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Abstract

An in-depth understanding of dynamic ductile fracture is one of the most important steps to
improve the survivability of critical structures such as the lost Twin Towers. In the present
thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural
components under high velocity impact are investigated numerically and theoretically. At-
tention is focused on the formation and propagation of through-thickness cracks, which is
difficult to experimentally track down using currently available instruments.

Studied are three typical and challenging types of impact problems: (i) rigid mass-to-
beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric
hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with
the newly developed Bao-Wierzbicki’s (BW) fracture criterion, a number of distinct fail-
ure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam
impact, confined fracture, petalling, and shear cracking in the Taylor test, are success-
fully recreated for the first time in the open literature. All of the present predictions are
in qualitative agreement with experimental observations. This investigation convincingly
demonstrates the applicability of the BW’s fracture criterion to high velocity impact prob-
lems and at the same time provides an insight into deficiencies of existing fracture loci.

Besides void growth, the adiabatic shear banding is another basic failure mechanism
often encountered in high velocity impact. This failure mechanism and subsequent fracture
is studied through numerical simulation of a recently conducted compression test on a hat
specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands
is successfully captured. The relation between hot spots and crack formation is revealed.
The numerical predictions correlate well with experimental results.

An explicit expression controlling through-thickness crack growth is proposed and ver-
ified by performing an extensive parametric study in a wide range of input variables. Us-
ing this expression, a two-stage analytical model is formulated for shear plugging of a
beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are com-
pared with experimental results published in the literature showing very good agreement.

Three theoretical models for rigid mass-to-beam impact, the single, double, and multi-
ple impact of beam-to-beam are derived from the momentum conservation principle. The
obtained closed-form solutions, which are applicable to the axial stretching dominated case,
are validated by finite element analysis.

Thesis Supervisor: Tomasz Wierzbicki
Title: Professor of Applied Mechanics
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Nomenclature

A, B, C, n, q five material constants in the JC’s constitutive model

a crack length

2b width of the beam

c transverse plastic stress wave speed

cL longitudinal stress wave speed

cp shock wave speed

cR Rayleigh stress wave speed

cv specific heat

D damage indicator

D1, ..., D5 five material constants in the JC’s fracture model

Dav average damage indicator

Dc critical damage

d breadth/diameter of the projectile

E kinetic energy

E0 initial kinetic energy of the projectile

∆E loss of the kinetic energy during the stress wave propagation

∆E0 loss of the kinetic energy in the impacted zone
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e width of the shear zone

ē average width of the shear zone

H Heaviside function

h thickness

I momentum

Ip transverse momentum in the projectile-plug system

It transverse momentum in the target

i subscript, i = 1 denotes the struck beam and i = 2 represents the striking

beams

j subscript denoting the impact number

K, λ material constants used in Eq. (4.1)

k dimensionless factor defined in Eq. (7.206)

k1 shear force per unit length

l length of the beam/diameter of the circular plate

M0 weight of the projectile

Mb,0 pure bending moment

Mb bending moment

M̄b bending moment per unit length

m mass per unit length

N axial tensile force

N0 pure axial tensile force

n total number of the striking beams

P interaction force in the impacted zone between two beams
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R ratio of the fracture strain

r radius

T temperature

T ∗ homologous temperature

T0 room temperature

Tm melting temperature

∆T temperature rise

t time

t1 time duration of the first phase in shear plugging

t2 time duration of the second phase in shear plugging

tf time duration of the shear plugging process

u indentation depth

ucr critical indentation depth

ui indentation depth at crack formation

uL longitudinal displacement

V transverse velocity

V0 initial impact velocity

V ∗
0 common velocity of the impacted zone and the projectile immediately after

impact

V0,u upper bound of the impact velocity for Eq. (4.1)

Vbl ballistic limit

Vcr critical impact velocity to fracture

Vc critical volume
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Vr residual velocity

∆V velocity increment

v crack propagation speed

vmax maximum crack propagation speed

v̄ average crack propagation speed

W energy dissipated

w transverse deflection

w0 displacement of the projectile

wp deflection of the plug

wt deflection of the target

∆w′ plastic deformation slope increment

x axial coordinate

α mass parameter defined in Eq. (7.77)

β velocity parameter defined in Eq. (7.77)

χ the fraction of plastic work converted to heat

η dimensionless parameter defined in Eq. (7.126)

γ normalized plastic slope defined in Eq. (7.180)

γf shear fracture strain

κ bending curvature

µ mass ratio of the impacted zone of the target to the projectile

ν Poisson’s ratio

φ wrapping angle

φf critical wrapping angle to fracture
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ψ dimensionless parameter defined in Eq. (7.254)

ρ density

σ0 plastic flow stress

σh hydrostatic stress (mean stress)

σy initial yielding stress

σθ, σr, σz stress components in the cylindrical coordinate system

σ̄ von Mises stress

τ time parameter defined in Eq. (7.77)

τ0 plastic shear flow stress

θ dimensionless parameter defined in Eq. (7.127)

ε tensile strain

εmax maximum tensile strain

ε̄ effective strain

ε̄f fracture strain

ε̄pl effective plastic strain

˙̄ε0 reference strain rate

˙̄εpl plastic strain rate

ς initial length defined in Eq. (7.243)

ξ location of the stress wave front

ζ location of neutral axis

] jump of a given quantity

′ differentiation with respect to x

˙ differentiation with respect to t
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Chapter 1

Introduction

1.1 Background and motivation

In the September 11th attack, two airplanes traveling at 264 m/s (590 mph) and 210 m/s

(470 mph) crashed, respectively, into the South and North Towers of the World Trade

Center [1]. The damage sustained during the impact processes eventually led to the collapse

of the Twin Towers. Video clips and graphs clearly show that the exterior columns were

cut through by the airplane wings within the first milliseconds of the events, see Fig. 1-1.

The diaster of the space shuttle Columbia was also closely related to high velocity impact

fracture. A breach in the thermal protection system on the left wing of the Orbiter was

generated as a piece of insulating form dropped and struck the wing at a relative velocity of

244 m/s (545 mph) [2]. This tiny crack finally resulted in the breakup of the space shuttle

during re-entry.

A question is naturally raised: how to improve the survivability of these critical struc-

tures in high velocity impact. Since structural failure is caused primarily by fracture, a

fundamental understanding of mechanisms and mechanics of dynamic ductile fracture is

one of the most important steps to solve the problem.

As Rosakis and Ravichandran [3] pointed out in a review article, dynamic ductile frac-

ture remains unexplored. Experimentally, it is difficult to track down crack formation and

growth, and to capture stress and temperature fields in the vicinity of the tip of a prop-

agating crack using currently available instruments. Most of experimental studies in the
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literature concentrated on the examination of post-test specimens. Numerical investigations

into dynamic ductile fracture often confront lack of an adequate fracture criterion.

Fig. 1-1: A “clean” cut driven by the wings of a Boeing 767 into the facade of the North Tower [1].

In high velocity impact, fracture often occurs at an impacted zone where compression

is dominant. As deflection increases, compression may give way to shear and tension.

For such a problem, a fracture criterion formulated and calibrated from tensile tests alone

would not be able to predict a realistic fracture mode. A specimen under compression

would fail by a different mechanism from that under tension. Recently, a ductile fracture

criterion that covers a wide loading range was developed by Bao and Wierzbicki [4, 5]

from a series of compressive, shearing, tensile tests and parallel numerical simulations. The

Bao-Wierzbicki’s (BW’s) fracture locus seems promising in predicting crack formation and

growth in a target under impact loading. The present thesis is also motivated by a need to

establish the applicability of this criterion to high velocity impact problems.
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1.2 Problem statement

The impact velocities of interest in this thesis fall in the subordnance range. It is commonly

accepted by, e.g. Backman and Goldsmith [6], Zukas [7], Goldsmith [8], that the upper limit

of the subordnance velocity range is about 500 m/s. At an ordnance velocity, localized

pressure may exceed the strength of materials by an order of magnitude and thus a metal

would behave more like a fluid. Because of high kinetic energy imparted to a local region,

fragmentation is a common failure mode for an armor plate. At a low impact velocity of

the same order of the traveling velocity of ground vehicles (about 60 mph = 26.8 m/s),

global plastic deformation of a target would be a dominant response rather than fracture.

At a velocity in-between these two limiting values, both global deformation of a target and

local response of an impacted zone have to be taken into account simultaneously. Fracture

is a common phenomenon, and a number of distinct failure modes can be identified from

post-test specimens.

The fracture process is a problem of multiple length scales spanning from inter-atomic

separation through micro-scale void growth and coalescence to macro-cracking through

the thickness and width of structural elements. Various numerical procedures for frac-

ture analysis have been developed at different length scales, e.g. atomistic simulations

(O
(
10−10 m

)
) [9], discrete dislocation plasticity at mesoscale (O

(
10−7 m

)
) [10], etc. In the

present thesis, the problem is attacked in the context of conventional continuum mechanics

at a macro scale (O
(
10−3 m

)
), and fracture of a body is described in terms of stresses,

strains, and their histories. Attention is focused on through-thickness crack propagation at

a structural component level. This approach is feasible for engineering applications. At the

same time, targets of consideration are assumed to be made of ductile metals and do not

have any preexisting notches or cracks. This ensures that large plastic deformation would

develops in a wide region before fracture and targets would fail by ductile fracture rather

than brittle fracture.
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1.3 Research objectives

The major objectives of the present thesis are to:

• Numerically recreate a number of macroscopic failure modes including tensile tearing

and shear plugging in rigid mass-to-beam impact, confined fracture, petalling, and

shear cracking in the Taylor test, and to provide an insight into corresponding fracture

mechanisms.

• Study evolution of adiabatic shear bands and subsequent fracture in an axisymmetric

hat specimen under dynamic compression, to capture a series of hot spots inside a

propagating adiabatic shear band observed in experiments, and to reveal the relation

between hot spots and crack formation.

• Demonstrate the applicability of the newly developed Bao-Wierzbicki’s ductile frac-

ture criterion to high velocity impact events, and to point out deficiencies of existing

fracture models in the literature.

• Propose an analytical expression controlling through-thickness crack growth for a

beam/plate impacted by a flat-nosed projectile, and to verify this expression in a

wide range of all input variables, and to determine crack propagation speeds in ductile

shear plugging.

• Investigate factors causing mesh size sensitivity, to study mesh size effects on growth

of cracks and development of adiabatic shear bands, and to determine the reasonable

element size.

• Develop, respectively, three theoretical models for rigid mass-to-beam impact, the sin-

gle impact of beam-to-beam, the multiple impact of a stationary beam by an arbitrary

number of striking beams, and to obtain closed-form solutions.

• Build a two-stage theoretical model for shear plugging of a beam/plate under mass

impact, and to verify derived analytical solutions.
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1.4 Outline of the thesis

The present thesis consists of eight chapters and a bibliography of cited references. The

arrangement of the thesis is subject-oriented, i.e. each chapter studies a specific issue

associated with high velocity impact. Detailed literature reviews are made on almost each

subject.

Chapter 2 critically reviews the applicability of four types of existing fracture approaches

in the literature to high velocity impact problems. These approaches include: (i) stress

intensity factors and J-integrals, (ii) cohesive element methods, (iii) the Gurson model, and

(iv) ductile fracture criteria. This chapter concludes that the last type of fracture procedure

is the most suitable to predict crack formation and propagation in a specimen under high

intensity stress wave loading.

The newly developed Bao-Wierzbicki’s fracture model is one type of ductile fracture

criteria. Chapter 3 attempts to assess the effectiveness of the BW’s criterion in predicting

formation and growth of cracks in high velocity impact cases. Considered are three chal-

lenging problems: (i) rigid mass-to-beam impact, (ii) the Taylor test, and (iii) dynamic

compression tests on an axisymmetric hat specimen.

Chapter 3.2 investigates the failure response of a beam under rigid mass impact. If the

energy imparted by a projectile is sufficiently high, a target would fracture. Depending

on various combinations of all the input variables such as impact velocities, specimen and

target geometry, etc. many macroscopic failure modes would develop for a single target

including fragmentation, shear plugging, tensile tearing, etc. This section offers an insight

into corresponding failure mechanisms.

Chapter 3.3 recreates numerically the failure modes and the failure processes of an

impacting solid cylinder in the Taylor test. In contrast to rigid mass-to-beam/plate impact,

the cylindrical projectile is deformable and susceptible to fracture, and the stationary target

is rigid in the Taylor test. The projectile response is dominated by compression during the

impact process and thus the Taylor test can be used as a benchmark problem for the

examination of a fracture locus in the range of the negative stress triaxiality. Three distinct

macroscopic fracture modes are identified from numerical results: confined fracture inside
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the cylinder, petalling of the front surface, and shear cracking on the lateral surface.

In contrast to void growth as a basic failure mechanism for a specimen under tension,

adiabatic shear banding usually occurs under dynamic compression. Adiabatic shear bands

often serve as precursors of ductile fracture, and provide initiation sites and propagation

pathes for cracks. Chapter 3.4 presents an investigation into adiabatic shear banding and

subsequent fracture for an axisymmetric hat specimen under direct compressive Hopkinson

bar loading. As opposed to previous research published in the literature, fracture phe-

nomenon is clearly separated from adiabatic shear banding, and crack formation is thought

of as a final, catastrophical failure mode in this study.

Chapter 4 focuses on formation and propagation of through-thickness cracks in shear

plugging of a beam/plate impacted by a rigid mass moving at a high velocity. First, a crack

growth curve relating crack length to indentation depth is proposed. An extensive para-

metrical study is performed to verify this relationship in a wide range of impact velocities,

projectile weight, target thickness, etc. Crack propagation speeds are calculated. Effects of

a propagating crack on damage accumulation are investigated.

Chapter 5 discusses three important aspects of numerical prediction of ductile fracture.

The first part (Chapter 5.1) introduces the Johnson-Cook material constitutive model. Cor-

responding material coefficients as well as calibration procedures for three metals: Weldox

460 E steel, 2024-T351 aluminum alloy, 91W-61Ni-3Co tungsten alloy are summarized. The

second part reports the implementation of a ductile fracture model in ABAQUS/Explicit.

The last part (Chapter 5.3) is devoted to a study of mesh size effects. First, two factors giv-

ing rise to mesh size sensitivity: high strain gradients and strain softening, are recognized.

The research is conducted, respectively, for two typical problems: perforation of a circular

plate by a rigid cylindrical projectile and adiabatic shear banding of a hat specimen under

dynamic compression. Finally, Chapter 5.3 discusses four types of methods to remedy mesh

size effects.

The first part of Chapter 6 introduces three types of ductile fracture loci: the Bao-

Wierzbicki’s, the Johnson-Cook’s, and the constant critical effective plastic strain. The

formulation and the calibration procedure of these criteria are critically reviewed. This

survey reveals that there are large differences in the formulation in the range of the negative
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stress triaxiality. Effects of the type of ductile fracture loci on the numerical prediction of

failure patterns and failure processes are studied through three types of problems that are

the same as studied in Chapter 3. The results are presented in Chapter 6.3.

As complementary to the numerical investigations in the preceding chapters, Chapter 7

develops four benchmark analytical solutions. In Chapter 7.2, the momentum conserva-

tion approach proposed by Wierzbicki and Hoo Fatt [11, 12] for a string/membrane under

rigid, flat-nosed mass impact is revisited. The range of applicability of this approach is

determined. The approach is applied to the case of a round-nosed projectile in this section.

Obtained closed-form solutions are verified by numerical simulations.

Motivated by the September 11th attack, the momentum conservation approach is ex-

tended to the single impact problem of beam-to-beam, in which the striking and struck

beams represent the wing of the airplane and one of the exterior columns of the Twin Tow-

ers, respectively. Both beams are deformable and fracturable. The closed-form solution is

developed in Chapter 7.3 for such a problem. Five fracture scenarios are described and the

corresponding conditions are specified. Finite element solutions are pursued to corroborate

the theoretical analysis.

The momentum conservation approach is further extended to the multiple impact event

of beam-to-beam in Chapter 7.4, in which a stationary beam is impacted sequentially by

arbitrary number of beams. This theoretical model is also motivated by the September

11th attack. The striking beams represent structural components of the airplane wing. For

simplicity, attention is focused on the impact response of the struck beam. Theoretical

solutions for deflection and plastic tensile strain are obtained.

The momentum conservation approach is applicable to a target undergoing large defor-

mation, in which axial stretching is dominated and thus tensile tearing is a favorable failure

mode. At a high impact velocity, a target may fail by shear plugging instead of tensile

tearing. In Chapter 7.5, the crack growth curve proposed in Chapter 4 is used to develop

a theoretical shear plugging model for a beam/plate impacted by a flat-nosed projectile.

Closed-form solutions are obtained for residual velocities, ballistic limits, shear zone width,

etc. Comparison with experimental results published in the open literature is made showing

very good agreements.
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Chapter 8 concludes the present thesis, summarizes major results, and suggests future

research topics.



Chapter 2

Review of Fracture Approaches in

High Velocity Impact

2.1 Stress intensity factors and J-integrals

Several types of fracture approaches have been proposed in the literature to predict crack

formation and growth under static and dynamic loading. This chapter attempts to critically

review the applicability of theses fracture approaches to high velocity impact problems.

Stress intensity factors and J-integrals were developed for specimens with a preexisting

notch. This approach found wide applications in predicting response of structural compo-

nents with a flaw. It is well known from continuum mechanics that the stress and strain fields

are singular in the vicinity of a loaded notch tip. Stress intensity factors and J-integrals can

be thought of as a measure of the intensity of the singularity field, and correlates the near

tip deformation with far-field loading. The critical stress intensity factors and J-integrals,

depending on material properties, loading conditions, etc. are able to predict the onset of

crack growth. However, these fracture criteria are not suitable for an initially uncracked

body. In the present thesis, all the targets considered are assumed to be virgin without any

preexisting notches or cracks.

The critical question is whether the critical stress intensity factor or J-integral would be

able to serve as a criterion for the prediction of the crack growth once a crack is generated

in an initially uncracked body? To answer this question, we need to revisit the development
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of the stress intensity factor and J-integral. Recall, that the stress intensity factors are

derived from the theory of elasticity and the J-integral was defined based on the small-strain

deformation theory of plasticity. For a real, elastic-plastic material, there always exists a

fracture process zone ahead of a stationary or advancing crack. In this zone, materials

are subjected to finite plastic strain and separate microscopically due to void nucleation,

growth, and coalescence if a specimen fails by ductile fracture. This deformation and failure

mechanisms are beyond the capability of either the theory of elasticity or the small-strain,

deformation theory of plasticity. Hence, the utility of the stress intensity factor or the J-

integral as fracture criteria would depend on the extent of the so-called K-dominance or

J-dominance. In other words, the fracture process zone has to be contained well within the

region over which the stress and strain singularity fields provide a good approximation to

the real elastic-plastic solution, see Fig. 2-1. This condition is often violated for through-

thickness crack formation and growth in an initially uncracked beam/plate of a ductile

material. Without any preexisting notches, large plastic deformation would develop in a

wide region before the formation of a crack. For a thin or intermediately thick specimen, the

fracture process zone, comparable to the plastically deformed region in size, would possess a

large part of the target thickness. The K-dominance or J-dominance would not exist in such

a case. Hence, neither the stress intensity factor nor the J-integral is an effective fracture

criterion for the present problems. By contrast, for a pre-notched plate under in-plane

impact, stresses and strains always concentrate in the vicinity of the notch tip, and a crack

would be generated and advance in a region still dominated by the stress intensity factors

or the J-integral. The critical value of either K or J is applicable as a fracture criterion, as

demonstrated by Pandolfi et al. [13] for a three-point bend test specimen with a pre-notch

under impact loading.

2.2 Cohesive element methods

As a promising numerical approach to simulate dynamic fracture processes, the cohesive

element method that attempts to incorporate the physics of material separation into the

numerical formulation has already received much attention, e.g. Needleman [14, 15], Xu
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and Needleman [16], Camacho and Ortiz [17], etc. In contrast to conventional finite element

procedures, randomly distributed cohesive interface elements are introduced between bulk

elements in this method. In addition to the traditional constitutive modeling of the bulk

elements, a decohesive law is implemented for the cohesive interface elements.

Crack

Fracture process zone

J-dominant

K-dominant

Fig. 2-1: Schematic representation of the fracture process zone, the J- and K-dominant zones ahead

of the crack tip.

Many traction-displacement laws have been proposed in the literature, see a short review

by Chandra and Shet [18]. A common feature among them is that the traction across the

interface reaches a maximum with increasing interfacial separation, then decreases, and

eventually vanishes allowing a complete decohesion. Figure 2-2 shows typical normal and

shear traction-displacement laws. The area below the curve represents the fracture energy.

The cohesive element method was used by Pandolfi et al. [19] to predict dynamic ductile ring

expansion, necking, and subsequent fragmentation. The numerical simulations are shown

to correlate well with experimental results. However, the critical energy as a criterion for

ductile fracture remains controversial. The effective plastic strain and the stress triaxiality

are not taken into account in the traction-displacement curve that is essentially stress-

dependent. Both factors are believed to be two of the most important parameters controlling

ductile fracture. The author believes that this type of the cohesive element method would

be more suitable for cleavage fracture of brittle materials rather than for ductile fracture.
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Recently, Tvergaard [20, 21] introduced a modified Gurson model to account for the effect

of void nucleation inside the cohesive elements for crack growth of a pre-notched plate under

small scale yielding conditions. The applicability of this procedure to other types of ductile

fracture problems remains to be seen.

∆n

δn

Tn

σmax

(a) Normal traction

∆t

δt

Tt

τmax

(b) Shear traction

Fig. 2-2: Schematic representation of a separation decohesive law.
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2.3 The Gurson model

It has long been recognized that the predominant mechanism of ductile fracture is void nu-

cleation, growth, and coalescence. It is also true in dynamic cases. Since McClintock’s [22]

and Rice and Tracey’s [23] pioneer work on the growth of an isolated cylindrical and spher-

ical void embedded in an infinite perfectly-plastic body, two types of approaches for ductile

fracture mechanics have been developed in the literature. The first class incorporates dam-

age accumulation into the continuum constitutive model and failing elements eventually

lose their load carrying capability. In such a way, the damage softening due to the growth

of micro-voids is accounted for in material modeling.

A typical example in this class is the Gurson model. In his well-known Ph.D. the-

sis, Gurson [24] proposed a general form of the yield function and an associated plas-

tic flow rule for porous metals. This model was modified and improved subsequently by

Tvergaard [25], Tvergaard and Needleman [26]. Hence, it is also referred to the Gurson-

Tvergaard-Needleman (GTN) model in the literature. The Gurson model has been widely

employed to predict various failure modes in dynamic fracture events. For example, Wor-

swick and Pick [27], Addessio et al. [28] simulated, respectively, void growth in the front

region of a cylinder in the Taylor test, i.e. confined fracture, which will be addressed in detail

in Chapter 3.3. Spallation was captured numerically with the Gurson material constitutive

equation in a plate-to-plate impact by Zhou and Clifton [29].

Besides the stress-strain curves for the fully dense matrix material, seven material coef-

ficients in the Gurson model need to be calibrated for a single material. Due to the strong

coupling between the material constitutive equation and the damage accumulation, it is not

easy to determine these unknown parameters. Extensive applications of the Gurson model

in industrial practices would depend on the availability of the material coefficients and the

reliability of the calibration procedure.
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2.4 Ductile fracture criteria

The second class of ductile fracture approaches uncouples the damage accumulation with

the material constitutive equation. The damage accumulation is calculated based on an

experimentally/numerically developed fracture locus, and is separated from the evolution

of the stress-strain relation. The simulation of crack formation and growth is fulfilled by

suddenly setting the stiffness of failing elements to zero or releasing connecting nodes.

Mainly driven by industrial applications, a number of simple ductile fracture criteria

have been proposed in the literature, e.g. McClintock [22], Rice and Tracey [23], Hancock

and Mackenzie [30], Cockcroft and Latham [31], Bao and Wierzbicki [4], Bao et al. [32],

etc. Their effectiveness in the prediction of crack formation for various problems has been

assessed by many researchers, e.g. Wifi et al. [33], Komori [34], Bao and Wierzbicki [35], etc.

Compared with the Gurson model, these fracture criteria can be relatively easily calibrated

and implemented in finite element codes, and thus have been widely used in industrial

practices. This type of fracture criteria will be implemented in ABAQUS/Explicit and used

throughout the present thesis. We will address the detailed calibration procedure and their

features in Chapter 6.

A generic form of ductile fracture criteria can be defined by an integral with respect to

the effective plastic strain ε̄pl

∫ ε̄pl

0
f (stress states, strain rates, temperature, ...)dε̄pl ≥ Dc (material) , (2.1)

where Dc is the critical damage at the point of fracture, which clearly is an intrinsic prop-

erty of a material, and f is generally a function of the components or invariants of the

stress tensor, strain rates, and temperature, etc. Under quasi-static loading and isothermal

conditions, effects of the latter two variables on the damage accumulation can be neglected.

2.4.1 Stress triaxiality

As shown theoretically by McClintock [22] and Rice and Tracey [23] for the growth of

microvoids, and experimentally by Bridgman [36] for tensile tests on round bars, hydrostatic

pressure (mean stress) has a strong influence on the fracture mode and the fracture strain,
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although hydrostatic pressure does not change plastic flow. The stress triaxiality, defined as

the ratio of the hydrostatic pressure σh to the von Mises stress σ̄, is commonly introduced in

the literature to represent the stress state mentioned in Eq. (2.1). Note, that the hydrostatic

pressure is the first invariants of the stress tensor and the von Mises stress is the square

root of the second invariant. Both invariants are independent of a coordinate system, and

thus suitable for large plastic deformation.

By superposing a constant hydrostatic pressure on a tensile round bar, Bridgman [36]

found that the dominant failure mechanism changes from void growth to shear slip as the

magnitude of pressure increases. A similar trend was also found by Bao and Wierzbicki [4].

The ability of a specimen to resist fracture, measured by the effective plastic strain at

fracture, is a strong function of the stress triaxiality.

We will come back to this issue in Chapter 6 to demonstrate several ductile fracture loci

and their calibration procedure.

2.4.2 Strain rates

High velocity impact problems involve large plastic deformation, high strain rates, and

elevated temperature. Due to high strain rates, heat generated by a large portion of plastic

energy would not have sufficient time to escape to surrounding materials, which leads to

temperature rise. Both strain rates and temperature clearly have an effect on fracture

characteristics of a specimen.

The effect of strain rates can be simply quantified by a ratio of the experimentally

obtained fracture strain under dynamic loading conditions to that under quasi-static loading

conditions. Johnson and Cook [37] proposed that this ratio is a logarithmic function of the

strain rates

Rstrain rate = 1 + D4 ln
( ˙̄εpl

˙̄ε0

)
(2.2)

where ˙̄εpl and ˙̄ε0 are the actual plastic and reference strain rates, respectively, and D4 is

the material constant. Johnson and Holmquist [38] provided the values of D4 for more

than ten commonly used metals, see Table 2.1 (as quoted by Nicholas and Rajendran [39]).

They concluded that generally the strain to fracture slightly increases with the strain rate.
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However, some limitations in the determination of the material constant D4 should be

mentioned. As indicated in Ref. [37], D4 is obtained simply by comparing the fracture

strain of a tensile specimen at ˙̄ε = 500 s−1 with that at ˙̄ε0 = 1 s−1, i.e. only two test

points were used for one material. The strain rate (500 s−1) considered is much lower than

the value commonly encountered in high velocity impact events, which is of the order of

104 s−1.

Table 2.1: Material constants for the JC’s fracture model defined in Eq. (6.2).

Materials D1 D2 D3 D4 D5

OFHC Copper 0.54 4.89 -0.30 0.014 1.12

Cartridge Brass 0.0 2.65 -0.62 0.028 0.0

Nickel 200 0.0 4.04 -1.84 0.0 0.0

Armco Iron -2.2 5.43 -0.47 0.016 0.63

Carpenter Electric Iron 0.0 3.69 -1.40 0.016 0.63

1006 Steel 0.0 2.07 -1.22 0.016 0.63

2024-T351 Aluminum 0.13 0.13 -1.5 0.011 0.0

7039 Aluminum 0.14 0.14 -1.5 0.018 0.0

4340 Steel -0.8 2.1 -0.5 0.002 0.61

S-7 Tool Steel 0.0 0.56 -1.5 0.0 0.0

Tungsten 0.0 0.33 -1.5 0.042 0.0

Depleted Uranium 0.0 0.10 -1.5 0.042 0.0

Weldox 460 E Steel [40] 0.0705 1.732 -0.54 -0.015 0.0

AA5083-H116 Aluminum [41] 0.0261 0.263 -0.349 0.147 16.8

More elaborate tensile tests on the strain rate sensitivity of the fracture strain were

performed, respectively, by Børvik et al. [40] for Weldox 460 E steel and by Clausen et

al. [41] for AA5083-H116 aluminum alloy. The strain rates range from 10−4 s−1 to 103 s−1.

The material constant D4 obtained through curve-fitting are also listed in Table 2.1. It

is interesting to note that in contrast to other metals, the ductility of Weldox 460 E steel

decreases with the increasing strain rate. The fracture strain of AA5083-H116 aluminum

alloy is much more sensitive to that of other materials. These facts show that the strain rate
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sensitivity is quite complicated and much work need to be carried out to fully understand

these phenomena.

Figure 2-3 shows the variation of the ratio as a function of the strain rate, as quanted

by Eq. (2.2). It appears that for 2024-T351 aluminum alloy and Weldox 460 E steel, the

difference is less than 20% at the strain rate up to 104 s−1. Hence, compared with the stress

triaxiality, the effect of the strain rate on the fracture strain can be neglected.

R
at

io
of

fr
ac

tu
re

st
ra

in

Strain rate
(
s−1

)

Weldox 460 E steel

2024-T351 Al

1006 steel

Tungsten

Fig. 2-3: The ratio of the fracture strain vs. the strain rate.

2.4.3 Temperature

Similarly to the strain rate, the effect of the temperature rise can be quantified by a ratio of

the fracture strain at an elevated temperature to that at room temperature. The specimens

were heated to a certain temperature and then stretched to fracture under quasi-static

loading conditions. In such a way, the effect of the strain rate on the fracture strain can

be isolated from that of the temperature rise. Johnson and Cook [37] suggested a linear

relationship between the ratio of the fracture strain and the temperature rise

Rtemperature = 1 + D5T
∗ (2.3)
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where D5 are the material constant and its values for different materials are given in Ta-

ble 2.1, and T ∗ is the homologous temperature, defined by

T ∗ =
T − T0

Tm − T0
, (2.4)

where T is the current temperature, T0 is the room temperature, and Tm is the melting

temperature. The values of D5 for more than ten metals were given by Johnson and

Holmquist [38] as quoted by Nicholas and Rajendran [39], and are also listed in Table 2.1.

It is understood that Eq. (2.3) does not apply to fracture at very low temperature.

Figure 2-4 shows the ratio of the fracture strain as a function of temperature for Weldox

460 E steel. This graph is re-plotted using the experimental data provided by Børvik et

al. [40]. It is seen that the fracture strain does not change much for the temperature rise

lower than 300 K but suddenly increases above this value.
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Fig. 2-4: The ratio of the fracture strain vs. the temperature rise. The circles represent the experi-

mental results by Børvik et al. [40].
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By assuming adiabatic conditions, a local temperature rise ∆T during an impact process

can be quickly estimated from energy balance

∆T = χ
σ0ε̄f

ρcv
(2.5)

where ρ is the material density; cv is the specific heat; σ0 is the plastic flow stress; ε̄f is

the fracture strain; and χ is the fraction of plastic work converted to heat. It is generally

accepted that χ ∼= 0.9 [42]. At ε̄f = 1.0, the temperature rise calculated from Eq. (2.5)

is ∆T ≈ 210 K for Weldox 460 E steel and 2024-T351 aluminum alloy. This temperature

rise is lower than 300 K in Fig. 2-4. Hence, it can be concluded that temperature rise

due to adiabatic conditions would not have much influence on fracture characteristics of a

specimen made of Weldox 460 E steel.
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Chapter 3

Qualitative Analysis of Failure

Modes

3.1 Introduction

High velocity impact problems have long been studied from various aspects. A comprehen-

sive survey on the mechanics and physics of projectile impact was performed by Backman

and Goldsmith [6] up to 1977, by Anderson and Bodner [43] up to 1988, and by Corbett et

al. [44] up to 1994. Goldsmith [8] summarized investigations into non-standard collisions,

penetration, perforation of targets, e.g. oblique impact. There are also several excellent

books in this area, e.g. Johnson [45], Zukas et al. [46] and Zukas [47], etc. From these

references, the reader can trace backwards to a number of earlier contributions.

Many macroscopic failure modes have been identified from high velocity impact exper-

iments in the literature. For example, Woodward [48] classified more than ten possible

failure modes for a target struck by a rigid projectile, see Fig. 3-1. An occurrence of a

specific failure mode would depend on material properties and geometry of an impacting

system.

These experimental observations impose a challenging problem: can one use a single

fracture criterion to capture all the possible macroscopic failure modes in high velocity

impact events? Should the basic failure mechanism of all these macroscopic fracture modes

be void nucleation, growth, and coalescence, then the answer to this question should be

51
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simple. Recently, a new ductile fracture locus that covers a whole range of the stress

triaxiality was developed by Bao and Wierzbicki [4, 5]. This fracture criterion involves

three distinct branches, each controlled by a different fracture mode.

Fig. 3-1: Schematic representation of more than ten possible fracture modes in perforation prob-

lems [48].

The objective of the present chapter is to examine the applicability of the Bao-Wierzbicki’s

ductile fracture criterion to various high velocity impact problems, and to investigate the

corresponding fracture mechanics and processes. This goal is achieved through studying

three typical and challenging problems in impact engineering. The first problem considered

is rigid mass-to-beam impact, in which a target beam is at rest and a rigid projectile moves

at a high velocity. The struck beam may fail by either tensile tearing, shear plugging, or a
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combined action, which compete with each other. A study on this problem will be presented

in Chapter 3.2.

The second impact problem is the Taylor test. In contrast to rigid mass-to-beam impact,

a striking cylinder is deformable and breakable while a struck body is assumed to be rigid

in the Taylor test. At a sufficiently high impact velocity, a projectile may exhibit various

failure modes: petalling, shear cracking, or confined fracture. Numerical recreation of these

macroscopic fracture modes using a three-dimensional finite element model is the subject

of Chapter 3.3.

Different from void growth under tension, adiabatic shear banding, one kind of thermo-

plastic instability, usually occurs in a continuum body predominated by compression. A

shear band often serves as a site for crack formation and a weak path for crack propaga-

tion. Chapter 3.4 will be devoted to reveal the mechanism of adiabatic shear banding and

subsequent fracture for an axisymmetric hat specimen under dynamic compressive loading.

It should be mentioned that the newly developed BW’s fracture locus also successfully

captured two other failure modes: spallation and fragmentation, both of which will not be

addressed in the present thesis. Figure 3-2 shows a spalling failure pattern of plate-to-plate

impact, in which a thick circular plate is impacted by a flying thin plate made of the same

material [49]. A crack is generated by the interaction of incident and reflected stress waves

through the thickness of both plates. Similarly to tensile tearing and shear plugging in

rigid mass-to-beam/plate impact, the basic fracture mechanism behind the spallation is

also void nucleation, growth, and coalescence. However, different from shear plugging and

tensile tearing, the failure process of spalling is controlled by high stress triaxialities and low

plastic strain amplitudes. Figure 3-3 shows fragmentation of an elastic-plastic ring under

implosive loading.

The objective of the subsequent sections is to demonstrate that using a single fracture

criterion one would be able to predict with a great realism a variety of failure patterns in

high velocity impact problems.
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Fig. 3-2: Spallation of plate-to-plate impact. Both circular plates are made of 2024-T351 aluminum

alloy. The initial impact velocity is V0 = 350 m/s.

Fig. 3-3: Fragmentation of a ring under explosive loading.
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3.2 Failure modes in rigid mass-to-beam impact

3.2.1 Introduction

This section studies the failure response of a beam under rigid mass impact. Immediately

upon impact, a compressive stress wave is generated and propagates through the target

thickness. The impacted zone of the target beneath the projectile is dominated by com-

pression and shear in the initial phase. As transverse disturbances (transverse plastic stress

waves) travel away from the impacted zone, the target acquires the transverse momentum

and is deflected. As the deformation of the target increases, compression and shear will

give way to bending and subsequently axial stretching. Depending on various combinations

of all the input variables such as the impact velocity and weight of the projectile, a single

target may exhibit various macroscopic fracture modes. For example, a target would be

either sheared off in the initial phase or torn apart in the later phase.

