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IL Optimal Control for the Attitude Control and
Momentum Management of the Space Station

ABSTRACT

The basic problem in designing control systems is the ability to acheive
good performance in the presence of uncertainities such as output
disturbances, measurement noise or unmodelled dynamics (i.e. robust
controllers). Recent development in the area has been directed towards
developing a consistant design methodology within this uncertain
environment. Examples of these are H 2, Hoo, and L1 optimization problems.

The attitude control/momentum management of the space station poses
a typical problem in an uncertain environment (mass properties of the
Space Station and environmental disturbances). The objective of this
research is to use the Ho, optimality criterion to design a controller for the
linearized set of Space Station dynamics equations. Besides studying the
various closed-loop properties of the resulting linear system, we would like
to examine the robustness properties of this controller i.e. how well it
performs in the presence of unmodelled dynamics, non-linearities and
disturbances. Furthermore, we will compare and contrast the control
action of the H. controller with that of the LQR controllers.



I INTRODUCTION

OVERVIEW

Considered here is the attitude control and momentum management of
the space station.

The space station will employ CMGs (control moment gyros) as a
primary actuating device during normal flight mode operation.The
objective of the CMG flight control system is to hold the space station at a
fixed attitude relative to the LVLH frame.In the presence of continuous
environmental disturbances CMGs will absorb momentum in an attempt to
maintain the Space Station at a desired attitude. The CMGs will eventually
saturate, resulting in loss of efectiveness of the CMG system as a control
effector. Some kind of momentum management scheme (MMS) is
necessary to allow the CMGs to hold a desired attitude profile and at the
same time prevent CMG saturation. In the performance of momentum
management, the Space Station user requirements should be met, and the
momentum storage requirements should be minimized. Since the CMGs
are momentum exchange devices, external control torques must be used to
desaturate the CMGs, that is, bring the momentum back to nominal value.
Some methods for unloading CMG momentum include the use of magnetic
torques, reaction jets, and gravity gradient torque. For the space station,
the gravity gradient torque approach is preferred since it requires no
consumables or external hardware. For this reason, various schemes
using gravity gradient torque have been developed.

Two approaches to momentum management using gravity gradient
torque are possible. The first of these is a "discrete" or "periodic"
momentum control approach which is basically a feedforward open-loop
control scheme [6]. This scheme utilizes appropriate samples of CMG
momentum, with the sampling frequency of the same order as the orbital
frequency. This approach, as well as the "predictive" approach, can handle
expected momentum changes; however, it requires accurate inertia matrix
properties and environmental models to generate the proper attitude
steering command. In the "discrete" or "periodic" approach, the attitude
controller, with a much higher control bandwidth, is designed



independently.

The second approach to CMG momentum management, which will be
considered here, is the "continuous" approach. Using a continuous time
control scheme permits us to integrate the attitude control and momentum
management of the space station into one control problem. In this
continuous, closed-loop control of both the CMG momentum and station
attitude, the design objective is to establish a proper tradeoff between station
pointing and CMG momentum management, while satisfying the specific
mission requirements.

Expanding on this "continuous" approach, we intend to present a
different scheme to the space station momentum management and attitude
control. The proposed controller, derived from the H. optimality criterion,
will provide a proper disturbance accomodation. As a result, the cyclic
peak of the station attitude and CMG momentum oscillation caused by
aerodynamic torque is minimized. For the purpose of this research, CMGs
will be considered as ideal torquers; however, the CMG gimbal dynamics as
well as the CMG steering law should be included in the further
development of an efficient control law for the overall system. Structural
flexibility of the space station is neglected because of the low bandwidth
nature of the integrated momentum/attitude controller. It is assumed that
a strapdown inertial reference system provides relatively noise-free
estimates of all states and that the body-axis components of the CMG
momentum can be measured. Practical multivariable controller synthesis
can also be accomplished by employing various techniques such as the
classical control approaches, linear-quadratic-regulator (LQR) synthesis
technique (10], asymptotic disturbance rejection, decentralized (partial state
feedback) control, and robust eigensystem assignment techniques.

OBJECTIVES OF ATITJUDE CONTROL[MOMENTUM MANAGEMENT

1. to minimize excursions of the station body frame from the LVLH frame
2. to minimize peak cyclic momentum
3. to remove accumulated momentum

The objective of a MMS is to utilize available environmental torques



(aerodynamic or gravity gradient) acting on the Space Station to control and
maintain CMG angular momentum. Given that environmental torques act
continuously on the station, the CMGs must produce, on the average,
torques on the station equal and opposite to the undesired portion of the
environmental disturbance torques. If, however, the environmental
torques can be properly altered by Space Station attitude manipulation, then
the required CMG torques can be zeroed. Although this can not be
accomplished exactly, the torque demands on the CMGs can be
significantly reduced by utilizing environmental torques.

ENVIRONMENTAL DISTURBANCE TORQUES

GRAVITY GRADIENT TORQUES

Body axes gravity gradient torques are a function of the vehicle orbital rate,
the inertia matrix, and the angles between the LVLH frame and the body
reference frame. Over the life of the Space Station, there will be large
changes in mass properties, different prescribed vehicle attitudes, and
different orbit attitudes. All these significantly change the gravity gradient
torques acting on the Space Station. For the case with no articulating
surfaces and constant attitude, the gravity gradient torques are constant
body axes torques causing momentum to accumulate about the inertial
direction perpendicular to the orbital plane (inertial y direction), and cyclic
momentum relative to inertial axes in the orbital plane (x and z inertial
axes). Articulating masses, such as solar panels and radiator rotation,
have the effect of super imposing a sinusoidal component onto the constant
torque component. Assuming small angles and negligible cross products
of inertia (Ixy, Iyz, Ixz = 0):

(, , ) : yaw, pitch, and roll euler angles
(Ix' Iy I z ) : moment of inertia about the x, y and z axes



gx = 1.5o2 [(Iz- Is) s2 c 2 - 2Iyzc2 0 c2 -I xzs2Os + I xys20c4]

(1.1)

gy =1.5o2 [(I' -Ix)s2OcD - 2Ixz(s2 - c20c20) + I ,s28s + I s2cc 2O]

(1.2)

gz= 1.5)2 [(I - I y)s20s( - 2Ixy(s2Dc20 -_ s2) - I zs2cc2 0 - I czCs29]

(1.3)

Since the gravity gradient torques are a function of station attitude relative
to LVLH, they can be changed by changing the station attiude, and thus can
be utilized for CMG desaturation. It is for this reason that angular
perturbations can not be totally eliminated (gx, gy, gz can not be zero since
needed for desaturation).

