mesh and the number of linear segments defining the

failure criterion (p). For this project, the yield surface was always approximated by 24

linear segments (in order to achieve accurate representation of the yield criterion,

Ukritchon 1996). However, the author experimented with a wide range of mesh

coarseness in order to minimize the size of the range defined by y, and yu. The author

found that LBmain and UBmain generally require an equal amount of time to solve the

linear programming problem for the same mesh. The time required for these programs to

run ranged from about I second for a mesh containing 120 nodes to 63 minutes for a

mesh containing 4176 nodes. More details concerning computation times are reported in

Chapter 4.
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Chapter 4. Stability of the Cut and Cover Excavation for
the MUNI Metro Turnback (MMT) project

4.1 Background

The MUNI Metro Turnback project consisted of the construction of twin steel

lined 5.48 m diameter tunnels extending 245 M South from the Embarcadero Station,

marked AB in Figure 4.1. Section BC involved the construction of a cut and cover

reinforced concrete box structure. The excavation required for this section is less than

30 M from the shore in some places and as little as 9 M away from settlement sensitive

buildings (Koutsoftas et al., 2000). The excavation was 17 M wide and 11-13 M deep.

The most critical sections with the deepest excavations were located close to the tunnel

access shaft and were closely monitored during construction (marked 'Test Section' in

Figure 4.1). This section shows the detailed analysis of the stability of the excavation at

this location, and then compares the results of numerical limit analysis to those of limit

equilibrium methods reported by Koutsoftas et al. (2000).

I M t.Io n 'I Sr4Pro

lE~d STRCTURE NM
ASaf TUN"

B OSTR UCT $*ft

CD U-VWAL
DE SURFACE Iir~f

Figure 4.1 Map of MMT Site and Surrounding Area (Koutsoftas et al., 2000)

4.2 Soil Profile

Figure 4.2 shows a typical soil profile of the MMT site. The site has a level

ground surface and is overlain by a 6 M thick layer of fill consisting of medium to fine
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sand. The fill is very loose and contains variable amounts of debris. For analysis, this

material was assumed to have zero cohesion and a friction angle of 30'. The groundwater

table is typically about 2 M below the ground surface.

Horizontal Distance, Stations
537 538 535

B-1 P240 P261 P254 P2W P320

20

70-

Horizontal Distance, Meters

(a) LONGITUDINAL PROFILE (PARiAL)

Figure 4.2 Typical Soil Profiles (Koutsoftas, 2000)

The fill is underlain by a 30-40 M thick layer of saturated clay locally known as

Bay Mud. The Bay Mud is of primary importance as the base of the excavation extends

only 7 M into the clay, and excavation stability depends on the properties of the

underlying soil. Figure 4.3 summarizes the in situ stresses, stress history and undrained

strength properties of the clay. The data show that the Bay Mud is normally consolidated

above a depth of about 15 M, but becomes slightly overconsolidated below this depth.

Koutsoftas et al. (2000) show that the undrained shear strength, Su, of the clay increases

with depth in the Bay Mud, based on laboratory DSS and field vane tests. They assume

these shear modes provide an average strength profile for the Bay Mud. The figure also

shows estimated profiles for SU,TC and SUTE, the compression and extension shear strength

profiles, assuming normalized soil properties (after Ladd and Foott, 1974). The current

analysis is strictly based on the SUDSS profile in Figure 4.3 and assumes isotropic shear

strength of the clay. This is considered a reasonable approximation based on studies

presented recently by Ukritchon et al. (2003).
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Figure 4.3 Strength Properties of Bay Mud (corrected from Koutsoftas et al., 2000)

The Bay Mud is underlain by a loose, fine marine sand known locally as Grey

Sand. There are two lenses of denser sands underneath the Grey Sand. Both of these

sands were present at the section of the excavation we will be analyzing. We assumed a

friction angle of 300 for both sands.

These sands overly a stiff clay deposit known as Old Bay Clay that overlies the

bedrock. Old Bay Clay has a uniform S, = 85 kPa. The depth of the bedrock varies

throughout the site from 35 to 60 M (Koutsoftas et al., 2000).