The problem of rigid mass impact on a beam/plate has long been investigated, mostly

experimentally, to understand the failure mechanism. Goldsmith and Finnegan [50] dis-

cussed effects of material properties and presented two pictures of post-mortem specimens

clearly showing distinct failure modes for steel and aluminum plates. Corran et al. [51] per-

formed a series of tests by changing the aspect ratio of the projectile nose diameter to the

target thickness. They found that the target plate fails by tensile tearing at a small ratio

while by shear plugging at a large ratio. Levy and Goldsmith [52] summarized a number of

experimental results for thin plates. Failure modes such as petalling, shear plugging, tensile

tearing were identified. Low velocity impact experiments of a very heavy projectile on a

beam/plate (V0 < 10 m/s) were conducted by Jones & Jones [53] and Shen et al. [54], re-

spectively, in which necking preceding tensile tearing was identified at impacted points and

boundaries. Børvik et al. [55, 56] systematically carried out perforation tests on a circular

plate struck by a cylindrical projectile of a flat, round, and conical nose in parallel with a

series of numerical simulations.

Compared with the abundance of experimental studies, papers on numerical simulations

appear to be scarce. This situation may result from a lack of an adequate ductile fracture

criterion. The newly developed Bao-Wierzbicki’s fracture locus could hopefully fill partially
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this gap. In this section, the failure process of a wide beam impacted by a rigid, round-

/flat-nosed projectile is simulated using ABAQUS/Explicit [57]. Two materials: 2024-T351

aluminum alloy and Weldox 460 E steel, are considered, respectively. The impact velocity of

the projectile ranges from 180 m/s to 600 m/s so that various failure modes can be generated.

Attention is focused on the identification of the failure mode and the investigation of the

failure mechanism.

3.2.2 Finite element modeling

Consider a long beam of solid, rectangular cross-section impacted by a rigid, round-nosed

(flat-nosed) projectile, see Fig. 3-4. The beam is of the length l = 1000 mm, the width

2b = 100 mm, and the thickness h = 10 mm. The rigid projectile is of the diameter

(breadth) d = 20 mm, and the mass ratio of the impacted zone of the target to the projectile

µ = 0.1. The mass ratio is defined in Eqs. (4.2) and (4.3), respectively, for the beam and

circular plate cases. The initial impact velocity V0 is varied from 180 m/s to 400 m/s for

the 2024-T351 aluminum beam and from 240 m/s to 600 m/s for the Weldox 460 E steel

beam.

l

2b

V0

h

Fig. 3-4: Schematic representation of a long beam struck by a rigid, round-nosed mass.
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Since a main interest of the present study is on crack formation and propagation through

the target thickness, a two-dimensional finite element model was built to reduce compu-

tational costs. 4-node plane strain elements (CPE4R) in the ABAQUS/Explicit element

library was adopted, considering that the width of the beam is much larger than the thick-

ness. The projectile was represented by a rigid surface. The “hard” contact constraint,

which allows the projectile to rebound from the target, was applied at the impact interface.

At the same time, interaction between the rigid mass and the beam was assumed to be

frictionless.

Very fine square meshes with the size 0.2 mm× 0.2 mm were generated in the impacted

zone and relatively coarse meshes for far fields, see Fig. 3-5. There are fifty elements through

the beam thickness. The technique of element removal was used to model crack formation

and growth. Therefore, the element size in the critical area has to be very small to keep

the loss of mass and energy minimum. A detailed study on mesh size sensitivity addressed

in Chapter 5.3 indicates that the present element size is able to give a correct solution.

Impacted zone

M0 V0

h = 10 mm

d = 20 mm

Fig. 3-5: Finite element model of a beam impacted by a rigid, round-nosed projectile.
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The fixed boundary condition was prescribed at both ends of the beam. The beam is

sufficiently long so that it would break before transverse plastic stress waves arrive at the

ends at an impact velocity even well in excess of the ballistic limit of the beam. However,

the boundary conditions will play a role at a relatively low impact velocity, and the whole

beam undergoes plastic deformation before fracture.

Considered in the present research were two materials: 2024-T351 aluminum alloy and

Weldox 406 E steel, representing a less and a more ductile metal, respectively. The Johnson-

Cook’s (JC’s) material constitutive model was defined in the calculation. The detailed

discussion on the JC’s model and the determination of the material coefficients for both

materials will be addressed in Chapter 5.1. The Bao-Wierzbicki’s fracture locus was imple-

mented for 2024-T351 aluminum alloy. The Weldox 460 E steel fracture locus calibrated by

Børvik et al. [40] was modified to include the cut-off value for the negative stress triaxiality.

Both fracture loci will be critically reviewed in Chapter 6.

3.2.3 Tensile tearing

Compression and shear are dominant in the impacted zone immediately after impact. If

the target does not fail in this phase, it will enter into the phase in which bending and

subsequently axial stretching are dominant as the transverse deflection increases. Tensile

stresses due to either/both of bending and axial stretching would lead to crack forma-

tion and growth in the struck beam. This is similar to the Mode I fracture mode in the

classical elastic fracture mechanics (EFM). However, the problem considered here is more

complicated since ductile fracture is controlled by not only stress states but also plastic

deformation. Both depends on mechanical properties and geometrical size of the impact

system. In the following, the fracture pattern and fracture mechanism of tensile tearing in

rigid mass-to-beam will be investigated.
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3.2.3.1 2024-T351 aluminum alloy

Figure 3-6 shows the formation and propagation of a crack for the aluminum beam at

V0 = 220 m/s. The crack initiates at the proximal surface of the beam and then propagates

slantly through the thickness. The two end points of the crack, located at the proximal

and distal surfaces of the beam, respectively, are selected to reveal the failure mechanism.

It can be seen from Figs. 3-7 and 3-8 that local bending response is dominant in the

impacted zone in the initial phase. The point at the proximal surface is predominantly under

compression (σh/σ̄ ≈ −0.8) while the point at the distal surface under tension (σh/σ̄ ≈
1/
√

3). The local bending direction is changed at t ≈ 0.2 ms. The stress state of the

upper part of the impacted zone becomes positive indicating predominant tension. Damage

rapidly accumulates in this phase until the crack is formed. As the crack grows downwards,

the ligament becomes shorter. The end point at the distal surface is still dominated by

compression due to local bending. Finally, the remainder of the ligament is completely

sheared off. Correspondingly, both the stress triaxiality and the effective plastic strain

suffer a jump at fracture, see Fig. 3-8. A conclusion can be drawn that the crack formation

is mainly due to tension and the crack growth is driven by tension/shear. Fracture may

also depend on the history effect as the sign of the triaxiality changes from compression to

tension [58]. The history effect is not pursued further in this study.

It is not easy to identify a specific failure mode from a final fracture pattern of a specimen

under complex multi-axial loading. To some extent, it would rely on an observer’s experience

and knowledge. By tracking down the time history of the stress triaxiality and the effective

plastic strain, the failure mode can be discerned in a simple way as demonstrated here.
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(a) t = 0.50 ms

(b) t = 0.55 ms

(c) t = 0.60 ms

(d) t = 0.65 ms

Fig. 3-6: Failure process of the 2024-T351 aluminum alloy beam impacted by the round-nosed mass

at V0 = 220 m/s.
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Fig. 3-7: History of the effective plastic strain and the stress triaxiality of the starter point of the

crack located at the proximal surface of the 2024-T351 aluminum beam at V0 = 220 m/s.
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Fig. 3-8: History of the effective plastic strain and the stress triaxiality of the end point of the crack

located at the distal surface of the 2024-T351 aluminum beam at V0 = 220 m/s.
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3.2.3.2 Weldox 460 E steel

As shown in Fig. 3-6, thinning or necking preceding fracture is not evident in the impacted

zone, though the aluminum alloy beam fails by tensile tearing. Due to its lower ductility,

the aluminum beam breaks before entering into the axial stretching dominated phase. But

this is not the case for the more ductile Weldox 460 E steel beam. As shown in Fig. 3-9,

the impacted zone of the steel beam becomes quite thin due to local axial stretching at

V0 = 375 m/s. This through-thickness thinning is also called localized necking. A crack

initiates first on the distal surface of the necking area and propagates upwards. Then two

cracks occur on the proximal surface and grow downwards (one of them is arrested). Finally,

these cracks link together to form a through-thickness gap. Clearly, the crack formation

on the distal surface is purely due to tension. The crack starter point on the distal surface

is selected to track down its time history of the stress triaxiality and the effective plastic

strain, see Fig. 3-10. It appears that the stress triaxiality is almost kept constant during the

impact process and is very close to 0.58. σh/σ̄ = 1/
√

3 is the exact value for a plane-strain

block under uniaxial tension. At the same time, the crack propagation is driven mostly by

the axial tensile force since the generated crack is located almost at the central axis of the

beam, see Fig. 3-21(d).

Fig. 3-9: Crack formation in the Weldox 460 E steel beam struck by the round-nosed mass moving

at V0 = 375 m/s.
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Fig. 3-10: History of the effective plastic strain and the stress triaxiality of the starter point of the

crack located at the distal surface of the Weldox 460 E steel beam at V0 = 375 m/s.

Fig. 3-11: Diffuse necking preceding fracture for the Weldox 460 E steal beam impacted by the rigid

mass moving at V0 = 250 m/s.
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At an impact velocity near the ballistic limit, one can say that diffuse necking precedes

crack formation, see Fig. 3-11. Also, the global deformation of the beam reaches the clamped

ends at necking. The maximum transverse deflection is several times larger than the target

thickness. Since both ends of the beam are fixed, large axial tensile force would develop.

Axial stretching is mainly responsible for necking and subsequent tensile tearing of the

impacted zone.

3.2.3.3 Thin vs. thick beams

Besides the material ductility, the aspect ratio of the target thickness to the diameter of

the projectile also has an effect on the formation of a specific failure mode. Figure 3-12

shows the failure process of a 2024-T351 aluminum alloy beam of h = 2 mm (h/d = 0.1)

at V0 = 270 m/s, in which the weight of the projectile was adjusted to keep the mass ratio

µ = 0.1 same as the previous cases (Note, that the thickness of the previous considered

beam was h = 10 mm). It is seen that two cracks initiate at the distal surface due to

tension, and grow upwards until a plug is formed. This type of tensile tearing process was

observed in a wide range of the impact velocity from the ballistic limit Vbl = 205 m/s to

V0 = 400 m/s for this beam. By contrast, shear plugging is the favorable failure mode for

the aluminum beam of h/d = 0.5 under the same impact conditions. This numerical finding

that thin beams tend to fail by tensile tearing is consistent with experimental observations

by Levy and Goldsmith [52], see Fig. 3-13.



3.2. FAILURE MODES IN RIGID MASS-TO-BEAM IMPACT 65

(a) t = 13.75 µs

(b) t = 15.0 µs

Fig. 3-12: Failure process of the round-nosed mass impact on the aluminum alloy beam of h = 2 mm

and µ = 0.1 at V0 = 270 m/s.

Fig. 3-13: Tensile tearing of a 2024-0 aluminum circular plate of h = 1.27 mm struck by a round-

nosed projectile of d = 12.7 mm at V0 = 89.6 m/s [52].
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3.2.4 Through-thickness shear plugging

Competing with tensile tearing, shear plugging is another possible failure mode in rigid

mass-to-beam impact. At a high velocity, a beam would tend to be cut through in the

impacted zone due to localized compression and shear before undergoing large global plas-

tic deformation. Similarly to the Mode II in the classical elastic fracture mechanics, the

formation and propagation of the crack in shear plugging is propelled mainly by the shear

force. The failure mode and failure mechanism of shear plugging will be studied next for

the flat-nosed and round-nosed projectiles, respectively.

3.2.4.1 Flat-nosed projectile

Figure 3-14 shows the shear plugging process of the aluminum alloy beam impacted by the

flat-nosed rigid mass moving at V0 = 240 m/s. The thickness of the beam is h = 10 mm

and the aspect ratio of the beam thickness to the projectile diameter is h/d = 0.5. It

appears that the region of the beam below the projectile is deeply indented and undergoes

large plastic deformation, but no elements fail in this zone throughout the impact process

since compression is dominant. As the impacted zone deepens into the projectile, the stress

concentration occurs around the sharp corners and the elements in this region are severely

distorted due to shear. Two cracks are induced on the proximal surface of the beam, and

rapidly propagate through the beam thickness ahead of the projectile. Finally, a plug is

formed and ejected from the beam. It is seen that the global deformation of the beam is

much smaller than the target thickness. This failure process is characterized by indentation

of the impacted zone and through-thickness crack propagation. The existence of the two-

phase deformation mode will help to develop a theoretical model of shear plugging, which

will be presented in Chapter 7.5.
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(a) t = 6 µs

(b) t = 9 µs

(c) t = 12 µs

(d) t = 20 µs

Fig. 3-14: Perforation process of flat-nosed mass impact on the aluminum alloy beam at V0 =

240 m/s.
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3.2.4.2 Round-nosed projectile

In the case of a round-nosed projectile the failure process is different. Cracks initiate in the

middle of the beam and propagate upwards and downwards at the same time. As shown

in Fig. 3-15, two through-thickness cracks are generated and subsequently a plug is formed

and ejected at V0 = 300 m/s. The failure pattern corresponds to the so-called discing in the

case of a circular plate, which is commonly seen in the literature. The fracture mode can

be discerned by observing the history of the stress triaxiality during the impact process,

see Fig. 3-16. As the compressive stress wave, generated immediately upon impact, passes

through the impacted zone, the crack starter point is predominantly under compression,

represented by the stress triaxiality lower than −1/3. After t = 9 µs, the stress triaxiality

falls mainly in the range from −1/3 to 0, in which fracture is controlled mainly by shear

decohesion [4]. A large part of damage accumulates in this phase. We believe that bending

response does not much contribute to crack initiation since the crack starter point is located

in the middle of the beam thickness.

At a much high impact velocity, the beam would fail by fragmentation. But the basic

failure mechanism behind it is still shear cracking. Figure 3-17 shows the failure process of

the aluminum alloy beam at V0 = 400 m/s. It appears that four sequential cracks initiate in

the middle of the beam, and grow through the thickness. The energy imparted by the rigid

mass exceeds the carrying capability of the impacted zone of the beam at such a high velocity

that it has to break into three pieces to dissipate the available kinetic energy. This failure

pattern is similar to the experimental results presented by Goldsmith and Finnegan [50], see

Fig. 3-18, in which a 2024-T4 aluminum plate of h = 6.35 mm struck by a hard-steel sphere

of d = 6.35 mm at V0 = 863.52 m/s broke into three pieces. A gradual transition from shear

plugging to fragmentation with the increasing impact speed has been successfully predicted

by the present fracture model.
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Fig. 3-15: Failure pattern of the 2024-T351 aluminum alloy beam impacted by the round-nosed mass

at V0 = 300 m/s.
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Fig. 3-16: History of the effective plastic strain and the stress triaxiality of the starter point of the

crack located in the middle of the thickness for the aluminum beam at V0 = 300 m/s.
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(a) t = 16 µs

(b) t = 60 µs

Fig. 3-17: Failure process of the 2024-T351 aluminum alloy beam impacted by the round-nosed mass

at V0 = 400 m/s.

Fig. 3-18: Fragmentation of a 2024-T4 aluminum plate of h = 6.35 mm struck by a hard-steel sphere

of d = 6.35 mm at V0 = 863.52 m/s [50].
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3.2.5 Transition from tensile tearing to shear plugging

In general, a target fails by tensile tearing at an impact velocity near the ballistic limit and

by shear plugging at a velocity well above the ballistic limit. At the intermediate impact

velocity, both axial stretching and shear are important to crack formation and growth, i.e.

a target may fail by a mixed mode of tensile tearing and shear plugging. Figure 3-19 shows

the failure process of the Weldox 460 E steel beam at V0 = 450 m/s. The impacted zone

of the beam is deeply indented and becomes thinner due to local stretching. Eventually,

two cracks initiate on the proximal surface, and grow downwards until a plug is formed

and ejected. A crack starter point on the proximal surface is selected to track down the

time history of the stress triaxiality and the effective plastic strain, see Fig. 3-20. It can

be seen that stress wave loading is dominant, and the stress triaxiality oscillates severely in

the initial phase. The time elapsed between the subsequent peaks is 5 µs, which is equal

to the time of the shear wave to pass two thicknesses of the beam. As time increases, the

stress triaxiality slowly increases and settles down around 0.5 until the accumulated damage

reaches the critical value. Hence, the failure of the beam at this velocity may be attributed

to the combined action of tension and shear.

As indicated by the name, a plug is always generated in shear plugging. Figure 3-21

shows the crack trajectories projected on the undeformed shape of the Weldox steel beam

at V0 ≥ 375 m/s. The area between the cracks represents the size of the plug. The mass

of the plug is always smaller than that of the impacted zone in the case of the round-

nosed projectile while the plug is almost equal in weight to the impacted zone for the shear

plugging case with a flat-nosed projectile. The decrease in the volume of the plug with the

impact velocity is consistent with experimental results [52]. At V0 ≤ 375 m/s, the Weldox

steel beam fails by tensile tearing and only one through-thickness crack is generated, i.e.

there is no plug generated.

Besides the impact velocity, the transition of the failure mode also depends on the

weight and nose shape of a projectile, as demonstrated by Teng and Wierzbicki [59]. For

conciseness, these results are not addressed in the present thesis.



72 CHAPTER 3. QUALITATIVE ANALYSIS OF FAILURE MODES

(a) t = 30 µs

(b) t = 42 µs

(c) t = 78 µs

(d) t = 96 µs

Fig. 3-19: Failure process of the Weldox 460 E steel beam impacted by the round-nosed mass at

V0 = 450 m/s.
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Fig. 3-20: History of the effective plastic strain and the stress triaxiality of the starter point of the

crack located at the proximal surface of the Weldox 460 E steel beam at V0 = 450 m/s.

(a) V0 = 600 m/s (b) V0 = 500 m/s

(c) V0 = 400 m/s (d) t = 375 m/s

Fig. 3-21: Crack trajectories mapped back on the undeformed shape represented by dark elements

for the Weldox 460 E steel beam at various impact velocities.
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The transition of the failure modes can be clearly seen by tracking down the energy

dissipation as a function of the impact velocity, see Fig. 3-22. At the impact velocity below

the ballistic limit, almost all the kinetic energy of the projectile is completely absorbed

by the target. The dissipated plastic energy increases with the impact velocity, reaches

a maximum value at the ballistic limit, and suffers a jump if the impact velocity slightly

increases. Such a drop in energy dissipation just above the ballistic limit is consistent with

experimental results by Corran et al. [51] and Børvik et al. [56].

As shown in Fig. 3-22(a), for the aluminum beam, tensile tearing occurs in a very narrow

range of the impact velocity from Vbl = 215 m/s to 240 m/s and shear plugging becomes the

favorable failure mode at V0 > 240 m/s. For the steel beam (Fig. 3-22(b)), diffuse necking

preceding fracture is evident at 240 ≤ V0 ≤ 300 m/s. The steel beam fails by tensile tearing

mostly due to thinning and local bending at 300 ≤ V0 ≤ 375 m/s. The combined action

of tension and shear gives rise to two through-thickness cracks leading to the failure of the

steel beam at V0 ≥ 375 m/s. Above this velocity, shear plugging is dominant.

Both the aluminum alloy and Weldox steel beams fail by tensile tearing at an impact

velocity just above the ballistic limit. In such a case, the target undergoes large transverse

deflection and thus the plastic energy is dissipated in a large region. By contrast, in shear

plugging, energy dissipation localizes near and in the impacted zone. The absorbed energy

in tensile tearing is much higher than that in shear plugging.

3.2.6 Residual velocities

The residual velocity of the projectile is defined as the velocity at which the projectile com-

pletely passes through the target. Plots of the initial impact velocity V0 vs. the numerically

calculated residual velocity Vr are given in Fig. 3-23 for the round-nosed projectile, which

is fitted well by (
Vr

Vbl

)4.0

= 0.656

[(
V0

Vbl

)4.0

− 1

]
, (3.1)

where Vbl = 215 m/s and Vbl = 245 m/s are the ballistic limits, respectively, for the 2024-

T351 aluminum alloy and Weldox 460 E steel beams. Note, that Eq. (3.1) is applicable to

both beams.
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Fig. 3-22: Plastic energy dissipated vs. initial impact velocity for the aluminum and steel beams.
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Fig. 3-23: Residual velocity vs. initial impact velocity for the aluminum and steel beams. The

number inside the parenthesis represents the number of generated cracks.
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Comparison of the residual velocity between the flat-nosed and the round-nosed projec-

tile is very interesting and is shown in Fig. 3-24. The residual velocity for the flat-nosed

mass is higher than that for the round-nosed mass under the same impact conditions. Large

differences occur only near the ballistic limit. The ballistic limit for the flat-nosed projectile

is Vbl = 206 m/s lower than Vbl = 215 m/s for the round-nosed projectile. The sharp

corners of the flat-nosed projectile induce the formation and propagation of the cracks and

make the target easier to be perforated.
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Fig. 3-24: Comparison of the residual velocity between the round-nosed and flat-nosed projectiles

for the 2024-T351 aluminum alloy beam.

3.2.7 Discussions

The deformation and failure response of a long metal beam impacted by a rigid, round-

/flat-nosed projectile was investigated numerically using the newly developed BW’s ductile

fracture locus. Several distinct failure modes have been identified including fragmentation,

shear plugging, and tensile tearing. The failure mechanisms were investigated by tracking

down the time history of the effective plastic strain and the stress triaxiality. Attention

is focused on the transition of the failure modes from the tension dominated to shear

dominated mechanism with the increasing impact velocities. The effects of the material

ductility are highlighted by introducing two metals: 2024-T351 aluminum alloy and Weldox



78 CHAPTER 3. QUALITATIVE ANALYSIS OF FAILURE MODES

460 E steel. It is revealed that tensile tearing is a favorable failure mode for both materials

at a velocity near the ballistic limit. The steel beam tends to break by tensile tearing while

the aluminum beam fails by shear plugging at an impact velocity well above the ballistic

limit. The numerical findings are consistent with experimental observations presented in

the literature. The present research provides an insight into the mechanics and mechanisms

of ductile fracture of beams under rigid mass impact. At the same time, it is clearly

demonstrated that the BW’s fracture criterion is capable of capturing crack formation and

distinct failure modes.

Considered here is the plane-strain beam, which corresponds to a wide beam. The author

also investigated the plane-stress case and observed a similar transition of the failure modes

as a function of the impact velocity. The relevant results were presented in Ref. [60]. In

this study, the mass ratio was kept constant while the impact velocities were varied. If

the impact velocity is kept constant, the failure mode of a beam would change from shear

plugging to tensile tearing as the mass ratio increases. Such an investigation was also

conducted by Teng and Wierzbicki [59].
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3.3 Failure modes in the Taylor test

3.3.1 Introduction

The Taylor test in which a deformable flat-nosed cylinder is fired against a fixed, rigid

wall was originally proposed to determine dynamic yield stresses of materials [61]. As

large plastic deformation, high strain rates, and elevated temperature are involved, the

Taylor test is also widely used as a benchmark problem to verify material constitutive

models by comparing numerical prediction with experimental response, e.g. Johnson and

Holmquist [62], and Rohr et al. [63]. A careful literature review reveals that over 400

papers relating to the Taylor test have been published over the past 50 years [64]. Most of

the papers focus on dynamic yield stresses and material constitutive models, but only few

authors investigated fracture phenomena and fracture mechanisms in the Taylor test. Cracks

or fragments will be generated in the Taylor test if a cylinder is fired at a sufficiently high

velocity. Couque [65] observed several spiral cracks formed on the lateral surface of a cylinder

in the symmetric Taylor tests on swaged tungsten alloy. Woodward et al. [66] presented

several pictures illustrating tensile splitting as well as fragmentation in steel specimens.

Grady and Kipp [67] found from sectioned post-test specimens that a number of voids

nucleate, grow, and coalesce in the front region of the projectile near the impact interface.

The Gurson material model [24] was used by Worswick and Pick [27], and Addessio et

al. [28] to simulate the process of void growth.

Compared with a great number of experimental studies and numerical simulations of

the process of mushrooming deformation, numerical prediction of fracture in the Taylor test

appears to be lacking in the literature. In fact, numerical prediction of crack growth in a

three-dimensional body under multi-axial dynamic loading is still a challenging problem.

Because several distinct fracture modes may occur separately or simultaneously in a single

cylinder in the Taylor test, the applicability of a specific ductile fracture criterion can be

examined by performing tests and parallel numerical simulations. In particular, the Taylor

test can be used to investigate effects of negative hydrostatic stress on fracture mechanisms

and failure modes, since the whole cylinder is predominantly under compression during the

impact process.
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This section attempts to formulate the classical Taylor problem with fracture. The defor-

mation and failure process of a cylinder in the Taylor test is simulated using ABAQUS/Explicit

implemented with the BW’s ductile fracture criterion. The objective of this research is to

capture all the possible macroscopic fracture modes observed in experiments and to inves-

tigate corresponding failure mechanisms. Similarly to the preceding case of rigid mass-to-

beam impact, the initial impact velocity of the cylinder is varied from 240 m/s to 600 m/s,

and both 2024-T351 aluminum alloy and Weldox 460 E steel are considered. In such a

way, effects of the impact velocity and the material ductility on the occurrence of a specific

failure mode will be revealed.

3.3.2 Finite element modeling

Consider normal impact of a flat-nosed cylindrical projectile onto a rigid wall, see Fig. 3-25.

The cylindrical projectile is of the diameter d = 6 mm and the length l = 30 mm. The

friction coefficient between the front surface of the projectile and the rigid wall is assumed

to be 0.1.

V0d = 6 mm l = 30 mm

Front (proximal) surface

Rear (distal) surface

Fig. 3-25: Schematic representation of a cylindrical projectile impacting against a rigid wall in the

Taylor test.
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As observed from the retrieved specimens [66], either tensile splitting or spiral cracking

develops on the lateral surface of the projectile. Hence, a three-dimensional solid finite

element model was built rather than an axisymmetric model, see Fig. 3-26. 8-node, linear

brick elements with reduced integration (C3D8R) were used. Very fine meshes were gener-

ated in the front part where fracture was expected to occur, while relatively coarse meshes

were used in the rear part of the cylinder. Totally there are 120, 000 elements in the finite

element model. The minimum element size is approximately 0.2 mm × 0.2 mm × 0.2 mm.

The struck wall was modeled as a rigid circular surface. The kinematic contact constraint

was prescribed at the impact interface, which allows the projectile to elastically rebound

from the rigid wall at the end of the impact process. It is assumed that failed elements

are still capable of resisting pressure, but neither tension nor shear. Since compression is

dominant in the cylinder during the impact process, generated cracks may close.

Fig. 3-26: Finite element model of the projectile-target system in the Taylor test.
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3.3.3 Mushrooming deformation

Immediately upon impact, elastic waves followed by plastic waves are generated at the im-

pact interface. The plastically deformed region gradually expands as the plastic stress wave

travels away from the front surface. At the same time, the elastic stress wave propagates

back and forth between the rear surface and the elastic-plastic interface. The cylinder grad-

ually slows down, and finally rebounds from the rigid wall as the stored elastic energy is

released. The front part of the cylinder bulges out due to compression while the rear part

keeps almost undeformed. This deformation process of the cylinder illustrated in Fig. 3-27

shows a familiar mushroom-like deformation mode in the Taylor test. There is an extensive

literature on this subject where comparison is made between the experimentally measured

and numerically predicted mushrooming profiles, specimen shortening, and time history of

the velocity of the rear surface. Our plasticity model is consistent with previous findings

but does not bring any new features. What is entirely new is the prediction of fracture that

will be dealt with in the remaining of the section.

3.3.4 Confined fracture

At a relatively low impact velocity, a number of voids or even cracks may be generated inside

specimens although no cracks are observed on the exterior surface. This type of failure

relating to void nucleation, growth, and coalescence has been demonstrated experimentally

by, e.g. Worswick and Pick [27], and Addessio et al. [28], and also numerically using the

Gurson material model. In the present study this failure mode is successfully recreated

using the conventional plasticity model combined with a suitable ductile fracture criterion.

As shown in Fig. 3-28, several elements fail in the region near the front surface and the

symmetry axis. Since the failed elements are confined by the rigid wall and the surrounding

intact materials, this type of failure in the Taylor test is term “confined fracture” here.

A typical point located at the symmetry axis is selected to illustrate the loading history

of the failed region, see Fig. 3-29. Immediately upon impact, compressive stress waves are

generated in both axial and radial directions. At about t = 0.76 µs a radial unloading stress

wave of extremely high amplitude arrives at the symmetry axis. As the radial stress waves

travel back and forth from the symmetry axis to the free lateral surface, all the three stress
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components of the stress tensor (σr, σθ, σz) oscillate with time. The average period is about

1.87 µs.

(a) t = 10 µs (b) t = 20 µs

(c) t = 30 µs (d) t = 40 µs

Fig. 3-27: Mushrooming deformation process of the Weldox 460 E steel projectile at V0 = 400 m/s.
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(a) V0 = 500 m/s (b) V0 = 600 m/s

Fig. 3-28: Confined fracture: failed regions represented by dark elements in an axial section of the

Weldox 460 E steel projectile. Failed elements in this figure were brought back to the

initial, undeformed configuration.
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Fig. 3-29: History of the normalized stress components at a point in the symmetry axis of the

projectile. The point is 0.6 mm away from the front surface.
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Figure 3-30 shows the history of the axial displacement of the central point of the front

surface. Contrary to intuition, the central part of the front surface does not always stay at

a close contact with the rigid wall. Immediately after impact a small gap between the front

surface and the rigid wall is temporarily formed, which closes after about t = 4 µs until

the whole projectile elastically rebounds from the rigid wall. This finding is consistent with

the numerical results by Worswick and Pick [27] and Addessio et al. [28] using the Gurson

material model.

The first several stress waves are mainly responsible for void nucleation and coalescence

inside the specimen, see Fig. 3-31. As the gap closes, the compression becomes dominant

in the central part of the cylinder and correspondingly, the stress triaxiality is lower than

−1/3. Hence, the void growth takes place mainly in the initial phase of the impact process

and is suppressed later on.

The size of the failed region inside the specimen increases with the impact velocity, see

Fig. 3-28. In the case with a relatively low impact velocity, nucleated and coalesced voids

or cracks may be still observed from sectioned post-test specimens. However, at a much

higher velocity, the voids and cracks generated in the initial phase of the impact process

could disappear or are difficult to discern due to subsequent crush by the surrounding

materials.

3.3.5 Petalling

As the initial impact velocity increases further to V0 = 600 m/s, another fracture mode:

petalling, is predicted in the Weldox 460 E steel cylinder. The process of deformation and

fracture of the projectile at V0 = 600 m/s is shown in Fig. 3-32. In contrast to the previous

cases with low impact velocities, a number of small cracks are generated on the front surface

under radial stress wave loading. However, only four major cracks survive and propagate

radially toward the symmetry axis. The growth of the cracks is mostly driven by tensile

hoop stresses. As the velocity of the rear part of the cylinder decreases, these cracks are

finally arrested.
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Fig. 3-30: History of the axial displacement of the central point of the front surface.
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Fig. 3-31: History of the effective plastic strain and the stress triaxiality at a point at the symmetric

axis of the projectile. The point is 0.6 mm away from the front surface.
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(a) t = 10 µs (b) t = 20 µs

(c) t = 25 µs (d) t = 30 µs

(e) t = 35 µs (f) t = 60 µs

Fig. 3-32: Petalling process of the Weldox 460 E steel projectile at V0 = 600 m/s.
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Our numerical prediction is qualitatively consistent with experimental results published

in the open literature. Figure 3-33 shows petalling of a 4340 steel projectile cylinder fired

at V0 = 529 m/s [68]. About eight petals were generated in the front part of the cylinder.

By contrast, the present numerical simulation predicts four petals for the Weldox 460 E

steel cylinder. The number of the petals probably depends on the impact velocity, the

ductility of the material, and the geometrical size of the projectile, which needs to be

further investigated.

The failed elements are removed to show crack initiation and growth in Fig. 3-32. In

reality, the crack formation is due to separation of materials microscopically and macro-

scopically. Therefore, the crack openings illustrated in Fig. 3-32 may be a little larger than

real ones.

Fig. 3-33: Petalling of a 4340 steel cylinder at V0 = 529 m/s. The steel was tempered at 1000 F [68].
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To provide an insight into the failure mechanism of petalling, a point located at the

periphery of the front surface is chosen to demonstrate the history of the stress triaxiality

and the effective plastic strain. As show in Fig. 3-34, the stress triaxiality at this point is

always positive except in the very beginning. Its value is very close to 1/3 during the whole

impact process, which indicates the predominantly uniaxial stress state at this point. In

actuality, the periphery of the front surface moves upward in the mushrooming deformation

process and is disconnected from the rigid wall immediately after impact. Hence, the tensile

hoop stress is the only acting stress component at the periphery of the front surface.
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Fig. 3-34: History of the effective plastic strain and the stress triaxiality of a point at the outer edge

of the front surface for the Weldox 460 E steel projectile at V0 = 600 m/s.

3.3.6 Shear cracking

The third possible fracture mode in the Taylor test is identified as shear cracking. Consider

the 2024-T351 aluminum alloy cylinder fired at V0 = 240 m/s. The Bao-Wierzbicki’s

fracture locus was defined in the simulation.

As the front part of the projectile near the rigid wall bulges out, several cracks initiate at

the periphery of the front surface, and grow spirally on the lateral surface of the projectile,
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see Fig. 3-35. This failure pattern is similar to that in quasi-static upsetting tests where a

shear crack is formed near the equator of a specimen due to barreling and resulting tensile

hoop stress (The front surface of the projectile in the Taylor test is equivalent to the equator

plane of the cylinder in the upsetting test.).

A typical point at the periphery of the front surface, where a crack initiates, is selected

to illustrate the history of both the stress triaxiality and the effective plastic strain. As

seen from Fig. 3-36, a large part of the stress triaxiality during the impact process falls

in the range from −0.3 to 0.0, which are typical values in upsetting tests [4]. Due to

dominant compression, there is friction between the newly formed crack surfaces, which

destroys micro-characteristics on the newly generated crack surfaces, and makes the crack

surface more smoother in Mode II than in Mode I.

The present numerical prediction agrees qualitatively well with the experimental results

published in the literature. Couque [65] conducted a symmetric Taylor test on swaged

tungsten alloy of static elongation of 10%. Several spiral shear cracks of 45◦ were generated

on the lateral surface of the projectile, see Fig 3-37. Papirno et al. [68] also observed shear

cracking on the lateral surface of a 4340 steel projectile cylinder moving at V0 = 315 m/s.

The cylinder was tempered at 400 F before the test. By contrast, in the previous petalling

case, the steel cylinder was tempered at 1000 F.

No shear cracking is observed for the projectile made of Weldox 460 E steel in a wide

range of the impact velocity. Note, that Weldox 460 E steel is more ductile than 2024-T351

aluminum alloy and swaged tungsten alloy. Correspondingly, in upsetting tests a ductile

short cylinder can be pressed to a large extent without any evidence of shear cracks on

the lateral surface. Hence, shear cracking would more likely take place in a less ductile

projectile while tensile petalling in a more ductile cylinder. At a higher impact velocity,

shear cracks initiating on the lateral surface would grow toward the interior of the projectile,

and eventually the front region of the projectile would break into several parts.
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Fig. 3-35: Spiral shear cracks on the lateral surface of the 2024-T351 aluminum alloy projectile at

V0 = 240 m/s.
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Fig. 3-36: History of the effective plastic strain and the stress triaxiality at a point on the edge of

the front surface of the 2024-T351 aluminum alloy projectile at V0 = 240 m/s.
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Fig. 3-37: Shear cracking on the lateral surface of two swaged tungsten alloy cylinders in the sym-

metric Taylor test [65].

Fig. 3-38: Shear cracking of a 4340 steel cylinder at V0 = 315 m/s. The steel was tempered at

400 F [68].
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3.3.7 Discussions

In this section, the mechanisms of fracture in the Taylor test were investigated numerically

on basis of the newly developed Bao-Wierzbicki’s ductile fracture locus. Three possible

fracture modes were successfully recreated: confined fracture inside the cylinder, petalling

of the front surface, and shear cracking on the lateral surface, all of which are consistent

with experimental observations presented in the open literature. Petalling would more likely

take place in a more ductile projectile fired at a higher velocity while shear cracking in a

less ductile material. Confined fracture is a common failure mode for both materials, which

occurs in a wide range of the impact velocity. Tests are being planned at the Ernest Mach

Institute in Germany to validate the present numerical findings experimentally.