AERODYNAMIC TORQUES

The aerodynamic disturbance is a bias (i.e non zero average over one orbit)
plus a cyclic torque in the body reference frame, and causes accumulated
momentum as well as cyclic momentum relative to the inertial frame. The
time varying aerodynamic torque profile is due to a combination of a
varying density around the orbit and articulating surfaces. Because of the
diurnal bulge, the torques are cyclic around an offset, but not symmetric
about that offset. That is, the torque profile is biased to one side of the offset.
In the torque profiles where there are articulating solar panels and
radiators, there are sharp peaks in the profile due to the rotation of the
solar panels. This type of profile would be difficult to explicitly model.
Aerodynamic torques result in an accumulated momentum in all three
inertial axes. Most of the accumulated momentum about x and z is due to
the rotating atmosphere, while most of the accumulated momentum about
the y axes is due to center of pressure/center of gravity offset.



LITERATURE SURVEY

Both discrete and continuous attitude adjustment strategies have been
developed for gravity gradient management of CMG momentum. Discrete
methods command specific offset attitudes for limited time intervals, while
continuous strategies constantly regulate attitude offsets. Linear quadratic
regulator derived gains as well as others have been used as an efficient
basis for feedback design [10].

Studies applied to proposed NASA Space Station designs have used both
continuous and discrete momentum management features. All schemes
focus on approximate maintenance of torque equilibrium attitude (TEA).
Offsets from true local vertical must vary with time to deal with
atmospheric density variations and articulating satation parts.

Methods to adaptively seek TEA, using momentum state feedback, have
been devised to avoid disturbance estimation [11]. In a specific variation of
this approach considered earlier by a Space Station program contractor, an
active, continuous TEA seeking, closed-loop controller is applied while
fixing yaw [12]. Pitch and roll control are decoupled in the momentum
manager which generates manuever commands executed by the attitude
controller to keep total average momentum centered. Another contractor
concept accomodates "fading in" of a discrete, fixed TEA maintenance
momentum management strategy when disturbances reach an
equilibrium. This would follow phases of vehicle/controller TEA self
seeking, and tuning [13]. TEA adjustments are determined by sensing
CMG momentum, and using gravity gradient and inertial environmental
model data.

Several challenges are encountered by the momentum management
strategies above and other proposals for the Space Station. Included are:
development of appropriate dynamics decoupling strategies when dealing
with large mass property variations and vehicle flight orientations during
buildup; limiting maximum attitude excursions from true local vertical to
allow instrument pointing; limiting momentum dumping manuever
magnitudes over short time intervals to avoid high manuever rates. Two
momentum management algorithms have been studied extensively, jointly
by NASA and Draper Laboratory to assess continuous and discrete



momentum management relative merits. Some challenges created by
trying to adapt to Space Station buildup effects have also been identified in
this work. The first method, developed at the Johnson Space Center (JSC)
uses a discrete momentum dumping strategy [6]. The second method,
developed at Draper, uses environment predictions and momentum state
feedback to continuously manage stored momentum and reduce peak
storage requirements [14].
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II HIGHLIGHTS OF THE H. DESIGN M ETHODOLOGY

DEFINITION OF H,

H,~ is a set of all matrix functions, G, that are analytic in the right half

plane and whose oo norm is bounded i.e GI I 00 - sup amax[G(jw)] < 0.

G is "small" in H00 sense if the magnitude of the frequency response is
small over all frequencies.

Ho as 'Worst Case' Measure:

Suppose G(s) e H., with G(s) e C m x n ; G(s) is linear time-invariant, has

finite gain and is stable. Then there exists some constant y> 0 s.t

I Iy I = I lGuI -< y lul |
L2 L2 L2

Thus, y is a bound on the "L2 amplification" or "energy amplification".

Define the smallest such number, y*, as the "induced norm of G" or "gain
of G". Infact, y* is the infinity norm of G i.e. y*= I IG I

Ho.

MOTIVATION FOR THE Hoo DESIGN METHODOLOGY

The H,, design methodology, especially after recent results by Glover and
Doyle [2] has demonstrated great potential as a multivariable control tool.
The main reasons for choosing this optimality criterion as a design tool are
cited below :

· Since its a relatively new design methodology, we would like to see how
well it performs in comparison to LQR methodology..

· It provides a more general framework since this methodology can be



applied to all systems regardless of wether their outputs to be
regulated are measurable or not.

* This methodology guarentees robustness to expected disturbances and
plant uncertainity. The expected disturbances are specified through the
weights chosen in the open loop model of the system

* The objective of the space station control problem is to minimize the
energy of the outputs for bounded energy disturbances. This induces
the H,o optimality criterion.

* The Hoo methodology will yield an optimal controller as long as the
disturbances are of bounded energy. This is a much broader
framework when compared to the H 2, or LQG, where the
disturbances are white gaussian noise. Also Ho controllers are more
robust in general compared to LQG compensators.

GENERAL STRUCTURE

The general interconnection structure of a feedback system can be
represented as in figure 1 where

M(s): finite dimensional LTI system
K(s): compensator
w: exogenous input vector (commands,disturbances, sensor

noise etc.)
z: regulated output (any signal of interest; weighted errors,

controls etc.)
y: measured output vector
u: control input vector



w z

M(s)

U y

K(s)

Fig. 1 General Framework

The objective in the Ho, methodology is to find a stabilizing compensator,
K(s), such that the infinity norm of the transfer function H,,w(s) from w to z
is minimized i.e.

min I iH (s) I = min (sup ac [ Hz(o) ])
stabilizing K(s) ZW o stabilizing K(s) c0

This can be interpreted in the time domain as minimizing the worst case
energy of the output z (L 2 norm) when the energy of the input w (L 2 norm)
is bounded. Viewing it in the frequency domain, this minimization implies
that the worst case steady state amplitude of the output z is minimized
when the input w is a bounded amplitude sinusoid.

The specifications can be used to condition the outputs (and/or inputs)
with (stable) weights that are absorbed in the general system M(s). Figure 2
shows the standard feedback loop transformed to the general framework.

/'0



M (s)

WI (S)

w I I

W s (s)

-4 G(s)

U y

Fig. 2 : Standard feedback loop transformed to the general framework

In general, the solution of the H, problem cannot be computed directly.
However, a high level algorithm, g - iteration , can be used to find solutions
arbitrarily close to the optimal. In particular, this iterative approach
consists of finding stabilizing compensators that guarentee

I I HZW(s)I I<T (2.1)

with

Y > = m (mi H, (s) I)
op stabilizing K(s)



GLOVER/DOYLE ALGORITHM

Recent results in the area of H.. synthesis by Doyle and Glover [15] provide a
convenient method to solve the problem above by essentially solving two
Riccati equations. This method is demonstrated below.

Let M(s) be partitioned as:

[MI (s) M12(s) 1
M(s) = NI IM .(M21 (S) M22 (s)JM2s

with each element having the state space representation

Mij (s) = [A, Bj, Ci, Dij] ij = 1,2

The transfer functions Ml1(s), M 22(s) must be strictly proper i.e. D 11, D 22

should be zero. If this is not the case, then high frquency poles must be
added. Also M 1j(S), M21(s) should be proper but not strictly proper.