A section of the excavation and support system are shown on Figure 4.4. The

figure shows the layers that were present at that section, the location of the struts,

perimeter SPTC wall, and the depth of the excavation. Table 4.1 is a summary of the soil

properties of the layers in the profile.
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DISTANCE FROM EXCAVATION WALL, METERS
0 6 12 Is 24 30 36 42

0 - -0.5
T -2.1-
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20- SPTC WALL
(0.# M THICK)

26-

SOLDER PLES
30 (W920 x 313

EVERY 3.5" M)

35-

446

501-

Figure 4.4 Excavation

51 FENCE

-- BUS TURNOUT AREA
1.52 M

/L

9 M

4.9 M 7.6 M. 7.4 M

36 M
SAND

. SND

OLD SAY CMAY

Section and Strut Locations (Koutsoftas et al., 2000)

Layer Average S. (kPa) (D (0) Average y (kN/m3)

Fill 0 30* 18.3

Bay Mud 50 0 16.5

Grey Sand 0 30* 18

Colma Sand 0 30* 18

Dense Grey Sand 0 30* 18*

Old Bay Clay 85 0 18

*indicates soil properties that were assumed for analysis

Table 4.1 Summary of Soil Properties of MMT Soil Profile
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4.3 Excavation Support System

The excavation support system consisted of a Soldier Pile and Tremie Concrete

(SPTC) wall with three levels of struts. Figure 4.5 is a diagram of the SPTC wall. The

wall is 0.91 M thick and contains are W920 x 313 soldier piles sections placed at 3.66 M

intervals. The concreted portion of the wall only extends to a depth of 20 M. Beyond that,

the soldier piles alone extend to a depth of 41 M as shown in Figures 4.4 and 4.5.

20M

if
Figure 4.5 SPTC Wall Detail (Koutsoftas et al., 2000)

The strength of the wall, Mp = 0.88 MNm/m, was calculated based on the full

plastic capacity of the soldier piles assuming a yield stress of a-y = 414 MPa (60 ksi steel).

The strength of the concrete was ignored in this calculation because the concrete is not

sufficiently reinforced to span vertically and cannot carry moments in the vertical

direction. The soldier piles are placed sufficiently close together so the wall has enough

moment capacity in the horizontal direction to hold the retained soil and transfer the

resulting horizontal forces to the soldier piles. The wall was supported by three levels of

bracing as shown in Figure 4.4. The figure shows that the struts are placed at depths of

2.1, 5.3, and 8.5 M. Table 4.2 summarizes the relevant material properties of the SPTC

wall.

M, (MNm/m) 0.88

Table 4.2 Summary of Relevant Material Properties of SPTC Wall
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4.4 Analysis Results and Comparison

4.4.1 Mesh Selection

In order to analyze the chosen section of the excavation, we first had to determine

the adequate dimensional extents of the problem. Initially, the author considered a section

of the excavation extending down to the Franciscan bedrock with lateral boundary

located 100 M from the center of the excavation.

The sole purpose of this exercise was to help us focus the analysis on the area

affected by instability. By doing this, the meshes can be refined specifically in this area

and more precise bounds are obtained. Figure 4.6 shows the mesh that was used to

evaluate this section along with the relevant boundary conditions.
-r = 0, a = 0

FS = 1.03 -1.41
0 I -~r--z- -~T T

x < x x x xx
xxxxxxxxxxxx

-1 U - JIInNI7~~NI'ZN~>I7TZNN~

-20

-30

-40

>- -><

- _ _ _ _ _ _ .~u

-0, v = 0

0 25 50 75 100
X

Figure 4.6 Initial Mesh of MMT Excavation Section with Large Overall Dimensions

The upper bound analysis results are shown in Figure 4.7. This figure shows a

vector plot of the velocities at failure and the plastic zone (shaded in light gray). The

failure zone extends to the base of the Bay Mud and laterally to 40 M from the wall. The

light gray zone and vector arrows show the extent and mechanism of failure in the soil

mass. Several plastic hinges form in the wall below the lowest level of bracing. For this

case, the factor of safety is FS = 1.03-1.41.
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Figure 4.7 Vector Plot and Plastic Zone for Upper Bound Analysis with Initial Mesh

The vertical extent of the plastic zone shown in Figure 4.7 coincides with the

deepest plastic hinge observed in the wall at a depth of 31 M, where the Bay Mud ends.

Below this depth are stronger layers of sand. Therefore, it is not surprising that the top of

the sand layer effectively contains the mechanism. Therefore, we chose to analyze the

section contained within a depth of 31 M and 50 M from the centerline of excavation

because it contains the entire mechanism. To do this, we must allow for the possibility of

a plastic hinge at a depth of 31 M. This was achieved by adding a thin dummy layer of

strong soil below the 31 M depth. These dimensions now guarantee that the failure

mechanism is completely contained within the mesh, so no error is introduced by

reducing the overall dimensions.10 A similar exercise has also been performed to refine

the lower bound analysis.

Now that the boundaries of the section have been determined, the next step is to

create a mesh of adequate coarseness. The coarseness the mesh is deemed adequate when

refining the mesh further does not significantly improve the results. The author created

three meshes of different levels of coarseness and performed analysis on all three meshes

to determine the adequate mesh coarseness. Figure 4.8 shows the three meshes that were

considered. The first mesh (Figure 4.8a) is a very coarse mesh that was used to obtain a

first order approximation of Y, and YU. The regions contained in this mesh were not

subdivided. That is, the horizontal and vertical edges in this mesh define all its regions.