Besides the three failure modes studied in the present section, adiabatic shear banding

followed by shear cracking may also occur in the Taylor test, depending on material proper-

ties and impact velocities. The minimum edge length of the present finite element model is

about 200 µm, which is much larger than the typical width of adiabatic shear bands (about

1 − 100 µm). It is difficult to use such large elements to capture evolution of an adiabatic

shear band. The transition from adiabatic shear banding to fracture will be studied in the

next section using a much finer mesh model.



94 CHAPTER 3. QUALITATIVE ANALYSIS OF FAILURE MODES

3.4 Adiabatic shear banding under dynamic compression

3.4.1 Introduction

Under high strain rates, a large part of plastic work for metallic materials is converted

to heat leading to temperature rise. If thermal softening exceeds strain and strain rate

hardening, homogeneous plastic deformation will give way to localized, band-like adiabatic

shear deformation. These bands are narrow zones of intense plastic strain embedded in a

homogeneously deforming region. Adiabatic shear banding often act as precursors of ductile

fracture and provide initiation sites and propagation pathes for cracks. The transition from

adiabatic shear banding to fracture remains elusive although both are closely related. In

most of cases, adiabatic shear banding is not clearly separated from subsequent fracture.

Adiabatic shear banding has been simply thought of in the literature as a kind of failure

mode in much the same way as sheet metal necking is identified as a failure. Little research

goes further to investigate the formation and propagation of cracks within fully developed

adiabatic shear bands. In actuality, adiabatic shear bands still adhere to matrix materials

and a deformed body keeps its integrity if no cracks are generated. The materials within

adiabatic shear bands would recover some strength after impact and are capable of resisting

successive loadings. Thus, only cracking is a final, catastrophical failure mode.

The immediate objective of this section is to study numerically the formation and prop-

agation of cracks within adiabatic shear bands. Due to its importance in impact engineering

and high speed machining, adiabatic shear banding has been extensively studied in the past

three decades. A number of theoretical models were developed in the literature. Most of

papers published before 1992 were reviewed by Bai and Dodd [42]. Wright [69] summarized

some theoretical solutions in a recent monograph. The theoretical analyses are very helpful

to understand the formation, evolution, and structure of adiabatic shear bands. However,

these simple models could not provide insights into the transition from adiabatic shear

banding to fracture.

Many experiments on adiabatic shear banding were performed. However, most of them

were limited to metallurgical examinations on post-test specimens. To track the evolution

of adiabatic shear bands, Marchand & Duffy [70] and Zhou et al. [71] used, respectively, a
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linear array of 12 and 16 infrared temperature detectors to measure temperature distribution

across a propagating adiabatic shear band. Using a square array of 64 infrared temperature

detectors in a single edge-notched plate under projectile impact, Guduru et al. [72, 73]

found for the first time that the temperature field is composed of an array of transient,

periodical “hot spots” along fully developed adiabatic shear bands. This contradicts the

well accepted assumption in theoretical models that the temperature field has a laminar

structure within adiabatic shear bands. Since temperature rise is due to the conversion

of plastic work into heat, the turbulent temperature field can be an indication for the

formation and propagation of cracks within adiabatic shear bands. Hence, this experimental

finding poses two interesting questions: can one use conventional finite element procedures

to recreate the turbulent temperature field within adiabatic shear bands? and is there any

relationship between the periodicity in the temperature field and the formation of cracks?

Numerical methods provide detailed information on stress states, which help better

understand a complex process of wave propagation and the formation and propagation of

shear bands and cracks. However, only a few numerical studies were published on this

subject in contrast to numerous experimental and theoretical investigations. The major

challenges of numerical simulations are to model the growth of adiabatic shear bands, the

propagation of subsequent cracks within adiabatic shear bands, and the transition from

brittle fracture to shear bands or vice versa. The first two issues will be explored in this

section.

In the companion paper, Zhou et al. [74] performed numerical simulations on the for-

mation and propagation of an adiabatic shear band in a single edge-notched steel plate

under projectile impact. The propagation of the shear band was assumed to be controlled

by a critical plastic strain. The material within shear bands after the stress collapse was

modeled as a Newtonian fluid, which can resist pressure and shear stresses. However, their

simulations did not capture the nonuniform temperature field within the shear band. A

thermoviscoplastical constitutive model coupled with damage evolution was developed by

Lodygowski and Perzyna[75], in which adiabatic shear banding and fracture is automatically

resolved. Mason and Worswick [76] studied numerically and experimentally the formation

and propagation of adiabatic shear bands and following cracks in punch tests. The max-
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imum shear stress (MSS), which corresponds to the stress level when thermal softening

prevails over strain and strain rate hardening, was used as a criterion for formation of the

adiabatic shear band and at the same time as a fracture criterion. Because of its simplic-

ity, the maximum shear stress criterion was often employed in theoretical analysis, e.g. Li

and Jones [77]. The problem formulated by Zhou et al. [71] was also investigated by Li et

al. [78, 79] using the meshfree Galerkin method. Compared with conventional finite element

procedures, the meshfree scheme is able to eliminate the mesh alignment sensitivity, and

thus curved shear bands or cracks can be easily modeled. Most impressively, Li et al. [78, 79]

successfully captured the hot spots within the adiabatic shear band. Nevertheless, they did

not go further to investigate the formation of cracks, since the impact velocity considered

was quite low.

It should be mentioned that the transition from adiabatic shear banding to the subse-

quent fracture within shear bands considered in the present research is different from the

phenomenon investigated by Kalthoff and Winkler [80], and Zhou et al. [71]. Kalthoff and

Winkler [80] conducted a series of impact tests on a steel specimen with two parallel edge

cracks. They found that the specimens with a sharp notch tip usually fail by brittle frac-

ture due to tensile stresses at a low impact velocity, and the failure mode was changed to

adiabatic shear banding as the impact velocity increases to a certain level. Based on finite

element analysis, Needleman and Tvergaard [81] proposed that the maximum tensile stress

would be reduced due to thermal softening associated with high strain rates so that the

brittle fracture would be suppressed at a high impact velocity. A reverse transition from

adiabatic shear banding to brittle fracture was observed by Zhou et al. [71] in a single edge

notched plate under projectile impact, in which a brittle crack initiated at the tip of an

arrested adiabatic shear band. The transition either from brittle fracture to shear banding

or vice versa depends on loading configurations and impact velocities. However, the intrin-

sic mechanism of this transition is still not clear but it is outside the scope of the present

research.

Recently, impact tests on a modified axisymmetric hat specimen made of 25% swaged

91W-6Fe-3Co tungsten alloy were performed by Couque [82, 83] using a direct compressive

Hopkinson pressure bar system (DCHP). The adiabatic shear band was generated in the
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gauge section of the specimen and then was followed by fracture. In the present section,

this problem is investigated numerically using the finite element code ABAQUS/Explicit.

The BW’s fracture criterion was implemented in the calculation to predict the formation

and propagation of the crack. Attention is focused on the transition of the failure modes

from the adiabatic shear banding to fracture. Complementary to the experiments, the

present numerical simulation provides an insight into the mechanism of the formation and

propagation of the shear band and the subsequent crack.

3.4.2 Experimental set-up

The direct compressive Hopkinson pressure bar system (DSHP), which was first developed

by Dharan and Hauser [84] to determine a compressive stress-strain relationship under high

strain rates, was used to generate adiabatic shear bands in a modified axisymmetric hat

specimen. Figure 3-39 illustrates the experimental setup. The specimen was placed against

a Hopkinson pressure bar of the length 448 mm and the diameter 20 mm. A striker bar of

the length 90 mm and the diameter 20 mm was launched by a gas gun. The impact velocity

ranges from 20 to 50 m/s to ensure elastic loading on the pressure and striker bars.

The axisymmetric hat-like specimen originally proposed by Meyer and Manwaring [85]

was modified by Couque [82, 83], see Fig. 3-40. Its gauge section is tilted at an angle of 32.6◦

with regard to the loading axis. At such an angle, the pressure would be evenly distributed

along the gauge section before an adiabatic shear band occurs [82]. By contrast, the pressure

concentrates at the corners of the original hat specimen with the gauge section parallel to

the central axis. The exterior and interior corners have the radii of r = 120 µm and 150 µm,

respectively. Due to geometrical discontinuities, both corners act as the initiation sites of

adiabatic shear bands as well as cracks in the same way as the notch tip of a pre-notched

plate.

A number of loading configurations and specimens were suggested in the literature to

induce adiabatic shear bands, e.g. projectile impact on a single edge notched plate [71],

punch tests on circular plates placed against dies [76], torsional tests on short thin-walled

tubes [70], etc. All these tests have a common feature that shear loading is dominant.

Differently, the present hat specimen is predominantly under compression during the impact
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process. Predominant pressure will suppress void nucleation and growth in the specimen,

and thus the formation of adiabatic shear bands could be more easily observed, especially

for less ductile materials.

All the pressure bar, the striker, and the specimen were made of tungsten alloys. Be-

cause of their high density and strength, tungsten alloys are often used as kinetic energy

penetrators, in which adiabatic shear banding is a common failure mode due to predomi-

nant compression. A better understanding of adiabatic shear banding will help to improve

the performance of tungsten alloy penetrators.

3.4.3 Finite element modeling

The whole impact system exhibits multiple levels of deformation in various components and

regions. Both the striker bar and the pressure bar undergo elastic deformation. The gauge

section of the specimen, in which an adiabatic shear band is expected to occur, is subjected

to localized plastic straining while the other part of the hat specimen experiences little

plastic deformation. In order to reduce computational cost, we used elements of different

size to solve this multiple level response. First, a two-dimensional finite element model was

built using four-node axisymmetric elements with reduced integration (CAX4R) since all

the components are symmetric in respect to the central axis. Uniform, square meshes with

the edge length 1 mm were used to discretize the striker bar and the pressure bar. Very fine

meshes with the element size about 10 µm×10 µm were generated in the region around the

gauge section of the specimen, see Fig. 3-41. With such small elements, the exterior and

interior round corners of the specimen can be modeled with a reasonable accuracy. High

stress and strain gradients associated with stress concentration in the vicinity of the round

corners can be captured. This is important since the adiabatic shear bands initiate at the

round corners. Relatively large elements were generated in the other part of the specimen.

The whole FE model has a total of 89,380 elements.

Mesh generation is not a trivial problem for numerical simulation of adiabatic shear

bands. The size of elements in the region where an adiabatic shear band may occur, should

be much smaller than its width. Otherwise, the prediction of adiabatic shear bands would

be delayed or even impossible. As can be measured from Fig. 3-42, the width of the present



3.4. ADIABATIC SHEAR BANDING UNDER DYNAMIC COMPRESSION 99

adiabatic shear band along the gauge section is about 40 µm, which is four times as large

as the edge length of the present elements. With such meshes, the formation and evolution

of adiabatic shear bands can be automatically resolved.

Pressure bar

Hat specimen

Striker bar

V0

448 mm 90 mm

20 mm20 mm

Fig. 3-39: Schematic representation of impact tests on the hat specimen using direct compressive

Hopkinson pressure bar system.
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Fig. 3-40: Geometrical shape and size of the modified axisymmetric hat specimen.
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Exterior corner

Interior corner

(a) Gauge section

r = 120 µm

(b) Exterior corner

r = 150 µm

(c) Interior corner

Fig. 3-41: Finite element model around the gauge section of the axisymmetric hat specimen.
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Fig. 3-42: Scanning electronic micrograph showing the generated adiabatic shear band at V0 =

27.6 m/s.

The materials within the fully developed adiabatic shear band are severely degraded

and are subjected to large plastic deformation. If fixed Lagrangian meshes are used, the

elements inside the band would be highly distorted so that the solution may lose accuracy at

the end of the impact process. To overcome the shortcoming of fixed meshing, the technique

of Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing implemented in ABAQUS was

introduced to remesh the critical region around the gauge section at every incremental step.

The ALE adaptive meshing is able to maintain high-quality meshes in the critical region

and to provide accurate solutions. It should be mentioned that the ALE adaptive meshing

does not increase or decrease the number of elements during the calculation, i.e. it does not

refine meshes around the newly generated crack tip.

Since both the striker bar and the pressure bar undergo elastic deformation, it is correct

to consider an elastic material model for both bars. The Johnson-Cook’s (JC’s) material

model implemented in ABAQUS/Explicit was used to represent the stress-strain relation

for the hat specimen under high strain rates and temperature. The material coefficients for

91W-6Ni-3Co tungsten alloy are listed in Table 5.3.

It is assumed in the present numerical simulation that the simple JC’s material model

is still applicable to the fully developed shear band, which is usually characterized by low
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load carrying capability and high strain rates as well as high temperature near the melting

point. Its effectiveness will be examined later on.

Since no fracture locus for 91W-61Ni-3Co tungsten alloy is available currently, a simple

constant fracture strain with the cut-off value for the negative stress triaxiality at −1/3

was implemented in the present calculation, see Fig. 6-5(b). Effect of the magnitude of the

fracture strain on the fracture response will be investigated.

3.4.4 Evolution of adiabatic shear bands

Immediately after impact, high stresses develop at both corners of the specimen due to the

geometrical discontinuity. This stress concentration eventually evolves into two stress bands

from each corner. The longer band grows along the gauge section, and the shorter, ear-like

one occurs on the side of impact at about 45◦ to the symmetric axis, see Fig. 3-43. The

growth of the shorter band is suppressed after the occurrence of shear localization. This

kind of stress distribution is similar to what was seen in the impact experiments on the single

edge notched plate by Guduru et al. [73] and in the numerical solutions by Needleman and

Tvergaard [81].

Fig. 3-43: Effective plastic strain field around the interior corner in the initial phase (t = 12 µs) at

V0 = 27.6 m/s.
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During the impact process, a large part of plastic work is converted to heat leading to

temperature rise and degradation of the material strength. As thermal softening exceeds

strain and strain rate hardening, which first occurs at the corners, the homogeneous plas-

tic deformation described above becomes unstable and eventually collapses into a localized,

band-like mode. The narrow shear bands initiate at the exterior and interior corners, respec-

tively, grow towards each other, and are finally arrested in the middle of the gauge section,

see Fig. 3-44. The bands are characterized by high plastic strains and high temperature.

(a) t = 24 µs (b) t = 30 µs

(c) t = 36 µs (d) t = 42 µs

Fig. 3-44: Formation and propagation of the adiabatic shear bands along the gauge section at V0 =

27.6 m/s. The colors represent the magnitude of the effective plastic strain.



104 CHAPTER 3. QUALITATIVE ANALYSIS OF FAILURE MODES

A typical material element was selected to demonstrate the development of stress states

of the adiabatic shear band, see Fig. 3-45, In the initial stage, the material element undergoes

homogeneous deformation. As soon as the stress reaches the maximum value, the material

element loses stability and the deformation becomes inhomogeneous. In this stage, the stress

almost stays at a plateau value while the plastic strain gradually increases. In Stage IV, the

stress rapidly decreases and at the same time the effective plastic strain sharply increases,

i.e. the so-called stress collapse occurs [86]. The stress collapse is a very important concept,

which provides a driving force for the propagation of the shear band in a similar way as the

singularity at the notch tip propels crack growth. This stage is also accompanied by high

strain rates. The average value in the present case is ˙̄ε ≈ 3.5 × 105 s−1. After the stress

collapse, three situations may develop depending on the location of the material element

and the impact velocity, see Fig. 3-46. The material element may break at the end of Stage

III (stress collapse, like Element A), or continue plastic deformation until fracture (like

Element B), or undergo elastic unloading recovery (like Element C and D).
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Fig. 3-45: Time history of the effective plastic strain and the effective stress of a typical point located

in the middle of the adiabatic shear band at V0 = 27.6 m/s.
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The stress collapse is one type of strain softening in which stresses decreases as a func-

tion of strains. The strain softening is usually caused by temperature rise, damage, or the

combined action of these two factors. Damage softening is associated with growth of voids

and/or micro-cracks. There is no clear definition in the literature what actually gives rise

to the stress collapse in the adiabatic shear band. Here, four material points along the adi-

abatic shear band were selected to track down the development of the stress states during

the process, which may provide an insight into the mechanism of the stress collapse, see

Figs. 3-46 and 3-47. It appears that the stress triaxialities of these points are always lower

than −1/3 except at several instances for Element A and B. Note, that σm/σ̄ = −1/3 cor-

responds to the uniaxial compressive state. Timothy and Hutchings [87] pointed out that

voids, if exist before the impact, would not grow in size under predominant compression.

Therefore, the stress collapse in the present case is purely due to thermal softening rather

than damage softening. The combined action of thermal and damage softening may be

responsible for the stress collapse in the edge-notched plate under projectile impact, e.g.

Kalthoff and Winkler [80], and Zhou et al. [71]. In their cases, shear loading is dominant,

thought compression also presents around the notch tip, and thus void growth may partic-

ipate in the stress collapse as evidenced by the scanning electron micrographs of the shear

band surfaces of the post-test specimens (Figs. 4a and 4c of Ref. [71]).

It should be mentioned that the propagation of the adiabatic shear band was successfully

captured using the single material constitutive model in this paper. The present formula-

tion is much simpler than others proposed in the literature. For example, a multi-physics

material model was used by Zhou et al. [74], and Li et al. [78, 79] in which the material

was modeled as an elastic, thermo-viscoplastic material and a viscous fluid, respectively,

before and after the stress collapse. A similar treatment that the fully-developed adiabatic

shear band was represented by an ideal compressible fluid was proposed by Batra and Ne-

chitailo [88]. They thought that it would be difficult to simulate the automatical advance of

a shear band if it is represented by a single constitutive model. Since two material models

were subsequently used by Zhou et al. [74] and Li et al. [78, 79] in the calculation, a cri-

terion to predict the stress collapse that was given by a rate-dependent critical strain was

implemented.
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Fig. 3-46: Stress collapse at four material points within the adiabatic shear band initiating at the

interior corner at V0 = 27.6 m/s.
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Fig. 3-47: Time history of the stress triaxiality of four material points within the adiabatic shear

band initiating at the interior corner at V0 = 27.6 m/s.
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To numerically determine the transient and final length of the adiabatic shear band, a

suitable criterion has to be introduced. Several criteria were suggested in the literature,

e.g. maximum shear stresses, critical plastic strains [74], critical temperature rise [79], etc.

These critical values can be calibrated from tests in combination with numerical solutions.

Two impact tests were carried out by Couque [82, 83]. The length of the generated adiabatic

shear band is 32% and 71% of the gauge section, respectively, at V0 = 26.8 m/s and 27.6 m/s.

The case with V0 = 27.6 m/s is used to calibrate the critical temperature rise, which is given

by ∆Tcr = 250 K. However, it should be pointed out that the present critical temperature

rise corresponds to the edge length of 10 µm since the numerical solution may be sensitive to

the mesh size. At the same time, another test can be used to verify this critical temperature

rise. It appears that very good agreements exist between the numerical prediction and the

experimental results at V0 = 26.8 m/s, see Fig. 3-48. The numerical results also indicate that

the adiabatic shear band extends through the whole gauge section at about V0 > 28.0 m/s.

Figure 3-49 shows the growth of the adiabatic shear band initiating from the interior corner.

Note, that the present shear band has an angle with the mesh edges. However, the shear

band does not grow either horizontally or vertically. Hence, for the present problem the

propagation of the adiabatic shear band is mainly controlled by the loading condition and

is not sensitive to the mesh alignment.

3.4.5 Crack formation and growth

The adiabatic shear banding is immediately followed by cracking. Two cracks initiate at the

exterior and interior corners, respectively, and propagate along the adiabatic shear band, see

Fig. 3-50. The adiabatic shear band of intense plastic deformation and high temperature

provides a weak path for crack propagation. The cracks are finally arrested within the

adiabatic shear band at V0 < 29.0 m/s.
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Fig. 3-48: Adiabatic shear band length vs. impact velocity.
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Fig. 3-49: Adiabatic shear band length vs. time at V0 = 27.6 m/s.
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(a) t = 24 µs (b) t = 30 µs

(c) t = 36 µs (d) t = 36 µs

(e) t = 48 µs (f) t = 48 µs

Fig. 3-50: Process of crack propagation from the interior corner at V0 = 27.6 m/s and ε̄f = 0.2 with

the cut-off value for the negative stress triaxiality.
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As shown in Fig. 3-46, Element A and B, whose stresses suddenly drop to zero, have been

broken. It is interesting to investigate the corresponding fracture mechanism since Element

A and B seem to be always dominated by compression. A close look at Fig. 3-47 reveals that

the stress triaxialities of both elements are higher than −1/3 at the end of the loading stage

or at the start of the unloading stage. During the stress collapse, unloading stress waves

were generated within the adiabatic shear band. The damage would quickly accumulate in

this stage, since the material strength is severely degraded during and/or after the stress

collapse. A similar mechanism was proposed by Timothy and Hutingson [87] based on

careful metallurgical examinations on a post-test titanium alloy plate impacted by a hard

steel sphere. Several adiabatic shear bands developed in the impacted zone beneath the

projectile. Voids were also found inside the adiabatic shear bands at a high impact velocity.

They proposed that the formation of the voids was due to shear recovery of the indentation

at the later stage of the impact process.

The stress triaxiality is not uniform along the shear band, as stated by Fig. 3-51, but

increases from large negative value at the center to positive at the edge. The statement made

in Ref. [82] that fracture was observed at high negative hydrostatic stress of σm = −1.5 GPa

does not seem to be correct. Such a state may prevail in the central portion of the gauge

section but not near the edges.

Clearly, the length of the generated cracks is a function of the impact velocity of the

striker bar, see Fig. 3-52. It appears that at a relatively low velocity the crack initiating

from the exterior corner is a little shorter than that from the exterior corner, however,

it becomes much longer at a high velocity. Figure 3-53 shows that at V0 = 29.0 m/s the

predicted cracks were arrested in the gauge section before meeting each other. If the velocity

is sufficiently high, the specimen would break into two parts.

As can be seen from Fig. 3-54, the magnitude of the effective plastic strain within the

adiabatic shear band reaches about 2.4, which is much higher than the fracture strain

in uniaxial tension. Since the stress state is predominantly compressive, the nucleation,

growth, and coalescence of voids would be suppressed. Correspondingly, the increases in

the effective plastic strain will not contribute to the damage accumulation in the calculation.

A material element may keep intact although its effective plastic strain is very large. In
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such a sense, large compressive stresses make the material more ductile [5].
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Fig. 3-51: The profiles of the stress triaxiality along the shear band at t = 24 µs right before the

crack formation.
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Fig. 3-52: Crack length vs. impact velocity at ε̄f = 0.2 with the cut-off value.
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Fig. 3-53: Shear bands and cracks generated along the gauge section at V0 = 29.0 m/s.
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Fig. 3-54: Time history of effective plastic strain of four material points within the adiabatic shear

band initiating at the exterior corner at V0 = 27.6 m/s.
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Figure 3-55 shows the comparison of the final fracture pattern between the numerical

simulation and the test results by Couque [82]. At the same time, it can be seen from

Fig. 3-52 that the numerically predicted crack length is very close to the experimentally

measured values. Very good agreements between the test and simulation prove the correct-

ness of the present numerical solutions.

(a) Numerical prediction

(b) Experimental results

Fig. 3-55: The crack and shear band generated around the interior corner at V0 = 27.6 m/s.
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3.4.6 Temperature fields

Figure 3-57 shows spatial and temporal evolution of temperature field along the gauge

section of the specimen. It appears that the temperature is highly nonuniform within the

adiabatic shear band. The high gradient of the temperature field across the adiabatic shear

band can be clearly observed from two typical temperature profiles shown in Fig. 3-56. This

cusp-shaped distribution across the shear band, i.e. the so-called canonical structure of the

fully-developed adiabatic shear band [89], is consistent with experimental observations by,

e.g. Marchand and Duffy [70], Zhou et al. [71]. The maximum temperature rise is about

1100 K at the impact velocity of V0 = 27.6 m/s.

The most interesting finding of the present numerical solution is that temperature distri-

bution is slightly turbulent, and a number of small regions of intense temperature develops

periodically along the length of the adiabatic shear band, see Fig. 3-58. The average spacing

between these “hot spots” is 23 µm. Stresses and strains have similar patterns. In a way,

these hot spots resemble vortices shed from a circular cylinder downstream into a wake.

This result contradicts the assumption made in the theoretical models, e.g. Wright and

Ravichandran [89], in which the plastic flow within the adiabatic shear band was laminar.

T
em

pe
ra

tu
re

(K
)

Distance (mm)

Shear band

Fig. 3-56: Temperature distribution along two lines across the adiabatic shear bands at V0 =

27.6 m/s.
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(a) t = 24 µs (b) t = 30 µs

(c) t = 36 µs (d) t = 48 µs

Fig. 3-57: Transient temperature fields around the interior corner at V0 = 27.6 m/s.

The present numerical results are consistent with the experimental findings by Guduru

et al. [72, 73]. They used a square array of 64 infrared temperature detectors and for the

first time, recorded the evolution of two-dimensional temperature field of adiabatic shear

bands in a single edge-notched steel plate under projectile impact. The loading configuration

and specimen are entirely different from the present ones. The occurrence of the turbulent

temperature field in both specimens may indicate that the turbulent temperature structure

is an intrinsic feature of adiabatic shear bands.

Since temperature within adiabatic shear bands may rise to near the metal melting

point, the materials would lose most of the load carrying capability and become very easy to
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deform. At the same time, the surrounding materials experience little plastic strain. In such

a sense, the behavior of the materials within the adiabatic shear band are very similar to that

of a thin layer of viscous fluid confined between two rigid plates, i.e. the plane Couette flow

in fluids [72]. Under a certain condition, the plane Couette flow would become unstable. For

example, by assuming the fluid viscosity as a function of temperature, Yueh and Weng [90]

proved that small perturbations would lead to the instability of the plane Couette flow if the

Reynolds number exceeds a critical value. Based on two-dimensional perturbation analyses,

Molinari and Leroy [91] derived the instability conditions and recreated spatially repeated

temperature patterns using a thermo-viscoplatic constitutive model. In analogy to the plane

Couette flow, Guduru et al. [72, 73] conjectured that the highly nonuniform temperature

distribution would imply a new kind of thermo-mechanical instability developing within the

adiabatic shear band.

Fig. 3-58: Periodical occurrence of hot spots within the adiabatic shear band at V0 = 27.6 m/s.

It should be emphasized that the spatially repeated hot spots within the adiabatic shear

band were recreated in the present study using the conventional finite element procedure

and the simple material constitutive model. This is completely different from Li et al.’s

approach, in which the evolution of the temperature field in Guduru et al.’s experiment

was captured using the mesh-free scheme and the multi-physics material models [78, 79]. It
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seems that a key factor in capturing the hot spots is to use sufficiently small meshes rather

than modify numerical methods or introduce complex material constitutive models.

A question was raised by Guduru et al. [72, 73] and Li et al. [78, 79] whether there is

any implication of the hot spots on ductile fracture. No answer was given to this question.

Since the spatial resolution of the infrared temperature detector used by Guduru et al.

is about 110 µm, which may be much larger than the width of a shear crack, and thus

it would be difficult to track down the crack growth. The present research, in which the

adiabatic shear band and shear fracture were treated separately, provides an insight into

this question. The physical role of the hot spots in ductile fracture becomes clear when

we make a close look at the process of crack growth. As shown in Fig. 3-50 these hot

spots offer a series of initiation sites of ductile fracture since higher temperature means

larger plastic strains. The crack within the shear band was formed mainly by linkage rather

than the propagation of a major crack. This mechanism is driven by mechanics rather

than materials. By contrast, the nucleation and growth of voids independently at different

sites as often seen in scanning electronic micrographs of fracture surfaces is usually due to

material defects of micro-structures.

3.4.7 Effect of fracture strains

The fracture properties of a specific material depend on stress states, strain rates, tem-

perature, material microstructures, and material processing, etc. Since no fracture locus is

available currently for the 25% swaged 91W-6Ni-3co tungsten alloy, it is necessary to inves-

tigate effects of the magnitude of the fracture strain on the predicted fracture response.

Figure 3-59 shows the numerically predicted crack length as a function of the magnitude

of the fracture strain. Since the absolute magnitude of the crack length is lower than 1 mm

while the fracture strain varies in a wide range from 0.1 to 0.5, it can be concluded that the

fracture response is relatively not much sensitive to the magnitude of the fracture strain.

At the same time, since cracking is far lag behind the occurrence of the shear band, the

crack formation would not have much influence on the development of the adiabatic shear

band.
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Fig. 3-59: The predicted length of the crack initiating at the interior corner as a function of the

magnitude of the fracture strain.

3.4.8 Adaptive vs. fixed meshing

The materials within the adiabatic shear band is subjected to large plastic deformation.

Originally regular meshes would be severely distorted if fixed meshing were used. As shown

in Fig. 3-60 where a fixed Lagrangian mesh is used, the originally square elements undergo

large rotation and stretching. Such low-quality meshes would be unable to provide suffi-

ciently accurate results for the prediction of the following fracture. Arbitrary Lagrangian-

Eulerian (ALE) adaptive meshing gives more accurate and robust solutions if numerical

errors introduced in re-mapping solution variables from an old mesh to a new one are very

small.

In some cases, adaptive meshing can speed up computation by improving the quality

of severely deformed meshes. However, for the present problem the computational time

increases from 12 hours (fixed meshing) to 26 hours (adaptive meshing) due to a number

of remapping operations. Another disadvantage of adaptive meshing is the difficulty of

tracking down the time history of the stress state of a specific material element, because

the adapted mesh is not fixed to the same material point throughout the calculation. In

the previous figures regarding the time history of the components of the stress and strain
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tensors, fixed meshing was used in the calculation instead of adaptive meshing.

The hot spots can also be identified from Fig. 3-60. This confirms that the nonuniform

structure of the adiabatic shear band does not result from adaptive meshing and spatial

remapping of solution variables but an intrinsic feature of the adiabatic shear banding.

(a) (b)

Fig. 3-60: Temperature contours using fixed meshing at V0 = 27.6 m/s.

3.4.9 Concluding remarks

In this section, a recently performed impact experiment on an axisymmetric hat specimen

was simulated using ABAQUS/Explicit. The formation and propagation of the adiabatic

shear bands and the subsequent cracks were successfully captured and the corresponding

mechanisms were investigated. In contrast to the existing analysis published in the litera-

ture, the fracture was clearly distinguished from the adiabatic shear band in this research.

The adiabatic shear band was automatically resolved while the prediction of cracking was

achieved by implementing the newly developed BW’s fracture locus. It was found that the

hot spots that periodically occur in the propagating shear band act as the initiation sites

of the crack. Thus, the formation of the crack within the shear band resembles a linkage of

small cracks rather than the growth of a single major crack. Comparison with the experi-

mental results was made showing very good agreements, which verifies the accuracy of the

present numerical simulations.

In the present tungsten alloy hat specimen, adiabatic shear banding is followed by shear
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cracking. Another failure scenario also exists that shear crack precedes adiabatic shear

banding, depending on impact configurations and material properties of targets. For a 2024-

T351 aluminum alloy beam impacted by a rigid, flat-nosed mass moving at V0 = 240 m/s,

Teng and Wierzbicki [60] found that the plastic instability strain, which is in the range of

0.7 ∼ 0.9 [92], is much higher than the fracture strain. Hence, the beam would fail by shear

cracking before adiabatic shear bands occur.

The typical width of adiabatic shear bands ranges from 10 to 100 µm depending on

loading levels and grain size [42]. Several solid elements are needed to capture the formation

and growth of adiabatic shear bands in the lateral direction. It should be noted that at

such a fine scale, material microstructures would become equally important as mechanics

for the formation of adiabatic shear bands. In the present study, the problem is still treated

in the context of continuum mechanics. It is not clear how to take into account material

microstructures in the numerical prediction of adiabatic shear bands.

Up to date, almost all research on adiabatic shear banding was done in laboratories

at a component level. How to apply our understanding obtained from specially designed

specimens to practical problems remains unclear. The width of adiabatic shear bands is

typically 1 − 100 µm while the lower limit of the element edge length affordable in the

calculation of real penetration problems is about 1 mm [93]. Using such elements, the

prediction of adiabatic shear bands would be delayed or impossible. In tests, adiabatic

shear bands are usually induced by specially designed geometrical discontinuities such as

pre-notches, sharp corners, etc. By contrast, actual targets usually have smooth surfaces and

thus adiabatic shear banding is caused mainly by microstructural inhomogeneities, which

are quite random in real materials. It is more difficult to introduce material imperfections

in numerical modelling than geometrical discontinuities.



Chapter 4

Properties of Through-Thickness

Crack Growth

4.1 Introduction

Crack formation and growth has been extensively studied in the literature, mostly for elastic

brittle materials and small plastic deformation problems. As Rosakis and Ravichanran [3]

pointed out in a review article, the dynamic ductile fracture remains unexplored. This

chapter studies the perforation problem of a metal beam/plate under high velocity mass

impact. Numerous voids are often observed from scan electronic micrographs of post-test

specimens ahead of an arrested crack tip and in the wake region of a generated crack, e.g.

Børvik et al. [94]. At the same time, the fracture surface exhibits a number of dimples, e.g.

Mason and Worswick [76], Dey [95] (Fig. 95). These experimental observations indicate

that a metal target under high velocity impact tends to fail by ductile fracture. Hence,

the perforation response belongs to dynamic ductile fracture. Comprehensive reviews on

perforation mechanisms and analytical solutions can be found in the journal articles by

Anderson and Bodner [43], Corbett et al. [44], and Goldsmith [8]. A main interest of the

research presented in the literature was on the determination of ballistic limits of targets.

As compared to extensive literature on the ballistic limit, only few papers deal with

through-thickness crack propagation, even though crack propagation is always involved in

the perforation problem. Most of perforation experiments were performed on opaque plate

121
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specimens such that crack growth through the target thickness is difficult to track down

using currently available techniques. By contrast, finite element procedures are capable

of overcoming this difficulty and giving abundant details about crack initiation, crack tip

speeds, and crack trajectories, provided that these algorithms are equipped with a suitable

material constitutive model and fracture model. Finite element methods have reached a

state of maturity. Many commercial codes such as ABAQUS, LS-DYNA3D, etc. are capable

of fulfilling these tasks. Some numerical studies were published in the open literature, e.g.

Ambur et al. [96], Guo et al. [97], and Børvik et al. [56, 55]. Similarly to experimental

investigations, attention was focused mainly on the numerical determination of ballistic

limits while the formation and growth of cracks were not addressed in these papers.

In Chapter 3, we have successfully demonstrated the applicability of the BW’s fracture

criterion to high velocity impact problems. In this chapter, we will use this fracture locus

to specifically investigate crack formation and propagation in shear plugging. We first

propose an analytical expression controlling the growth of through-thickness cracks, and

then perform an extensive parametric study to numerically verify this crack growth curve.

In additional, effects of a propagating crack on damage accumulation are discussed and

crack propagation speeds are calculated.

4.2 Development of crack growth curve

A beam/plate favorably fails by shear plugging if a projectile is heavy, of flat-nose shape,

and moves at a high impact velocity. Two cracks usually initiate on the proximal surface

and grow through the target thickness until to the distal surface. As shown in Chapter 3.2.4,

during the shear plugging failure process, plastic deformations occur at three distinct scales:

localized shear deformation through the target thickness, large compression of the impacted

zone of the target directly beneath the projectile, and global plastic bending/axial stretching

deformation. The last one is usually negligible at a high impact velocity compared with the

first two plastic deformation. This kind of failure pattern can be described by means of two

variables: the crack length a and the indentation depth u, as shown in Fig. 4-1. Preliminary
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numerical results suggest the following relationship between these quantities [60]:

a

h
= K

[
(1 + µ)

c

V0

u

h

]λ

(4.1)

where c is the transverse plastic wave speed defined in Eq. (7.4), K and λ are two material

constants, and the mass ratio µ of the impacted zone of the target to the projectile is defined

by

µ =
2ρhbd

M0
(4.2)

for a beam, and

µ =
ρπhd2/4

M0
(4.3)

for a circular plate.

a

u

h

Projectile

Target

Fig. 4-1: Schematic representation of through-thickness shear cracks.

Differentiating Eq. (4.1) with respect to time gives the crack tip speed v:

v

V
= λK

[
(1 + µ)

c

V0

]λ (u

h

)λ−1
, (4.4)

where v = da/dt; and V = du/dt is the indentation rate. If the global deformation of the

target can be neglected, V is just the velocity of the projectile. A derivation of the expres-

sions for both instantaneous and average crack tip speeds will be presented in Chapter 7.5.