Step 1: Guess a level of achievable performance y

Step 2: Scale w and/or z so that the upper bound in (2.1) is 1 i.e

I I i1w(s) II oo 1 where i(s) is appropriately scaled

Step 3: Scale u and y so that



D12T D12 = I (2.2)
D21D21T = I (2.3)

Step 4: The stabilizing compensator that achieves I I iw(s) ] Io < 1 and,

consequently, I I Hzw(s) I Io S y is given in figure 3

where
Q(s) any stable system with

IIQ(s)II.< 1
and J(s) is given by the state space representation

J(s) = [Aj, Bj, Cj, DJ]
with

Aj = A- KFC2- B2Kc + YooC1T (C1- D12Kc)
BJ = [KF KF1]

l I

I 'I[
I
I IQ(s)

L-

Fig. 3 : The HXa compensator structure

C$ = Kcl

DJ I 0]
'.3



Kc= (BTXoo + D 12TCiX I - Y 0Xo) - 1

Kca ( Di1BJT C 2)( I -YoXo) - l

Where X,, is the unique, real, symmetric solution of the Algebraic Riccati
equation

(A - B 2Dj1 C 1)TXoo + Xoo(A - B 2 Di2C1 ) - Xoo(B2B2T BBlT)Xoo + C 1TC1 = 0

with
C 1 = (I - DDIP12)C 1

KF = ( YooC2T + B2T)

Kr_ = ( YoCITD1 2+B 2)

and YO, is the unique, real, symmetric solution of the Algebraic Riccati
equation

(A - BP 21C 2 )Yoo + Yoo(A- B 1D 2 TC 2)T - Yo(C 2TC 2 - ClTCl)YOO + B 1B1 T =0

with
B1 = B( I - D2MTD 23

Initial y is achievable if

xo>a 0

max (XY ) < 1

Step 5: Scale back u and y to their initial (before Step 3) scales.

A legitimate choice of Q(s) is Q(s) = O. This choice of Q(s) will
be used in the design. Thus a minimizing feedback might
never be found, however we can get arbritrarily close to
optimal.



III SYSTEM DESCRIPTION AND MODEL DEVELOPMENT

BASIC RELATIONS

The basic relations required in the development of the attitude control
and momentum management scheme are presented here.
Variables used:

(N, 0, 4) : yaw, pitch, and roll euler angles.

(Ix, Iy, I z) : moment of inertia about the x, y, and z axes

(h x hy, h): angular momentum of CMG system
(roll axis momentum, pitch axis momentum, yaw axis
momentum)

(u, u u z) : reaction torque on space station from CMG system
(control torques)