' The author verified that after reducing the overall dimensions the answers are still exactly the same.
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The second mesh (Figure 4.8b) is defined by the same regions as the first, but the larger

regions have been subdivided to achieve relatively uniform element sizes. The third mesh

(Figure 4.8c) is also defined by the same regions, but the number of subdivisions was

further increased.
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Figure 4.8a Coarse Mesh of Region of Interest
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Figure 4.8b Medium Mesh of Region of Interest

- xxx xxxx xxx x

XWV XDc " '-

:. x xxxx> -xxx xxxg XXXXXXXXXXXXXX

,XXXXXXXXXXXXXXXz~,
X)XIXIXXXXXXN XXXXXX

'xx xxx x7xxxx xx

~x{>Y N<> 7 7 7^

N xxxx ' "xxxxxxx xxxxx

<K N

xx : 7N~7

xxxxxxxxxxxx

Mxxx:tx i-x x-x xx x

0

-10

-15

-20

-25

-30
0

--- --.-. - -

- - -__-

/X-/ ------------------------.......... ...... .................. ..............

0

-5

-10

-15

-20

-25

-30
0 10 20 30 40 50

x
Figure 4.8c Fine Mesh of Region of Interest
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Table 4.3 is a summary of the characteristics of the three meshes of Figure 4.8.

The table also shows the /1 and y, that were found for each mesh and the corresponding

computation time. The table clearly shows that the coarse mesh is inadequate since the

range defined by r, and r,, is unacceptably large. The medium mesh is significantly

better since the difference between y1 and y, has been reduced by a factor of 4. As we

would expect, the fine mesh gives the best set of results. This mesh is about four times

finer than the medium mesh, but the difference between r, and r, is only reduced by

25% relative to the medium mesh. At the same time, computation time has also increased

dramatically. Computation time is not proportional to the number of nodes or elements in

the mesh. In fact, computation time increases at increasing rates as meshes get finer.

Therefore, it is clear that the precision of the results for each mesh is subject to

diminishing rates of return as mesh fineness increases. At this point, the author decided

that the benefits of the small increase in precision do not justify using finer meshes due to

the loss of time. The fine mesh is used for the remaining analysis of the MMT case study.

Mesh Number of Number of - - Computation
Nodes Elements r1  ru Time

(kN/m 3) (kN/m3 )

Coarse 144 48 13.64 38.42 1 seconds

Medium 1104 368 16.94 22.98 1.5 minutes

Fine 4176 1492 17.41 22.27 63 minutes

Table 4.3 Effect of Mesh Refinement on Stability Calculations by Numerical Limits

4.4.2 Analysis of Results

Figure 4.9 summarizes the results of the lower bound analysis for the MMT.

Figures 4.9a and 4.9b show contours of the major and minor principal stresses

respectively. As we would expect, the principal stresses both increase with depth and

their contours follow similar patterns.
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Figure 4.9c shows contours of the direction of the major principal stress measured

by the angle, 5, to the vertical. This figure shows that 6 rotates about the bottom level of

bracing. Near the bottom of the retained soil, it reaches a minimum between 0 and 6', and

then increases as it rotates into the excavation. The maximum recorded value of 5 is 90',

which occurs inside the excavation as we expect since this zone fails in extension.

Figure 4.10 shows the results of the upper bound analysis. Figure 4.1Oa shows the

deformed mesh at failure and the deflections of the wall. This figure shows the general

pattern of movement during collapse. The wall develops four plastic in this refined mesh

(instead of 5 hinges in Figure 4.7). Furthermore, there is no longer a plastic hinge at a

depth of 31 M in this mechanism, which is also a result of the different mesh

arrangement.

Figure 4. 10b shows a vector plot and the plastic zone in the area of interest during

collapse. The deflections of the wall are also included for completeness. As predicted, the

plastic zone is completely contained within the clay. In fact, the plastic zone does not

extend to the bottom of the clay as Figure 4.7 suggested. Again, this failure mechanism is

lightly different than the one shown in Figure 4.6 due to the different mesh arrangement,

which is why the location of the plastic zone is different. We also note that the lateral

boundary extends well beyond the plastic zone, so boundary effects are effectively

eliminated from the analysis.

The vector plot agrees with the deformation pattern shown by the deformed mesh.

Both figures show that at failure, the top of the retained soil subsides. This movement

pushes the wall into the excavation and causes the plastic hinges observed in the wall.