It is impossible that the critical indentation depth would exceed the target thickness,

which imposes a restriction on the range of applicability of Eq. (4.1). Setting u = h and
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a = h in Eq. (7.206) gives the upper bound of the impact velocity, V0,u,

V0,u

c
= K1/λ(1 + µ). (4.5)

To date, no experimental results are available to corroborate the relationship between

the crack length and the indentation depth. But a similar relationship was proposed earlier

in the literature. McClintock and Slocum [98] found analytically that a crack along a shear

band grows in an exponential way with shear displacement for a fully plastic plate under

quasi-static Mode II loading.

It should be mentioned that Eq. (4.1) was originally obtained by curve-fitting crack

growth for a specific case in which the initial impact velocity was varied and other param-

eters were kept constant [60]. The development of Eq. (4.1) in a purely analytical way

remains open. The immediate objective of this chapter is to show that Eq. (4.1) derived

for a specific set of input parameters is also valid in a wide range of impact velocities, plate

thicknesses, and mass ratios. This is accomplished through an extensive parametric study

in which only one parameter was varied at a time.

4.3 Crack initiation sites

In a pre-notched specimen, a crack always initiates at a small fracture process zone (FPZ)

around the notch tip. This fracture process zone advances with the newly generated crack

tip. Macroscopically, it looks like that a major crack propagates away from the notch tip.

By contrast, all the targets considered in the present thesis do not have any damage before

impact loading. The site of crack initiation will depend on a specific combination of all the

input variables. This makes the problem interesting and at the same time difficult to track

down the formation and growth of a crack in experiments.

In Chapter 3.2, we have already demonstrated several numerical examples with different

sites of the crack initiation. In the case of the flat-nosed projectile moving at a high impact

velocity, the cracks are always induced by the sharp corners on the proximal surface of the

target due to the stress concentration, see e.g. Fig. 3-14. The sharp corners also drive the

cracks to propagate through the target thickness until the cracks reach the distal surface of
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the beam.

In the case with a round-nosed projectile, the impacted zone of a target gradually wraps

with the rigid projectile. There are no stress concentration points on the proximal surface.

The initiation site of a crack may be located on the distal surface of a target, e.g. see

Fig. 3-12, in which a plane-strain beam of h = 2 mm is impacted by the projectile of the

diameter d = 20 mm.

It is also possible that cracks initiate in the middle of a target. Figure 4-2 shows the crack

formation of a plane-stress aluminum alloy beam impacted by a round-cornered projectile

moving at V0 = 240 m/s. It appears that two cracks first occur in the middle of a plane-

stress beam and propagate upwards and downwards simultaneously until a plug is formed.

The failure of the beam is due to a combined action of shear and tension [59].

In this chapter, the first case is of most interest and will be extensively studied. The

crack growth curve given in Eq. (4.1) is not applicable to the latter two cases.

Viewport: 1 ODB: D:/project/Perforation/Round50.odb

(a) t = 43.3 µs

r = 5 mm

(b) t = 73.3 µs

Fig. 4-2: Crack formation and growth of the plane-stress beam of h = 10 mm impacted by the

projectile of µ = 0.1 and 2r/d = 0.50 at V0 = 240 m/s (d = 20 mm).
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4.4 Crack initiation vs. propagation

Most of ductile fracture criteria including the BW’s fracture locus were initially developed

for crack formation. Crack propagation is essentially thought of as a sequence of fracture re-

initiation for each failed element in applications. A question is naturally raised whether such

an approach is correct since crack formation and propagation have different mechanisms [99].

An attempt is made in this section to explore the issue.

As a crack grows inside a originally continuum body, new boundaries are generated.

The crack propagation process can be thought of as a series of new initial-boundary value

problems. Different from the crack formation in an uncracked body, a propagating crack

gives rise to the stress concentration at its tip, and at the same time, unloading stress waves

emanate from the newly generated free boundaries. Both factors will contribute to variation

of the stress and strain states of a region ahead of the crack tip. In such a sense, the crack

formation has a different mechanism from the crack growth.

For a pre-notched specimen under loading, plastic deformation concentrates at the frac-

ture process zone in the vicinity of the tip of a crack. By contrast, for an uncracked body

under high intensity stress wave loading, a large part of the target thickness in a critical

region already undergoes large plastic deformation before crack formation. A propagating

crack would not add much damage on an element leading to its complete failure. Hence, the

approximate treatment of crack propagation as a sequence of fracture re-initiation would

give reasonable results such as residual velocities, failure patterns, and even crack tip speeds.

This is more true for a target under round-nosed mass impact, in which the geometry of

a struck beam/plate keeps continuous and thus there is no stress concentration. Figure 4-3

shows the crack formation of a plane-strain beam under round-nosed mass impact. On

close scrutiny, it can be observed that multiple fractures start at various points through the

beam thickness almost at the same time. The through-thickness plug is formed mainly by

linkage rather than propagation of a single crack. Note, that the time increment between

Figs. 4-3(a) and 4-3(c) is only 1 µs.
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(a) t = 18 µs

(b) Dark represents the failed elements

(c) t = 19 µs

Fig. 4-3: Crack formation of the 2024-T351 aluminum alloy beam of h = 10 mm impacted by the

round-nosed mass of µ = 0.1 at V0 = 300 m/s.
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In the flat-nosed case, two major cracks would be induced by the sharp corners of the

projectile and grow all the way down to the distal surface. The propagating cracks would

have a certain effect on the damage accumulation ahead of the crack. One simple way

to investigate this effect is to make a comparison between two cases: one with a fracture

locus implemented and the other without fracture. In the former case, failed elements are

removed to model the crack formation and propagation while in the latter case, the target

undergoes large plastic deformation but keeps intact. Figure 4-4 shows the damage evolution

of three typical elements in the case of a plane-strain aluminum alloy beam impacted by a

flat-nosed projectile. These three elements are located, respectively, on the proximal and

distal surfaces, and in the middle of the beam. In the case with fracture, an element fails as

soon as the damage indicator defined in Eq. (5.3) reaches unity. Certainly, both cases agree

well in Element A located on the proximal surface before the damage indicator reaches the

critical value. The damage accumulation of Element B is quite close to each other in both

cases. This indicates that a propagating crack would not add much damage on the central

part of the beam leading to its complete failure. In contrast to the Element A and B, there

is large difference in the damage evolution of Element C at the end of the failure process. As

the generated crack propagates down, the ligament of the beam is shortened. The growth

of the crack and shortening of the ligament would contribute to the difference between both

cases. However, it is difficult to discern their respective roles.

As can be observed from the definition of the damage index, Eq. (5.3), both the effective

plastic strain and the stress triaxiality are equally important to the damage accumulation.

Figure 4-5 shows the time history of the stress triaxiality and the effective plastic strain

of Element C. It is seen that the growth of the crack and the shortening of the ligament

do not have much influence on the stress triaxiality. However, this is not the case for the

effective plastic strain, which rapidly increases at the end of the failure process in the case

with fracture.
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Fig. 4-4: Damage accumulation of three points along the crack of the plane-stress beam of h = 10 mm

impacted by the flat-nosed projectile of µ = 0.1 at V0 = 240 m/s.
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Fig. 4-5: Time history of the stress triaxiality and the effective plastic strain of the point (Point

C) located at the distal surface of the plane-stress beam of h = 10 mm impacted by the

flat-nosed projectile of µ = 0.1 at V0 = 240 m/s.
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4.5 Parametric study on crack growth

4.5.1 Finite element modeling

Two types of projectile-target systems are considered in the present section: a long, solid

beam of rectangular cross-section impacted by a rigid cubic projectile, and a large circular

plate impacted by a flat-nosed, rigid, cylindrical projectile. In finite element modeling, both

the beam length l = 1.0 m (the diameter of the circular plate) and the breadth d = 20 mm

(the diameter) of the projectile were kept constant, while other geometrical and mechanical

parameters such as the mass of the projectile M0, the thickness of the target h, the impact

velocity V0, etc. were varied to investigate their effects on the perforation process.

10 mm

10 mm

d = 20 mm

Rigid mass

Impacted zone

Fig. 4-6: Finite element meshes of the impacted zone of a beam struck by a flat-nosed mass.

Since attention is focused on crack propagation through the thickness, 2-D finite element

models were built instead of 3-D solid element models. A narrow beam can expand laterally

with little constraints when it is indented by a projectile. Thus, plane stress elements were

suitable for this type of beams, while plane strain elements have to be used for a wide beam.

For a circular plate under high velocity impact by a flat-nosed projectile, shear plugging

is a favorable failure mode rather than petalling, and thus a 2-D model can also be built

using axisymmetric elements. The deformation and possible failure of the projectile was

not taken into account in the present formulation. The projectile is represented by a rigid

surface in the finite element model.

One of the finite element mesh models is illustrated in Fig. 4-6 where the minimum
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element size is 0.2 mm × 0.2 mm. The targets are assumed to be made of 2024-T351

aluminum alloy. The JC’s material model and the BW’s fracture locus were defined in the

calculation.

4.5.2 Impact velocity

As demonstrated in Chapter 3, there are three possible failure modes for a beam/plate

struck by a rigid projectile: tensile tearing, shear plugging, and adiabatic shear banding

followed by fracture in the ascending order of the impact velocity. This chapter is concerned

with shear plugging.

Clearly, the initial impact velocity is one of the most important parameters controlling

the formation and growth of cracks. Figure 4-7 shows four crack propagation curves as a

function of the normalized indentation depth. The target beam considered is of the thickness

h = 10 mm and the rigid, flat-nosed projectile is of the mass ratio µ = 0.1. The impact

velocity was varied from 160 m/s to 300 m/s, while other parameters were kept constant.

As shown by Teng and Wierzbicki [60], this beam fails by tensile tearing at V0 < 180 m/s

while by shear plugging at V0 ≥ 180 m/s. In tensile tearing, cracks rapidly propagate

downwards until to the distal surface with little indentation. This corresponds to the

vertical increase in the crack length at the end of the failure process for the case with

V0 = 160 m/s, as shown in Fig. 4-7. In other three cases, the present target fails by shear

plugging, and plots of crack length vs. indentation depth can be fitted well by Eq. (4.1)

with K = 10 and λ = 4.

4.5.3 Projectile mass

Another parameter controlling the perforation process is the weight of the projectile. Its

effect on the transition of the failure modes from tensile tearing to shear plugging was

presented in Ref. [59]. It was found that the present beam of h = 10 mm fails by shear

plugging at V0 = 240 m/s if the mass ratio falls in the range of µ < 0.35. Note, that the

small mass ratio corresponds to the heavy projectile. In this range, Eq. (4.1) gives a rather

good fit for the curves of instantaneous crack length vs. indentation depth using Eq. (4.1),

see Fig. 4-8.



132 CHAPTER 4. PROPERTIES OF THROUGH-THICKNESS CRACK GROWTH

N
or

m
al

iz
ed

cr
ac

k
le

ng
th

a h

Normalized indentation depth (1 + µ) c
V0

u
h

V0 = 300 m/s

V0 = 240 m/s

V0 = 200 m/s

V0 = 160 m/s

Tensile tearing Shear plugging

a
h

= 10
[
(1 + µ) c

V0

u
h

]4

Fig. 4-7: Crack propagation at various impact velocities for the plane-stress beam of h = 10 mm

and µ = 0.1. The points represent the numerical results and the curve denotes Eq. (4.1).

The dash line represents a fitting curve for the tensile tearing case at V0 = 160 m/s.
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Fig. 4-8: Crack propagation at various mass ratios for the plane-stress beam of h = 10 mm at

V0 = 240 m/s.
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4.5.4 Beam thickness

A target is thought of to be thin/thick if its thickness is much smaller/larger than the

projectile breadth. An occurrence of a specific failure mode also depends on the aspect

ratio of the beam thickness to the projectile breadth. But either a thin or intermediately

thick target would fail by shear plugging if the impact velocity of the projectile is sufficiently

high.
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Fig. 4-9: Crack propagation in the plane-stress beam of various thicknesses at V0 = 240 m/s and

µ = 0.1.

Effects of the plate thickness on the ballistic limit were extensively studied experimen-

tally and numerically by Børvik et al. [100], and by Corran et al. [51]. They found that

there is a kink in the curve of ballistic limits vs. thickness corresponding to the transition

of the failure mode from tensile tearing to shear plugging. By contrast, effects of the tar-

get thickness on crack propagation are investigated here at an impact velocity well above

the ballistic limits. Three cases with different aspect ratios h/d = 0.25, 0.50, and 1.0 were

considered, respectively. The ratio of h/d = 0.25 corresponds to the case of a thin beam,

while h/d = 1.0 to the case of a intermediately thick beam. In finite element modeling,

the breadth of the projectile d = 20 mm, the mass ratio µ = 0.1, and the impact velocity

V0 = 240 m/s were kept constant as well as the element size near and in the impacted zone.



134 CHAPTER 4. PROPERTIES OF THROUGH-THICKNESS CRACK GROWTH

As shown in Fig. 4-9, the relation between the crack length and the indentation depth can

be fitted well by Eq. (4.1) with the same set of constants K = 10 and λ = 4. It indicates

that as long as the target fails by shear plugging, the aspect ratio does not have much

influence on crack propagation. Note, that this dimensionless group h/d does not enter into

Eq. (4.1).

4.5.5 Plane-strain beam

In the preceding subsections, the target beam was discretized using plane-stress elements.

As a counterpart to the plane-stress beam, a plane-strain beam is considered here, which

represents a wide beam with large constraint in the lateral direction. The plane-stress and

plane-strain models can be thought of as two limiting cases of a real beam with a finite

breadth.
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Fig. 4-10: Crack propagation in the plane-strain beam of h = 10 mm at V0 = 240 m/s.

Since localized shear deformation is dominant, through-thickness crack propagation is

not much influenced by the lateral constraint, as shown in Fig. 4-10. However, there is large

difference in the velocity history of the projectile between the plane-stress and plane-strain

cases, specially in the indentation phase, see Fig. 4-11. For the plane-stress case, the beam

can expand in the lateral direction without any constraints when indented. But it is not the
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case for the plane-strain beam. The projectile is much resisted by the plane-strain beam in

the indentation phase, and thus its velocity decreases more rapidly. However, the residual

velocities of the projectile are almost the same in both cases. This indicates that a large

part of the kinetic energy is dissipated in the form of shear cracking rather than indentation.
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Fig. 4-11: Velocity history of the projectile for the circular plate, and plane-stress and plane-strain

beams of h = 10 mm at V0 = 240 m/s and µ = 0.1.

4.5.6 Circular plate

Under high velocity impact, a circular plate would also fail by shear plugging, similar to

the beam case. Figure 4-12 shows the shear failure pattern of a circular plate of h =

10 mm struck by a rigid, flat-nosed cylindrical projectile of d = 2h = 20 mm moving at

V0 = 240 m/s. This plastic deformation and failure pattern was captured using a two-

dimensional axisymmetric finite element model. Since very localized shear deformation is

dominant in shear plugging and such a deformation mode does not introduce additional

axial or circumferential strains, crack propagation in the circular plate is similar to that in

the beam in the second phase. The crack growth is almost the same as that in the beam

except in the initial phase, see Fig. 4-13.

The velocity history of the projectile is shown in Fig. 4-11. It can be seen that the
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residual velocity of the projectile in the circular plate case is lower than for the beam cases,

because shear resistance is much larger in a circular plate than in a beam. A theoretical

validation of this numerical finding will be presented in Chapter 7.5.

Fig. 4-12: Failure pattern of the circular plate of h = 10 mm struck by the cylindrical projectile

with V0 = 240 m/s and µ = 0.1.
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Fig. 4-13: Crack propagation in the circular plate of h = 10 mm at various impact velocities and

mass ratios.
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4.6 Crack propagation speed

The crack propagation speed is an important property of crack growth since crack prop-

agation is closely related to energy dissipation through material separation. This topic

has received much attention for elastic brittle materials, but not for elastic-plastic ductile

metals [101].

The crack propagation speed is not a basic output variable in most of finite element

codes, but it can be estimated from the crack growth curve by differentiating crack extension

with respect to time. Figure 4-14 shows plots of crack extension vs. time for the plane-stress

beam at various impact velocities. It appears that crack propagation in shear plugging

consists of two phases. In the first phase, uniform indentation is dominant and cracks

slowly grow, while in the second phase, localized shear deformation is dominant and crack

propagation is much faster. This feature will be employed to develop a theoretical shear

plugging model presented in Chapter 7.5. The time history of the crack length for the

present cases is fitted well by a piecewise linear function. This indicates that constant

average values can be used to approximate crack propagation speeds in the respective phases.

The average crack propagation speed of the second phase is given by v = 1056, 1007,

and 707 m/s, respectively, for the impact velocity V0 = 300, 240, and 200 m/s. Clearly,

the average crack propagation speed also depends on other parameters such as the target

thickness, the projectile weight, etc. For instance, Figure 4-15 shows the relation between

the average crack propagation speed of the second phase and the mass ratio.

The instantaneous crack propagation speed can be calculated using least square linear

fitting for successive three points in plots of crack extension vs. time. This method was first

suggested by Needleman [15]. It is seen from Fig. 4-16 that in general, the crack propagation

speed increases with time, though there are some oscillations during the impact process.

The crack propagation speed is sensitive to the initial impact velocity. Thus, in contrast to

the elastic and plastic waves speeds, it is not a property of a material.
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Fig. 4-14: Time history of crack extension at various impact velocities for the plane-stress beam of

h = 10 mm and µ = 0.1.
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Fig. 4-15: Average crack tip speeds vs. mass ratios for the plane-stress beam of h = 10 mm at

V0 = 240 m/s.
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As can be seen from Figs. 4-15 and 4-16, the maximum crack tip speed is near 1500 m/s,

and the average crack tip speed is of the order of 1000 m/s for 2024-T351 aluminum alloy.

The average speed is 31% of the Rayleigh wave speed, and is twice as high as the transverse

plastic wave speed c. The Rayleigh wave speed is given, for 2024-T351 aluminum alloy, by

cR ≈ 0.93

√
E

2ρ (1 + ν)
= 3000 m/s. (4.6)

The Rayleigh wave speed is usually thought of as the limiting speed of elastic shear crack

propagation. This was determined from the energy view of point in the context of linear

elastic continuum mechanics [102]. Due to plastic constraints at the propagating crack tip,

it is believed that the limiting speed in a plastically deformed region would be much lower

than the Rayleigh wave speed.
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Fig. 4-16: Instantaneous crack tip speeds vs. time for the plane-stress beam of h = 10 mm and

µ = 0.1.

4.7 Discussions

As shown in the preceding sections, Eq. (4.1) relating the crack extension to the indentation

depth is quite general and applicable to the beam case as well as the circular plate case,
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provided that the targets fail by shear plugging. For 2024-T351 aluminum alloy, Eq. (4.1)

with K = 10 and λ = 4 is suitable in a wide range of aspect ratios (h/d ≤ 1.0), mass ratios

(µ < 0.4), and impact velocities (180 − 300 m/s). A limited study on Weldox 460 E steel

has also been performed and it is found that K = 0.5 and λ = 4 fits well with numerical

results. Note, that Weldox 460 E steel is more ductile than 2024-T351 aluminum alloy. The

detailed results will be presented in Chapter 7.5.

It is believed that other expressions such as a polynomial function with several terms

would give better curve-fitting for the relation of the crack length and the indentation depth.

To be capable of deriving a closed-form solution for the shear-plugging problem, the power

function as shown in Eq. (4.1) is used here. As an alternative, the crack propagation can

also be well approximated by a piecewise linear function, see Fig. 4-17. Specifically for the

plane strain beam case and the circular plate case, the piecewise linear function is given by

a

h
=

⎧⎨
⎩

0 0 ≤ u ≤ ui

4.5
[
(1 + µ) c

V0

u
h

]
− 1.4 ui ≤ u ≤ ucr

, (4.7)

where ui is the indentation depth at which the cracks initiate, which is given by, for 2024-

T351 aluminum alloy,
ui

h
=

0.31
1 + µ

V0

c
. (4.8)

The physical meaning of the piecewise linear fitting is that the whole perforation process can

be ideally separated into two phases. In the first phase, only indentation is involved without

crack growth. When the indentation depth reaches a certain level, the cracks initiate and

propagate forwards at a constant velocity in the second phase.

Mesh size effects on the crack growth will be presented in Chapter 5.3. It is found that

the crack propagation is not much sensitive to the mesh size since the problem is well-posed.

This gives us much confidence on the applicability of Eq. (4.1).

No relevant experiments are available in the open literature to directly verify Eq. (4.1).

The validity and applicability of the expression will be demonstrated by comparing the

theoretical predictions based on the present expression with experimental results given in

the open literature. Such a study is the subject of Chapter 7.5.
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Fig. 4-17: Crack propagation fitted by piecewise linear functions.
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Chapter 5

Numerical Aspects of Ductile

Fracture Prediction

5.1 Material constitutive model

A high velocity impact event is characterized by large plastic strain, high strain rates, and

temperature rise due to adiabatic heating. Interaction of these variables makes it difficult

to develop a reasonable material constitutive model and to calibrate material coefficients.

Nevertheless, a number of material models applicable to high velocity impact problems have

been proposed [103]. Among them, the Johnson-Cook’s (JC’s) constitutive equation was

widely used in the literature [104], because of its simple formulation and easy implementa-

tion in finite element codes. The yield function of the JC’s model was defined by

σ̄ =
[
A + Bε̄n

pl

] [
1 + C ln

( ˙̄εpl

˙̄ε0

)][
1 −

(
T − T0

Tm − T0

)q]
, (5.1)

where A, B, n, C, and q are five material constants, which need to be calibrated from

experiments. This model accounts for isotropic strain hardening, strain rate hardening,

and temperature softening in the uncoupled form. The first term of the right hand side

in Eq. (5.1) represents the quasi-static stress-strain relation at room temperature. The

second term signifies effects of strain-rate hardening. The temperature dependence of the

stress is taken into account through the third term. It should be pointed out that in the

143
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computation, the material behaves elastically up to the point of initial yield and then follows

Eq. (5.1).

All the impact processes are assumed be adiabatic in the present thesis, i.e. effects of

heat conduction are not taken into account. That is true if heat generated by plastic work

in a localized region does not have sufficient time to escape to surrounding materials. The

temperature increase ∆T owing to plastic work can be written as

∆T =
∫

χ

ρcv
σijdεij

pl, i, j = 1, 2, 3. (5.2)

where σij and εij
pl are the stress and plastic strain components.

Material properties have a strong influence on the plastic deformation and the failure

process of a target under high intensity impact loading. Considered in the present thesis are

three metals: Weldox 460 E steel, 2024-T351 aluminum alloy, and 91W-61Ni-3Co tungsten

alloy in the order of decreasing ductility.

Weldox 460 E steel is characterized by high strength and high ductility at the same

time. Both factors are equally important for an efficient energy absorption. Børvik and his

coworkers [40, 105, 106] have extensively studied the mechanical properties of this material.

The corresponding coefficients of the JC’s material model were calibrated by minimizing the

differences between the experimental results of tensile tests and the numerical prediction at

a number of discrete points under various combinations of plastic strain, strain rates and

temperature [40]. It should be pointed out that Børvik et al. [107] obtained two sets of the

material constants of the JC’s model for Weldox 460 E steel: one set corresponds to the

case where damage softening was taken into account in the material constitutive model, the

other applies to the case where the material model is uncoupled with the fracture model. In

the present thesis, the latter set is used. The material coefficients of Weldox 460 E steel are

listed in Table 5.1. Figure 5-1 shows the stress-strain relation under various combinations

of strain rates and temperatures.
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Table 5.1: Material constants for Weldox 460 E steel

E (GPa) ν ρ (kg/m3) ˙̄ε0 (s−1) C

200 0.33 7850 5.00 × 10−4 0.0123

cv (J/kgK) χ Tm (K) T0 (K) q

452 0.9 1800 293 0.94

A (MPa) B (MPa) n σ0 (MPa) c (m/s)

490 383 0.45 808.6 321.0

D1 D2 D3 D4 D5

0.0705 1.732 -0.54 0.015 0.0
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T = 293 K
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˙̄ε = 60000 s−1

˙̄ε = 1000 s−1

Fig. 5-1: von Mises stress vs. effective plastic strain under various strain rates and temperature for

Weldox 460 E steel.
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2024-T351 aluminum alloy is broadly used in aircraft industry, and was extensively

investigated in the literature. Here, the quasi-static true stress-strain curve obtained by

Bao and Wierzbicki [35] from uniaxial tensile tests on a round bar was implemented in

the calculation. The determination of the stress-strain curve up to fracture is not a trivial

problem even under quasi-static uniaxial loading. The stress and strain distribution becomes

nonuniform in the necking area, and plastic flow is closely related to fracture. The trial-

and-error method was used by Bao and Wierzbicki to force the numerical prediction of

the load-displacement curve to be close as possible to the experimental results. Two other

material constants in the JC model relating to effects of the strain rate and temperature

were taken from the literature. The strain rate constant C = 0.015 was given by Johnson

et al. [108], Lindholm and Johnson [109] for 2024-T351 aluminum alloy based on six torsion

tests with the strain rate ranging from 0.088 s−1 to 123 s−1. Note, that the strain rates up

to 104 − 105 s−1 are often encountered in high velocity impact. Lesure [110] obtained C =

0.0083 from split Hopkinson pressure bar (SHPB) tests with the strain rate up to 104 s−1 for

2024-T3 aluminum alloy (The difference between 2024-T3 and 2024-T351 aluminum alloy

is that the T3 temper applies to flat sheets with less than 6.3 mm thickness, whereas the

T351 temper with larger than 6.3 mm thickness [110]). Considering the range of the strain

rates encountered in an actual case, C = 0.0083 obtained by Lesuer was used in the present

material model. All the material constants used in the present constitutive equation are

summarized in Table 5.2. As shown in Fig. 5-2, the 2024-T351 aluminum alloy stress-strain

relation is much sensitive to temperature, but not to the strain rate.

The third metal used in the present thesis is 91W-61Ni-3Co tungsten alloy. Because of

their high density and strength, tungsten alloys are often used in kinetic energy penetrators.

Penetrators are subjected to predominant compression during the impact process and thus

adiabatic shear banding is a common failure mode. The transition mechanism from adia-

batic shear banding to subsequent fracture for a tungsten alloy specimen has been presented

in Chapter 3.4. Table 5.3 lists all the relevant coefficients of 91W-61Ni-3Co tungsten alloy

in the JC’s material model [82].
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Table 5.2: Material constants for 2024-T351 aluminum alloy

E (GPa) ν ρ (kg/m3) ˙̄ε0 (s−1) C

74.66 0.3 2700 3.33 × 10−4 0.0083

cv (J/kgK) χ Tm (K) T0 (K) q

875 0.9 775 293 1.0

A (MPa) B (MPa) n σ0 (MPa) c (m/s)

352 440 0.42 565.5 457.6

D1 D2 D3 D4 D5

0.13 0.13 -1.5 0.011 0.0
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Fig. 5-2: Equivalent stress versus plastic strain under various strain rates and temperature for 2024-

T351 aluminum alloy.
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Table 5.3: Material constants for 91W-61Ni-3Co tungsten alloy

E (GPa) ν ρ (kg/m3) ˙̄ε0 C

370 0.3 17650 1 0.03

cv (J/kgK) χ Tm (K) T0 (K) q

150 0.9 1485 300 0.835

A (MPa) B (MPa) n σy (MPa)

1948 1875 0.95 1500

5.2 Fracture model

To predict crack formation and growth, a fracture criterion has to be implemented in finite

element codes. A scaler indicator is introduced in ABAQUS/Explicit to track down damage

accumulation of each finite element. This damage indicator is defined as an integral with

respect to the effective plastic strain:

D =
∫ ε̄pl

0

dε̄pl

ε̄f

(
σh
σ̄ , ˙̄εpl, T

) . (5.3)

where ε̄f is the fracture strain obtained from experiments as a function of the stress tri-

axiality, strain rates, and temperature. Compared Eq. (5.3) with the general definition of

damage accumulation, Eq. (2.1), we have

f (stress states, strain rates, temperature, ...) =
Dc

ε̄f

(
σh
σ̄ , ˙̄εpl, T

) (5.4)

Eq. (5.3) indicates that each increment in the effective plastic strain in one calculation step

will contribute to the damage accumulation in a nonproportional way, depending on the

current values of the stress triaxiality, strain rate, and temperature. When the cumulative

damage D exceeds unity at an integration point of an element, all the deviatoric stress com-

ponents are suddenly set to zero. The whole element is considered to fail if the accumulated

damage at all the integration points exceeds the critical value.

ABAQUS/Explicit provides two options to treat failed elements. Either the failed ele-
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ments completely lose their load carrying capability, or the failed elements are still capable

of resisting pressure but neither tension nor shear. If the former option is used, the failed

elements will no longer participate in the calculation. The time step required for the com-

putational stability will not be determined from these severely distorted elements. Hence,

the calculation using the former option is much faster than the latter one. Unless specif-

ically stated, the former option is activated in all the calculations in the present thesis.

However, under complex loading conditions, a previously formed crack may close due to

subsequent compressive loading, e.g. in the Taylor test. In such a case, the latter option is

more reasonable.

In the present formulation, the damage model is assumed to be uncoupled from the

material constitutive model. The onset of fracture is checked outside the calculation loop of

stresses and strains. This formulation is much simpler than the Gurson’s micromechanically

based material model [24] and the phenomenologically based damage material model such

as that proposed by Børvik et al. [40], in both of which the failed element gradually loses

its load carrying capability. At the same time, the calibration of material coefficients in the

present uncoupled formulation is much easier.

As reviewed in Chapter 2.4, both elevated temperature and strain rates do not have

much influence on the fracture strain for 2024-T351 aluminum alloy and Weldox 460 E

steel. Therefore, for simplicity, the fracture strain is assumed to be a function only of the

stress triaxiality in the present thesis. The detailed fracture strain functions for 2024-T351

aluminum alloy and Weldox 460 E steel will be given in Chapter 6.
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5.3 Mesh size effects in high velocity impact

5.3.1 Introduction

Mesh size sensitivity has been perplexing researchers for a long time. The accuracy and

reliability of finite element solutions is often doubted for their possible mesh size dependence.

Since a large part of the present thesis is devoted to the numerical investigations of the failure

response, it is necessary to address this problem.

Mesh size effects have been extensively studied in the literature, e.g. Needleman and

Tvergaard [111, 112], Zukas and Scheffler [113]. However, results obtained usually lack

generality, i.e. they cannot be transferred from one type of problem or loading configura-

tion to others. The present research focuses on adiabatic shear banding and high velocity

perforation, in both of which large plastic deformation localizes in narrow zones and thus

numerical modeling may be sensitive to the mesh size.

5.3.2 Why sensitivity to mesh size

In general, there are two factors leading to mesh size sensitivity: (i): high stress and strain

gradients, and (ii): strain softening. A high stress and strain gradient is generated in

the vicinity of the tip of a stationary or propagating crack, and in the zone of localized

deformation such as deep necking and shear banding. If elements are not sufficiently small,

large spatial gradients cannot be resolved and thus numerical results will exhibit mesh size

sensitivity. This type of mesh size sensitivity can be diminished by refining meshes in critical

regions.

Another factor giving rise to mesh size dependency is the strain softening. The strain

softening characterized by a negative slope in the stress-strain curve (Fig. 5-3) is a common

phenomenon for concrete and geomaterials, in which a number of microcracks are generated

under loading leading to the decrease in the load carrying capability. To treat this type

of material with densely distributed cracks as a continuum, the strain softening has to be

taken into account in material constitutive modeling [114]. It should be pointed out that

the strain softening is a macroscopic phenomenon and microscopically the heterogeneous

microstructures always harden in a certain way.
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Fig. 5-3: Schematic representation of strain softening and strain hardening.

Similarly to brittle materials, ductile metals may also experience strain softening under

high intensity loading owing to void nucleation, growth and coalescence in a critical region.

Besides the damage softening, thermal effects also contribute to the strain softening in high

velocity impact. Under high strain rates, temperature may arise by several hundred degrees

or even up to a material melting point due to the conversion of plastic work into heat.

When damage and thermal softening exceeds strain and strain rate hardening, a stress will

decrease with an increasing strain. It should be mentioned that the strain softening usually

occurs in a small zone and the whole specimen may still behave in a stable, hardening way.

As soon as the strain softening occurs, plastic deformation tends to localize in a region

as narrow as possible with minimum energy dissipation. The mathematical background of

the mesh size sensitivity resulting from the strain softening has been elucidated by, e.g.

Read and Hegemier [115], Lasry and Belytschko [116] through an example of a longitudinal

plastic stress wave traveling along a strain-softening bar. For a rate-independent material

the longitudinal stress wave equation in an one-dimensional case is given by

∂σ

∂ε

∂2uL

∂x2
= ρ

∂2uL

∂t2
, (5.5)
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where uL is the longitudinal displacement. For a strain-hardening solid this governing

differential equation is always hyperbolic and the stress wave speed is given by

cL =

√
1
ρ

∂σ

∂ε
. (5.6)

However, in the case of a strain-softening bar the governing equation becomes elliptic and

the above expression loses its physical meaning since ∂σ/∂ε < 0, i.e. the boundary and ini-

tial value problem becomes ill-posed. When finite element or finite difference procedures are

applied to solve this type of equation, the strain softening inevitably gives rise to numerical

instability. This problem can be easily remedied by introducing rate-dependence in material

constitutive modeling. As Read and Hegemier [115] showed for two simple viscoplasticity

models, the boundary and initial value problem will regain well-posedness. Needleman [111]

pointed out that the rate-dependence implicitly introduces a length scale in governing equa-

tions that is a fraction of the elastic stress wave length. If this characteristic length scale

is dominant over the edge length of elements, numerical solutions may be less sensitive to

mesh size.

5.3.3 Adiabatic shear banding

The mesh sensitivity caused by the strain softening has been long recognized and clearly

demonstrated by, e.g. Bǎzant [114] for brittle materials, in which the strain softening results

from the formation of numerous microcracks. By contrast, mesh size effects on the numerical

simulation of adiabatic shear banding are little investigated, although it is often doubted

by researchers, e.g. Li et al. [78, 79] and Batra and Nechitailo [88]. As mentioned before,

the problem with the strain softening would remain well-posed if a material viscoplasticity

model is implemented in calculation. The objective of this numerical study is to see whether

the internal length scale associated with the viscoplasticity model would be able to remove

the mesh size sensitivity.

The example problem considered here is the same as addressed in Chapter 3.4, in which

the minimum edge length of the finite elements was about 10 µm, one quarter of the width
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of the adiabatic shear bands. In this section, a finer mesh model was built with the edge

length equal to 5 µm. As shown in Fig. 5-4, the predicted adiabatic shear bands initiating,

respectively, at the exterior and interior corners link together. By contrast, the adiabatic

shear bands simulated using the 10 µm mesh model were arrested in the central region of

the gauge section, which is more consistent with the experimental observations. At the

same time, the predicted cracks are much longer than the experimental results. Figure 5-5

shows the temperature rise along the gauge section at t = 32 µs. It appears that the finer

the mesh model, the higher temperature rise is. The difference in the temperature rise

between both models becomes larger at the end of the impact process. A conclusion can

be drawn that the present numerical modeling of the adiabatic shear banding is sensitive

to mesh size even though the material viscoplasticity model has been implemented.

The mesh size sensitivity of the numerical results indicates that the present problem is

still dominated by the element size rather than the viscous length scale. Li et al. [79] and

Perzyna [117] pointed out that the length scale implicitly introduced in the viscoplasticity

model should be of the order of 1 µm. Thus, the current edge length 5 µm of the finer

mesh model is still too large to give a convergent solution. However, if the edge length of

an element is smaller than 1 µm, numerical simulations would become unaffordable.
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(a) Edge length 10 µm

(b) Edge length 5 µm

Fig. 5-4: Comparison of the generated cracks and adiabatic shear bands at t = 48 µs and V0 =

27.6 m/s between two mesh models.
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Fig. 5-5: Comparison of temperature rise along the gauge section at t = 32 µs.

5.3.4 Crack formation and propagation

In the process of adiabatic shear banding, a velocity field becomes discontinuous across a

shear band. In a fracture process, new free boundaries are generated as a crack propagates

inside a continuum. The deformation and stress fields become discontinuous across a crack.