(Tx, Ty, Tz): aerodynamic disturbance torques

w o : orbital rate of the LVLH frame

COORDINATE FRAMES

Two coordinate frames are utilized in this paper; a body axes (B) frame,and



away from earth's
centre

AzB

~~~/ U ~~~~--~ ~y
/ ab B

B >- transverse boom

nominal direction

of flight path

a local vertical local horizontal (LVLH) frame. (xB,YB,zB) are the

coordinate axes for the body reference frame. (xL,YL,zL) are the coordinate
axes for the LVLH frame. The body frame is fixed relative to the "core" of
the station (non-articulating part of the vehicle) with the origin at the center
of the station composite center of mass. The xgB axis is perpendicular to the

plane of the dual keel and positive in the nominal direction of flight. The zgB

axis is parallel to the vertical centerline of the dual keel and positive
upward (away from the center of the earth). The YB axis is parallel to the

centerline of the transverse boom and positive in the direction completing a
right-handed coordinate system. The LVLH coordinate system has the
vehicle center of mass as the origin. The zL axis lies along the geocentric



\ 4z V \ ~~~~L

\ \ /

Lx~~------- _ _ _ _ _ _ Centre of Mass

/L

/ 

Y L

EARTH

radius vector to the vehicle center of mass and is positive away from the
center of the earth. The YL axis is perpendicular to the vehicle velocity and

radius vectors and is positive in the R x V direction. The xL axis completes
a right handed coordinate system. The reason for multiple reference
frames is that different quantities are most easily represented in different
frames. For example, torques are most easily described in the body frame
since they are acting on the body, whereas the LVLH frame is most
convinient for describing station motion since the spacecraft is to maintain
a constant orientation relative to the LVLH coordinates.
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COORDINATE TRANSFORMATIONS

Let s=sin and c=cos. Assuming a yaw (p), pitch (0), roll (0) sequence, the
transformation from the LVLH frame to the body frame can be broken up
into the following steps:

LVLH to Body reference frame coordinate transformation

following a yaw, pitch, roll sequence
x

Step 1 L
x

2 'IP /

L z2 0 0 1 zL

C 1

z
Step 2 2

z

~/~/8 2 Y3 0 1 00 Y2
\ z 3 L 0 0cO J z2

02

3

/E3



y
Step 3 3

/

/ 1 [x31
3 Y 0 cqP s(1D 3]

z

[cc c0s -sO c z
L B

The net torque is the sum of the CMG reaction matrix to go frquecontrol), theC _*C 2*C1(s(,secxV) - (csDS) (sos(,sVl + Cc cq) sOco(ceDscV) + (sDssxV) (ceDsesf) - (sc CV) ceco

DERIVATION OF SPACE STATION DYNAMICS

Derivation of torque expression ·

The net torque is the sum of the CMG reaction torque(control), the
gravity gradient torque, and the aerodynamic disturbance torque.

XT = T +T +TCMG gravity gradient disturbance

/9



:T -- M = Uy + gy +T yT= M = uz+gz+Ty

Ix IXy -Ixz 

Let inertia matrix, IB I -Iy x IY Iy z

-Izx -Izy Iz

Recall the expressions for gravity gradient torque stated in (1.4.1)

gx = 1.5o20 [(Iz- I y)s2 >c 2 8- 2Iyzc2 0 c2 q - I 2Ss2OsO +Iys20cD]

gy =1.502[(I - Ix)s2cD - 2Ixz(s20- c2c28) + I yzs2OsD + I xs2Oc2 ]

gz = 1. 5w2[(I- I y)s2es4 - 2Iy(s24>c20 s2) _ Ixzs2c2O - I yzcbs29]

Let the angular rates in the body axis frame be B[ q ]

Let the system angularmomentum be hB = hy I
By the theorem of angular momentum torque can be related to angular rate
and momentum as:

Torque = hB + oB h B

h =B IB(OB + rotor terms



Since we are assuming rigid body dynamics and no time varying inertias,
the rotor terms and the time derivative of the inertia matrix can be
neglected

=hB = IB°B +I BC)+ B B

T M - Iy x Iy - Iyz + r 0 -p [B] q
N - Ix - Izy I z -q p 0 r -

Carrying out the matrix algebra we have,

L = IxP +Iyz(r 2 -q 2 ) + Ixz(-- pq)+Ixy(-q +pr) - ( I y - I z)qr

(3.1)
M = Iq + Ixz(p 2 -r 2 ) +Ixy( p - qr)+Iyz(-i + pq)-(Iz-I)rp

(3.2)
N = Izr+Ixy(q2-p 2) +Iyz(- q-rp)+Ixz(-p+qr) - (Ix -I y)pq

(3.3)

The objective now, is to express the angular rate, o B, in terms of the euler

angles (I',O,4D):

[q = [+ °L resolved to body axes

resolved to body axis

Recollecting the step by step transformation procedure that was carried out
earlier,

= 3C 3 C2 1 3+ [] + C 3 *C 2 *C j:1 YL 
C O~~jrO 1· C;I OOI] · OOZL 



q = 0 c- s0c] + C3C 2*C YL
- r -r 0 -sc) cc!)c sO c ~cO yr L ZL -

Now, to maintain an attitude relative to LVLH, cL = o o

where 0oo is the orbital rate.

[p[ o1 - SO [01
[ [q] = 00 cO s(DcI + C3*C*C1*[O

r 0 - s[ c(ceOl +

= p = - IsO + +OO + c O c o s0 q (3.4)

q = *sqDcO + cD + o o[s!s esV + ccV] (3.5)

r = irc(ce - es4( + o 0 [cCs¢se - s5()cN] (3.6)

Taking the time derivative of the above set of equations we have,

r 1 0 -so 1 r-co o o] = [ c cO s][O ] + -=seO - sO cOc4 6]
r0 - s cOcD L -c(sO -c0D -cOsD j

+ 6o sisOci-- cisc) sn sNFcO s clVsO- slFc4 
L - sNfsOsc- cVcc cDswcO scsy + ce4cVsO (3.7)

Linearizing the Space Station dynamics for controller synthesis:

The equations governing the space station dynamics are derived from



the principle of angular momentum [3, 71. It is essential that we have a
linear set of equations in order to design a compensator using the H.,

optimality criterion. The small angle approximation (sinO 0z & cos0 = 1)
is used on the nonlinear set of equations to obtain the LTI equations on
which basis the Ho, compensator will be designed. Given that the steady
state attitude of the space station will be "close" to LVLH (i.e. LVLH and B

frame nearly coincident), it can be assumed that A, 0 and 4 are small
angles. Since the space station is planned to orbit in an LVLH attitude and
the body frame excursions away from the LVLH frame are small, the small
angle approximation is reasonable

Furthermore, most practical situations of interest with small products

of inertia (Ixy, Ixz, Iyz = 0) permit simplification in such a way that pitch
motion is uncoupled from roll/yaw motion. Hence, pitch control is often
treated separately from coupled roll/yaw motion. This partially decoupled
dynamics is also helpful since it allows the problem to be broken into two
independent problems, each of a lower order than the original. This
simplifies both the controller design and analysis.

In lines of the above stated assumptions, and neglecting the higher
powers and products of states(angle and momentum), eqs(3.4 - 3.6) can be
approximated as follows:

p = (+o0v

q +oo

r= wt-o~

Similarly, the gravity gradient torque expressions can be simplified to:

gx = 3(°2o(Iz- I y)



y - "o(z "x)"

gz - 0

Substituting the above expressions into the torque equations derived in (3.1 -
3.3), and neglecting the cross products of inertia we have:

L - Ixp- (Iy-Iz)qr

=I(i + W O) - (I Y - I z) (coO*- 2o)

M Iyq- (Iz-Ix)rp

= I Y(O)

N Izr-(Ix-Iy)pq

= IZ( - o*) - (Ix - I y) (Co + * 20o)

Recall,

L = ux+gx + Tx

Ix(' + o*) - (Iy - I.z)( oo_- 2,o) = Ix + 3(2I, - Iy)D+ Tx

IX¢ = 402o(Iz - Iy)o - IxtOoi + I y0o0 - Izooi

4to2(Iz Iy) (Iy-Ix-I) u T
'>-+ Oi + I +Ix Ix o + Ix

The above second order differential LTI equation governs the roll axis
attitude kinematics of the space station. A similar derivation can be
carried out for the pitch and yaw axes .

For the pitch axes :

M = uy+gy+Ty

T aR -__.2/T T z \ ....



Iy +y+ iy

and finally for the yaw axis:

N = uz+gz+Tz

Iz(*_-(0o> ) - (Ix- Iy)()oj + W2o) = uz+Tz+O

Izi = Wo(Iz + I, - I y) + o)2o(Ix - Iy) + uz + T

. o(IZ +Ix -I,)¢ W2O (IX-IY) u TZ
Iz z +z + z

Derivation of CMG momentum equations :

The reaction torques from the CMG are used for control input. They can be