The movement of the wall then causes heave inside the excavation (due to the constraint

of zero horizontal velocity inside the excavation).
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Figure 4.10b Vector Plot and Plastic Zone of Area of Interest

In excavations the factor of safety is defined as the ratio of the vertical stress

caused by the retained soil at failure to the vertical stress caused by the retained soil in

situ. That is,
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( yB, ) 1FS = . (4.1

Since both limit theorems provide bounds on the failure conditions, we can bound the

actual FS according to

<FS< D "). (4.2)
SyB, )Lnsitu Z(71 B j i(4.2

These calculations were performed and the results are tabulated on Table 4.4. Therefore,

we can conclude that the factor of safety must be between FS=1.032-1.362. Alternatively,

we can guarantee FS =1.197 ±13.8%.

Lower Bound Upper Bound Average

yoptimum (kN/m3) 17.41 22.27 19.84

FOS 1.032 1.362 1.197

Table 4.4 Tabulation of FOS Range for MUNI Metro Turnback Project

Koutsoftas et al. (2000) evaluates the FS of this section using the limit

equilibrium method developed by Eide et al. (1972). They calculate a factor of safety of

1.2, which is in the range we derived through limit theorems." By using limit theorems

we can therefore guarantee that the factor of safety calculated in Koutsoftas et al. (2000)

accurate within 13.8%.

Figure 4.11 compares the FS calculated by Koutsoftas et al. (2000) to those

calculated using numerical limit analysis. The figure shows that FS estimates of upper

bound analysis closely matched those reported in Koutsoftas et al. (2000). However the

lower bound analysis gives significantly smaller estimates of FS.

Limit theorems offer a certainty range on FS, which allows the engineer to

evaluate the precision of the FS estimate. This is one advantage that the numerical limit

analysis has over limit equilibrium methods. The range in FS computed for this case

study, however, is larger than that found by Ukritchon (1998) for similar excavation

" The author performed an independent check on the factor of safety using the method recommended by
Eide et al. (1972) and determined that FS = 1.2 is a reasonable estimate if the length of the piles beyond the
concreted portion of the wall is ignored.
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problems. The principal reason is almost certainly liked to the relatively crude meshes

used in the lower bound analysis of the MMT project.
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Figure 4.11 Comparison of FS Calculated by Koutsoftas et al. (2000) Vs.
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Chapter 5. Conclusions and Recommendations

5.1 MMT Case Study

We were able to reproduce and validate the FS estimates reported in Koutsoftas et

al. (2000) for the 13 M deep excavation in the test section of the MMT project by using

numerical limit analysis. Koutsoftas et al. (2000) reports a FS = 1.2 for this section while

we calculated FS = 1.03-1.36. Therefore we conclude that FS = 1.2 is a reasonable

estimate of the factor of safety for this section of the excavation.

Ideally, the lower bound analysis should be repeated using more sophisticated,

non-uniform meshes to get more accurate lower bound results. It is likely that this will

greatly reduce the difference between the lower and upper bound estimates of FS, and it

will probably show conclusively that the limit equilibrium method used to evaluate

instability of the MMT excavations by Koutsoftas et al. (2000) gives conservative

estimates of FS for this case study.

We were also able to produce estimates of stresses at failure and predict the

failure mechanism by using numerical limit analysis. These results allow us to analyze

the behavior of the excavation at failure without the need to consider stress-stain-strength

relationships.

5.2 Limit Theorems and their Numerical Formulations

The benefits of limit theorems are evident. Their simplicity and adaptability to

computer algorithms allows engineers to estimate collapse loads relatively quickly by

bounding actual solutions. By incremental adjustments to the meshes, the difference

between lower and upper bound estimates can be reduced to a manageable range. As a

result, the engineer can usually guarantee that his estimate of the solution is within 5% of

the actual solution. This is a remarkable result that is very difficult to accomplish by any

other means.

The only disadvantage of the limit theorems themselves is the need to assume

V-=O (Equation 2.13) in Mohr-Coulomb materials to ensure the integrity of the lower

bound theorem. As we have mentioned, this assumption generally does not hold for
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drained materials and as a consequence, the lower bound theorem has theoretical

limitations in simulating the real drained shear strength of soils that require non-

associated flow conditions.

Although each program that was used to apply limit theorems fulfills its purpose,

each has disadvantages that are common in software in this stage of development. The

most evident problem, which unfortunately refers to all the programs discussed in

Chapter 3, is the lack of a graphical user interface (GUI). The lack of a GUI has two

major effects on the analysis process. First, it means all the required inputs have to be

input manually into text files. This is not a major limitation for simple problems, but for

more complex problems this implies the need to manually change inputs in hundreds of

pages of text. Second, the lack of a GUI means new users must invest a significant

amount of time to learn how to use all the programs before they can apply this method of

analysis to case studies.