The advancement of a crack is achieved by setting the deviatoric stresses of failed elements

to zero and thus they can deform arbitrarily. This technique of modeling the formation and

growth of cracks has been implemented in commercial finite element codes, which is termed

“Element Deletion” in ABAQUS/Explicit [57]. This technique is inevitably associated with

the element size. Fracture, which physically means a separation of materials, tends to

localize in a narrow zone consisting of an array of elements irrespective of their size in finite

element modeling. Hence, it is necessary to investigate the extent of mesh size effects on

the prediction of crack formation and propagation.

As an example problem considered is a Weldox 460 E steel circular plate perforated by a

hard cylindrical projectile, see Fig. 5-6. Børvik et al. [100] provided the ample experimental

results, which allow us to verify the accuracy of the present numerical procedure. Four

axisymmetric finite element models with different element size were built. Three such

models are shown in Fig. 5-7. The minimum edge length of square elements in these models
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were 0.4 mm, 0.2 mm, 0.1 mm, and 0.05 mm, respectively, for the coarse, medium, fine,

and very fine mesh models.

Plots of the initial impact velocity vs. the residual velocity are shown in Fig. 5-8.

It appears that at an impact velocity well above the ballistic limit, in which the plate

fails mainly by shear plugging, the predicted residual velocity is not much sensitive to the

element size. However, the prediction of the ballistic limit itself clearly depends on mesh

size. Tensile tearing is a favorable failure mode at an impact velocity near the ballistic limit.

This conclusion is consistent with Børvik et al.’s numerical finding presented in Ref. [55].

Figure 5-9 shows the predicted residual velocity as a function of the element number

through the plate thickness. It seems that the residual velocity converges to an asymptote as

the element size decreases. The convergence of the residual velocity indicates other global

solution variables such as energy dissipation and target deflection can also be correctly

predicted if the mesh size is sufficiently small.

In contrast to energy and velocities, strains and crack growth can be regarded as local

parameters. It can be seen from Fig. 5-10 that the growth of the crack is only slightly

dependent on the mesh size in the later stage and the initiation of crack growth clearly

depends on the mesh size, which is similar to what Needleman [15] obtained using the co-

hesive interface formulation for a plane-strain block with a central pre-crack under dynamic

loading.

l = 500 mm

d = 20 mm

h = 10 mm

M0 = 0.2 kg V0

Fig. 5-6: Schematic representation of a circular Weldox 460 E steel plate impacted by a flat-nosed

cylindrical, hard projectile in the Børvik et al.’s experiments [100].
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(a) Coarse mesh model: 25 elements through the thickness

(b) Medium mesh model: 50 elements through the thickness

(c) Fine mesh model: 100 elements through the thickness

Fig. 5-7: Three axisymmetric mesh models for the Weldox 460 E steel circular plate impacted by

the rigid cylindrical projectile.
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In the present calculation, the damage model is uncoupled with the material model,

i.e. the damage softening due to void growth is not taken into account in the material

constitutive model. A finite element suddenly fails as soon as its damage reaches a critical

value. It can be seen from Fig. 5-11 that the von Mises stress of a typical element first

increases, reaches a maximum value, then decreases due to the thermal softening, and finally

drops to zero. This sudden failure can be thought of as one kind of the damage softening,

which may be responsible for mesh size sensitivity in the present numerical solutions.

5.3.5 How to remedy mesh size sensitivity

Many approaches have been proposed in the literature to overcome the mesh sensitivity

of finite element solutions. In conventional finite element analysis, elements are just a

mathematical representation of a continuum body and the size is usually determined by the

requirement of spatial resolution of stress and strain fields, i.e. the element size does not have

any physical implication. One of the simplest way to remedy mesh size sensitivity is to equip

the element size with a physical meaning. This idea can be directly implemented without any

modification of commonly used material constitutive models and fracture models. Redanz

et al. [118] suggested that the mesh size could be approximately equal to the particle size.

Alternatively, the mesh size can be associated with the size of a fracture process zone ahead

of a propagating crack, where micro-cracks or micro-voids nucleate, grow, and eventually

coalesce with the major crack.

The second type of approach is to introduce a critical volume, which consists of several

elements around the critical node. The damage indicator Dav is averaged over this critical

volume Vc while stresses and strains are still calculated at a single element level, i.e.

Dav =
1
Vc

∫
D (x) dV (5.7)

This formulation was proposed by Holmes et al. [119], and Giovanola and Kirkpatrick [120]

and has been implemented in LS-DYNA3D. The critical volume is associated with the

grain size or spacing of inclusions. Recently, Lee et al. [121] showed that in the necking

and fracture process of a tensile flat specimen the volume averaging procedure makes the
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critical damage parameter Dc independent of the mesh size. At the same time this procedure

introduces a new parameter which is the critical volume Vc to fracture.

The third type of approach is the development of nonlocal constitutive models, in which

a characteristic or internal length scale is implemented. In such a way, the prediction of

fracture is not only controlled by stresses and strains but also related to material microstruc-

tures. Several formulations originated from this idea have been proposed, e.g. Tvergaard

and Needleman [122]. The characteristic length was considered to represent the average

grain size or the average void spacing. Kamel et al. [123] found that at least three elements

are needed along the characteristic length to obtain a convergent solution.

However, these approaches are not applicable to the failure analysis of large structures

such as ship grounding or car collision. Due to limitation of computational resources, shell

elements have to be used instead of solid elements and shell elements have to be much larger

than the microstructural characteristic length such as the fracture process zone. Different

methods need to be explored to solve the problem of mesh size sensitivity. A preliminary

study that the calibration and application of a fracture criterion is based on the same shell

element size was performed by Simonsen and Törnqvist [124], and Lee et al. [121]. However,

whether the obtained empirical fracture criterion associated with the specific element size is

applicable to another type of specimen or loading configuration remains an open question.
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Chapter 6

Effect of Ductile Fracture Criteria

on Impact Failure

6.1 Introduction

A number of ductile fracture criteria have been proposed in the literature, e.g. McClin-

tock [22], Rice and Tracey [23], Cockcroft and Latham [31], Johnson and Cook [37], Bao

and Wierzbicki [4, 5], etc. The applicability of some of them was examined by, e.g. Wifi et

al. [33] and Komori [34] for bulk forming processes, and Bao and Wierzbicki [35] for simple

tensile and compression tests.

Because of simple calibration procedures and easy implementation, the Johnson-Cook’s

fracture locus (JC) and the critical effective plastic strain have been incorporated into

popular commercial finite element codes such as LS-DYNA3D, ABAQUS, etc. Both have

received much attention, in particular, in impact engineering. These fracture criteria were

usually calibrated from tensile tests on smooth and notched axisymmetric specimens, e.g.

Johnson and Cook [37], Børvik et al. [40], etc. In a real situation, a structural component

may be subjected to tension, shear as well as compression before failure. As demonstrated

in Chapter 3.2, the impacted zone, in which cracks are usually generated, undergoes large

plastic compression in the initial phase, and then bending and axial stretching until fracture.

It will certainly be appropriate to ask whether one would be able to use a fracture locus

obtained from tensile tests alone to predict fracture in a case where compression may be

163
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dominant.

The immediate objective of the present chapter is to study effects of the type of ductile

fracture criteria on the failure response of high velocity impact events. The first part of this

chapter introduces three fracture loci: the BW’s fracture locus, the JC’ fracture model [37],

and the constant critical fracture strain, and reviews respective calibration procedures. In

the second part, the latter two fracture loci will be used to predict the fracture process and

the fracture pattern of the three impact problems: rigid mass-to-beam impact, the Taylor

test, and dynamic compression tests on an axisymmetric hat specimen, all of which have

already been investigated in Chapter 3 using the BW’s fracture criterion. Comparison of

numerical results among them will be made and some conclusions will be drawn.

6.2 Ductile fracture criteria

6.2.1 Bao-Wierzbicki’s fracture locus

Recently, a complete fracture locus in the space of the effective plastic strain and the stress

triaxiality was developed by Bao and Wierzbicki [4, 5] for 2024-T351 aluminum alloy. This

fracture criterion was formulated and calibrated from a series of upsetting, shear, and tensile

tests with parallel numerical calculations. Figure 6-1 shows all the specimens used in the

development of the BW’s fracture locus.

Fig. 6-1: Specimens used to calibrate the BW’s fracture criterion. Courtesy Y. Bao.
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This criterion covers the entire range of the stress triaxiality and consists of three

branches corresponding to different fracture mechanisms, see Fig. 6-2. Tensile tests on

smooth and notched round bars provided the fracture strains in the range of the stress

triaxiality from 0.4 up. In this range, void nucleation, growth, and coalescence is the pre-

dominant failure mechanism. Compression tests on short cylinders with different ratios of

height to diameter, i.e. upsetting tests, gave the fracture strains in the range of the stress

triaxiality from −1/3 to 0.0. Note, that σh/σ̄ = 0 corresponds to a pure shear (torsional)

condition. The failure mechanism for a specimen dominated by compression is not fully

understood but was called “shear decohesion” by Wierzbicki and Bao [5]. This transi-

tion of fracture mechanism as a function of the stress triaxiality is not new. Fifty years

ago, Bridgman [36] observed that the fracture patterns of tensile bars shifted from conven-

tional cup-cone to shear slip on a single plane by increasing the magnitude of hydrostatic

pressure superposed on specimens. The fracture strains in the intermediate range of the

stress triaxiality from 0 to 0.4 were obtained from combined compression and shear tests

on butterfly-like specimens. In this range, the specimens may fail by a mixed mechanism

of shear slip and void growth.

One of the most important features of this new locus is the concept of the cut-off value

for the negative stress triaxiality at −1/3. σh/σ̄ = −1/3 represents the stress state of

a specimen under uniaxial compression. The mechanism behind the cut-off value is that

preexisting microvoids would not expand, i.e. damage would not accumulate, if a material is

predominantly under compression (σh/σ̄ < −1/3). By revisiting Bridgman’s experimental

results [36] and performing theoretical analysis of upsetting tests, Wierzbicki and Bao [5]

confirmed the correctness of the cut-off value.

It should be pointed out that the existence of the cut-off value does not mean that

a specimen under predominant compression would never fail. As shown in Chapter 3.4,

adiabatic shear banding would emerge under dynamic compressive loading. Adiabatic shear

banding is a completely different failure mechanism from void growth.

Another observation can be made from Fig. 6-2 is that the fracture strain at pure shear

is lower than that at pure tension. This feature is not an isolated phenomenon only for

2024-T351 aluminum alloy. Four of five metals collected by McClintock [125] possess the
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same trend. Johnson and Cook [37] also obtained the same feature for 4340 steel as the one

found by Bao and Wierzbicki [4], although the “inconvenient” torsional point was neglected

in the calibration of the fracture locus. It is this property that gives rise to three distinct

branches of the BW’s fracture locus.

Curve-fitting the points in Fig. 6-2 gives the following analytical expressions for the

BW’s fracture locus

ε̄f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ σh
σ̄ ≤ −1

3

0.1225
(

σh
σ̄ + 1

3

)−0.46 −1
3 < σh

σ̄ ≤ 0

1.9
(

σh
σ̄

)2 − 0.18σh
σ̄ + 0.21 0 ≤ σh

σ̄ ≤ 0.4

exp
(−1.944σh

σ̄

)
0.4 ≤ σh

σ̄

. (6.1)
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Fig. 6-2: The Bao-Wierzbicki’s ductile fracture locus for 2024-T351 aluminum alloy.

6.2.2 Johnson-Cook’s fracture locus

In companion with their material constitutive equation, Johnson and Cook [37] proposed

a fracture criterion for dynamic loading problems. Similarly to the material constitutive

model, the fracture strain was assumed to be a function of the stress triaxiality, strain rates,
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and temperature in an uncoupled form, defined by

ε̄f =
[
D1 + D2 exp

(
D3

σh

σ̄

)] [
1 + D4 ln

( ˙̄εpl

˙̄ε0

)][
1 + D5

T − T0

Tm − T0

]
. (6.2)

where D1, ..., D5 are five material constants. The first term in the brackets in the right

hand side of Eq. (6.2) has the same form as proposed by Hancock and Mackenzie [30], and

represents fracture characteristics of a specimen under quasi-static loading conditions at

room temperature. Since an exponential function was employed in the first term, Johnson

and Cook implied that the fracture locus could be represented by one continuous curve in

the entire range and the fracture strain decreases with the increasing stress triaxiality. This

assumption is opposite to Bao and Wierzbicki’s experimental findings [4, 5]. The second

and third terms signify effects of the strain rate and temperature on the fracture strain,

respectively. As discussed in Chapter 2.4, both effects can be neglected for 2024-T351

aluminum alloy and Weldox 460 E steel. Five material constants are given in Tables 5.1

and 5.2 for Weldox 460 E steel and 2024-T351 aluminum alloy, respectively.

The calibration procedure of the JC’s fracture model was not specifically addressed

for 2024-T351 aluminum alloy in the open literature. But Johnson and Cook [37] indeed

described the calibration procedure for OFHC copper, Armco iron, and 4340 steel. The

relation between the fracture strain and the stress triaxiality was constructed based on

quasi-static tests at room temperature. Tensile tests on smooth and notched axisymmetric

specimens were performed and gave the fracture strain in the range of the stress triaxiality

from 1/3 to 1.2. Johnson and Cook also conducted a torsional test on a thin-walled tubular

specimen, which provided the fracture strain at σh/σ̄ ≈ 0. They did not carried out any

other experiments to determine the fracture strains in the range of σh/σ̄ < 0.4 including

the negative stress triaxiality. Instead, an exponential function was enforced to fit the test

data and extrapolated to cover the whole range of the stress triaxiality. The extension may

be questionable since various failure mechanisms are evolved in different ranges of the stress

triaxiality.

Following Johnson and Cook’s formulation and calibration procedure, Børvik and his

coworkers [40, 105, 106] performed a series of tensile tests on smooth and notched round
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bars and parallel numerical simulations to determine the constants of the JC’s fracture

model for Weldox 460 E steel. Because neither shear nor compression tests were conducted,

all the obtained experimental results covered the fracture strain in the range of the stress

triaxiality only from 1/3 up. Similarly, the extrapolation of the fracture locus to the range of

the negative stress triaxiality was carried out by Børvik et al. [40] in practical applications,

see Fig. 6-3. Since the cut-off value for the negative stress triaxiality at σh/σ̄ = −1/3 is

applicable to all ductile metals, the JC’s fracture locus calibrated by Børvik et al. is modified

to incorporate this feature, see Fig. 6-3. The latter one was used in all the calculations

presented in Chapter 3.
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Fig. 6-3: Fracture loci for Weldox 460 E steel.

In actuality, it is more difficult to determine fracture properties of a specimen under

a predominant compression rather than tension. Upsetting tests, which are often used to

determine fracture strains in the range of the negative stress triaxiality, lose the applicability

for a very ductile metal. A ductile cylinder in upsetting tests can be compressed to a large

extent without any signs showing crack formation. Recently, a new type of specimen was

specifically designed in the Impact and Crashworthiness Lab, MIT, to determine fracture

characteristics of a ductile material in the range of the negative stress triaxiality, see Fig. 6-4.
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Fig. 6-4: A new type of specimen for the determination of fracture properties of a ductile material

in the range of the negative stress triaxiality. Courtesy of Bao, Bai, and Wierzbicki.

6.2.3 Constant fracture strain

A critical effective plastic strain independent of the stress triaxiality has been widely used as

a criterion in the prediction of ductile fracture (Fig. 6-5(a)), because it can be conveniently

calibrated from tests and easily implemented in finite element codes, e.g. Anderson and

Bonder [43], Guo et al. [97].

This simple fracture criterion, which is usually calibrated from tensile tests, is indeed

able to capture crack formation and propagation in cases where tension is dominant and

the stress triaxiality varies in a narrow range during the failure process [32]. However, this

fracture locus may lose its applicability to compression-dominated problems or complicated

loading cases.

A complete determination of the fracture locus for a specific material is not an easy task.

A preliminary study indicates that the cut-off value has a much larger effect on the predicted

fracture response than the magnitude of the fracture strain [60]. By considering this fact,

a modified constant fracture strain criterion with the cut-off value for the negative stress

triaxiality at −1/3 has been proposed by Teng and Wierzbicki [60], see Fig. 6-5(b). This

type of fracture locus has been used in Chapter 3.4 for predicting crack growth preceded

by adiabatic shear banding.

Figure 6-6 shows comparison of the fracture loci for 2024-T351 aluminum alloy among

the BW’s model, the JC’s model, and the constant fracture strain. The extrapolated range
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of the JC’s fracture locus is represented by a dash curve. It appears that there are large

differences among these fracture loci in the range of the negative stress triaxiality. This

discrepancy becomes critical for high velocity impact events, since cracks always initiate

and grow in the region where shear and compression is dominant (σh/σ̄ < 1/3).

ε̄f

ε̄pl

σm

σ̄

Fracture zone

(a) Independent of the stress triaxiality

ε̄f

ε̄pl

σm

σ̄

Fracture zone

− 1
3

(b) With the cut-off value

Fig. 6-5: Constant fracture criteria with and without the cut-off value for the stress triaxiality.
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Fig. 6-6: Three fracture loci for 2024-T351 aluminum alloy.

6.3 Comparison of predicted failure patterns

6.3.1 Rigid mass-to-beam impact

6.3.1.1 Flat-nosed projectile

Consider first a plane-strain 2024-T351 aluminum beam of thickness h = 10 mm impacted

by a flat-nosed projectile of µ = 0.1 moving at V0 = 240 m/s. The three fracture loci shown

in Fig. 6-6 were implemented in the calculations, respectively.

A representative finite element at the impact interface is selected to study the stress

state of the impacted zone during the failure process. It is seen from Fig. 6-7 that the stress

triaxiality of this element is about −0.6 during the impact process, which is much lower than

the cut-off value −1/3. At the same time, the effective plastic strain of this element rapidly

increases and exceeds the fracture strain ε̄f = 0.3, see Fig. 6-8. These data clearly indicate

that the impacted zone undergoes large plastic compressive deformation. Since the constant

critical strain fracture criterion assumes that the damage accumulation is independent of

the stress state, the element fails as soon as the the effective plastic strain reaches the

critical value (ε̄f = 0.3). The failed element completely loses its load carrying capability.

Correspondingly, the stress triaxiality drops to zero. Although large fracture strains are
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associated with the negative stress triaxiality in the JC’s model, damage accumulation still

results in the failure of this element. As mentioned in the preceding section, the JC’s

fracture locus in the range of the negative stress triaxiality was obtained by extrapolation.

By contrast, the BW’s fracture model predicts that this element is still capable of resisting

further plastic deformation.

Figure 6-9 shows comparison of the predicted failure patterns of the beam among three

fracture criteria. It appears that in the case of the constant fracture strain, the elements of

the impacted zone beneath the projectile immediately fail and are artificially removed layer

by layer until the impact velocity of the projectile decreases to a certain level. Finally, the

remaining ligaments are sheared off. By arbitrarily raising the magnitude of the fracture

strain, the element removal of the impacted zone could be prevented. However, this increase

in the fracture strain would at the same time make impossible to capture crack propagation

through the target thickness, which occurs at a relatively low fracture strain. Hence, it

is necessary to account for the stress triaxiality in the calculation of damage. It can also

be seen from Fig. 6-9 that the JC’s fracture criterion predicts that a number of elements

around the sharp corners of the projectile are eroded. The removal of these elements below

the projectile subsequently results in an unrealistic failure mode.

In contrast to the constant fracture strain and the JC’s fracture locus, the BW’s fracture

model predicts a reasonable failure pattern. No elements in the impacted zone are eroded in

the calculation, since the BW’s fracture locus cover the whole range of the stress triaxiality.

This failure mode qualitatively agrees well with experimental observations, e.g. Børvik

et al. [56], Mescall [126]. Figure 6-10 shows a cross-section of the post-test aluminum

alloy circular plate, which was struck by a steel cylindrical projectile moving at V0 =

245 m/s [126]. Two through-thickness cracks are clearly visible and the generated plug has

almost the same thickness as the surrounding part.
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Fracture criteria Fracture patterns Failed elements

Bao-Wierzbicki’s

Eq. (6.1)

Johnson-Cook’s

Eq. (6.2)

Const. frac. strain

ε̄f = 0.3

Fig. 6-9: Comparison of the failure patterns of a plane-strain aluminum alloy beam impacted by

a flat-nosed projectile at V0 = 240 m/s among three fracture criteria. The black areas

represent failed elements.
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Fig. 6-10: Failure pattern of a circular 2024-T351 aluminum alloy plate impacted by a steel projectile

at V0 = 245 m/s [126].

6.3.1.2 Round-nosed projectile

The second problem considered is a plane-strain 2024-T351 aluminum beam of h = 10 mm

impacted by a round-nosed projectile of µ = 0.1 moving at V0 = 300 m/s. Figure 6-11

shows three numerically predicted failure patterns and failure areas of the beam based on

the three fracture loci, respectively. Similarly to the preceding flat-nosed case, the impacted

zone of the target is dominantly by compression in the initial phase of the process. Since

the constant fracture strain and the JC’s fracture locus implicitly assume that a material

under compression could fracture, a large part of the impacted zone is eroded leading to

different final fracture modes. By contrast, the BW’s fracture locus predicts two clean crack

trajectories through the whole beam thickness. This predicted fracture pattern seems more

realistic.

The element removal of a large part of the impacted zone was also observed by Børvik

et al. [40] using the JC’s fracture criterion for a Weldox 460 E steel circular plate impacted

by a round-nosed and a conical-nosed projectile, respectively, (Fig. 14 in Ref. [107]). Their

numerical results further reveal the deficiencies of the JC’s fracture criterion for high velocity

impact problems.

Because many elements are removed almost at the same time, it is difficult to track

down crack propagation using the JC’s fracture criterion and the constant critical strain. By

contrast, the BW’s fracture locus is capable of capturing the process of crack propagation,

as shown in Chapter 4.
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Fracture criteria Fracture patterns Failed elements

Bao-Wierzbicki’s

Eq. (6.1)

Johnson-Cook’s

Eq. (6.2)

Const. frac. strain

ε̄f = 0.3

Fig. 6-11: Comparison of the failure patterns of a plane-strain aluminum alloy beam impacted by a

round-nosed projectile at V0 = 300 m/s among three fracture criteria. The black areas of

the graphs in the right column represent failed elements.
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6.3.2 The Taylor test

In rigid mass-to-beam/plate impact, only the impacted zone beneath the projectile is dom-

inated by compression, and this compression would give way to bending and probably axial

stretching in the later phase. By contrast, compression controls the entire cylinder in the

Taylor test during the impact process. Hence, the Taylor test is a benchmark problem

for examining a ductile fracture criterion, in particular, in the range of the negative stress

triaxiality.

Chapter 3.3 has clearly demonstrated the effectiveness of the BW’s fracture locus in the

prediction of the failure response of a cylinder in the Taylor test. Here, the JC’s criterion

will be used to simulate the impact process of this cylinder under the same conditions.

Additionally, two options of the treatment of failed elements will be explored: either the

failed element completely lose the load carrying capability or are still able to resist pressure

but neither shear nor tension.

Figure 6-12 shows the final fracture patterns of the Weldox 460 E steel projectile at

V0 = 600 m/s among four combinations of fracture options. All the failed elements have

been removed to illustrate the generated cracks and fragments. It appears that the fracture

locus without the cut-off value predicts more petal numbers and/or longer crack length

than that with the cut-off value. In a way fracture models that disregard the effect of

the cut-off value make materials artificially brittle. A number of fragments escape from

the projectile in the case where the failed elements are assumed to completely lose the load

carrying capability, see the graphs on the left hand side of Fig. 6-12. These fracture patterns

probably are unrealistic, since the cylinder is made of a much ductile material.

The effect of the cut-off value on the predicted failure pattern of the cylinder becomes

evident when comparing the failed region among these four cases, see Fig. 6-13. Note, that

the central part of the cylinder is predominantly under compression. The size of the failed

region is much smaller in the cases with the cut-off value than without the cut-off value. In

reality, failed materials would be still attached to specimens. The size of the failed region

may be determined by checking metallurgical microstructures of post-test specimens.

Besides different fracture patterns, the time history of the velocity of the rear surface

of the cylinder can also be studied to distinguish among various types of fracture criteria.
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Immediately upon impact, an axial elastic stress wave is generated followed by a plastic

stress wave traveling at a much lower velocity. As the axial elastic stress wave propagates

back and forth from the rear surface to the elastic-plastic boundary, the velocity of the rear

surface decreases in a step-wise way. The movement of the rear surface can be measured

using the so-called VISAR (Velocity Interferometer System for Any Reflector) technique.

The measured time history of the velocity of the rear surface can be used to verify material

constitutive models by comparing with numerical results, e.g. as proposed by Rohr et

al. [63]. However, tracking the velocity history appears not to be very effective to examine

a fracture criterion if a cylinder fails by petalling in the Taylor test. As shown in Fig. 6-14,

there is not much difference in the calculated velocity history of the rear surface among

four cases. However, this observation is not true for shear cracking. As we can see from

Fig. 6-15, the JC’s and BW’s fracture loci give different velocity-time histories for 2024-T351

aluminum alloy where the projectile fails by shear cracking.

The effects of the type of ductile fracture criteria on the failure response of 2024-T351

aluminum alloy were also investigated. Figure 6-16 shows the final fracture patterns of the

aluminum cylinder at V0 = 240 m/s using the JC’s and BW’s fracture loci, respectively.

In contrast to the BW’s fracture locus, the JC’s fracture model does not capture shear

cracking on the lateral surface of the cylinder. Elements in the front part of the cylinder

are artificially eroded layer by layer until the impact velocity is decreased to a certain level,

which leads to a shorter final length of the cylinder, see Fig. 6-17. This seems unrealistic.

Tests are being planned to verify the accuracy of the above numerical simulations.
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Fig. 6-12: Comparison of failure patterns of the Weldox 460 E steel projectile at V0 = 600 m/s

among various fracture options.
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Fig. 6-13: Comparison of the size of the failed region in the undeformed form for the Weldox 460 E

steel projectile at V0 = 600 m/s.
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Fig. 6-14: Comparison of the velocity history of the rear surface of the Weldox 460 E steel projectile

at V0 = 600 m/s among four cases.
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Fig. 6-15: Comparison of the velocity history of the rear surface of the 2024-T351 aluminum alloy

projectile at V0 = 240 m/s between Johnson-Cook’s and Bao-Wierzbicki’s fracture loci.
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(a) Bao-Wierzbicki’s fracture locus (b) Johnson-Cook’s fracture locus

Fig. 6-16: Comparison of the final fracture patterns for the 2024-T351 aluminum alloy projectile at

V0 = 240 m/s. It is assumed in both cases that the failed elements are still capable of

transmitting pressure. The failed elements have been removed to show generated cracks.
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Fig. 6-17: Comparison of shortening history of the 2024-T351 aluminum alloy projectile at V0 =

240 m/s based on the JC’s and BW’s fracture loci, respectively.
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6.3.3 Compression tests on the axisymmetric hat specimen

The dynamic compression test on the axisymmetric hat specimen has been investigated in

Chapter 3.4. Adiabatic shear banding and subsequent fracture was successfully captured

using a constant fracture strain with the cut-off value for the negative stress triaxiality.

Here, a constant fracture strain of ε̄f = 0.4 without the cut-off value was assigned in the

calculation. As shown in Fig. 6-18, two cracks initiate at the exterior and interior corners,

respectively, and propagate towards each other. As these two cracks link together, the whole

specimen breaks into two parts before t = 24 µs. It can also be seen that no adiabatic shear

banding is captured. The cracks are generated before the homogeneous plastic deformation

narrows down into a localized shear band. This failure pattern is not consistent with the

experimental observations that both cracks and shear bands were generated and arrested

inside the gauge section at V0 = 27.6 m/s.

An element near the interior corner was selected to illustrate the difference in the time

history of the von Mises stress between two cases, see Fig. 6-19. It appears that the chosen

element fails before undergoing the stress collapse in the case without the cut-off value,

which is not realistic. As Marchand and Duffy [70] observed from torsional tests on thin-

walled tubes, the fracture within the shear band was usually preceded by the stress collapse,

which can be considered to be an indicator for the formation of the adiabatic shear band.

Since voids do not nucleate and grow under predominant compression, the increase in

effective plastic strains would not contribute to the accumulation of damage. However,

for the constant fracture strain criterion without the cut-off value for the stress triaxiality,

damage accumulation is in proportional to the increase in the effective plastic strain, which

leads to the present unrealistic numerical results.



184CHAPTER 6. EFFECT OF DUCTILE FRACTURE CRITERIA ON IMPACT FAILURE

(a) Crack formation in the vicinity of the interior corner at t = 21 µs (Enlarged)

(b) t = 24 µs

Fig. 6-18: Predicted fracture pattern of the specimen using the constant fracture strain without the

cut-off value at V0 = 27.6 m/s. All the failed elements have been removed to show the

generated crack.
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Fig. 6-19: Comparison of the time history of the effective stress between the fracture strain with

and without the cut-off value.

6.4 Partial conclusions

In this chapter, the formulation and the calibration of the BW’s and JC’s fracture loci, and

the constant fracture strain has been critically reviewed. Their applicability to three typical

types of high velocity impact problems has been assessed: rigid mass-to-beam impact, the

Taylor test, and dynamic compression tests on a hat specimen. Since the JC’s fracture model

and the critical fracture strain were calibrated from tensile tests alone, they do not represent

real fracture characteristics of a material dominated by compression. This deficiency leads

to the prediction of the unrealistic failure patterns and processes of the targets under high

velocity impact. At the same time, this investigation further demonstrates the effectiveness

of the BW’s fracture locus in predicting high velocity impact fracture.
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Chapter 7

Derivation of Analytical

Benchmark Solutions

7.1 Background

In the September 11th attack, two Boeing 767 airplanes traveling at 264 m/s (590 mph) and

210 m/s (470 mph) crashed, respectively, into the South and North Towers of the World

Trade Center [1]. The impact damage eventually led to the collapse of the Twin Towers.

Soon after the event, the Federal Emergency Management Agency (FEMA) [1] performed

a detailed survey of the damage to the outer facade of the Twin Towers. Several failure

modes of the exterior columns can be identified from Fig. 7-1 [127]. Some exterior columns,

probably impacted by the wing tip, were deeply indented and torn apart while others, struck

by the wing root, the engine, and the fuselage, were clearly sheared off. At the same time,

the bolt connection of several columns were also broken.

187
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Indented and stretched

Sheared off

Fig. 7-1: A close-up view of the damaged exterior columns of the south facade of the South Tower

of the World Trade Center [127]. c©C. Sorensen.

The immediate objective of this chapter is to develop mathematically trackable theo-

retical models to better understand the plastic deformation and fracture process of both

the exterior columns and the airplane wings at the first milliseconds of the attack. At the

same time, the theoretical analyses are rather general and can be applied to any beams of

solid-section made of same or different materials.

Due to almost fully loaded fuel tank, the wings of the Boeing 767 were much heavier

than the exterior columns of the Twin Towers. As a first approximation, the impacting

segments of the wing can be modeled as rigid masses moving at a certain velocity while the

exterior column as a plastically deforming beam. The theoretical model of rigid mass-to-

beam impact will be presented in Chapter 7.2.

Since both the exterior columns and the airplane wings must have undergone consid-

erable plastic deformation before rupture, it is more reasonable to simultaneously consider

the exterior column and the portion of the wing as two plastically deforming and fracturing

beams. The interactive failure of two impacting beams is the subject of Chapter 7.3.

As shown in Fig. 7-2, the structural arrangement of a modern airplane wing is quite

complicated, consisting of open section beams, ribs, and a skin reinforced by stringers.

The exterior columns must have been impacted sequentially by these components when the
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airplanes cut through the wall of the Twin Towers. The theoretical analysis of multiple

impact of beam-to-beam will be performed in Chapter 7.4.

Fig. 7-2: Structural component arrangement inside an airplane wing.

In the development of the above three theoretical models arranged in the order of in-

creasing complexness, the target is assumed to undergo large plastic deflection and thus

it tends to fail by tensile tearing due to dominant axial stretching. As demonstrated in

Chapter 3.2.4, shear plugging is another possible failure mode of a beam/plate under rigid

mass impact, in which plastic deformation localizes in the impacted zone. The theoretical

solution for shear plugging will be addressed in Chapter 7.5.
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7.2 Rigid mass-to-beam impact

7.2.1 Introduction

The plastic deformation and failure response of a beam impacted by a rigid mass has been

extensively studied in the past. About a decade ago, research was driven mostly by the

problem of low velocity heavy body impact on thin-walled cylinders such as oil pipes and

tubular members of offshore platforms [128, 129]. Interest in this kind of problem has been

renewed since the September 11th attack. A theoretical model of rigid mass-to-box beam

impact was developed by Wierzbicki and Teng [130] to estimate the critical impact velocity

of the wing of the airplane to cut through the hollow exterior columns.

Many tests on a beam struck by a falling rigid body were performed by Jones and his

coworkers [131, 132]. The impact velocity obtained using a drop tower were limited to

20 m/s, which are an order of magnitude lower than the cruising speed of the Boeing 767.

Bending response is dominant at such a low impact velocity. Theoretical models with a

moving plastic bending hinge were proposed by, e.g. Jones and his coworker [133, 134], Yu

and Stronge [128], etc.

By analogy, Yu and Stronge [128], Wierzbicki and Hoo Fatt [11, 12] developed an ana-

lytical model of plastic beam/string-on-plastic foundation for a thin cylindrical shell under

projectile impact. The solution of Yu and Stronge is applied to the case where bending is

equally important as axial stretching. By contrast, Wierzbicki and Hoo Fatt studied the

axial stretching dominated case, which usually occurs at a high impact velocity. The prob-

lems formulated by Wierzbicki and Hoo Fatt were also solved by Mihailescu et al. [135, 136]

using a rigorous shock wave approach. The identical results were obtained.

The first objective of the present section is to review the theoretical model of rigid mass-

to-beam impact proposed by Wierzbicki and Hoo Fatt [12]. The range of applicability of this

theoretical solution, which was absent in Ref. [12], is determined here. At the same time,

the theoretical analysis, which originally applied to the flat-nosed projectile, is extended

to the case with a round-nosed projectile. Finite element calculations are performed and

compared with the closed-form solutions. This study will provide a solid foundation for the

formulation of the more complicated events of the single and multiple impact of beam-to-
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beam, which will be presented in the following sections.

7.2.2 Flat-nosed projectile

7.2.2.1 Problem formulation

Consider a plastic beam/string struck by a flat-nosed rigid mass, Fig. 7-3. The beam/string

is stationary and the rigid projectile moves at the velocity, V0. The cubic projectile is of

the mass M0, and the breadth d. The beam/string is of a solid, rectangular cross-section

with the breadth 2b and the thickness h. The impact velocity is assumed to be high enough

so that the problem is controlled by local inertia and wave propagation. Therefore neither

the length of the beam nor far-field boundary conditions are entering the problem.

The beam/string is assumed to be rigid-perfectly plastic, characterized by the plastic

flow stress σ0. The plastic flow stress is an average stress over the strain path all the way

to fracture for an elastic-plastic strain-hardening material, which can be expressed as

σ0 =
1
ε̄f

∫ ε̄f

0
σ̄ (ε̄pl)dε̄pl, (7.1)

In such a way, the total energy absorbed by plastic deformation in a real material would

be the same as that in the present plastic material. At the same time, effects of strain

hardening, strain rates, and temperature can be included indirectly in the calculation of

the plastic flow stress in an average sense.

l

2b

2b

M0
V0

d
h

x

Impacted zone

Fig. 7-3: Schematic representation of a beam impacted by a rigid, blunt-nosed projectile. The axial

coordinate x is measured from the central axis of the beam.
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Immediately upon impact, two transverse plastic stress waves are generated in the im-

pacted zone and travel outward down the beam. The equation of motion of the string under

moderately large deflection is (
N0w

′)′ = mẅ, (7.2)

where the term in the left hand side is the vertical component of the axial tensile force; the

term in the right hand side represents the inertial force; N0 = 2σ0bh is the axial tensile force

acting on the cross-section; m = 2ρbh is the mass per unit length; the symbols prime and

dot denote differentiation with respect to the spatial coordinate x and time t, respectively.

This equation is applicable to a beam under large deformation if bending contribution can

be neglected. This issue will be discussed later on.