expressed as:

TCMG = -[B +( B ®hB)]

Putting the above equation in matrix form we have:

UX X 0h,] O -r Q

Uy = ~ly + r 0 -p h y
Luz 1 z -q p 0 h z

Carrying out the matrix algebra we have:

u x = 1h - rh y + qh z

Uy = hy+rh- ph z

u z = 1hz - qh x +ph y

Substituting for the body axes rates in terms of euler angles, the
momentum equations can be expressed as:



Ux= -hx-O (ohz (3.8)

uy = y (3.9)

Uz = -hz+cooh x (3.10)

MAITHEMATICAL MODEL FOR CONTROLL;ER SYNTHESIS

Given below are the set of linearized equations describing the space
station dynamics . It is based upon these equations that a Ho, optimal
controller will be derived.

Attitude Kinematics:

42Oo(Iz - Iy)* (I Y - Ix- I.z) u~ Tx
+ coo*V + F 

>q= +I Ix Ix Ix

(3.11)

3w2o(I.-IX)O u y * y
= = I'~ + T+ +IY I I (3.12)

+I2 U Ty 

~= Iz + Iz + -z + Iz

(3.13)

CMG Momentum Equations:

Ux= -hx-(cohz

uy = - y

uz = -hZ+(ohx



Space Station parameters:

The following space station parameters were obtained from the paper by
Wei [?]

I x 50.28E6 slug ft2

Iy 10.8E6 slug ft2

Iz 58.57E6 slug ft2

orbital rate wo 0.0011 rad/sec ( 1 orbit is approximately 5712
sec)

Allowable CMG momentum peak 20,000 ft.lb.sec
Allowable CMG torque demand 150 ft.lb.sec
Substituting the space station parameters , we have for the attitude
kinematics :

'~ = 4.598 x 10 -6' - 2.145 x.894 x10- +1.894 x 10 - 7 Tx

(3.14)

0 = 2.786 x10 0 + 9.26 x10 T + 9.26 x10 u

(3.15)

= 1.842 x 103 + 8.167x10-7 1.707 x 10 u +1.707x 10-8Tz

(3.16)

and for the CMG momentum equations we have:

U X = -h - 0.0011hz (3.17)

h Y = -uY (3.18)

u z = -lz + 0.0011 h (3.19)

APPLICATION OF THE HI DESIGN METHODOLOGY TO THE SPACE
STATION

The H, optimal controller is derived using state space techniques. Hence,

it is essential to have a description of the space station dynamics in the state
space domain. The following is the application of the general framework to
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the linearized model of the space station dynamics.

General State Space representation:
x = Ax + B w + B2u

z = Clx + D w + D12U

y =C 2 x + DZw + D22U

Definitions, Notations and Units

STATES:
(Nf,0,) yaw, pitch, roll angles (rad)

(*r,0,o) yaw, pitch, roll angular rates (rad/sec)
(hxhy ,h) CMG momentum (it. lb. sec)

(J hx, J hy, hz) Accumulated CMG momentum (ft.lb)

CONTROL INPUT:
(UxUyUz) CMG (control) reaction torques (ft.lb)

EXOGENOUS INPUTS:
(Tx,Ty,Tz) Aerodynamic torques (ft.lb)

(nln2....,n 12) Noise (fictitious; included to satisfy eqs 2.2, 2.3)

OUTPUTS:
Measured outputs (y) all states
Regulated Outputs (z) angles, CMG momentum, accumulated

momentum, and CMG control torques.

PITCH AXIS STATE SPACE REPRESENTATION:

Equation (2 & 5), which are linearized and uncoupled from the roll/yaw
equations, are used as the basis for pitch control analysis and design. The
pitch axis momentum management/attitude control loop is similar to the
general block diagram shown in Fig. 4. Putting the pitch axis

16



attitude/momentum governing equations into the general state space form
we have:

0 1 00 0 1 0 0

2.786 x10-6 0 0 0 x+ 9.26 x10-8 0 0 0 w+ 9.26x10-8
- 000 0 0 00 1
O 010 0 010 0

1000 010 0 0
0010 000 0 O

z = 00 000 1 w +

where

x = 0 0 0 0 0 0 

u = u

The open loop poles of the pitch axis "plant" are:
* Unstable pitch modes @ s = + 1.5 n where n is 0. 0011 radl sec
* Momentum mode with double pole at s = 0.

l~~~~~~2?



ROLL/YAW AXES STATE SPACE REPRESENTATION:

A design procedure similar to that of the pitch axis design is followed for
the roll/yaw controller. Once again, the control loop is of the same format
as the general block diagram shown in Fig. 4. Transformed to the general
state space representation the system matrices describing the
attitude/momentum governing equations are given below

System matrix A(8x8):

0 0 1 0 0 0 00
0 0 0 1 0 0 00

4.598 x 10 0 0 - 2.145 x 10-3 0 0 00

0 8.16 x 10-7 1.8415 x 10-3 0 0 0 00A =
0 0 0 0 0 - 1.1x 10-3 0 0

0 0 0 0 1.1x 10-3 0 0 0
0 0 0 0 1 0 00
0 0 0 0 0 1 00

Open loop poles of the roll/yaw axes plant are:
(± 1.05 ±0.7j)*n, ±nj 0,0

Once again the angular modes are unstable in open loop.

Disturbance gain matrix B1 (8x10):



0 0 0 0 0 0 0 000 
0 0 0 0 0 0 0 0 00

1.894 x 10-7 0 0 0 0 0 0 0 0 0

B = 0 1.707 x 10 000 0 0 0 0 0
0 0 00000000
0 0 00000000
0 0 00000000
O O O O O O O O O O0 0 00000000

Input gain matrix B 2 (8x2) :

0 0
0 0

1.894 x 10-7 0

B = 0 1.707 x10 8

-1 0
0 -1
0 0
0 0

Regulated output matrix C 1 (8x8) 

10000000
01000000
00001000
00000100
O 00000010
00000001
00 00 0000
0000000 0
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Measured output matrix C2 (8x8)

10000000
01000000
001000 0

C 00010000
2 00001 000

00000100
00000010
00000001

Matrix D 11 (8x10):

0010000000
0001000000

000001000
000000100

0 00 000 00 010
0 0 000 00 001
0 0 00 0 00000000
00 O O 00 0000000

Matrix D 12 (8x2)

00
00
00
00

12 O O0
00
10
O 1O

O O~~~~3



Matrix D 2 1 (8x10)

0 0 100 0 0 000
001000000

00 00 1000 00
0000010000

21 0 000 001000
0000000100

0000000 10
0000000001

Matrix D 22 (8x2)

00
00
00
00

D =loo

00
00 
00
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Fig. 4: General Momentum / attitude control loop

SELECTION OF WEIGHTS/SCALING:

The selection of weights is one of the most important steps in the H,
methodology. They are used to emphasize one frequency range over
another , and in the case of regulated outputs, they can be used to scale
variables so that they are "comparable". It must be kept in mind that the
selection of weights reflects engineering judgement and, thus, a poor
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selection of these weights may result in poor designs. For example, posing
a heavy penalty on the sensitivity via Ws(s) (fig 2) and on the complimentary
sensitivity, via, Wc(s) in the same frequency region, does not make a lot of
sense since

C(s) + S(s) = I

It should also be noted that the complexity of the compensator, namely
its order, is equal to the sum of the orders of the plant, the weights, and of
the parameter Q(s). Therefore, high order weights will result in a high
order compensator.

Scaling of chosen regulated outputs plays a vital role in the selection of
appropriate weights. For example, posing penalties on CMG momentum
and pitch angle without scaling them so that they have comparible
magnitudes doesn't make sense. The maximum allowable magnitude for

angular excursion is of the order of 100,for the CMG momentum it's of the
order of 103, and the magnitude of the integral of CMG momentum is of the
order of 105. So scaling the weight on the angle by 10, the weight on
momentum by 0.01 and the weight on the integral of momentum by 0.0001
permits us to compare these quantities in our perfoormance index.

In this design the output z was considered as the weighted error signal e

and the weighted control torque u. By minimizing I I Hzw(s) I , we will

minimize

2 2| Ws(s) e s) | + |W Ks(s) U(s) 
L2 L2

which represents a tradeoff between bandwidth and control action.

Wdist: WEIGHT TO MODEL AERODYNAMIC DISTURBANCE TORQUES

This weight basically "models" the expected aerodynamic disturbance
torque. They are modelled as bias plus cyclic terms in the body fixed control
axes.

w(t) = Bias + An sin(nt + On) + A2n sin(2nt + 02n)
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where n is the orbital rate = 0.0011 rad/sec. The cyclic component at orbital
rate is due to the diurnal bulge effect, while the cyclic torque at twice the