Another related disadvantage that plagues all the programs is the lack of error

traps. Small mistakes in the input files can lead to large errors, and the programs should

have more error traps to locate common mistakes. A good example of a mistake that can

easily be avoided by creating an error trap occurs in the mesh generators. LBmain and

UBmain require all nodes that are not on a boundary to have other nodes at the same

location. That is, LBmain and UBmain do not allow "floating points" between soil

elements. A problem arises because LBgen and UBgen create floating points between

elements if the user inputs the mesh data incorrectly. This can easily be avoided by

having the program verify that all regions that are horizontally and vertically adjacent

have the same number of subdivisions in the y and x directions respectively. There are

many other simple error traps that can be introduced that will reduce the possibility of

error from inadequate input.

The author believes limit theorems and their applications in geotechnical

engineering are very useful tools. Moreover, we are almost at a point where their power

in determining collapse loads has reached full capacity since we can usually estimate

collapse loads within 5%. If the use of limit theorems embedded in linear programming

software became widespread, the result would be a significant improvement in

excavation design. However, before this occurs the software must all be unified behind a
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single GUI that makes using these tools easier. The program should be able to handle

mesh generation and optimization simultaneously, and there should be adequate error

traps that identify common errors.
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Appendix A. Sample Input File for LBgen

total number of points defined
total number of regions defined by points
nsel (not required here)
transition zone (not required here)
number of boundary edges (where boundary conditions will be defined)
extension zone (not required here)
number of layers
number of beam segment that define the beam element
syntax for nodes is (node number/ x coordinate / y coordinate)0.0

0.0
0.0
0.0
0.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
50
50
50
50
50
50
50
50
50
1
1
1
1
1
1
1

1
1
1
1

-32
-31
-20
-15
-13
-32
-31
-20
-15
-13
-8.6
-5.3
-2
0.0

-32
-31
-20
-15
-13
-8.6
-5.3
-2
0.0

1 7
6 16
2 8
7 17
3 9
8 18
4 10
9 19
10 20
11 21
12 22
13 23

64

4 2
15 2

4 6
15 6

4 3
15 3
4 1
15 1
15 2
15 2
15 2
15 2

, Syntax for regions is (region number / region shape
, [1 is rectangle] / Lower left node [for shape ] region] /
, Upper right node [for shape ] region] / Number of subdivisions
, in x direction / Number of subdivisions in y direction)



1 1 5 , Syntax for boundary edge data is (boundary edge number / node
2 5 10 , on one end of boundary edge / node on other end of boundary
3 14 23 , edge)
1 0.0 -2 , syntax for layer data is (layer number / elevation of top of layer!
2 -2 -5.3 , elevation of bottom of layer)
3 -5.3 -13
4 -13 -15
5 -15 -31
6 -31 -37
1 6 11 , syntax for beam segment data is (segment number / node on one
2 11 12 , end of beam segment / node on other end of beam segment)
3 12 13
4 13 14
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Appendix B. Sample Input File for LBmain
1FTTF
Print (int), mesh generation(T/F), Scale(T/F) , Steep(T/F), store (T/F)
4176 1 1392 0 0 2037 2 6 1
Soil Summary;
Number of: nodes, unique coordinates, triangular elements, triangular extension,
rectangular extension, number of discontinuities, unit weights, material no, water tables

40 20 18 3 1
Beam Summary;

Number of : nodes, beam elements, joint element, support, material no
1 -1
2 1
Unit Weights;
Reference unit weight number, unit weight (negative unit weight indicates unit weight
will be optimized)
1
Factor of safety

11
.000 0.0 0.0 30 1 24

2 3
-2.000 0.0 0.0 30 1 1 24
3 1
-5.300 20 1.375 0.0 1 24
4 1
-5.300 20 1.375 0.0 2 24
5 1

-15.000 33.375 2.503 0.0 2 24
6 1

-31.000 0.0 0.0 30 2 24.
Soil Material Properties;
Line 1: Material reference number, soil type
Line 2:

Soil type 1 indicates total stress analysis;
reference elevation, Su at reference elevation, gradient of
Su, friction angle, reference unit weight number, p (number of linear
segments approximating failure criterion)

Soil type 2 is anisotropic soil, which is not discussed here
If soil type 3 indicates effective stress analysis;

reference elevation, Su at reference elevation, gradient of
Su, friction angle, reference unit weight number, reference water table, p
(number of linear segments approximating failure criterion)

1 1
-2 9.81
Water Table Properties;
Line 1: Reference water table number, water table type
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Line 2:
Type 1 water table indicates hydrostatic pore pressures;

elevation of water tale, unit weight of water
Type 2 water table indicates pore pressures proportional to overburden

Number of nodes defining water table (m)
m lines containing two nodes each to define segments of water table
Proportion of overburden stress that is pore pressure