Substituting the expressions for N0 and m into Eq. (7.2), we obtain the familiar wave

equation

c2w′′ = ẅ, (7.3)

where c is the speed of the transverse plastic stress wave, defined by

c =
√

σ0

ρ
. (7.4)

It is assumed that the impacted zone immediately acquires the same transverse velocity

as the projectile. This is true for a thin beam. From the principle of linear momentum

conservation, the common velocity at t = 0 is given by

V ∗
0 =

V0

1 + µ
. (7.5)

The problem is subject to the following initial conditions

w (x, t = 0) = 0; (7.6)

and

V (x, t = 0) = V ∗
0

[
1 − H

(
x − d

2

)]
. (7.7)

where H is a Heaviside function. The rigid mass is decelerated by the vertical component
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of the membrane force, which furnishes a boundary condition for the problem,

2N0w
′ = M0 (1 + µ) ẅ at x =

d

2
. (7.8)

Another boundary condition is the zero deformation (w = 0) at the moving wave front

ξ = ct.

Both the velocity and deformation slope suffer jumps at the wave front while the trans-

verse deformations are continuous. The kinematic and dynamic continuity conditions re-

quire, respectively,

ẇ] + ξ̇ w′] = 0, at x = ξ +
d

2
, (7.9)

and

N0 w′]+ mξ̇ ẇ] = 0, at x = ξ +
d

2
(7.10)

where ξ̇ = c, and the symbol ] denotes a jump of a given quantity across the wave front,

e.g. ẇ] = ẇ|x+ − ẇ|x− . Since the deflection slope and the velocity ahead of the wave front

are equal to zero, both continuity conditions can be simplified, respectively, as

V + cw′|x=ξ = 0, (7.11)

and

N0w
′|x=ξ + mcV = 0. (7.12)

In actuality, the above two equations are identical to each other since c2 = N0/m.

7.2.2.2 Velocity and deformation

It is assumed that the material element at the stress wave front is instantaneously stretched

and rotated, and the plastic deformation of this element keeps constant in the remaining

part of the impact process. Thus, the wave front carries all the deformation information in

a similar way as a propagating plastic hinge. In such a way, the already deformed region of

the beam behind the wave front undergoes a rigid body translation with a uniform velocity.

Figure 7-4 shows several transient velocity profiles in the deformed regions. By contrast,
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the transverse velocity field is assumed to be of a triangular form in the bending solution,

e.g. Jones [133] and Yu and Stronge [128], in which the rotation angle of the plastic bending

hinge increases with time.

V

V

x

d

cc

cc

V ∗
0

d + 2ct

Fig. 7-4: Schematic representation of transient velocity profiles.

Based on the assumption that the transient velocity and acceleration field of the de-

formed region is constant in space, one can solve Eq. (7.2) by integrating with respect to x

from x = d/2 to x = ξ + d/2

N0 w′∣∣x=ξ+d/2

x=d/2
= mẅξ. (7.13)

Substituting the boundary condition at x = d/2, Eq. (7.8), and the dynamic continuity

condition, Eq. (7.12), into Eq. (7.13) yields

2mcẇ + (M0 + md + 2mξ) ẅ = 0. (7.14)

This ordinary differential equation can also be derived in a straightforward way by invoking

the principle of linear momentum conservation

d
dt

[(M0 + md + 2mξ) ẇ] = 0. (7.15)

The term inside the brackets denotes the total transverse momentum of the system. Solving
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the above equation for ẇ gives the transient velocity

V

V0
=

1
1 + µ + 2µct/d

. (7.16)

A point of the beam located at a distance x from the impacted area begins to deflect

only after t = (x − d/2) /c when the transverse stress wave arrives. Thus, the transverse

deflection of the beam, w, is

w =
∫ t

(x−d/2)/c
V dt. (7.17)

Substituting the expression for V , and integrating the above equation gives

w

d
=

1
2µ

V0

c
ln

1 + µ + 2µct/d

1 + 2µx/d
, (7.18)

where x should satisfy the inequality: d/2 ≤ x ≤ d/2+ct. Due to symmetry of the deflection

of the beam about the impacted area, the expression for the deflection is given only for one

side in Eq. (7.18). Setting x = d/2 in Eq. (7.18) gives the displacement of the rigid mass

w0

d
=

1
2µ

V0

c
ln
(

1 +
2µ

1 + µ

ct

d

)
. (7.19)

This quantity is easily measured in experiments, and thus can be used to make a comparison

between the present analytical solutions and test results.

7.2.2.3 Strain and critical impact velocity

Differentiating the transverse deflection w with respect to x gives the slope of the beam/string

∂w

∂x
=

V0

c

1
1 + 2µx/d

. (7.20)

Under moderately large deflection, the axial tensile strain of the beam/string can be defined

as

ε =
1
2

(
∂w

∂x

)2

=
1
2

(
V0

c

)2( 1
1 + 2µx/d

)2

. (7.21)
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It appears that the plastic tension strain decreases with the distance away from the impacted

zone. The maximum value is located at the edge of the impacted zone, i.e. x = d/2,

εmax =
1
2

(
V0

c

)2 1
(1 + µ)2

. (7.22)

As discussed earlier on, a beam under rigid mass impact probably fails by either shear

plugging or tensile necking. In the present formulation, a through-thickness shear is not

considered and thus the beam/string tends to fail by tensile tearing. The constant critical

plastic strain ε̄f is often used as a fracture criterion to predict necking failure of the beam.

Setting the maximum tensile strain equal to the fracture strain, i.e. εmax = ε̄f , yields the

critical impact velocity
Vcr

c
= (1 + µ)

√
2ε̄f . (7.23)

7.2.2.4 Energy dissipation

The initial kinetic energy, E0, of the projectile is

E0 =
1
2
M0V

2
0 . (7.24)

Immediately after impact, both the impacted zone of the beam and the rigid projectile have

a common velocity, V ∗
0 . The corresponding kinetic energy of the system, E∗

0 , is given by

E∗
0 =

1
2

(M0 + md) (V ∗
0 )2 =

E0

1 + µ
. (7.25)

This kinetic energy will be gradually dissipated in the target beam in the form of plastic

deformation. Compared E∗
0 with E0, it can be seen that some of the kinetic energy of the

rigid mass has been lost upon impact

∆E0 = E0 − E∗
0 =

µ

1 + µ
E0. (7.26)

The loss of the kinetic energy is attributed to a complex local plastic deformation under the

rigid mass. This phenomenon cannot be described using an one-dimensional beam model.
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As the stress waves propagate along the beam from the impacted zone, the transverse

velocity of the beam and rigid mass gradually decreases. At a given time t, the total kinetic

energy of the system becomes

E =
1
2

(M0 + md + 2mct)V 2 =
E0

1 + µ + 2µtc/d
. (7.27)

The loss of the kinetic energy of the system during the stress wave propagation is given by

∆E = E0

(
1

1 + µ
− 1

1 + µ + 2µtc/d

)
. (7.28)

For a rigid-plastic material, the loss of the kinetic energy is completely dissipated in the form

of the plastic compression of the impacted zone. In reality, some lateral plastic deformation

must be present due to the property of plastic incompressibility of materials.

For a rigid-plastic string, the loss of the kinetic energy is completely converted to the

plastic tension energy, defined by

W =
∫ ct

−ct
2bhσ0εdx. (7.29)

Substituting the expression for the tension strain into the above equation, by integration

one gets

W = E0

(
1

1 + µ
− 1

1 + µ + 2µtc/d

)
, (7.30)

which is exactly equal to the loss of the kinetic energy, ∆E. Therefore, not only the linear

momentum but also the energy are conserved during the wave propagation process for a

rigid-perfectly plastic beam/string.

7.2.2.5 Range of applicability

The present solution is applicable to a plastic string, in which axial stretching is only an

effective response to impact loading. The beam case is more complicated since shearing,

bending, and axial stretching may participate subsequently or simultaneously in the impact

response. Immediately after impact, local shearing through the target thickness is predomi-

nant. If the impact velocity is sufficiently high, the beam would be sheared off in this phase,
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which is the subject of Chapter 7.5. As transverse disturbances (transverse stress waves)

travel away from the impacted zone, local shearing will give way to bending deformation.

Axial stretching would become equally important as, or even exceed bending response as

the transverse deflection increases. Alternatively, at a relatively low impact velocity the

beam would stop deformation before entering into the phase of axial stretching. Hence, it is

necessary to determine the range of applicability of the present solution to the beam case.

Suppose that the beam is subjected to the combined action of axial stretching and

bending. The neutral axis is located at the distance ζh from the bottom surface where

0 < ζ < 1, see Fig. 7-5.

+

_

σ0

−σ0

ζh

ζh − h/2

Fig. 7-5: Schematic representation of stress distribution along the thickness and the neutral axis.

The bending moment Mb acting on the section is given by

Mb = σ02b (h − ζh) ζh. (7.31)

Setting ζ = 1/2 in the above expression, i.e. the neutral axis is located at the center of the

cross-section, gives the pure plastic bending moment

Mb,0 = σ0bh
2/2. (7.32)

The axial tensile force acting on the cross-section is

N = σ02b [h − 2 (h − ζh)] . (7.33)
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Combining Eqs. (7.31) with (7.33) and eliminating ζ gives the yield locus

Mb

Mb,0
+
(

N

N0

)2

= 1. (7.34)

Assume that the cross-section remains plane and thus the membrane strain rate at the

central axis has the following relation with the bending curvature rate

ε̇ = κ̇

(
ζh − h

2

)
. (7.35)

By eliminating ζ, we obtain
ε̇

κ̇
=

h

2
N

N0
. (7.36)

Assume that the uniform distribution of the transient transverse velocity field is still

valid for the beam under the combined action of bending and axial stretching. Thus, the

transient deflection of the beam is also given by Eq. (7.18). Differentiating the deflection

twice with respect to the spatial coordinate yields the bending curvature κ

κ = −∂2w

∂x2
=

V0

c

2µ

d

(
1

1 + µ + 2µx/d

)2

. (7.37)

Similarly to the plastic string case, the material element at the stress wave front is suddenly

stretched and at the same time bent. The acquired bending strain and the axial stretching

strain keep constant in the rest of the impact process. Hence, we have

ε

κ
=

ε̇

κ̇
=

h

2
N

N0
(7.38)

Substituting the expressions for ε and κ, we have

V0

c

d

4µ
=

h

2
N

N0
. (7.39)

Setting N = N0 in the above equation gives a critical velocity at which transition takes
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place from the combined to pure membrane response

V0

c
= 2µ

h

d
. (7.40)

This critical velocity is actually the lower bound of the range of applicability of the present

solution to the beam case since N ≤ N0. For d = 2h and µ = 0.1, the low bound impact

velocity is about V0 = 50 m/s for 2024-T351 aluminum alloy. This condition includes all

the input variables. By contrast, Jones [133] and Yu & Stronge [128] gave, respectively, the

constant critical deflection w0 = h/2 and w0 = h, at which the impact response of a beam

changes from the combined action to the pure axial stretching.

At a very high impact velocity, indentation of the impacted zone and local through-

thickness shearing becomes important and a beam would be perforated before entering into

the phase of axial stretching. Such a problem is the subject of Chapter 7.5.

7.2.3 Round-nosed projectile

Besides the mass and impact velocity, the nose shape of the projectile also has an effect

on the impact response of a target. The preceding theoretical analysis for the flat-nosed

mass was recently extended by Wierzbicki and Teng [130] to the case with the round-nosed

projectile.

In the flat-nosed case, the whole impacted zone immediately acquires the common ve-

locity with the projectile and acts as a rigid body. By contrast, the impacted zone of the

beam/string gradually wraps around the round-nosed projectile as the transverse momen-

tum transfers from the projectile to the impacted zone, see Fig. 7-6. The transverse plastic

stress waves are entrapped in the impacted zone in this wrapping phase. The reason behind

it will be explained in the following.
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O
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w0

M0, V0

d/2
A

Fig. 7-6: Wrapping of the beam-string around the round nose of the projectile in the supersonic

phase.

The axial coordinate ξ of the point A at which the beam loses contact with the projectile

is given by

ξ =
d

2
sinφ, (7.41)

where d is the diameter of the projectile, and φ is the contact angle. Differentiating ξ with

respect to time gives the traveling velocity of the contact point A:

ξ̇ =
d

2
cos φφ̇. (7.42)

The transverse displacement w0 of the projectile in the wrap-around zone is

w0 =
d

2
(1 − cos φ) . (7.43)

Differentiating the above equation with respect to time t gives the velocity of the projectile

in the wrapping phase

V =
d

2
sinφφ̇. (7.44)

Eliminating φ̇ between Eqs. (7.42) and (7.44) yields

ξ̇

V
=

1
tan φ

. (7.45)

Initially V (t = 0) = V0 and φ = 0, hence, ξ̇ → ∞, which indicates the contact point A
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travels at a “supersonic” velocity ξ̇ > c in the initial phase. Hence, no information on

deformation is able to propagate ahead of the contact point and the beam/string must

wrap up around the lateral surface of the round nose.

As the velocity V of the projectile decreases and the contact angle φ increases, the

traveling velocity ξ̇ may decreases to the sonic value, i.e. ξ̇ = c. The entrapped transverse

stress wave will escape from the impacted zone and propagate to far fields. Another possible

situation is that the beam/string would break during the wrapping phase. As the impacted

zone wraps around the projectile, the beam/string is stretched. The axial plastic strain at

the contact point A is given by

ε =
√

1 + tan φ − 1 ≈ 1
2

tan2 φ x ≤ d

2
sinφ1. (7.46)

If the plastic tensile strain reaches the fracture strain of the beam/string ε̄f , the beam/string

will be torn apart before the escape of the stress wave. This condition gives the critical

contact angle φf

φf = tan−1
√

2ε̄f . (7.47)

The common velocity of the projectile and the wrapped zone can be determined using

the principle of linear momentum conservation

V

V0
=

M0

M0 + 2mξ
=

1
1 + µ sin φ

. (7.48)

The above solution is valid until the velocity ξ̇ decreases to the sonic value c or the contact

angle reaches the critical value for fracture φf , whichever takes place first, see Fig. 7-7. At

a larger mass ratio µ, it is more likely that the stress wave would escape from the wrapped

zone, i.e. Eq. (7.48) would intersects with the curve V = c tanφ before fracture.

The wrapping phase terminates at ξ̇ = c. The corresponding wrapping angle φ1 can be

obtained by combining Eqs. (7.45) and (7.48), which is given by the following transcendental

equation

c tanφ1 =
V0

1 + µ sin φ1
. (7.49)

For small φ, tan φ ≈ sin φ ≈ φ. The above equation becomes a quadratic equation in φ1,
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which has the solution

φ1 =
−1 +

√
1 + 4µV0/c

2µ
. (7.50)
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Fig. 7-7: Transient velocity of the projectile vs. contact angle in the supersonic phase. The solution

represented by the shaded area is bounded by fracture angle or by the boundary with the

subsonic region, whichever occurs first.

Combining Eqs. (7.44) and (7.48) gives

V0

1 + µ sinφ
=

d

2
sinφ

dφ

dt
. (7.51)

Integration of the above equation from 0 to φ1 give the duration of the supersonic phase t1.

V0t1
d

=
1
2
− 1

2
cos φ1 +

1
4
µφ1 − 1

8
µ sin 2φ1 ≈ 1

4
φ2

1. (7.52)

In the next phase, the transverse stress wave will travel away from the wrapping zone

to far fields with the constant speed c. Similarly to the case with the flat-nosed projectile,
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the transverse velocity is uniformly distributed in the deformed region of the beam/string.

The principle of momentum conservation gives the transient transverse velocity

V

V0
=

M0

M0 + md sinφ1 + 2mc (t − t1)
=

1
1 + µ sin φ1 + 2µ (t − t1) /d

. (7.53)

The deformation of the beam-string at x is expressed as

w =
∫ t

x−d/2 sin φ1
c

+t1

V dt. (7.54)

Substituting the expression for V and integrating the above equation gives

w

d
=

1
2µ

V0

c
ln

1 + µ sin φ1 + 2µc (t − t1) /d

1 + 2µx/d
. (7.55)

Similarly, the axial tensile strain is

ε =
1
2

(
∂w

∂x

)2

=
1
2

(
V0

c

)2( 1
1 + 2µx/d

)2

x ≥ d

2
sinφ1. (7.56)

Figure 7-8 shows the distribution of plastic tensile strain along the beam. It can be easily

seen that the maximum tensile strain occurs at the point A, i.e. x = d/2 sin φ1. The critical

impact velocity to tear apart the beam/string is given by

Vcr

c
=

√
2ε̄f

(
1 + µ

√
2ε̄f

1 + 2ε̄f

)
. (7.57)

By comparing Eqs. (7.23) with (7.57), we can clearly see that the critical velocity for the

round-nosed projectile is smaller than that for the flat-nosed one. It is not consistent with

experimental results by Børvik et al. [56] and numerical results presented in Chapter 3.2.5.

The sharp corners of the flat-nosed projectile would induce stress concentration and make

crack formation easier. It seems that only numerical methods would be able to take this

local factor into account.
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Fig. 7-8: Distribution of plastic tensile strain at various mass ratios.

7.2.4 Comparison with finite element solutions

Several simplifying assumptions were introduced in the development of the present closed-

form solution. Since no experimental results are available currently in the literature, finite

element solutions are developed here to verify the accuracy of the theoretical predictions.

Consider a 2024-T351 aluminum alloy plane-strain fixed-fixed beam of the length of

l = 1.0 m and h = 10 mm impacted by a rigid, flat-nosed (round-nosed) projectile with the

breadth (diameter) d = 20 mm. The mass and impact velocity of the mass were varied to

investigate their effects on the impact response. Fifty elements (CPE4R) were used through

the beam thickness. The JC’s material constitutive model was defined and no fracture locus

was assigned in the simulation.

Plots of transient transverse velocity are shown in Figs. 7-9 for the flat-nosed case with

the impact velocity V0/c = 0.5 and the mass ratio µ = 0.05. In the theoretical analysis,

only the plastic stress wave with the constant speed is considered corresponding to the

simplified rigid-perfectly plastic material. By contrast, in the finite element calculation,

elastic transverse stress waves are also generated preceding the plastic stress wave since the

elastic-plastic, strain-hardening material model was used. The elastic stress waves, which

travel at a much higher speed than the plastic waves, also carry transverse momentum. This
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leads to the oscillation of the transverse velocity field ahead of the plastically deforming

region. The finite element solutions predict the ear-like transient transverse velocity field at

the later phase of the impact process, which is largely different from the uniform distribution

assumed in the theoretical model. The reason behind it is not clear to the author.

Figure 7-10 shows the comparison of the time history of the displacement of the projectile

in a wide range of the mass ratio. Figures 7-11 and 7-12 show the transient deflection profiles

of the beam under impact by the flat-nosed and round-nosed projectiles, respectively. It can

be concluded by comparison that the theoretical predictions have rather good agreements

with the finite element solutions. The differences between them become large at the end of

the impact process, probably due to effects of unloading stress waves or boundary conditions.

These factors, neglected in the theoretical model, are taken into account in the finite element

modeling.
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Fig. 7-9: Comparison of transient transverse velocity profiles of the beam impacted by the flat-nosed

projectile with µ = 0.05 and V0 = 229 m/s.
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Fig. 7-11: Comparison of transient transverse deflection profiles of the beam impacted by the flat-

nosed projectile with µ = 0.05 and V0 = 229 m/s.
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Fig. 7-12: Comparison of the transient deformation profiles of the 2024-T351 aluminum alloy beam
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7.2.5 Discussions

In this section, a theoretical model of a long, plastic beam impacted by a rigid mass was

developed. The closed-form solutions were obtained for the deflection, strain, and critical

velocity of the target beam. Comparison with the finite element simulations were made

showing good agreements. Without much difficulty, the present formulation can be extended

to the axisymmetric case, e.g. cylindrical projectile impact on a circular plate.

Note, that the present formulation satisfies the condition of kinematic and dynamic

continuity as well as global equilibrium, expressed via the principle of conservation of linear

momentum and energy. However, local equilibrium may be violated. For example, the

boundary condition at x = d/2, i.e. Eq. (7.8), becomes invalid in the later phase of the

impact process. Eq. (7.8) states that the inertial force of the projectile is balanced by the

vertical component of the plastic axial tensile force at the edge of the impacted zone. The

inertial force of the projectile decreases with time while the plastic resistance is constant

during the impact process. This discrepancy may lead to large difference between the

closed-form solution and the finite element results.

Response of a real beam is always dominated by shearing and bending before entering

into the phase of axial stretching. During this process, a large part of transverse momenta

are transferred from the projectile to the target. However, these momenta are not taken

into account in the present model. In a real beam, the tensile strain gradually increase with

the deflection. In the present formulation, the struck beam/string immediately acquires

the maximum plastic tensile strain at the edge of the impacted zone. Thus, the present

formulation is able to predict the ballistic limit but not the residual velocity of the projectile.

Note, that the critical velocity predicted by the present model may be a little overesti-

mated since only the contribution from axial stretching is considered. In actuality, damage

also accumulates in the initial phase due to shearing and bending. At the same time, the

sharp corners of the flat-nosed projectile would induce stress concentration and crack initi-

ation. It is difficult to include these effects into an one-dimensional theoretical model and

at the same time keeps its simplicity.
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7.3 Single impact of beam-to-beam

7.3.1 Introduction

In the September 11th attack, the wings of the airplanes broke into numerous pieces while

the exterior columns of the Twin Towers were either torn apart or cut through. This moti-

vates us to develop a theoretical model of the single impact of beam-to-beam, in which the

struck and striking beams represent the exterior column and the airplane wing, respectively.

Compared with rigid mass-to-beam/plate impact, the coupling of the impact response of

two deforming and fracturing bodies renders the problem more difficult and at the same

time interesting. However, such a problem was little studied theoretically in the literature.

Yu and his coworkers [137, 138] formulated the problem that that a cantilever beam is im-

pacted at its tip by a moving free-free beam. This theoretical model can be considered to

be a combination of two basic models (i): a cantilever beam under rigid mass impact at its

tip first formulated by Parkes [139] and (ii): a free-free beam loading at its mid-point by a

pulse of force proposed by Lee and Symonds [140]. The same problem was also studied by

Ruan et al. [141] using the modal approximate technique. Yang et al. [142, 143] extended

the solutions to other impact configurations of a cantilever beam struck by a hinged beam

and a clamped beam struck by a free-free beam, respectively. In all these theoretical mod-

els, attention was focused on plastic bending response and energy partitioning between two

impacting beams, and fracture was not taken into account. Hence, these solutions obtained

apply to the lower end of the spectrum of the impact velocity.

In contrast to the theoretical analyses presented in the literature, this section reports

a closed-form solution of large plastic deformation and fracture response of two impacting

beams. The impact velocity is assumed to be high enough so that the response of both

beams is controlled by inertia force and wave propagation. The momentum conservation

approach first formulated for rigid mass-to-beam impact is extended to the present case. Of

interest is the determination of transient velocity and deflection profiles, maximum slopes,

and the critical impact velocity to fracture.
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7.3.2 Problem formulation

Consider a right angle impact of two plastic beams of rectangular, solid, cross-sections

made of different materials. The width and thickness of two impacting beams are denoted

respectively by 2bi and hi. Hereinafter, the subscript i = 1 denotes the struck beam and

i = 2 the striking beam. The mechanical properties of two impacting beams are defined by

the mass density ρi and the average plastic flow stress σi. From the above parameters, one

can uniquely define the mass density per unit length of the beams mi = 2ρibihi. The impact

configuration is shown in Fig. 7-13, which also uniquely defines the coordinate system (x1,

x2). For convenience, the origin of the axial coordinate is defined at the edge of the impacted

zone. Due to symmetry of the impact response about the impacted zone, the expressions

for solution variables will be given only for the positive side of the axial coordinate in the

following derivation.

2b2

2b1

m2

m1

Struck beam

Striking beam

x1

x2

Impacted zone

Fig. 7-13: Mechanical and geometrical parameters of the striking and struck beams.

The geometry of the beam is arbitrary provided that two inequalities are satisfied

b1/h2 	 1 and b2/h1 	 1. Both inequalities ensure that the moderately large deflection

theory of the beam with predominantly membrane action is valid. Otherwise the problem

becomes three-dimensional and can only be treated by means of numerical methods.
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Both beams undergo large plastic deformation such that axial stretching dominates over

bending and local shearing. The problem is formulated by following the same procedure

for rigid mass-to-beam impact given in the preceding section. In the absence of external

forcing terms and bending moment, the force equilibrium equation of the beam/string in

the transverse direction is (
Niw

′
i

)′ = miẅi i = 1, 2 (7.58)

where wi is the transverse deflection of the beam, and Ni = 2σibihi is the axial tensile force.

Eq. (7.58) can be reduced to the familiar wave equation for each of the beams.

c2
i w

′′
i = ẅi (7.59)

where ci is the transverse stress wave speed, defined by

ci =
√

Ni

mi
=
√

σi

ρi
. (7.60)

Figure 7-14 shows the original and deformed configurations of both beams. Immediately

upon impact, two shock waves are generated for each beam due to the discontinuity of the

initial velocity field in the impacted zone. As the shock waves propagate along both sides of

the beams, the initially stationary struck beam gradually acquires the transverse momentum

while the velocity field of the striking beam becomes nonuniform. Both beams undergo

plastic deformation. It is assumed that the material elements at the stress wave front acts as

a plastic traveling extensional hinge, and all the plastic deformation concentrates at the wave

front and keeps constant since then. Hence, the deformed region behind the wave fronts will

be subjected to a rigid body motion. Note, that this assumption was initially introduced

for the case of rigid mass-to-beam impact. From this assumption, we can qualitatively

determine the transverse velocity field. A typical description of the transient velocity fields

at a certain time for both beams is illustrated in Fig. 7-15. Physically, the central part

of the struck beam translate with a uniform velocity and the remaining part of the struck

beam ahead of the wave fronts is still at rest. The striking beam can also be divided into

two parts moving at different velocities.
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Fig. 7-14: Schematic representation of plastic deformation patterns of both beams.
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Fig. 7-15: Transient velocity profiles for both beams at a certain time after impact.
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The force equilibrium for the impacted zone prescribes one boundary condition of the

beams at xi = 0, see free body diagrams illustrated in Fig. 7-16,

⎧⎨
⎩ 2N1w

′
1 = −P + 2m1b2ẅ1 at x1 = 0

2N2w
′
2 = +P + 2m2b1ẅ2 at x2 = 0

. (7.61)

where P is the interaction force between the beams. Another boundary condition is located

at the wave front, i.e. wi (ξi, t) = 0 at ξi = cit.

N2w
′
2

N2w
′
2

N1w
′
1N1w

′
1

2m1b2ẅ1

2m2b1ẅ2

Striking beam

Struck beam

2b1

2b2

P

P

x2

x1

Fig. 7-16: Free body diagram for the impacted zone.

The problem is also subject to the following initial conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wi (xi, 0) = 0

ẇ1 (x1, 0−) = 0

ẇ2 (x2, 0−) = V0

. (7.62)

It is assumed that the striking beam maintains contact with the struck beam during the

whole impact process. So, both the striking and struck beams have a common displacement,
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velocity and acceleration at the impacted zone,

w1 = w2, ẇ1 = ẇ2, ẅ1 = ẅ2. (7.63)

Further, since the transverse velocity is uniform in the deformed region for both beams, it

can be inferred that both the striking and struck beams have a common velocity not only

at the impacted zone but also in the deformed region, see Fig. 7-15.

The solutions have to satisfy both kinematic and dynamic continuity conditions at the

moving boundary, ξi = cit, which require, respectively,

ẇi] + ciw
′
i

]
= 0 at xi = cit. (7.64)

and

Niw
′
i

]
+ miciẇi] = 0 at xi = cit, (7.65)

where the velocity jump at the wave front of the struck beam is

ẇ1] = ẇ1|ξ+
1
− ẇ1|ξ−1 = 0 − ẇ1, (7.66)

and the velocity jump at the wave front for the striking beam is

ẇ2] = ẇ2|ξ+
2
− ẇ2|ξ−2 = V0 − ẇ2. (7.67)

Considering that the transverse velocity and acceleration of the deformed regions are

constant in space and vary in time, integration of Eq. (7.58) with respect to x from xi = 0

to ξi = cit yields

Niw
′
i

∣∣ξi=cit

xi=0
= miẅicit. (7.68)

Substituting the boundary conditions at xi = 0 and the dynamic continuity conditions at

ξi = cit, one obtains, for the struck beam,

− m1c1ẇ1 +
P

2
− m1b2ẅ1 = m1ẅ1c1t, (7.69)
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and for the striking beam,

m2c2 (V0 − ẇ2) − P

2
− m2b1ẅ2 = m2ẅ2c2t. (7.70)

Eliminating the interaction force P between Eqs. (7.69) and (7.70), the governing equation

becomes

m1 (b2 + c1t) ẅ1 + m2 (b1 + c2t) ẅ2 + m1c1ẇ1 + m2c2ẇ2 − m2c2V0 = 0. (7.71)

Using the contact condition, Eq. (7.63), the governing equation is further reduced to

(m1b2 + m1c1t + m2b1 + m2c2t) V̇ + (m1c1 + m2c2)V = m2c2V0, (7.72)

where V̇ = ẅ1 = ẅ2 and V = ẇ1 = ẇ2. The above equation furnishes an initial value

problem for the common velocity V . The initial value of the common velocity V ∗
0 is deter-

mined from the conservation of transverse momentum in the impacted zone immediately

upon impact:

V ∗
0 =

m2b1

m1b2 + m2b1
V0 at t = 0. (7.73)

The equation of motion can also be derived using the principle of linear momentum conser-

vation:

2m2 (b1 + c2t) (V0 − V ) = 2m1 (b2 + c1t)V (7.74)

where the term in the left hand side represents the loss of the momentum of the striking

beam, and the term in the right hand side represents the gain of the momentum of the

struck beam. Differentiating the above equation with respect to time t, one can obtain the

same equation as (7.72). The latter approach is strikingly simple and thus will be used in

the analysis of multiple impact of beam-to-beam.
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7.3.3 Solutions for velocity and deformation

Eq. (7.74) gives the transverse velocity of the deformed region as a function of time t

V

V0
=

1

1 +
m1

m2

(
b2 + c1t

b1 + c2t

) . (7.75)

Introducing a mass parameter α, a velocity parameter β and a time parameter τ , it is

convenient to re-arrange the solution in the dimensionless form

V

V0
= β +

α − β

1 + t/τ
. (7.76)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α =
m2b1

m1b2 + m2b1
, 0 < α < 1

β =
m2c2

m1c1 + m2c2
, 0 < β < 1

τ =
m1b2 + m2b1

m1c1 + m2c2

. (7.77)

The mass parameter α represents the mass ratio of both beams in the impacted zone, and

the velocity parameter β can be understood as the wave speed ratio weighted by the mass

per unit length of the beams. The second term in the right hand side of Eq. (7.76) can be

either negative or positive, depending on the relative values between α and β. In terms of

the mass parameter α, Eq. (7.73) can be rewritten in a simpler form

V ∗
0 = αV0. (7.78)

Depending on the relative value of α and β, three types of the velocity history of the

velocity may develop, see Fig. 7-17. It appears that for α > β (b1c1 > b2c2) the common

velocity V acquires the maximum value immediately upon impact, then gradually decreases,

while for α < β, the common velocity V eventually increases with time. Both cases approach

an asymptote β as t → ∞. The third case with α = β (b1c1 = b2c2) is also interesting

because the common velocity is constant not only in space but also in time. Note, that the

transverse velocity always decreases with time in rigid mass impact.
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Fig. 7-17: Time history of the transverse velocity in the deformed region at various relative values

of α and β.

For the struck beam, a point located at a distance x1 starts to deform only after time

t = x1/c1. The transverse deflection w1 of the struck beam is given by

w1 =
∫ t

x1/c1

V dt. (7.79)

Substituting the expression for V , one obtains the deflection of the struck beam

w1

V0τ
= β

(
t

τ
− x1

τc1

)
+ (α − β) ln

1 + t/τ

1 + x1/ (τc1)
. (7.80)

For the striking beam, a point located at a distance x2 from the impacted zone moves with

the initial velocity V0 before the wave front arrives at t = x2/c2. Thus, the transverse

deformation of the striking beam w2 is defined by

w2 =
∫ x2/c2

0
V0dt +

∫ t

x2/c2

V dt. (7.81)

Integrating the above equation yields the transverse deformation of the striking beam

w2

V0τ
=

x2

τc2
+ β

(
t

τ
− x2

τc2

)
+ (α − β) ln

1 + t/τ

1 + x2/ (τc2)
. (7.82)
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The first term in the right hand side of the above equation represents the rigid body trans-

lation of the beam before the wave front arrives, which is different from the expression for

the deflection of the struck beam. The deflection w0 in the impacted zone, which is the

same for the striking and struck beams, is determined by setting x1 = 0 in Eq. (7.80) or

x2 = 0 in Eq. (7.82):
w0

V0τ
= β

t

τ
+ (α − β) ln

(
1 +

t

τ

)
. (7.83)

Plots of transient deflection profiles of the struck beam for three different relative values

of α and β are shown in Fig. 7-18. When α = β, the logarithmic term in Eq. (7.80)

disappears, and only the linear term is left. Correspondingly, the deflection profile of the

beam is a straight line. When α > β, the logarithmic term is always positive and contributes

to the deflection magnitude of the beam, and vice versa. This logarithmic term also has

an effect on the slope of the beam, which will be shown later on. Similarly, there are three

types of deflection profiles for the striking beam, see Fig. 7-19. As opposed to the struck

beam, the part in front of the wave front moves like a rigid body with the velocity V0.
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Fig. 7-18: Transient deflection profiles of the struck beam for various values of α and β.
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Fig. 7-19: Transient deflection profiles of the striking beam for various values of α and β.
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7.3.4 Tensile strains and critical velocity to fracture

The failure mechanism and failure mode are complicated in the case of beam-to-beam

impact. As demonstrated by preliminary numerical investigations, either of the beams may

fail by shear plugging or tensile necking during the impact process, depending on various

combinations of input variables. Here, it is assumed that both beams will fail due to tensile

necking. This assumption restricts the applicability of the following solutions, but still a

class of beams satisfying the solutions is very broad.

Under moderately large deformation, the plastic tensile strain is given by, respectively,

for the struck and striking beams

⎧⎪⎪⎨
⎪⎪⎩

ε1 = 1
2

(
V0

c1

)2 [
β + (α − β)

1
1 + x1/ (τc1)

]2

ε2 = 1
2

(
V0

c2

)2 [
(1 − β) − (α − β)

1
1 + x2/ (τc2)

]2 . (7.84)

Corresponding to the deformation profiles, the plastic tensile strains also have three types

of distribution along each beam, see Fig. 7-20. It transpires that for the struck beam, the

maximum tensile strain occurs at x1 = 0 at α > β, while it occurs somewhere far from

the impacted zone at α < β. Different from the response of the struck beam, the plastic

tensile strain in the striking beam gradually increases at α > β. All the curves approach an

asymptote for large xi, which corresponds to the limiting case α = β. As shown earlier on,

the deflection profile is the straight line at α = β, which indicates that the tensile strain is

the same everywhere in the deformed region. Note, that in rigid mass impact, the maximum

tensile strain always occurs at the edge of the impacted zone and thus the beam always fails

at the impacted zone. By contrast, in beam-to-beam impact it is possible that the beams

would break somewhere far from the impacted zone. Or say, the fracture is delayed.

Setting the maximum tensile strain equal to the fracture strain ε̄f,i, we obtain the critical

impact velocities, for the struck beam,

Vcr,1

c1

√
2ε̄f,1

= min
{

1
α

,
1
β

}
, (7.85)
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and for the striking beam,

Vcr,2

c2

√
2ε̄f,2

= min
{

1
1 − α

,
1

1 − β

}
. (7.86)
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Fig. 7-20: Plastic tensile strain variation along the beams for various values of α and β.
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7.3.5 Location and time of fracture

At an impact velocity higher than the critical velocity, both/either of the beams will break.

The fracture location and the fracture time can be determined by setting the maximum

tensile strain equal to the fracture strain in Eq. (7.84). Since the response of both beams

depends on the relative values of α and β, it is convenient to separately solve the problem

for two cases with α > β and α < β.

7.3.5.1 The struck beam at α > β

As shown in Fig. 7-21, the tensile strain gradually decreases from the impacted zone to far

fields at α > β. Hence, the struck beam will fracture at x1 = 0 immediately upon impact

(t = 0), if the impact velocity V0 is larger than the critical velocity Vcr,1 given in Eq. (7.85).
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√
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0 Never break

V0

ε = ε̄f

Fig. 7-21: Tensile strains versus distance for the struck beam with α > β under various impact

velocities.