orbital rate is caused by the rotating solar panels. The magnitudes and
phases of aerodynamic torque in each axis are assumed unknown for
control design. W 1(s) should reflect this description of the disturbance
torque. Since poles on the jw axis are not permissable, an e damping term
is introduced.

N(s)
W (s)

(s2+ s + n2) (s2+ s +(2n)2 )

where e = 2 x 10-6, and N(s) is the numerator that preserves the stability of
the overall closed loop system and incorporates the bias term into the
weight.

This will result in disturbance rejection at frequencies n and 2n. (n is the
orbital rate = 0.0011 rad/sec)

WEIGHTS ON REGULATED OUTPUTS, Wreg o/p:

In order to account for the bias term in the expected aerodynamic
disturbance, a pole sufficiently close to is included i.e. at e = 2 x 10- 5 . This
will ensure a zero error to constant inputs (for control u and CMG
momentum h).

s + O.0
W s) =

S (s+2 x 10- ( 10 + 1)

Due to the requirements of the Glover/Doyle algorithm, the high frequency
pole at s = -10 was selected so that D 1 1 = 0. (D 2 2 = 0 since M 2 2 is strictly
proper). The zero at s = -0.02 indicates the desired bandwidth over which
performance sought.

WEIGHT ON CMG CONTROL TORQUE, Wks(s):

Here we must consider satisfying the conditions of Doyle's algorithm
(weight shoud be proper with high frequency gain = 1) in addition to
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limiting CMG torque to 150 ft.lb. Furthermore, we would like K(s)S(s) to
roll off in order to prevent excessive control action. This implies that the
weighting should be heavier as frequency increases. Having this in mind,
Wks(s) would have to be high pass.

W (s) =~KS ss+100

The "fast" pole at s = -100 is inserted to make Wks(s) proper. The pole at s =
-1 indicates the bandwidth over which the control action should not be
excessive

CONTRO.LLER SYNTHESIS:

The state space model of the open loop system is constructed using the
above representation describing the pitch and coupled roll/yaw axes plant,
the weights/scaling chosen for the regulated outputs, and the weights
describing the expected aerodynamic disturbance torques. The Ho
controller is obtained using existing software ("DOYLE" compiled by
Dragon Obradavic) that essentially is the equivalent of the procedure
outlined in Chapter 3. This program accepts the system description as
input, sets up and solves the Hoproblem and returns the controller
description, [AKBK,CK,DK], as output. In addition to stabilizing the
resulting closed loop system, the compensator is expected to provide
appropriate disturbance rejection, necessarily bounded outputs and some
degree of stability robustness.
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IV CLOSED LOOP SYSTEM ANALYSIS:

The closed loop system analysis and simulations are carried out using
Pro-Matlab on the Digital Vax System. The computer code compiled to do
this is presented in Appendix A. Presented here is the derivation of the
state space representation of the closed loop system, [Acl,Bcl,Ccl,Dcl].

STATE SPACE OF CLOSED LOOP SYSTEM:

Let the state space of the open loop plant (without the weights) be
[Ap,Bp,Cp,Dp]. In deriving this representation states of the pitch axis
plant and the roll/yaw axis plant are augmented as follows:

[ Ay 1 p 0 Xp Blp 0 1 y 2 B20 o1 

xry J o XryJ 0 Bry u

0 ry ry 0 ry U

r -Y C 2 0 0 1x Y D 1 D2 0 yLry j = L o Cl- rX Fry l2ry JL uz 

T z

Note that the fictituous noise included in the open loop system for controller
synthesis is not included in the closed loop system formulation. Fictituous
noise was included only to satisfy conditions (eqs 2.2, 2.3) of the Glover/Doyle
algorithm.

Let the compensator dynamics be described by the following state space
representation, where Xkp are the pitch axis compensator states and xkry
are the roll/yaw axis compensator states:



Xkp Xkp 0 1kp
Xkry k kry 0 kry kr

ky 0 Ukxy

kp kp kp
Ykry 0 Ckry

Now the input to the plant is the output of the controller, i.e up = Yk

Developed here is the state space for the closed loop transfer function Hzw

from disturbance to the regulated outputs:

xp = Apxp + Bplw + Bp2up

zp = Cplxp + Dpll w + Dp12 up

Recall,

up = Yk = Ckx k

=Xp = Apxp + Bplw + Bp2[Ckxk]

zp = Cplxp + Dpl2 [CkXk]

with negative feedback,

uk = -Yp = -Cp2xp-Dp21w

=X k = Akxk + Bk[-Cp2 xp] + Bk[-Dp21 w]

Yk = Ckxk

Augmenting the states of the plant and the compensator states, we have the
representation for the closed loop system:

Let Xcl = [xk 

Xcl [ Ap Bp2*Ck Bp 1 T Tp
c -Bk*Cp2 Ak XC1 + -Bk*Dp21 x
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Z= = [Cpl Dpl2*Ck]x cl

Time and frequency domain simulations of the closed loop system are
performed using the above derived state space representation.

LINEAR SIMULATIONS:

In addition to having bounded outputs, some degree of nominal
performance in presence of expected aerodynamic disturbance is
guarenteed by Hoo controllers. This is verified by the time and frequency
domain simulation of the closed loop system.

PITCH AXIS :

a) Time Domain:

The transient responses are satisfactory, while the cyclic aerodynamic
disturbance, 4 + 2*sin(nt) +0.5*sin(2*nt), causes the periodic response of
both pitch attitude and pitch axis CMG momentum. The momentum is
bounded with zero mean value while the pitch angle is oscillating with

respect to 7.50 pitch TEA. The CMG momentum peak and control torque
demand are both well below their allowable limits of about 20,000 ft.lb.sec
and 150 ft.lb respectively. Profiles of the time responses are shown in
(Figs. B.1 through B.4 in Appendix B)

b) Frequency Domain:
* Bode Plots:

The H. compensator does accomodate for disturbance rejection as can

be seen from the bode plot of 02 / w 2 and h 2 / w 2 (Fig. C.1 & C.2) and their

corresponding transmission zeros. These zeros are near s = +nj,-nj and s =

2nj,-2nj (poles of the disturbance dynamics). This results in reducing the
effects of sinusoidal disturbance to the regulated outputs by minimizing the
cyclic peak of the CMG momentum and pitch attitude.

* Singular value plots:
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Recall that y is a bound on the "L2 amplification" or "energy

amplification". Furthermore, the smallest such number, y *, is the
induced norm of the closed loop transfer function from disturbances to
outputs, Hzw, or gain of Hzw

i.e * = IIH zw

Using the "y-iteration algorithm", y * for the transfer function Hzw is

9.35x106

i.e. Cma x(Hzw) <9.35 x 106 or ama,(Hzw) < 139.42 dB

From the maximum singular value plot of Hzw it can be seen that

max(Hzw) < 190 dB

This is the maximum singular value that results from the closed loop

transfer function from disturbance to pitch angle 0 as can be seen in the
singular value plot in Fig.C.11. It must be noted that in the open loop
system (for which the controller was designed), the low frequency gain of
the weight/scaling imposed on the pitch angle is

10 x 2 = 10 = 80 dB
2 x 10

This additional gain must be accounted for in order to make a correct

evaluation of ;max (Hzw). Subtracting the 80 dB (additional gain in open
loop system that doesn't appear in the closed loop system),

amax (zw) = 190 dB - 80 dB = 110 dB.

This satisfies the condition amax(Hzw) < 139.42 dB

ROLL/YAW AXES:

a) Time Domain:

The regulated outputs for the coupled roll/yaw dynamics are all well

within their prescribed limits. The roll angle oscillates about a 2.80° TEA,

whereas the yaw angle has a 1.10 average value. CMG momentum about