1 1
882
Beam Material Properties;
Line 1: Beam material reference number, beam material type
Line 2:

Type one indicates only limited moment capacity
Moment capacity

4 other types are not discussed here
1.06250000000000
.00000000000000

2.12500000000000
1.06250000000000

8.50000000000000
8.50000000000000
8.50000000000000
8.50000000000000

-31.75000000000000
-32.00000000000000
-32.00000000000000
-31.75000000000000

-2.00000000000000
-1.00000000000000
-1.00000000000000

.00000000000000
Node coordinate information (only beginning and end);
Node number, x coordinate, y coordinate
3450 2
3451 2
3452 2
3453 2
3454 2
3455 2
3456 2
3457 2
3458 2
3459 2
3460 2
3461 2
3462 2
3463 2
3464 2
3465 2
3466 1
3467 2
3468 2
3469 2
3470 1
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1
2
3
4

4213
4214
4215
4216



Joint Information (complete)
Joint number, nodes defining joint (joints at ends of beam segments only have 1 joint)

1 1 2 3 6
2 4 5 6 6
3 7 8 9 6
4 10 11 12 6
5 13 14 15 6
6 16 17 18 6

1383 41474148 4149 1
1384 415041514152 1
1385 415341544155 1
1386 415641574158 1
1387 415941604161 1
1388 41624163 4164 1
1389 4165 41664167 1
1390 4168 41694170 1
1391 417141724173 1
1392 41744175 4176 1

Triangular element information (only beginning and end);
Element number, 1" node in element, 2 node in element, 3' node in element, soil
material reference number
1393 10 1 12 2 0
1394 5 3 4 1 0
1395 24 5 23 6 0
1396 8 6 7 4 0
1397 51 8 50 9 0
1398 11 9 10 7 0
1399 22 13 24 14 0
3421 41624153 41644154 0
3422 4157 4155 41564153 0
3423 417641574175 4158 0
3424 41604158 41594156 0
3425 4163 416141624159 0
3426 41744165 41764166 0
3427 41694167 4168 4165 0
3428 4172417041714168 0
3429 4175 4173 41744171 0

Discontinuity information (only beginning and end);
Discontinuity number, P node in element, 2 node in element, 3rd node in element,4
node in element, soil material reference number (always zero for discontinuities)
3430 4177 4178 1
3431 4179 4180 1
3432 4181 4182 1
3433 4183 4184 1
3434 4185 4186 1
3435 4187 4188 1
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3436 4189 4190 1
3437 4191 4192 1
3438 4193 4194 1
3439 4195 4196 1
3440 4197 4198 1
3441 4199 4200 1
3442 4201 4202 1
3443 4203 4204 1
3444 4205 4206 1
3445 4207 4208 1
3446 4209 4210 1
3447 4211 4212 1
3448 4213 4214 1
3449 4215 4216 1

Beam element information (complete);
Beam element number, node on one end of beam segment, node on other end of beam
segment, beam material reference number
3450 41784179
3451 41804181
3452 41824183
3453 41844185
3454 41864187
3455 41884189
3456 41904191
3457 41924193
3458 41944195
3459 41964197
3460 41984199
3461 42004201
3462 42024203
3463 4206 4207
3464 42104211
3465 42144215
3466 4177
3467 4204 4205
3468 4208 4209
3469 42124213
3470 4216

Joint information;
Joint number, nodes defining joint

3
number of boundary conditions

24
12 11 60 59 468 467 516 515 564 563 612 611

660 659 708 707 1836 1835 1884 1883
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1932 19312520 2519
CON NONE
T
0.0 F

8
2517 2516 2529 2528 25412540 2553 2552

CON CON
T
0.0 F
T
0.0 F

30
4005 4004 4017 4016 4029 4028 40414040 4053 4052 4065 4064

4077 4076 4089 4088 41014100 4113 4112
4125 4124 4137 4136 4149 4148 41614160 4173 4172

CON CON
T
0.0 F
T
0.0 F
Boundary condition information for boundary edges
Line 1: Number of nodes on boundary
Line 2: Nodes on boundary
Line 3: Type of boundary condition

Shear boundary condition, normal boundary condition
NONE indicates no constraint along boundary

No information required
CON indicates constant stress along boundary

Flag (T indicates value will be prescribed, F indicates otherwise)
Value of boundary stress, Flag to apply factor of safety (F for no)

LIN indicates linear variation along boundary
Not discussed here

0
point loads (not used and not discussed)
0
int shear (not used and not discussed)
0
print out for nor,tau (not used and not discussed)
1
3
3467 3468 3469
FTT
0.OdO F
0.OdO F

Support boundary conditions;
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Line 1: Number of joints
Line 2: Joint Numbers
Line 3: Flags shear, vertical, and moment support
Line 4: Values of boundary condition, Flag to apply factor of safety
0
applied force at joint (not used and not discussed)