7.3.5.2 The struck beam at α < β

At α < β, the tensile strain of the struck beam gradually increases from the impacted zone,

see Fig. 7-22. It is possible that the struck beam will break somewhere away from the
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impacted zone in this case. If the impact velocity is in the range of

Vcr,1 =
c1

β

√
2ε̄f,1 < V0 <

c1

α

√
2ε̄f,1 (α < β), (7.87)

the fracture location and time are given by

xcr,1

τc1
=

tcr,1
τ

=

√
2ε̄f,1 − αV0/c1

βV0/c1 −
√

2ε̄f,1
. (7.88)

The above expression is derived from Eq. (7.84) by setting ε1 = ε̄f,1 to solve x1. As the

impact velocity V0 increases, the fracture location will approach the impacted zone. If

V0 >
c1

α

√
2ε̄f,1. (7.89)

the struck beam would fail in the impacted zone immediately upon impact.
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Fig. 7-22: Fracture location for the struck beam with α < β.

The plastic tensile strains as a function of the distance from the impacted zone at various
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impact velocities are shown in Fig. 7-22. The lower shaded area indicates that the fracture

will never happen, if the impact velocity is lower than the critical velocity. The middle

blank area indicates that the fracture location moves from far field to the impacted zone as

the impact velocity increases from V0 = c1

√
2ε̄f,1/β to V0 = c1

√
2ε̄f,1/α.

7.3.5.3 The striking beam at α > β

If α > β, the tensile strain of the striking beam increases with the distance from the

impacted zone, see Fig. 7-20, which is similar to the case of the struck beam with α < β.

The fracture location and time are given by

xcr,2

τc2
=

tcr,2
τ

=

√
2ε̄f,2 − (1 − α) V0/c2

(1 − β)V0/c2 −
√

2ε̄f,2
(7.90)

for the impact velocity in the range

Vcr,2 =
c2

1 − β

√
2ε̄f,2 < V0 <

c2

1 − α

√
2ε̄f,2 (α > β) . (7.91)

xcr,2

τc2

V0

c2

√
2ε̄f,2

1
1−α

1
1−β

x2 = 0

Never fracture

Fig. 7-23: Fracture location as a function of the impact velocity for the striking beam at α < β.
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Similarly, the striking beam will break in the impacted zone immediately upon impact

at α > β, if it is satisfied that

V0 >
c2

1 − α

√
2ε̄f,2. (7.92)

An alternative way of looking at the relation between the fracture location and the

impact velocity is shown in Fig. 7-23.

7.3.5.4 The striking beam at α < β

At α < β, the maximum tensile strain is located at x2 = 0. Therefore, the striking beam

will always fracture in the impacted zone immediately upon impact, if V0 > Vcr,2. This case

is similar to that of the struck beam with α > β.

7.3.6 Fracture scenarios

In rigid mass-to-beam impact, there is only one possible fracture scenario. The target

beam breaks in the impacted zone or keeps intact. By contrast, there are five possible

fracture scenarios in the single impact event of beam-to-beam, which are summarized in

the following.

7.3.6.1 Case 1: Both beams fracture immediately upon impact

From Eq. (7.84), the plastic tensile strains of both beams at t = 0 are

⎧⎨
⎩

ε1|t=0 = 1
2α2

(
V0
c1

)2

ε2|t=0 = 1
2 (1 − α)2

(
V0
c2

)2 . (7.93)

If both the struck and striking beams break in the impacted zone immediately upon impact,

the generated plastic tensile strains must be larger than their respective critical values ε̄f,i.

In other words, the impact velocity V0 must be given by

V0 > max

{
c1

√
2ε̄f,1

α
,
c2

√
2ε̄f,2

1 − α

}
. (7.94)



228 CHAPTER 7. DERIVATION OF ANALYTICAL BENCHMARK SOLUTIONS

7.3.6.2 Case 2: The striking beam breaks at t = 0; and the struck beam keeps

intact

In this case, the strain of the struck beam at x1 = 0, ε1|t=0, must be smaller than ε̄f,1; and

the strain of the striking beam at x2 = 0, ε2|t=0, must be larger than ε̄f,2. The corresponding

range of the impact velocity V0 is given by

c2

√
2ε̄f,2

1 − α
< V0 <

c1

√
2ε̄f,1

α
. (7.95)

It can be observed from the above equation that there is an implicit, necessary condition:

c2

√
2ε̄f,2

1 − α
<

c1

√
2ε̄f,1

α
. (7.96)

Hence, if the above condition is not satisfied, this fracture scenario will never happen.

7.3.6.3 Case 3: The struck beam breaks at t = 0; and the striking beam keeps

intact

Similarly, for this case, the range of the impact velocity is given by

c1

√
2ε̄f,1

α
< V0 <

c2

√
2ε̄f,2

1 − α
. (7.97)

The implicit, necessary condition is given by

c1

√
2ε̄f,1

α
<

c2

√
2ε̄f,2

1 − α
. (7.98)

7.3.6.4 Case 4: The striking beam breaks after some time; and the struck

beam keeps intact

The striking beam will break after some time, which means that the tensile strain in the

striking beam gradually increases with time and distance from the impacted zone. As shown

in Fig. 7-20(b), this corresponds to the case α > β, at which the range of the impact velocity

has been already given in Eq. (7.91). The struck beam will keep intact. Hence, the strain of

the struck beam at x1 = 0, ε1|t=0, must be smaller than ε̄f,1. Combining these conditions
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give the range of the impact velocity for Case 4

c2

√
2ε̄f,2

1 − β
< V0 < min

{
c1

√
2ε̄f,1

α
,
c2

√
2ε̄f,2

1 − α

}
(α > β). (7.99)

7.3.6.5 Case 5: The struck beam breaks after some time; and the striking

beam keeps intact

Similarly, we can obtain the condition for Case 5,

c1

√
2ε̄f,1

β
< V0 < min

{
c1

√
2ε̄f,1

α
,
c2

√
2ε̄f,2

1 − α

}
(α < β). (7.100)

The five cases discussed above are illustrated in Fig. 7-24.

Striking beam Struck beam

Case 1

Case 2

Case 3

Case 4

Case 5

Fig. 7-24: Five fracture scenarios (The symbol × denotes fracture location).
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7.3.7 Deflection after fracture

If one beam breaks, the other intact beam will continue to deform as the stress waves

continue to propagate down the beam to far fields. Although the deformation of the beam

continuously increases, the beam will never fracture, which is shown next. Considering that

there are five possible fracture scenarios, we will take only two typical cases as examples.

First, consider the case that the striking beam breaks immediately upon impact and

the struck beam keeps intact, where the range of the impact velocity is given in Eq. (7.95).

The acquired momentum of the struck beam is conserved after impact

2m1b2V
∗
0 = m1 (2b2 + 2c1t)V. (7.101)

So the velocity V at a certain time t is given by

V

V0
=

α

1 + c1t/b2
=

α (1 − α)
(1 − α) + (1 − β) t/τ

. (7.102)

Substituting the expression for V into Eq. (7.79), one obtains the deflection w1 of the struck

beam

w1

V0τ
=

αb2

c1τ
ln

b2 + c1t

b2 + x1
=

α (1 − α)
1 − β

ln
(1 − α) + (1 − β) t/τ

(1 − α) + (1 − β) x1/ (τc1)
. (7.103)

Plots of deflection profiles of the struck beam are shown in Fig. 7-25. It appears that the

deflection of the struck beam in the case of the striking beam with fracture is always smaller

than that without fracture.

From the deformation shape given in Eq. (7.103), one can calculate the tensile strain in

the struck beam

ε1 =
1
2
α2

(
V0

c1

)2( b2

b2 + x1

)2

. (7.104)

It can be observed that the tensile strain reaches the maximum value at x1 = 0 (t = 0), then

gradually decreases. Hence, if the struck beam does not break immediately upon impact,

the beam will never break for this case.
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Fig. 7-25: Plots of deflection profiles of the struck beam after fracture of the striking beam.

Consider another case that the struck beam breaks immediately upon impact and the

striking beam keeps intact. The corresponding impact condition is given in Eq. (7.97). The

deflection of the striking beam can be calculated in a similar procedure shown above. The

conservation of momentum for the striking beam after impact is expressed as

2m2b1V
∗
0 + 2m2c2tV0 = 2m2 (b1 + c2t)V. (7.105)

where the second term in the left hand side represents the initial momentum of the striking

beam before the arrival of the wave front. From the above equation, one gets the velocity

V

V0
=

α + c2t/b1

1 + c2t/b1
=

α2 + βt/τ

α + βt/τ
. (7.106)

It can be seen that the velocity V in the deformed part gradually increases due to the

momentum transfer from the part moving with the initial impact velocity V0. Substituting

the expression for the velocity into Eq. (7.79), one arrives at the deflection of the striking

beam
w2

V0τ
=

t

τ
− (1 − α)

α

β
ln

α + βt/τ

α + βx2/ (τc2)
. (7.107)

The plastic tensile strain of this striking beam is given by

ε2 =
1
2

(1 − α)2
(

V0

c2

)2( b1

b1 + x2

)2

=
1
2

(1 − α)2
(

1 +
β

α

x2

τc2

)−2

. (7.108)
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Similarly to the above case, the tensile strain reaches the maximum value at x2 = 0, or say

immediately upon impact t = 0, and then decreases with the distance from the impacted

zone. It is seen from Fig. 7-26 that the tensile strain in the case of the struck beam with

fracture is always larger than that without fracture. Hence, the same conclusion can be

drawn for this case that the beam will never break, after the other beam breaks.

Normalized distance from the impacted zone x2/ (τc2)

N
or

m
al

iz
ed

te
ns

ile
st

ra
in

2ε
(c

2
/V

0
)2

Struck beam fractures

Struck beam keeps intact

Fig. 7-26: Comparison of tensile strain in the striking beam for the case of the struck beam with

and without fracture (α > β).

7.3.8 Comparison with finite element solutions

To verify the present theoretical model, finite element calculation was performed using

ABAQUS/Explicit. Two impacting beams considered have the same geometrical size: the

length l = 1.0 m, the width 2b1 = 2b2 = 10 mm, and the thickness h1 = h2 = 2 mm. The

impact velocity is V0 = 240 m/s. It is assumed that the striking and struck beam is made of

2024-T351 aluminum and Weldox 460 E steel, respectively. The JC’s material models were

defined for both materials and no fracture loci were implemented. Since of interest is the

deflection of both beams, an one-dimensional beam element model (B31) was built instead

of an expensive three-dimensional solid element model.

Figures 7-27 and 7-28 show plots of transient transverse deflections profiles of both

beams. It appears that the present closed-form solutions agree very well with the numerical
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results. Due to the neglect of elastic deformation and reflected stress waves from far-fields

boundaries in the theoretical model, the difference between the two solutions becomes large

at the end of the impact process.
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Fig. 7-27: Comparison of transient deflection profiles of the striking beam at V0 = 240 m/s.
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Fig. 7-28: Comparison of transient deflection profiles of the struck beam at V0 = 240 m/s.
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7.3.9 Discussion

The problem of high velocity impact between two beams has been formulated. The closed-

form solutions are obtained for the transverse velocity, the deflection profile, and the tensile

strain, respectively. It is found that there are three types of the transverse velocity history,

the deflection profile, and the tensile strain distribution, depending on the relative values of

the mass ratio and the wave speed ratio. By assuming the failure mode of tensile necking, the

critical impact velocities have been obtained for the striking and struck beams, respectively.

Five fracture scenarios are identified and the corresponding conditions are determined.

It is assumed in the present problem formulation that axial stretching dominates over

bending and shearing and thus the theoretical solutions apply to the case with a high

impact velocity. Tensile tearing is assumed to determine the critical impact velocities to

fracture the striking and struck beams. As demonstrated in Chapter 3.2, shear plugging is

another possible failure mode in high velocity impact. This is not considered in the present

theoretical model. Shear plugging often competes with tensile tearing, which makes the

problem more complicated. A theoretical model accounting for these factors is developed

in Chapter 7.5.
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7.4 Multiple impact of beam-to-beam

7.4.1 Introduction

In the this section, the momentum conservation approach, first formulated for rigid mass-

to-beam impact and the single impact of beam-to-beam, is extended to a multiple impact

event. Let us assume that a deforming and fracturing beam is impacted sequentially by

arbitrary number identical beams. The striking beams represent the structural components

of the airplane wing; and the stationary struck beam the exterior column of the Twin

Towers. However, the present analysis is rather general and is applicable to any beams of

solid section made of same or different materials. It is for the first time in the literature

that this type of problem is investigated.

Similarly to the single impact problem of beam-to-beam, the present theoretical model

applies to a restricted range of geometrical parameters and impact velocities for which

the beams can indeed be treated as a string. Consequently, the bending phase of the

response which is relevant for the deflection less than one thickness is neglected. Attention

is focused on the plastic deformation and failure response of the struck beam. Of interest

is a determination of the transient velocity, the deflection profile, the tensile strain, and the

critical impact velocity to fracture the struck beam.

A preliminary numerical study indicates that many failure scenarios could develop de-

pending on geometrical size and material properties of two impacting beams for the single

impact of beam-to-beam. Both beams may fail by either tensile tearing or shear plugging,

or one beam is sheared off or torn apart while the other keeps intact. It is also possible

that both beams continue plastic deformation without fracture. The failure patterns may

be still more complicated in the multiple impact event. Here, it is assumed that all the

striking beams immediately fail upon impact while the struck beam keeps deforming until

fracture occurs. This assumption further restricts the applicability of our solution. Still a

class of beams satisfying the solution is very broad.

Two situations may develop later. The remainder of the striking beams could stick to

the struck beam and move with it. Alternatively, the broken piece will slide off the impacted

zone and will no longer interfere with the struck beam. Both cases will be considered in
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this section. For simplicity, the latter case will be taken as an example to present the

formulation of the problem.

7.4.2 Double impact

Consider first a stationary plastic beam subjected to double normal impact by two identical

plastic beams moving with the velocity V0 and separated by the time interval t0, Fig. 7-29.

This problem still allows us to develop a closed-form solution and will provide a starting

point for the formulation of the multiple impact event with arbitrary number striking beams.

Since all the striking beams are assumed to be identical, we can use the same notations

here as those in the single impact of beam-to-beam. For example, the width and thickness

of the impacting beams are denoted by 2b2 and h2 for all the striking beams, and 2b1 and

h1 for the struck beam. The mechanical properties of the beam are defined by the mass

density ρ2 and the average plastic flow stress σ2 for all the striking beams, ρ1 and σ1 for the

struck beam, respectively. Figure 7-13 can be referred to for the definition of the impact

configuration.

V0

V0

Struck beam

Striking beam

V0t0V0t0

Fig. 7-29: Schematic representation of double impact of beam-to-beam.
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7.4.2.1 Problem formulation

Immediately upon the first impact, two shock waves are generated in the impacted zone due

to the discontinuity of the transverse velocity field. As the transverse stress waves propagate

along both sides of the struck beam, a material element at the stress wave front is instantly

stretched, rotated, and imparted a transverse momentum. The plastically deformed region

behind the stress wave front undergoes a rigid body motion. This response is the same

as the single impact of beam-to-beam and has been studied in Chapter 7.3. After time

t = t0, the target beam is impacted by the second striking beam. Similarly, two new stress

waves are generated in the impacted zone. However, different from the first stress waves,

the second stress waves travel in the already deformed region moving at a certain transverse

velocity. Hence, the second impact is an entirely new initial-boundary value problem. A

material element at the second wave front is stretched and rotated again, and acquires a

new transverse momentum. It is assumed that the deformed region behind the second wave

fronts also translates like a rigid body. Thus, the whole deformed region behind the first

wave fronts can be divided into two parts, each of which undergoes rigid body motions but

with different transverse velocities denoted by V1,1 and V1,2, respectively, where the first

subscript 1 denotes the struck beam and the second subscripts j = 1, 2 denotes the impact

number. Both velocities are constant in space and vary with time. A typical profile of the

velocity field after the second impact for the struck beam and the striking beams is shown

in Fig. 7-30.

Correspondingly, the governing wave equation for the struck beam can be easily written,

for each part, as ⎧⎨
⎩ (N1w

′
1)

′ = m1V̇1,2 0 ≤ x1 ≤ ξ1,2

(N1w
′
1)

′ = m1V̇1,1 ξ1,2 ≤ x1 ≤ ξ1,1

, (7.109)

where ξ1,1 = c1t and ξ1,2 = c1 (t − t0) are the location of the first and second wave fronts,

respectively. The governing equations are subject to the kinematic and dynamic continuity

conditions at the wave fronts. Both conditions can be expanded, at the first wave fronts as

⎧⎨
⎩

(0 − V1,1) + c1

(
0 − w′

1|x=ξ−1,1

)
= 0

N1

(
0 − w′

1|x=ξ−1,1

)
+ m1c1 (0 − V1,1) = 0

at x1 = ξ1,1 (7.110)
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where zero initial conditions ahead of the first wave front are used. Similarly, the continuity

conditions at the second wave front are specified by

⎧⎨
⎩

(V1,2 − V1,1) + c1

(
w′

1|x1=ξ−1,2
− w′

1|x1=ξ+
1,2

)
= 0

N1

(
w1

′|x1=ξ−1,2
− w′

1|x1=ξ+
1,2

)
+ m1c1 (V1,2 − V1,1) = 0

at x1 = ξ1,2. (7.111)

As mentioned above, several cases may develop after the second impact. For simplicity, the

case that no parts of the striking beams would remain in the contact with the struck beam

after the impact is considered here, which gives the following boundary condition at x1 = 0

2N1w
′
1 = 2m1b2V̇1, (7.112)

where only the mass of the struck beam in the impacted zone contributes to the inertia force.

It is not necessary to introduce interaction force between the struck beam and striking beams

in the above equation, because no more momentum transfers among the beams after the

fracture of the striking beams. Without difficulty, one can derive boundary conditions for

the other case where the remainder of the striking beam moves with the struck beam.

Since the transverse velocity is uniform in each deformed part, Eq. (7.109) can be inte-

grated with respect to x1, which gives for each part

⎧⎨
⎩

N1w
′
1|x1=ξ−1,2

− N1 w′
1|x1=0 = m1V̇1,2 (c1t − c1t0) 0 ≤ x1 ≤ ξ1,2

N1w
′
1|x1=ξ−1,1

− N1w
′
1|x1=ξ+

1,2
= m1V̇1,1c1t0 ξ1,2 ≤ x1 ≤ ξ1,1

(7.113)

Substituting the corresponding boundary and dynamic continuity conditions, and combining

the above equations together gives the governing equation for the struck beam with respect

to the transverse velocities

[b2 + c1 (t − t0)] V̇1,2 + c1t0V̇1,1 + c1V1,2 = 0. (7.114)

Similarly to the case of rigid mass impact and the single impact of beam-to-beam, the above

governing equation can also be directly obtained from the principle of conservation of linear
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momenta by differentiating the following equation with respect to time t

2m1 [b2 + c1 (t − t0)] V1,2 + 2m1c1t0V1,1 = I, (7.115)

where I is a constant denoting the total momentum of the struck beam supplied by the

striking beams during the double impact process.

V0V0

V0V0

V1,2

V1,2

V1,2

V1,1 V1,1

The second striking beam

The first striking beam

The struck beam

2b1 + 2c2(t − t0)

2b1 + 2c2(t − t0)

2b2 + 2c1(t − t0)

c2t0

c1t0

c1

c1 c1 c1

c2

c2

c2

c2

c2

c2

Fig. 7-30: Transient velocity field in three beams after the second impact.

Note, that the momenta transferred from the striking beam are slightly underestimated,

since only the momenta in the impacted zone are taken into account. When both struck

beams are sheared off, some momenta of both striking beams away from the impacted
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zone is transferred to the struck beam. Finite element simulations of the single impact of

beam-to-beam indicate that the failure duration is of the order of 100 µs, and thus the

underestimation of the momenta imparted by the striking beams would not be significant.

Estimate can be given on the amount of momentum loss during the fracture process. As-

suming the duration of the shear fracture process, tf , is

tf =
h2

3V0
(7.116)

where the coefficient 1/3 in the expression for the duration of fracture comes from the

property that shear crack travels at a speed approximately equal three times higher than

the impact velocity [59], also see Chapter 4. The neglected momentum in the first impact

is approximately given by

∆Is = ρ22b2h22tfc2

(
V0 − V ∗

1,1

)
. (7.117)

where V ∗
1,1 is the instantaneous velocity of the striking beam at the impacted zone immedi-

ately upon impact, and c2 is the speed of the transverse stress wave of the striking beams.

The considered momentum transferred from the first striking beam to the struck beam, Is,

is

Is = ρ22b2h22b
(
V0 − V ∗

1,1

)
. (7.118)

The ratio of the neglected momentum to the considered momentum is

∆Is

Is
=

1
3

h2

b1

c2

V0
. (7.119)

In order for the problem to be one dimensional rather than three dimensional, we have

already assumed that h2 
 b1. Therefore, the term ∆Is can be indeed disregarded as long

as the impact velocity V0 is of the same order as the transverse plastic stress wave speed c2.

7.4.2.2 Assumptions

It can be observed that from the global equilibrium and the conditions of the kinematic and

dynamic continuity, only one equation is found for the two unknown velocities V1,1 (t) and
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V1,2 (t). Therefore, an additional condition is needed to solve the problem.

As stated earlier, the slope w′
1|x1=ξ+

1,1
is generated when the first wave arrives at x1 =

ξ1,1. Since then, the slope of the beam does not change with time until the second shock

wave arrives there. Hence, ∆w′
1,2 = w′

1|x1=ξ−1,2
− w′

1|x1=ξ+
1,2

is the increment of the slope at

x1 = ξ1,2 due to the second shock wave. The kinematic and dynamic continuity conditions

at the second wave front, x1 = ξ1,2, Eq. (7.111), can be recast in the incremental form

⎧⎨
⎩ ∆V1,2 + c1∆w′

1,2 = 0

N1∆w′
1,2 + m1c1∆V2 = 0

(7.120)

where ∆V1,2 = V1,2 − V1,1.

Now, we introduce an assumption that the incremental parts, ∆V1,2 and ∆w′
1,2, satisfy

the governing wave equation at 0 ≤ x1 ≤ ξ1,2,

(
N1∆w′

1,2

)′ = m1∆V̇1,2 0 ≤ x1 ≤ ξ1,2 (7.121)

where ∆V̇1,2 = V̇1,2 − V̇1,1. Then, the governing wave equation, Eq. (7.109), with regard to

the velocity V1,1 can be extended from the region between the two wave fronts, ξ1,2 ≤ x1 ≤
ξ1,1, to the whole deformed region, 0 ≤ x1 ≤ ξ1,1,

(
N1w

′
1,1

)′ = m1V̇1,1 0 ≤ x1 ≤ ξ1,1, (7.122)

where the deflection w1,1 is generated due to the transverse velocity V1,1. The above equation

indicates that the first shock wave will continue to propagate to far fields after the second

impact as if the second impact never happened. In fact, both shock waves propagate with

the common wave speed in the same direction. It is impossible that the second shock wave

would interfere or overtake the first one, and vice versa. Also note, that the governing wave

equation is a homogeneous partial differential equation such that the superposition of the

solutions is applicable.

Based on the assumption, there are two governing Eqs. (7.121) and (7.122) with regard

to ∆V1,2 and V1,1, respectively, both of which satisfy the continuity conditions at the cor-

responding wave fronts, Eqs. (7.110) and (7.120). As shown in the preceding section, if the
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transverse velocity satisfies the governing equation and the continuity conditions, the trans-

verse momentum is conserved during the wave propagation process. As shown in Fig. 7-31,

the transverse velocity field in the struck beam after the second impact is decomposed into

two parts. Each part represents a shock wave propagating with the wave speed, c, and the

transverse momentum is conserved for each part. It is convenient to derive the transverse

velocity at any time from the principle of linear momentum conservation.

c1

c1 c1

c1

c1c1

c1c1

ξ1,1 ξ1,1ξ1,1 ξ1,1 ξ1,2ξ1,2 ξ1,2ξ1,2

V1,1V1,1V1,2 ∆V1,2

Fig. 7-31: Velocity field of the struck beam after decomposition.

7.4.2.3 Velocity history

The solution to the velocity and deformation before the second impact is the same as the

single impact case, which has been presented in Chapter 7.3. Immediately upon the first

impact, the velocity is

V ∗
1,1 =

2m2b1

2m2b1 + 2m1b2
V0 = αV0, (7.123)

where the velocity with the superscript ∗ represents the instantaneous velocity upon impact.

At a time before the second impact, the principle of linear momentum conservation gives

2m1 (b2 + c1t)V1,1 = 2m1b2V
∗
1,1. (7.124)

Note, that there is no more momentum transfer between the striking beam and the struck

beam after the impact. From the above equation, one obtains the velocity V1,1

V1,1 (t)
V0

=
α

1 + ηt/t0
(7.125)
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where the dimensionless parameter η is defined by

η =
c1t0
b2

=
1 − β

1 − α

t0
τ

, (7.126)

and the parameter η is related to the wave speed ratio, β, and the time parameter, τ , both

of which are first introduced in the single impact case. Using the parameters β and τ , one

can make a comparison between the double impact and the single impact. Just before the

second impact, t = t0, the velocity V1,1 becomes

V1,1(t0)
V0

=
α

1 + η
= θ. (7.127)

For convenience, a new dimensionless parameter θ is defined in the above equation.

Now solve the velocity field of the struck beam after the second impact. Immediately

upon the second impact, the velocity V ∗
1,2 can be obtained from the momentum conservation

in the impacted zone

(2m2b1 + 2m1b2) V ∗
1,2 = 2m2b1V0 + 2m1b2V1,1 (t0) , (7.128)

where the first term on the right hand side represents the momentum provided by the second

striking beam, and the second term denotes the existing momentum of the struck beam in

the impacted zone. Using the dimensionless parameters α and η, it is convenient to write

V ∗
1,2 as

V ∗
1,2

V0
= α

(
1 +

1 − α

1 + η

)
. (7.129)

From the momentum conservation for the incremental part as shown in Fig. 7-31, one

gets the velocity increment ∆V1,2 (t)

∆V1,2

∆V ∗
1,2

=
m12b2

m1 [2b2 + 2c1 (t − t0)]
=

1
1 + η (t/t0 − 1)

, (7.130)

where ∆V ∗
1,2 is the initial value of the incremental part, given by

∆V ∗
1,2 = V ∗

1,2 − V1,1 (t0) = αV0 (1 − θ) . (7.131)
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As stated earlier, the variation of the velocity V1,1 with time is independent of the second

impact, i.e. the expression for the velocity V1,1 after the second impact is the same as

Eq. (7.125). The velocity V1,2 is obtained by adding V1,1 and ∆V1,2 together

V1,2

V0
= α

[
1

1 + ηt/t0
+

1 − θ

1 + η (t/t0 − 1)

]
. (7.132)

Plots of the velocity variation with time for specific values of α and η are shown in Fig. 7-32.

N
or

m
al

iz
ed

ve
lo

ci
ty

V V
0

Normalized time t
t0

α
(

2+η−α
1+η

)

α

α
1+η

∆V ∗
1,2

1

α = 0.5

η = 1.0

V1,2

V1,1

Fig. 7-32: Velocity variation with time for V1,1 and V1,2 in the double impact case.

7.4.2.4 Deflection and plastic strain

The transverse deflection of the beams is calculated by integrating the transverse velocity

with respect to time. For the struck beam, a point located at a distance x1 from the

impacted zone acquires displacement only after time t = x1/c1. The transverse velocity at

this point changes from V1,1 to V1,2 at t = t0 + x1/c1. Hence, the transverse deflection of

the struck beam after the second impact can be expressed as

⎧⎨
⎩ w1 =

∫ t0+x1/c1
x1/c1

V1,1dt +
∫ t
t0+x1/c1

V1,2dt 0 ≤ x1 ≤ ξ1,2

w1 =
∫ t
x1/c1

V1,1dt ξ1,2 ≤ x1 ≤ ξ1,1

. (7.133)
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Substituting the expressions for the velocities, and integrating Eq. (7.133), one obtains the

transverse deflection of the struck beam,

⎧⎪⎪⎨
⎪⎪⎩

w1

b2
=

αV0

c1
ln
(

1 + ηt/t0
1 + x1/b2

)
+

αV0

c1
(1 − θ) ln

(
1 − η + ηt/t0

1 + x1/b2

)
0 ≤ x1 ≤ ξ1,2

w1

b2
=

αV0

c1
ln
(

1 + ηt/t0
1 + x1/b2

)
ξ1,2 ≤ x1 ≤ ξ1,1

.

(7.134)

The first term on the right hand side of Eq. (7.134) represents the deflection due to the

velocity V1,1, and the second term denotes the deflection due to the velocity increment

∆V1,2. Plots of instantaneous deflection profiles of the struck beam are shown in Fig. 7-33.

w1

V0t0

x1

c1t0

α = 0.5

η = 1.0
Double impact

Single impact

t
t0

= 2

t
t0

= 4

t
t0

= 8

Fig. 7-33: Deflection profiles of the struck beam after the second impact and comparison with of the

single impact event.

From the moderately large deflection theory, the axial tensile strain in the struck beam

is given by

ε1 =
1
2

(
∂w1

∂x1

)2

=

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
αV0

c1

)2

(2 − θ)2
(

1 +
x1

b2

)−2

0 ≤ x1 ≤ ξ1,2

1
2

(
αV0

c1

)2(
1 +

x1

b2

)−2

ξ1,2 ≤ x1 ≤ ξ1,1

. (7.135)

Plots of the tensile strain variation along the beam for different values of η are shown in

Fig. 7-34. It is seen that there is a jump of the tensile strain at the second wave front,
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i.e. x1 = ξ1,2. At ξ1,2 ≤ x1 ≤ ξ1,1, the tensile strain is the same as that in the case of the

single impact. The maximum tensile strain ε1,max always takes place at the impact point,

i.e. x1 = 0,

ε1,max =
1
2

(
αV0

c1

)2

(2 − θ)2 . (7.136)

When the time interval t0 goes infinity, η → ∞, the maximum tensile strain approaches an

asymptote

ε1,max = 22 · 1
2

(
αV0

c1

)2

η → ∞, (7.137)

which means that the double impact becomes two separate, single impact. When the time

interval t0 goes zero, the maximum tensile strain approaches another asymptotic value,

ε1,max =
1
2

(
αV0

c1

)2

(2 − α)2 η → 0. (7.138)

The ratio of the maximum strain corresponding to η → 0 and η → ∞ is equal to
(
1 − α

2

)2
and is seen to depend only on the mass ratio parameter α.
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Fig. 7-34: Strain variation along the struck beam for different values of η.
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7.4.2.5 Kinetic energy and plastic energy

Immediately upon impact, the struck beam acquires the kinetic energy

E0 =
1
2
2m1b2

(
V ∗

1,1

)2 = m1b2 (αV0)
2 . (7.139)

At time t < t0 before the second impact, the kinetic energy of the struck beam becomes

E1 (t) =
1
2

(2m1b2 + 2m1c1t)V 2
1,1 =

E0

1 + c1t/b2
, t < t0. (7.140)

Upon the second impact, the newly acquired kinetic energy is

∆E =
1
2

(2m1b2)
[
(V ∗

2 )2 − V 2
1,1 (t0)

]
= E0

[
1 + 2

1 − α

1 + η
+

α2 − 2α

(1 + η)2

]
. (7.141)

At a time, t, after the second impact, the total kinetic energy of the struck beam becomes

E2 (t) =
1
2

[2m1b2 + 2m1c1 (t − t0)] V 2
1,2 (t) +

1
2

(2m1c1t0)V 2
1,1 (t)

= E0

[
3 − 2θ

1 + ηt/t0
+

(1 − θ)2

1 + η (t/t0 − 1)

]
.

(7.142)

The loss of the kinetic energy during the wave propagation is absorbed by plastic membrane

deformation

W (t) = E0 + ∆E − E2

= E0

[
1 + (1 − θ)2 + 2

1 − θ

1 + η
− 3 − 2θ

1 + ηt/t0
− (1 − θ)2

1 + η (t/t0 − 1)

]
.

(7.143)

For a rigid-perfectly plastic string, the loss of the kinetic energy is completely converted

to the axial stretching energy. For a plastic beam, some of the kinetic energy is dissipated

through plastic bending action, besides plastic axial stretching.
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7.4.2.6 Critical impact velocities

A beam under high velocity impact would fail by either tensile tearing or shear plugging.

Here, it is assumed that the struck beam fails by tensile tearing. A constant critical plastic

strain, ε̄1,f , is used to predict fracture of the struck beam, due to its simplicity.

By setting the maximum plastic strain equal to the fracture strain, one can estimate

the critical impact velocity of the striking beam, V1,cr, to fracture the struck beam,

V1,cr

c1
=

√
2ε̄1,f

α (2 − θ)
=
√

2ε̄1,f
(1 − α) + (1 − β) t0/τ

α [(2 − α) (1 − α) + 2 (1 − β) t0/τ ]
. (7.144)

The component of the bending strain is not taken into account in the estimation of the

critical impact velocity in the above equation.

It can be shown that the critical velocity always decreases as the time interval increases,

no matter whether α > β or α < β, see Fig. 7-35. When the time interval t0 goes infinity,

the critical velocity becomes half of that in the single impact,

V1,cr

c1
=

1
2

√
2ε̄1,f

α
. (7.145)
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Fig. 7-35: Critical velocity variation with time interval in the double impact case.
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In the preceding, the critical impact velocity is determined by differentiating the deflec-

tion to obtain the strain. In the following, we will show an alternative way to determine

the critical impact velocity.

Considering that the transverse velocity is a function of time, independent of the spatial

coordinate, the deflection slope of the beam can be calculated by differentiating Eq. (7.133)

with respect to x1,

∂w1

∂x1
= − 1

c1

[
V1,1

(
x1

c1

)
− V1,1

(
t0 +

x1

c1

)
+ V1,2

(
t0 +

x1

c1

)]
0 ≤ x1 ≤ ξ1,2. (7.146)

where the Leibniz’s differential rule has been used. Specifically, the slope at edge of the the

impacted zone, i.e. at x1 = 0, is given by

∂w1

∂x1

∣∣∣∣
x1=0

= − 1
c1

[V1,1 (0) − V1,1 (t0) + V1,2 (t0)] = − 1
c1

[
V ∗

1,1 − V1,1 (t0) + V ∗
1,2

]
. (7.147)

Three instantaneous velocities, V ∗
1,1, V1,1 (t0), and V ∗

1,2, are involved to determine the slope at

x1 = 0, which have been given in Eqs. (7.123), (7.127), and (7.129), respectively. Note, that

these velocities are exactly obtained from the principle of linear momentum conservation

without introducing any additional assumptions, hence the slope at x1 = 0 is exactly

determined. Substituting the expressions for these velocities into Eq. (7.147), the same

critical velocity as Eq. (7.144) can be obtained after similar algebra. This method is more

convenient, and thus will be used in the following cases.

7.4.2.7 Double impact by two identical rigid masses

Consider another case that both striking beams break immediately upon impact, the re-

mainder of the striking beams sticks to the struck beam in the impacted zone and moves

with it, Fig. 7-36. In fact, this case is equivalent to the double impact event of a plas-

tic beam by two identical rigid projectiles with the mass M0 = 2m2b1. The problem can

be completely solved in the same procedure as described in the preceding sections. For

simplicity, only the critical impact velocity to fracture the struck beam will be given next.

The simple method based on the Leibniz’s differential rule will be used, in which only

three instantaneous velocities V ∗
1,1, V1,1 (t0), and V ∗

1,2, are involved to determine the tensile
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strain at x1 = 0, Eq. (7.147). These velocities can be exactly solved from the principle of

momentum conservation.

V0

V0

M0 = 2m2b1

Fig. 7-36: Schematic of deformation and fracture of the beams in the double impact case.

Let us assume that the masses of the remainder of two striking beams or two rigid

bodies contribute to the transverse momentum in the struck beam during the whole wave

propagation process. After the first impact, the momentum conservation in the struck beam

gives

[2m1 (b2 + c1t) + 2m2b1]V1,1 = (2m1b2 + 2m2b1) V ∗
1,1. (7.148)

From the above equation, one can express the velocity V1,1 (t) in terms of the mass ratio,

α, and the time parameter, η,

V1,1 (t)
V0

=
α

1 + (1 − α) ηt/t0
. (7.149)

Particularly, the velocity V1,1 at t = t0 is given by

V1,1 (t0)
V0

=
α

1 + (1 − α) η
. (7.150)
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Upon the second impact at t = t0, the momentum conservation can be expressed as

(4m2b1 + 2m1b2)V ∗
1,2 = 2m2b1V0 + (2m1b2 + 2m2b1)V1,1 (t0) . (7.151)

which yields the velocity V ∗
1,2

V ∗
1,2

V0
=

α

1 + α

(
1 +

1
1 + (1 − α) η

)
. (7.152)

Substituting the expressions for V ∗
1,1, V1,1(t0), and V ∗

1,2 into Eq. (7.147), one can deter-

mine the slope and further the tensile strain at x = 0:

ε1,max =
1
2

(
∂w1

∂x1

)2

=
1
2

(
V0

c1

)2( α

1 + α

)2(
2 + α − α

1 + (1 − α) η

)2

. (7.153)
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Fig. 7-37: Maximum tensile strains versus mass ratios for different values of η in the case of double

rigid mass impact.