the roll/yaw axes have a zero mean value and the CMG reaction torque
(control) is not excessive. The time domain profiles of the roll/yaw axes
regulated outputs in response to aerodynamic disturbances can be seen in



Figs. B.5 through B.12.

Frequency Domain:

* Bode Plots:
From the bode plots shown in Figs C.3 through C.10 it is apparent that

the transmission zeros at s = +nj,-nj and s = 2nj,-2nj appear in all channels
from wl, w 3 to the regulated outputs. This results in minimization of cyclic

peaks in response to sinusoidal type disturbances. This was precisely the
type of disturbance rejection that was sought through the choice of weights
and scaling in the open loop model.

* Singular Value Plots:

For the roll/yaw axes closed loop systemy * is 9.65x106

i.e. amax(Hzw) < 9.65 x 10~ or amax(Hzw) < 139.69 dB

It is seen from Fig.C.14 that amax(Hzw) < 226 dB. Once again the
additional gain in the disturbance to roll angle channel that does not
appear in the closed loop system must be accounted for. The low frequency
gain of the weight/scaling for the roll angle is

10 x 0.(12 = 10 = 100 dB
2 x 10

Hence, amx (Hzw) = 226 dB - 100 dB = 126 dB. < 139.69 dB.

NON-LINEAR SYSTEM SIMULATION:

A consequence of the linear design model is that the system actually
being controlled is not identical to the system for which the controller was
designed. Particularly, consider the nominal system shown in Fig.5(a).
The linearized model is represented by Po and the compensator by C.



Fig. : Nominal system control loop

The actual system can be represented as shown in Fig.5(b) where A is a
stable, bounded perturbation describing various unmodeled dynamics and
modeling errors in the linear model. The controller C is identical in both

cases. It is desired that given r e B12 and d £ B12 , u,y, and e are all bounded.

r + e u i+ Y
[ +AY

Fig. : Control loop of Actual system

Although the controller stabilizes the nominal system (linearized space
station dynamics), the actual system (including the unmodeled dynamics)
will perform differently when coupled with the same controller. A robust
controller will retain satisfactory performance in presence of unmodeled
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effects. Derived below, is the nonlinear model of the space station dynamics
for those situations where the pitch angle can not be considered negligible.
Through the simulation of these equations, a certain degree of stability
robustness of Ho controllers will be established.

DERIVATION OF THE NON LINEAR SPACE STATION DYNAMICS:

Certain configurations of the space station may need a large pitch TEA
because of the small gravity gradient torque available in the pitch axis.
Under such conditions a small angle approximation for the pitch angle is
not reasonable. So applying the small angle approximation only to the roll
and yaw axes, eqs(3.4 - 3.6) become:

p = -*sinOe+D+(oocoso

q = 0+ Co
r = *cos - oo0 4 + Co sin O

Taking the derivative with respect to time we have:

p = - (cisinoe+ cose) + f + o0 (*cos - Usine)

C = 
r = - rsinO + iicose - o - + o(o( ycos O + isine)

The gravity gradient equations are now expressed as,

g = 3(o(Iz -I y)cos2O1

gy = 3.o:(I z - I.)sinOcosO

gz = 32o(Ix-Iy)sinOcose

For the pitch axis attitude kinematics,

M = uy+Ty+gy

-'H·I



M = Iy4q- (I z -I)rp = IyO

3o2(I z.- I.)sin0cos 0 U Ty
Y +Iy+ I

Y Y Y (4.1)

A similar derivation can be made, using the above substitutions, for the
roll/yaw axes.

Roll axis:

' = (1 + 3 cos 20)4 ('z Y +ix )
Ix Ix

3(I -Iy O2sinOcos x + I ( Tx
x Ix (4.2)

Yaw axis:

=(1 + 3 sin2j0)#ot I }1 + + I +

(Ix-Iy) 2UZ Tz+3 I ) O2(sin Ocos 0 + z + I 
Iz Iz Iz (4.3)

It is evident that roll/yaw motion is now affected by pitch motion.

SOFTWARE DEVELOPMENT:

The nonlinear simulations of the above equations were carried out using
the Advanced Continuous Simulation Language (ACSL) on the Digital
VAX system. This language is designed for modelling and evaluating the
performance of continuous systems described by time dependent, nonlinear
differential equations.

The integration operator is the heart of the simulation system. In



building the space station dynamics model it is necessary to change
differential operators into integration operators; this is accomplished by
expressing the highest derivative of a state variable in terms of lower
derivatives and other state variables. This process transforms the original
set of differential equations to a set of first order differential equations
which can be solved directly by integrating.

Integration Algorithm :

Runge-Kutta second order is the integration algorithm chosen. In
general, Runge-Kutta routines evaluate the derivatives at various points
across the calculation interval(integration step), and a weighted
combination of these derivatives is used to step across the interval.
Specifically, the second order routine makes one derivative evaluation at the
begining and two evaluations at a point two-thirds across a step.

The next state is calculated :

Xn+ Xn+ -(k 1+2k 2 )

where :
x = state
h = step size(calculation interval)
k = derivative evaluation

RESULTS OF SIMULATIONS:

The results depicted in Fig. B.13 to Fig.B.14 show the nonlinear system
response to the same disturbance profile used earlier. Note that the time
axis is in seconds while the angles are in radians. Although initial
transients seem to be worse than in the linearized case, the time domain
profiles of the space station dynamics are all well within limits imposed on
peak CMG control torque (150 ft.lb) and the system angular momentum
(20,000 ft.lb.sec) for the pitch,roll and yaw axes. The huge initial transients
are due to the fact that initial conditions on angle and angular rate are
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zero. The mean of the steady state angular excursions for pitch, roll and
yaw are approximately equal to those observed for the linearized system,
while the amplitude of steady state oscillations for CMG control torque and
momentum are smaller.

The above mentioned results clearly establish some of the stability
robustness properties of closed loop systems with Hoo compensators.
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V CONCLUSION

COMPARISON OF H. AND LQR DESIGN METHODOLOGIES FOR THE

SPACE STATION PROBLEM:

The LQR results [Wei (10)] served as a guideline to check the
mathematical model of the linearized space station dynamics and the
closed loop results obtained using the H. optimality criterion. One of the
key advantages of this design is that the outputs to be regulated need not be
measurable. The trade-off seems to be the higher order of the derived
controller (more complex) which could be impractical in some situations.

In terms of bounded outputs, the results obtained from the two design
methodologies are very similar. However, H., has produced a solution
which posesses superior disturbance rejection and stability robustness
properties.

DISTURBANCE REJECTION:

From [10] it can be seen that LQR pitch axis control with cyclic
disturbance rejection proposes a disturbance rejection filter of the form:

C(s) = N(

(s2+n2) (s2 +(2n)2 )

in only one of the channels,either attitude or momentum. The filter poles
appear in the numerator (transmission zeros) of the closed loop transfer

function 0 2 (s)/w2(s) or h2(s)/w2(s) depending on mode selection. This
results in asymptotic disturbance rejection at frequencies of n (orbital rate)
and 2n for either 02 or h 2 . The other output oscillates about an average