0 , distributed load for beams (not used and not discussed)
20
Number of soil-structure interfaces
3430

108 107 41 42
F
3431

288 287 89 90
F
3432
756 755 497 498

F
3433
936 935 545 546

F
3434
1116 1115 593 594

F
3435
1296 1295 641 642

F
3436
1476 1475 689 690

F
3437
1656 1655 737 738

F
3438
1980 1979 1865 1866

F
3439
2160 2159 1913 1914

F
3440
2340 2339 1961 1962

F
3441
2568 2567 2549 2550

F
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3442
2748 2747 0 0

F
3443
2928 2927 0 0

F
3444
31083107 0 0

F
3445
3288 3287 0 0

F
3446
3468 3467 0 0

F
3447
3648 3647 0 0

F
3448
3828 3827 0 0

F
3449
40084007 0 0
F
Soil structure interaction;
Line 1: Beam element number
Line 2: Nodes defining interface
Line 3: Flag for prescribed boundary condition on interface
Line 4: Value of interface stress, Flag to apply factor of safety
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Appendix C. Sample Input File for UBgen

-32 ,

total number of points defined
total number of regions defined by points
nsel (not required here)
number of boundary edges (where boundary conditions will be defined)
number of loads (not required here)
number of layers
number of beam segment that define the beam element
syntax for nodes is (node number / x coordinate / y coordinate)0.0

0.0
0.0
0.0
0.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
50
50
50
50
50
50
50
50
50
1
1
1

1
1

1
1
1
1
1

5

-31
-20
-15
-13
-32
-31
-20
-15
-13
-8.6
-5.3
-2
0.0

-32
-31
-20
-15
-13
-8.6
-5.3
-2
0.0

1 7 4 2
6 16 15 2
2 8 4 6
7 17 15 6
3 9 4 3
8 18 15 3
4 10 4 1
9 19 15 1
10 20 15 2
11 21 15 2
12 22 15 2
13 23 15 2
1 , Syntax for boundary edge data is (boundary edge number / node

73

Syntax for regions is (region number / region shape
[1 is rectangle] / Lower left node [for shape ] region] /
Upper right node [for shape ] region] / Number of subdivisions
in x direction / Number of subdivisions in y direction)



2 1 15 , on one end of boundary edge / node on other end of boundary
3 15 23 , edge)
1 0.0 -2 , syntax for layer data is (layer number / elevation of top of layer!
2 -2 -5.3 , elevation of bottom of layer)
3 -5.3 -13
4 -13 -15
5 -15 -31
6 -31 -37
1 6 11 , syntax for beam segment data is (segment number / node on one
2 11 12 , end of beam segment / node on other end of beam segment)
3 12 13
4 13 14
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Appendix D. Sample Input File for UBmain
1FTTF
Print (int), mesh generation(T/F), Scale(T/F) , Steep(T/F), store (TIF)
4176 1 1392 2069 2 6 1
Soil Summary;
Number of: nodes, unique coordinates, triangular elements, discontinuities, unit weights,
material numbers, water tables

40 20 21 1
Beam Summary;
Number of : nodes, beam elements, joint element, material no
1 -1
2 1
Unit Weights;
Reference unit weight number, unit weight (negative unit weight indicates unit weight
will be optimized)
1
Factor of safety

11
.000 0.0 0.0 30 1 24

2 3
-2.000 0.0 0.0 30 1 1 24
3 1
-5.300 20 1.375 0.0 1 24
4 1
-5.300 20 1.375 0.0 2 24
5 1

-15.000 33.375 2.503 0.0 2 24
6 1

-31.000 0.0 0.0 30 2 24.
Soil Material Properties;
Line 1: Material reference number, soil type
Line 2:

Soil type 1 indicates total stress analysis;
reference elevation, Su at reference elevation, gradient of

S,, friction angle, reference unit weight number, p (number of linear
segments approximating failure criterion)

Soil type 2 is anisotropic soil, which is not discussed here
If soil type 3 indicates effective stress analysis;

reference elevation, Su at reference elevation, gradient of

Su, friction angle, reference unit weight number, reference water table, p
(number of linear segments approximating failure criterion)

1 1
-2 9.81
Water Table Properties;
Line 1: Reference water table number, water table type
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Line 2:
Type 1 water table indicates hydrostatic pore pressures;

elevation of water tale, unit weight of water
Type 2 water table indicates pore pressures proportional to overburden

Number of nodes defining water table (m)
m lines containing two nodes each to define segments of water table
Proportion of overburden stress that is pore pressure

1 1
882
Beam Material Properties;
Line 1: Beam material reference number, beam material type
Line 2:

Type one indicates only limited moment capacity
Moment capacity

4 other types are not discussed here
1 1.06250000000000 -31.75000000000000
2 .00000000000000 -32.00000000000000
3 2.12500000000000 -32.00000000000000
4 1.06250000000000 -31.75000000000000

4213 8.50000000000000 -2.00000000000000
4214 8.50000000000000 -1.00000000000000
4215 8.50000000000000 -1.00000000000000
4216 8.50000000000000 .00000000000000
Node coordinate information (only beginning and end);
Node number, x coordinate, y coordinate
3450 2
3451 2
3452 2
3453 2
3454 2
3455 2
3456 2
3457 2
3458 2
3459 2
3460 2
3461 2
3462 2
3463 2
3464 2
3465 2
3466 1
3467 2
3468 2
3469 2
3470 1

76



Joint Information (complete)
Joint number, nodes defining joint (joints at ends of beam segments only have 1 joint)

1 1 2 3 6
2 4 5 6 6
3 7 8 9 6
4 10 11 12 6
5 13 14 15 6
6 16 17 18 6

1383 41474148 4149 1
1384 415041514152 1
1385 415341544155 1
1386 415641574158 1
1387 415941604161 1
1388 416241634164 1
1389 416541664167 1
1390 4168 41694170 1
1391 417141724173 1
1392 417441754176 1

Triangular element information (only beginning and end);
Element number, Is'node in element, 2nd node in element, 3rd node in element, soil
material reference number
1393 10 1 12 2 0
1394 5 3 4 1 0
1395 24 5 23 6 0
1396 8 6 7 4 0
1397 51 8 50 9 0
1398 11 9 10 7 0
1399 22 13 24 14 0
3421 41624153 41644154 0
3422 4157 4155 41564153 0
3423 417641574175 4158 0
3424 41604158 41594156 0
3425 4163 416141624159 0
3426 41744165 41764166 0
3427 41694167 4168 4165 0
3428 4172417041714168 0
3429 4175 4173 41744171 0

Discontinuity information (only beginning and end);
Discontinuity number, 1 st node in element, 2nd node in element, 3 rd node in element,4th
node in element, soil material reference number (always zero for discontinuities)
3430 4177 4178 1
3431 4179 4180 1
3432 4181 4182 1
3433 4183 4184 1
3434 4185 4186 1
3435 4187 4188 1
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3436 4189 4190 1
3437 4191 4192 1
3438 4193 4194 1
3439 4195 4196 1
3440 4197 4198 1
3441 4199 4200 1
3442 4201 4202 1
3443 4203 4204 1
3444 4205 4206 1
3445 4207 4208 1
3446 4209 4210 1
3447 4211 4212 1
3448 4213 4214 1
3449 4215 4216 1

Beam element information (complete);
Beam element number, node on one end of beam segment, node on other end of beam
segment, beam material reference number
3450 41784179
3451 41804181
3452 41824183
3453 41844185
3454 41864187
3455 41884189
3456 41904191
3457 41924193
3458 41944195
3459 41964197
3460 41984199
3461 42004201
3462 42024203
3463 4206 4207
3464 42104211
3465 42144215
3466 4177
3467 4204 4205
3468 4208 4209
3469 42124213
3470 4216

Joint information;
Joint number, nodes defining joint

3
number of boundary conditions
24
2519 2520 1931 1932 1883 1884 1835 1836 707 708 659 660 611 612 563 564 515

516 467 468 59 60 11 12
T F

78



.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00
38

2 3 14 15 26 27 38 39 98 99 110 111 122 123 134 135 146 147 158
159 170 171 182 183 194 195 206 207 218 219 230 231 242 243 254 255 266

267
TT
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
40
269 270 449 450 917 918 1097 1098 1277 1278 1457 1458 1637 1638 1817 1818

21412142 23212322 25012502 2729 2730 2909 2910 3089 3090 3269 3270 3449 3450
3629 3630 3809 3810 3989 3990 4169 4170
T T
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Boundary condition information for boundary edges
Line 1: Number of nodes on boundary
Line 2: Nodes on boundary
Line 3: Type of boundary condition

Tangential velocity boundary condition flag, normal velocity boundary condition flag (T
if value prescribed, F if unconstrained)

Value of velocity boundary condition, Flag to apply factor of safety

0
distributed stress on boundary (not used and not discussed)
0

point loads (not used and not discussed)
1 ,vel bcs of joint

3 ,#of joints
3499 3500 3501
TFF
0.0

Boundary conditions on joints
Line 1: Number of joints
Line 2: Joint Numbers
Line 3: Flags for constraints in x, y, and z directions
Line 4: Values of boundary condition
0

applied forces at joint (not used and not discussed)
0

applied stress for beams(not used and not discussed)
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