value (with higher cyclic peaks than in the H,, case). Similarly, it is



claimed in [10] that due to some inherent physical property of the coupled
roll/yaw dynamics in terms of transmission zeros of a multivariable
system, cyclic disturbance rejection at the orbital rate is not possible for roll
attitude while it is possible for yaw attitude, using this method of LQR
control. The reasoning given in [10] for this claim is not entirely
understood and is taken as a fact .

In contrast, by selection of appropriate weights/scaling for disturbance
modeling and regulated outputs when setting up the H=, problem (refer to
Fig. 4) transmission zeros near s=+nj,-nj and s=+2nj,-2nj appear in all

attitude (N',0 ,4) channels and momentum (hx,hy,hz) channels. Although
oscillations are not completely eliminated in either of the attitude or
momentum outputs (which is not expected since the choice of
weights/scaling does not imply this), the steady state oscillations are
minimized to a greater extent than in the LQR with disturbance rejection
filter case. In other words, there is more flexibility in terms of disturbance
rejection in the Ho, structure which permits a choice of regulated outputs
and to what extent each is affected by extraneous inputs. Furthermore, the
H,, controller can be designed for an arbitrary disturbance rather than for
specific disturbances as in the case of the LQR methodology. As such, no
assumptions need be made about the the disturbances other than they be of
bounded energy (e B12 ). Even if this is not the case ( as is the case here

where aerodynamic disturbances are bounded magnitude, B1= , but
persistant), a stabilizing solution can be found for the problem but it will in
no sense be an optimal one. Even then, some degree of nominal
performance is retained in presence of unknown disturbances and
modeling errors.

STABILITY ROBUSTNESS:

In Wei, [10], there is no evidence suggesting that the proposed controller
can handle model nonlinearities or cross coupling of inertias. That is
although the performance is acceptable with the nominal system (Po), it

might be inadequate to handle the actual system (Po + A).



This property of stability robustness, however, is a consequence of the
H ,, optimization. The nonlinear space station model for those situatons
where pitch angle is not negligible retained satisfactory performance with
the compensator designed for the nominal linear system.

SUGGESTIONS FOR FUTURE STUDY:

The space station model has a certain degree of uncertainity which
contributes to the robustness problem. The situation where the pitch angle
is not negligible (Phase 3 of the space station build up) has been adressed.
In addition, situations of movement inside the station, docking of vehicles
at the station, and additional construction will vary the inertia matrix by
possibly introducing some cross coupling of inertias. Although the
HIcontroller will satisfactorily handle a certain amount of Ixx, Iyy, Izz
perturbations, the problem of introduction of cross coupling of inertias (Ixy,
Ixz, Iyz) into the system model needs to be investigated.

The space station, especially in its build up stage, assumes various
configurations. This tends to change the system parameters, the system
and hence the required controller. Adaptive control employing self tuning
and model referencing techniques might provide some good solutions to
this type of a problem and should be looked into.

The Ho methodology arises from the problem of designing a stabilizing
controller to minimize the energy of system output for arbritrary bounded
energy disturbances. The aerodynamic disturbances acting on the space

station are not of bounded energy but are rather bounded in magnitude (e

Bl"). This induces the 11 minimization problem where the disturbances

are assumed to be persistant and bounded. Hence, 11 might provide a more
optimal solution to this problem. Although preliminary work in this area
has been completed in terms of software development of the resulting linear
programming problem and some linear system analysis [16], stability

robustness studies of the 11 controller for the space station nonlinearities is
yet to be explored.



In conclusion,
* it has been shown that disturbance rejection, bounded outputs and some
degree of stability robustness are consequences of the H~, optimization
problem.

* H.. has provided a reasonably robust stabilizing solution for the space
station attitude control/momentum management problem. But this is not
an optimal solution since the disturbance characteristics do not comply

with the H~, criteria (bounded energy) but fall into the criteria for ll
minimization (persistant and bounded magnitude).
* The main drawback of this methodology seems to be the complexity of
the derived compensator. This arises from the fact that the order of the
controller is the sum of the order of the plant and all the weights chosen to
model disturbances and scale regulated outputs. Hence,for most
applications today this may not provide a most practical or cost effective
solution.
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x106 pitch axis integral of momentum v.s Time(orbits) Fig. B.3
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Fig. B.4 pitch axis CMG control torque v.s Time(orbits)
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Fig. B.5 roll angle(deg) v.s. Time(orbits)
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Fig. B.7 roll axis momentum v.s Time(orbits)
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x10 5 roll axis integral of momentum v.s.Time(orbits) Fig. B.9
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Fig. B.11 roll axis CMG control torque v.s. Time(orbits)
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NON LINEAR SIMULATIONS
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BODE PLOTS

G8



2Fig. C. 1 w2 (j e) v.s frequency (rad sec)
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Fig. C.3 w (j (o) v.s frequency (rad/sec)
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Fig. C.5 w (j o) v.s frequency (rad/sec)
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Fig. C.7 wl (j c) v. s frequency (rad/ sec)
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Fig. C.9 w3 (j o) v.s frequency (rad/sec)
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SINGULAR VALUE PLOTS
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Fig. C.12 amax (j o)) v.s frequency (rad/sec)
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Fig C.15 amax dis- (j )] v.s frequency (rad'sec)
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Fig. C.17 amax d'st (j co) v.s frequency (radsec)
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Fig. C.19 cmaxL dist ( o) v.s frequency (rad'sec)

II 111 1 i60!

120l _t! X I: 111111 I1i1111II!1111 I 1 111 1 I ,H 1l 11Jli 1lilll}ll- "'°~1 1111 II1111 IIII1 Iil!11I .1111 Ii111 111111 I Il!11_~°! 801_1_11 II111 Il 11 11111 Sll11' _ _lll _ ..!li ~111140 120 -~-100-
80-

60 4

40-Hl 
1 .E-07 1.E-06 .00001 .0001 .001 .01 .1 1 10

w 1

100-

80-100 L ~ Il ll II 1 1111 1 1111 1111l IIIITII lIlI111 1 1 I111111 1l1 T11111
60-

in 40

20-

0-.. Iliilill 1111111 I1I11l11l1 1111111 1111 l lllIIof 11111111 !111111111"11111111 11lll 1111111 111111111!1111 1.E-07 1.E-06 .00001 .0001 .001 .01 .1 1 10
w1

Fig. C.20 Cmax[ hst (j0)] v.s frequency (rad/sec)

max al-st O (0)~~9



rIu 1Fig. C.21 a max L t (j w)j v. s frequency (rad/ sec)
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