Plots of the maximum tensile strain versus the mass ratio α at various values of η

are shown in Fig. 7-37. It appears that the maximum tensile strain does not increase

monotonically with the mass ratio for the time parameter η falling in a certain range, which

is different from the single impact event of a plastic beam by a rigid mass. The condition



252 CHAPTER 7. DERIVATION OF ANALYTICAL BENCHMARK SOLUTIONS

under which the extreme value of the maximum tensile strain exists can be found by setting

the differential of the maximum tensile strain with respect to the mass ratio equal to zero,

∂ε1,max

∂α
= 0, (7.154)

which after arrangement gives

η2α4 − 2ηα3 − (
η2 + 2η

)
α2 − (

2η2 + 2η
)
α + 2 (η + 1)2 = 0. (7.155)

With the value of η given, the above polynomial equation in α can be solved numerically,

Fig. 7-38. The root of the equation determines the location of the extreme value in Fig. 7-37.

If η = 1.0, the extreme value of the maximum tensile strain occurs at α = 1.0. If η < 1,

there is no extreme values of ε1,max; and the tensile strain always increases monotonically

with the mass ratio. The extreme value usually occurs at α ≈ 0.90 under the condition of

η > 1. In the case of the single rigid mass impact, a heavy impacting body is always easy

to break the struck beam, as shown by Wierzbicki and Hoo Fatt [12]. However, in the case

of the double rigid mass impact, there is an optimal mass ratio as a function of the time

interval, with which the struck beam is the easiest to fracture.

η

η = 1

Optimal mass ratio

M
as

s
ra

ti
o

α

Fig. 7-38: Critical mass ratio α determining the extreme value of the maximum tensile strain.
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Setting ε1,max = ε̄1,f in Eq. (7.153), one can determine the critical impact velocity to

fracture the struck beam,

V1,cr

c
=
√

2ε̄1,f
1 + α

α

(
2 + α − α

1 + (1 − α) η

)−1

. (7.156)

Plots of the critical impact velocity versus the time interval are shown in Fig. 7-40.

7.4.2.8 Double impact by two intact striking beams

In the preceding sections, the cases that both striking beams undergo fracture immediately

upon impact have been solved. Now, consider the third case that both striking beams

deform plastically and never fracture during the impact process. The striking beams will

always contact with the struck beam.

Assume that the maximum slope in the struck beam occurs at x1 = 0 after the second

impact. The expression for the slope at the impact point is the same as Eq. (7.147), while

the expressions for two instantaneous velocities, V1,1 (t0) and V ∗
1,2, will be different.

From the analysis of the single impact of beam-to-beam presented in Chapter 7.3, the

velocity V1,1 (t0) is given by
V1,1 (t0)

V0
= β +

α − β

1 + t0/τ
. (7.157)

The transverse momentum is conserved in the impacted zone immediately upon the second

impact, i.e. t = t0,

2m2b1V0 + (2m2b1 + 2m1b2)V1,1 (t0) = (4m2b1 + 2m1b2) V ∗
1,2. (7.158)

which gives the velocity V ∗
1,2

V ∗
1,2

V0
=

α

1 + α
+

1
1 + α

V1,1 (t0)
V0

(7.159)

Substituting the expressions for V ∗
1,1, V1,1 (t0) and V ∗

1,2 into Eq. (7.147), and setting ε1,max =

ε̄1,f , one can obtain the critical velocity V1,cr to break the struck beam in the case of both



254 CHAPTER 7. DERIVATION OF ANALYTICAL BENCHMARK SOLUTIONS

striking beams without fracture

V1,cr

c1
=
√

2ε̄1,f
1 + α

α

1 + t0/τ

2 + (2 + α − β) t0/τ
(7.160)

Plots of the critical velocity variation with the time interval are shown in Fig. 7-39. There

are three cases depending on relative values of α and β. For the case of α = β, the critical

velocity is constant and independent of the time interval. For the case of α > β, the critical

velocity decreases with the time interval, and vice versa. If the time interval t0 goes infinity,

the critical velocity approaches an asymptote,

V1,cr

c1
=
√

2ε̄1,f
1 + α

α

1
2 + α − β

. (7.161)

Figure 7-40 illustrates comparison of the critical velocity to fracture the struck beam

among the three cases. It can be seen that the critical impact velocities always decrease

with the time interval for the three cases. The struck beam is the most prone to fracture in

the case where both striking beams break immediately upon impact and no parts remain

in contact with the struck beam.
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Fig. 7-39: Critical velocity variation with time interval for different values of α and β.
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Fig. 7-40: Comparison of the critical velocity to fracture the struck beam among three cases, Case

1: both striking beams fracture upon impact and no parts of the striking beams remain

in contact with the struck beam; Case 2: both striking beams fracture upon impact and

the remainder of the striking beam at the contact area moves with the striking beam, or

this case can be thought as double impact by a rigid mass; Case 3: both striking beams

keep intact during the impact process.
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7.4.3 Multiple impact

7.4.3.1 Problem formulation

Consider a stationary beam subjected to multiple impact by n identical beams moving with

the velocity, V0, the time interval, t0, and the total spacing, L = (n − 1) V0t0, Fig. 7-41.

Because totally n+1 beams are involved during the impact process, there are many possible

fracture scenarios leading to complicated transverse velocity field for every beam. Here,

two simple cases will be investigated. The first case is that all the striking beams break

immediately upon impact; and no parts of the striking beams still rest on the struck beam

after the impact (Case 1). The second is that all of the striking beams break immediately

upon impact; and the remainder of the striking beams moves with the struck beam, as

shown in Fig. 7-36 (Case 2). Case 2 can also be considered as the multiple impact by

identical rigid bodies with the mass M0 = 2m2b1. In both cases, attention is focused on the

response of the struck beam. For simplicity, Case 1 will be taken as an example to present

the problem formulation and the solution procedure.

V0

V0

Struck beam

Striking beams

L

V0t0

Fig. 7-41: Schematic of multiple impact of beam-to-beam.
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After each impact, two new shock waves are generated in the impacted zone and prop-

agate to far fields along both sides of the struck beam. An additional plastic deformation

in the struck beam is instantaneously generated at the new wave front. The region behind

the new wave front is subjected to a rigid body motion again. Hence, similarly to the case

of the double impact, the velocity and acceleration between two wave fronts are constant in

space and vary with time. A typical transverse velocity field in the struck beam after the

nth impact is shown in Fig. 7-42.

c c

c

c

c

cc

c

c

c
V1,1V1,1

V1,2V1,2

V1,n−1V1,n−1

V1,n

c1t0c1t0c1t0c1t0c1t0c1t0

2b2 + 2c1(t − (n − 1)t0)

Fig. 7-42: Schematic of the velocity field in the multiple impact case.

Following the procedure for the double impact event, it can also be shown that from

the global equilibrium, the kinematic and dynamic continuity conditions, there is only one

governing equation for the problem of the multiple impact, which is related to n unknown

velocities after the nth impact. Hence, the problem cannot be solved without introducing

additional conditions or assumptions.

Let us look at the kinematic and dynamic continuity conditions at the jth wave front,

which are given by

⎧⎨
⎩

(V1,j − V1,j−1) + c1

(
w′

1|x1=ξ−1,j
− w′

1|x1=ξ+
1,j

)
= 0

N1

(
w′

1|x1=ξ−1,j
− w′

1|x1=ξ+
1,j

)
+ m1c1 (V1,j − V1,j−1) = 0

(7.162)
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where ξ1,j = c1 (t − jt0) is the location of the jth wave front. Both conditions can be recast

in the incremental form ⎧⎨
⎩

∆V1,j + c1

(
∆w′

1,j

)
= 0

N1

(
∆w′

1,j

)
+ m1c1∆V1,j = 0

(7.163)

where ∆V1,j = V1,j −V1,j−1 is the velocity increment; and ∆w′
1,j is the slope jump at the jth

wave front. Eq. (7.163) indicates that the increment of the plastic slope is proportional to

the velocity increment. Similarly to the case of the double impact, it is assumed that the

velocity increment ∆V1,j and the corresponding plastic slope increment ∆w′
1,j satisfy the

governing wave equation,

(
N1∆w′

1,j

)′ = m1∆V̇1,j ξ1,j−1 ≤ x1 ≤ ξ1,j. (7.164)

It can be shown that the transverse momentum is conserved with regard to the velocity

increment ∆V1,j, if the governing equation, the kinematic and dynamic continuity conditions

are satisfied. The velocity field in Fig. 7-42 can be decomposed into n parts, Fig. 7-43. Every

part represents a shock wave propagating with the same wave speed c1. The transverse

momentum for every part is conserved during the shock wave propagation process. Thus,

the problem becomes amenable.

c c

c

c

c

cc

c

c

c

∆V1,1

∆V1,2

∆V1,n−1

∆V1,n

2b2 + 2c1(n − 1)t

2b2 + 2c1(t − (n − 1)t0)

Fig. 7-43: Decomposition of the velocity field in the multiple impact case
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7.4.3.2 Velocity history

To develop the solution procedure, assume that the velocity field after the jth impact has

been determined. Then the solution process for the next impact corresponding to the

(j + 1)th impact is typical and can be applied repetitively until the nth impact is completed.

At t = jt0, the struck beam is impacted by the (j + 1)th striking beam. The transverse

momentum is conserved in the impacted zone upon impact, given by

m22b1V0 + m12b2V1,j (jt0) = (m22b1 + m12b2) V ∗
1,j+1, (7.165)

where the subscript j represents the jth impact; V ∗
1,j+1 is the instantaneous velocity in the

impacted zone just upon the (j + 1)th impact; and V1,j (jt0) is the velocity of the struck

beam at t = jt0 after the jth impact. From the above equation, it is convenient to express

V ∗
1,j+1, in terms of the mass ratio, as

V ∗
1,j+1 = αV0 + (1 − α) V1,j (jt0) . (7.166)

The transverse velocity increment due to the (j + 1)th impact is defined by

∆V1,j+1(t) = V1,j+1(t) − V1,j(t), t ≥ jt0. (7.167)

As assumed earlier, the transverse momentum is conserved for this velocity increment as

the (j + 1)th shock wave propagates away from the impacted zone. Hence, ∆V1,j+1 at a

time, t, is given by

∆V1,j+1 (t)
∆V ∗

1,j+1 (jt0)
=

m12b2

m12b2 + m12c1 (t − jt0)
=

1
1 + η (t/t0 − j)

, t ≥ jt0. (7.168)

where ∆V ∗
1,j+1 is the velocity increment immediately upon impact, i.e. at t = jt0,

∆V ∗
1,j+1 = V ∗

1,j+1 − V1,j (jt0) = α [V0 − V1,j (jt0)] . (7.169)

The total velocity V1,j+1 at the region near the impacted zone is a summation of all of the



260 CHAPTER 7. DERIVATION OF ANALYTICAL BENCHMARK SOLUTIONS

velocity increments,

V1,j+1 (t) = V1,j (t) + ∆V1,j+1 (t) =
j+1∑
k=1

∆V1,k (t) (7.170)

where ∆V1,1(t) = V1,1(t). Particularly, at t = jt0, the velocity V1,j (jt0) is given by

V1,j (jt0) =
j∑

k=1

∆V1,k (jt0)

=
∆V ∗

1,1

1 + jη
+

∆V ∗
1,2

1 + (j − 1) η
+ · · · + ∆V ∗

1,j

1 + η

(7.171)

where Eq. (7.168) has been used.

Based on the above solution process, it is easy to develop a calculation routine to

determine the velocity of the struck beam at any time. Plots of the velocity versus time for

specific values of α and η are shown in Fig. 7-44.
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Fig. 7-44: Temporal variation of the velocities of the struck beam in the multiple impact case.
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7.4.3.3 Deflection

The deflection of the struck beam at a distance x from the impacted zone after the nth

impact is given by

w1 =
∫ t0+x1/c1

x1/c1

V1,1dt+
∫ 2t0+x1/c1

t0+x1/c1

V1,2dt+· · ·+
∫ t

(n−1)t0+x1/c1

V1,ndt 0 ≤ x1 ≤ c1 [t − (n − 1) t0] .

(7.172)

Similar expressions can be given for the deflection in other regions. Specially, the displace-

ment at the impacted zone, i.e. at x1 = 0, is

w0 =
∫ t

0
∆V1,1dt +

∫ t

t0

∆V1,2dt + · · · +
∫ t

(n−1)t0

∆V1,ndt. (7.173)

Figure 7-45 shows comparison of the displacement history of the impacted zone among three

cases.
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Fig. 7-45: Comparison of the displacement at x1 = 0 among three cases.

7.4.3.4 Tensile strain and critical impact velocity

In this section, the simple method based on the Leibniz’s differential rule will be used to

derive the tensile strain at the impact point and further the critical impact velocity to break

the struck beam. From Eq. (7.172), differentiating the deflection with the spatial coordinate
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x, the slope of the beam at x = 0 after the nth impact is given by

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= − 1
c1

[V1,1 (0) − V1,1 (t0) + V1,2 (t0) − V1,2 (2t0) + · · · + V1,n ((n − 1)t0)]

= − 1
c1

[
V ∗

1,1 − V1,1 (t0) + V ∗
1,2 − V1,2 (2t0) + · · · + V ∗

1,n

]
.

(7.174)

From Eq. (7.169), the above equation can be rewritten as

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= − 1
c1

[
∆V ∗

1,1 + ∆V ∗
1,2 + · · · + ∆V ∗

1,n

]
= − 1

c1

n∑
j=1

∆V ∗
1,j, (7.175)

where ∆V ∗
1,1 = V ∗

1,1. The above equation indicates that the plastic slope of the struck beam

at x1 = 0 is proportional to the summation of all the velocity increments upon impact.

This equation will be used to derive a recursion formula for the plastic slope later on.

Substituting the expression, Eq. (7.169), for every term in the right hand side of the

above equation, one gets

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= −n
αV0

c1
+

α

c1
[V1,1 (t0) + V1,2 (2t0) + · · · + V1,n−1 ((n − 1)t0)] . (7.176)

From Eq. (7.171), the above equation can be expanded as

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= −n
αV0

c1
+

α

c1

[(
∆V ∗

1,1

1 + η

)
+
(

∆V ∗
1,1

1 + 2η
+

∆V ∗
1,2

1 + η

)
+ · · ·

+
(

∆V ∗
1,1

1 + (n − 1) η
+

∆V ∗
1,2

1 + (n − 2) η
+ · · · + ∆V ∗

1,n−1

1 + η

)]
. (7.177)

Further, collecting common terms in the above equation, one obtains

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= −n
αV0

c1
+

α

1 + η
· 1
c1

(
∆V ∗

1,1 + ∆V ∗
1,2 + · · · + ∆V ∗

1,n−1

)
+

α

1 + 2η
· 1
c1

(
∆V ∗

1,1 + ∆V ∗
1,2 + · · · + ∆V ∗

1,n−2

)
+ · · · + α

1 + (n − 1) η
· 1
c1

(∆V ∗
1 ) . (7.178)
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As indicated in Eq. (7.175), the above equation can be rearranged as

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= −n
αV0

c1
+

α

1 + η
· ∂w1

∂x1

∣∣∣∣
t=(n−2)t0

+

α

1 + 2η
· ∂w1

∂x1

∣∣∣∣
t=(n−3)t0

+ · · · + α

1 + (n − 1) η
· ∂w1

∂x1

∣∣∣∣
t=0

. (7.179)

For simplicity, introduce a dimensionless parameter γj to denote the slope at x1 = 0

after the jth impact,

γj = −∂w1

∂x1

∣∣∣∣
t=(j−1)t0

c1

αV0
. (7.180)

In terms of the definition of γj, Eq. (7.179) becomes a recursion formula for the plastic slope

γn = n − α

1 + η
γn−1 − α

1 + 2η
γn−2 − · · · − α

1 + (n − 1)η
γ1 (7.181)

where γ1 = 1. For the case of η > 2, an approximate closed-form solution for γn can be

obtained by neglecting high order terms with regard to η

γn = n − α

n−1∑
j=1

n − j

1 + jη
. (7.182)

A short computational routine is developed to calculate the plastic slope with the dimen-

sionless parameters given.

In terms of the dimensionless slope γn, the tensile strain in the struck beam after the

nth impact is given by

ε1,n =
1
2

(
αV0

c1

)2

γ2
n. (7.183)

It is interesting to discuss two limiting cases: η → ∞ and η → 0, which are helpful to

understand the general case derived in the preceding. If the time interval η goes infinity, the

transverse velocity in the struck beam becomes infinitesimal until the next impact. That

is, the velocity V1,j (jt0) in Eq. (7.176) can be neglected. The tensile strain approaches an

asymptote

ε1,n =
1
2

(
αV0

c1

)2

n2 η → ∞. (7.184)

On the other hand, if the time interval becomes infinitesimal, no shock waves have
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sufficient time to propagate away from the impact area until the whole impact process is

finished. In this case, the momentum conservation in the impacted zone after the jth impact

is expressed as

2m2b1V0 + 2m1b2V
∗
1,j = (2m2b1 + 2m1b2) V ∗

1,j+1 (7.185)

where the velocity in the impacted zone before the next impact is still V ∗
1,j. The velocity

V ∗
1,j+1 is given by

V ∗
1,j+1 = αV0 + (1 − α)V ∗

1,j. (7.186)

A recursion formula with respect to the difference in the velocities can be obtained from

the above equation,

V ∗
1,j+1 − V ∗

1,j = (1 − α)
(
V ∗

1,j − V ∗
1,j−1

)
. (7.187)

This recursion formula gives the closed-form solution for V ∗
1,j

V ∗
1,j

V0
= 1 − (1 − α)j . (7.188)

Note, that in this case,

∆V ∗
1,j = V ∗

1,j − V ∗
1,j−1. (7.189)

Substituting the above expression into Eq. (7.175), the slope of the struck beam after the

nth impact depends only on the velocity upon the last impact,

∂w1

∂x1

∣∣∣∣
t=(n−1)t0

= − 1
c1

[
V ∗

1,1 + V ∗
1,2 − V ∗

1,1 + · · · + V ∗
1,n − V ∗

1,n−1

]
= −V ∗

1,n

c1
. (7.190)

Hence, the tensile strain becomes

ε1,n =
1
2

(
V0

c1

)2

[1 − (1 − α)n]2 η → 0. (7.191)

As shown in Figs. 7-46 and 7-47, the final tensile strain increases with the mass ratio and

the time interval.
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N
or

m
al

iz
ed

te
ns

ile
st

ra
in

2ε
1
,n

( c
1

V
0

) 2

n = 10

η

α = 1.0

α = 0.2

α = 0.4

α = 0.8

Fig. 7-47: Tensile strain versus time intervals for different mass ratios for Case 1.
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Similarly to the double impact case, it is assumed that the struck beam fails by tensile

tearing, and the struck beam does not have any damage before the final impact. Hence, the

critical velocity to fracture the struck beam is given by setting ε1,n = ε̄1,f in Eq. (7.183),

V1,cr

c1
=

√
2ε̄1,f

αγn
. (7.192)

Alternatively, with the impact velocity V0 given, one can determine the critical impact

number ncr to fracture the struck beam, as shown in Fig. 7-48. The discrete points are

calculated at specific values of α and η. These points are fitted with two smooth solid

curves for two cases.
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Fig. 7-48: Tensile strain versus impact number.
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7.4.3.5 Multiple rigid mass impact

In the preceding section, the case that no parts of the striking beams remain in contact

with the struck beam after the impact was formulated and solved. Here it is assumed that

all the striking beams break immediately upon impact, and the remainder of the striking

beams in the impacted zone sticks to the struck beam and moves with it. Similarly, this

case is equivalent to the case of the struck beam impacted multiply by the identical rigid

masses with the mass M0 = 2m2b1.

The problem is solved in the same procedure as that in the preceding case. Assume

that we have solved the velocity field after the jth impact. Now, we want to determine the

velocity after the (j + 1)th impact. The momentum conservation upon the (j + 1)th impact

in the impacted zone is expressed as

2m2b1V0 + (j · 2m2b1 + 2m1b2)V1,j (jt0) = [(j + 1) · 2m2b + 2m1b2]V ∗
1,j+1, (7.193)

which gives the instantaneous velocity, V ∗
1,j+1,

V ∗
1,j+1

V0
=

α

jα + 1
+
(

1 − α

jα + 1

)
V1,j (jt0)

V0
. (7.194)

Based on the assumption, the transverse momentum is conserved at any time with regard

to the velocity increment ∆V1,j+1,

[2m1b2 + (j + 1) 2m2b1] ∆V ∗
1,j+1 = [2m1b2 + (j + 1) 2m2b1 + 2m1c1 (t − jt0)] ∆V1,j+1 (t) ,

(7.195)

where ∆V ∗
1,j+1 is the velocity increment upon the (j + 1)th impact, defined by

∆V ∗
1,j+1

V0
=

V ∗
1,j+1

V0
− V1,j (jt0)

V0
=

α

jα + 1

(
1 − V1,j (jt0)

V0

)
. (7.196)

In terms of α and η, ∆V1,j+1(t) can be expressed as

∆V1,j+1 (t)
∆V ∗

1,j+1

=
jα + 1

jα + 1 + (1 − α) η (t/t0 − j)
. (7.197)
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Particularly, at t = (j + 1) t0,

∆V1,j+1 ((j + 1) t0)
∆V ∗

1,j+1

=
jα + 1

jα + 1 + (1 − α) η
. (7.198)

With every velocity increment known, one can obtain the velocity V1,j(t) from Eq. (7.170),

and further the slope at x = 0 can be obtained from Eq. (7.175). As opposed to the preced-

ing case, no recursion formula was found. A short computational routine was developed to

calculate the tensile strain with the mass ratio, α, the time parameter, η, and the impact

number, n, given. Numerical results for specific cases are shown in Figs. 7-49 and 7-50,

and compared to Case 1. It appears that the tensile strains in Case 1 are much larger than

those in Case 2. Similarly to the double impact case, the tensile strain does not increase

monotonically with the mass ratio, Fig. 7-49.

Two limiting cases are also investigated as follows. First, if the time interval t0 goes

infinity, the velocity in the struck beam becomes infinitesimal until the next impact. Hence,

in this case,

∆V ∗
1,j = V ∗

1,j. (7.199)

The total mass in the impacted zone in the struck beam increases by 2m2b1 after every

impact. After the jth impact, the velocity V ∗
1,j is obtained from the momentum conservation,

∆V ∗
1,j

V0
=

V ∗
1,j

V0
=

2m2b1

j · 2m2b1 + 2m1b2
=

α

(j − 1) α + 1
. (7.200)

Substituting the expression for every velocity into Eq. (7.175), one can obtain the slope at

x1 = 0, and further the tensile strain in the struck beam after the nth impact

ε1,n =
1
2

(
V0

c

)2
⎡
⎣ n∑

j=1

α

1 + (j − 1) α

⎤
⎦

2

η → ∞. (7.201)

As shown in Fig. 7-50, the tensile strain approaches to an asymptotic value as the time

interval increases.
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Fig. 7-49: Comparison of tensile strains versus mass ratio between Case 1 and Case 2.
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270 CHAPTER 7. DERIVATION OF ANALYTICAL BENCHMARK SOLUTIONS

Now consider another limiting case that the time interval t0 becomes infinitesimal. No

shock waves propagate away from the impacted zone until the whole impact process is

finished. Similar to the limiting case with η → 0 in Case 1, the slope after the nth impact

depends only on the velocity upon the last impact, V ∗
1,n. V ∗

1,n can be obtained from the

momentum conservation

V ∗
1,n

V0
=

n · 2m2b1

n · 2m2b1 + 2m1b2
=

nα

(n − 1) α + 1
. (7.202)

Hence, the tensile strain ε1,n after the nth impact is given by

ε1,n =
1
2

(
V0

c

)2( nα

(n − 1) α + 1

)2

η → 0. (7.203)

Figure 7-51 shows the relations between the tensile strain and the mass ratio for different

values of η. The critical mass ratio α corresponding to the extreme value of the tensile strain

increases with the time interval η, and approaches unity as η becomes infinity.

Note, that no assumptions are introduced in the asymptotic analysis. Good agreements

between the asymptotic analysis and the general solutions for large values of η verify the

correctness of the additional assumption introduced in Section 7.4.3.1.
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Fig. 7-51: Tensile strains versus mass ratios for different values of η for Case 2.
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7.4.4 Partial conclusions

The problem of multiple impact of beam-to-beam was formulated based on the rigid-plastic

beam/string model. In the case of the double impact, the closed-form solutions were ob-

tained for the deflection profile, the transverse velocity, and the tensile strain. By assuming

the failure mode of tensile necking, the critical impact velocity to fracture the struck beam

was predicted. In the case of the multiple impact, a recursion formula with respect to the

impact number was found to calculate the tensile strain. A computational routine was

composed to solve the critical impact velocity to fracture the struck beam with the impact

number given, and to determine the critical impact number with the impact velocity given.

Asymptotic analyses were performed for two limiting cases that the time interval goes either

infinity or is kept infinitesimal.

It was assumed that all the striking beams fail by shear plugging immediately upon

impact. In reality, the striking beams may fail by other modes or keep intact. If all the

possible failure modes are taken into account at the same time, the problem may become

intractable theoretically and can only be treated in a numerical way.
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7.5 Dynamic shear plugging

7.5.1 Introduction

In general, a metallic beam/plate impacted by a heavy, flat-nosed projectile traveling at

a sub-ordnance velocity fails by shear plugging. Due to lateral constraints, the material

in the impacted zone of the target beneath the projectile moves forwards, and acquires a

common velocity with the projectile. When indentation reaches a certain depth, two cracks

are induced by the sharp corners of the flat-nosed mass, and rapidly grow ahead of the

projectile. Finally, the impacted zone is sheared off from the surrounding material and

ejected as a plug. At the same time, a portion of transverse momentum of the projectile is

transferred to the surrounding region leading to global deformation of the target.

Many theoretical perforation models that emphasize various mechanisms have been pro-

posed in the literature. Comprehensive reviews on this subject were given by Anderson &

Bodner [43] and Corbett et al. [44]. Based on both principles of momentum and energy

conservation, Retch and Ipson [144] developed an expression for the residual velocity of

a projectile provided that the ballistic limit of a target was known. Friction between the

projectile and the target was taken into account by Woodward and Morton [145] in the

problem formulation. Woodward [146] also introduced an improved solution that consid-

ers the combined bending-membrane response of a target. A two-stage perforation model

including indentation and shear sliding was built by Awerbuch [147]. In the subsequent

paper, Awerbuch and Bodner [148] added an intermediate stage, in which inertia force,

compressive resistance, and shear resistance act simultaneously on the impacted zone. A

five-stage plugging model coupled with global structural response was suggested by Liss

et al. [149], which is capable of predicting the residual velocity of the projectile and the

deflection profile of the target as well as the force acting on the projectile. This model

was further extended to the case of a deformable projectile by Liss and Goldsmith [150].

The problem of a membrane perforated by a rigid projectile was studied by Wierzbicki and

Hoo Fatt [11], and a closed-form solution for the ballistic limit was given. A theoretical

model considering simultaneously bending, stretching, and shearing was developed by Liu

and Stronge [151] in which the velocity field of a target was derived from the Tresca yield
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surface. Jones et al. [152] investigated theoretically the perforation response of a finite plate

by accounting for the influence of the transverse shear force, the radial and circumferential

bending moments, and the radial and circumferential membrane forces in governing equa-

tions. Recently, Chen and Li [153] proposed a coupled shear-bending solution for a circular

plate struck by a rigid mass and gave an explicit expression for the ballistic limit.

Due to complexity of the problem, most of the theoretical models mentioned above have

to resort to numerical procedures to solve equations of motion of the plug and of deflection

of the target, which are usually represented by a system of ordinary differential equations

(ODEs). A question was raised by Anderson & Bodner [43] and Zukas [154] whether it

is worthwhile to develop such complicated theoretical models. They argued that it would

not take many efforts to model the perforation process using finite element codes or other

numerical codes on high performance personal computers available to date. The accuracy

of numerical simulations would depend on the success in developing adequate criteria for

initiation and propagation of cracks. However, we believe that simple analytical solutions

are still complementary to numerical simulations for complicated problems, as they help

identify dimensionless groups of parameters and are suitable for making a parametric study.

Such a solution is developed in the present research.

An assumption is implied in most of theoretical analysis that the plug is completely

separated from the surrounding material when the head of the projectile arrives at the

distal surface of the target. Such a simplification is tempting and it was uniformly accepted,

because it is difficult to track down the crack growth in perforation experiments. Perforation

experiments performed recently by Børvik et al. [56] indicate that the cracks propagate

ahead of the projectile, i.e. the plug is completely formed even when the head of the

projectile is still inside the target. This phenomenon is taken into account in the present

problem formulation.

In many theoretical solutions presented in the literature, both shear force and bending

moment in the ligament were assumed to be constant, which results in a conclusion that

the size of the plastically deformed region of a target is fixed during the whole perforation

process, e.g. Chen and Li [153]. In reality, as the cracks propagate through the target

thickness, the resistance in the ligament decreases, and the plastic bending hinges travel to
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far-fields. In the present solution, the shear force is variable, which gives a more accurate

result.

Earlier theoretical solutions made use of some empirical data. For example, an elemen-

tary fracture criterion with k = 1, defined in Eq. (7.207), was used to predict the formation

of a plug [152, 153], which supposes that the whole impacted area is sheared off only when

the projectile head reaches the distal surface of the target. An average width of a shear

zone was assumed in Awerbuch and Bodner’s three-stage model [148]. By contrast, these

empirical parameters can be determined explicitly from the present solution.

As demonstrated in Chapter 4 by the detailed numerical simulations of the perforation

process, local plastic indentation and crack growth are two of the most important mecha-

nisms for a thin or intermediately thick plate/beam under rigid projectile impact. A simple

analytical expression relating the indentation depth to the crack length has been developed.

The objective of the present section is to apply this expression to construct a new dynamic

perforation model. The whole process is divided into two stages. In the first stage, plastic

indentation is the main mechanism, and a shock wave approach is used to solve the response

in the impacted zone. In the second stage, crack growth is dominant, and the problem is

formulated based on force equilibrium. Closed-form expressions for instantaneous veloci-

ties, residual velocities, plastic energy, shear zone width, and crack propagation speeds are

obtained. A coupled shear-tension model that takes into account global deformation of the

target is also developed, which improves the prediction of ballistic limits. Comparisons of

the present solutions with both virtual and real experiments are made showing rather good

correlations.

7.5.2 Critical indentation depth

Before formulating the problem, let us introduce an important variable: critical indentation

depth ucr. This parameter is defined as the relative displacement between the projectile

head and the proximal surface of the target when the cracks reach the distal surface, see

Fig. 4-1. The critical indentation depth can be obtained by setting the crack length equal
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to the target thickness, i.e. a = h, in Eq. (4.1),

ucr

h
=

K− 1
λ

(1 + µ)
V0

c
, (7.204)

By combining Eqs. (4.1) and (7.204), the relationship between the crack length and the

indentation depth can be recast in a simpler form:

a

h
=
(

u

ucr

)λ

. (7.205)

Introducing a dimensionless factor, k,

k =
K− 1

λ

1 + µ

V0

c
, (7.206)

the critical indentation depth can be rewritten as

ucr = kh. (7.207)

This expression with a constant value of k was proposed first by Jones [155] to predict

transverse shear failure of a beam under explosive loading. Here, an explicit expression for

k is given as a function of the mass ratio, the impact velocity, and the material properties of

a target, Eq. (7.206). This is a major improvement over the elementary fracture criterion, in

which k is an empirical data. Usually, the crack propagates much faster than the projectile,

and thus k < 1. Jouri and Jones [156] performed a series of low-velocity impact experiments

on double-shear specimens and found that k = 0.2 ∼ 0.4 depending on the thickness of

specimens and the ductility of materials. A limited number of numerical simulations of

high velocity impact indicate that k ranges from 0.2 to 0.5 [59]. k = 1 is commonly

used in the literature, e.g. Jones et al. [152], Chen and Li [153], mainly because of the

resulting simplification. As a consequence, the energy dissipated in shear cracking would

be overestimated.
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7.5.3 Perforation analysis for a circular plate

As observed from numerical simulations of shear plugging [59, 55], two cracks usually initiate

near the sharp corners of the flat-nosed projectile, and grow along an almost straight path

through the thickness of the target. In the case of a circular plate, a circumferential crack is

formed. The ejected plug retrieved from tests was found to be slightly lighter than the mass

within the impacted zone [100]. Hence, it is reasonably assumed that the whole impacted

zone is sheared off from the target as a plug during the perforation process.

In high velocity impact, the perforation duration is very short (roughly 10 − 100 µs),

and thus there is not much time to transfer the transverse momentum from the projectile

to the surrounding material of the target. The global deflection of the target is usually

small compared with the target thickness. As a first approximation, only localized shear

deformation in a narrow region is taken into account in the present formulation. The coupled

shear-tension solution accounting for the global deformation of a target will be presented

later on.

Stage I: Indentation Stage II: Crack growth

cp

Wave front

Fig. 7-52: Schematic representation of two stages: indentation and crack growth.

Two main mechanisms are involved in high velocity perforation: indentation of the

impacted zone and crack growth forming a plug. In the present paper, the whole failure

process is divided into two separated but interconnected stages: (i) dominant indentation

accompanied with very slow crack growth, and (ii) rapid crack growth of a varying speed,

see Fig. 7-52. The present model is much simpler than Awerbuch and Bodner’s three-stage

model [148] and Liss et al.’s five-stage model [149]. In the first stage, the impacted zone
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of the target beneath the projectile is accelerated by the projectile until the the whole im-

pacted zone acquires a common velocity with the projectile. In the second stage, the cracks

initiating in the first stage rapidly grow through the target thickness, and the impacted zone

is separated from the surrounding material. This stage will end when the cracks reach the

distal surface of the target, i.e. a plug is completely formed. Since the crack propagation

speed is much higher than the impact velocity, the projectile head is still inside the target

at the end of the second stage. It is assumed that the projectile will slide off from the target

without friction in the remainder of the perforation process.

7.5.3.1 Stage I: indentation

Immediately upon impact, a plastic shock wave is generated at the impact interface. The

wave propagates through the target thickness. The compressive stress behind the wave front

decelerates the projectile, and simultaneously pushes the material in the impacted zone to

move forwards. Compared with the axial compressive stress, lateral shear force acting on

the impacted zone can be neglected. Hence, the indentation of the impacted zone by the

projectile can be simplified as a stationary, free body impacted by a rigid moving projectile,

as shown in Fig. 7-53. This computational model corresponds to either an inverse Taylor

test in which a plastic projectile impacts against a rigid wall [61], or a dynamic compression

test that a specimen placed on a rigid anvil is struck by a rigid projectile [157].

V0M0

h

d

d

Projectile

Impacted zone

Deformed

Undeformed

Fig. 7-53: Schematic representation of a free, stationary plastic body struck by a rigid projectile.
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It is assumed that the plastic shock wave propagates at a constant velocity cp. Behind

the wave front, the deformed region of the plug moves as a rigid body with the projectile.

Ahead of the wave front, the undeformed region of the plug is still at rest. Across the wave

front, the compressive plastic stress jumps from σ0 to 0. Hence, for both the deformed

region and the projectile, the equation of motion is given by

d
dt

[(
M0 + ρ

π

4
d2cpt

)
V
]

= 0. (7.208)

The stage of indentation ends when the plastic shock wave reaches the distal surface of the

plug. The duration of this stage is

t1 =
h

cp
(7.209)

Integrating Eq. (7.208) with respect to time gives the transient velocity of the projectile

V

V0
=

1
1 + µcpt/h

, (7.210)

where the initial condition has been used: V = V0 at t = 0. At t = t1, the whole plug

acquires the common velocity, V ∗
0 , with the projectile,

V ∗
0

V0
=

1
1 + µ

. (7.211)

Note, that V ∗
0 can be obtained directly from the principle of momentum conservation with-

out resorting to the shock wave approach.

Integrating the velocity of the projectile with respect to time gives the indentation depth

of the target, u,
u

h
=

1
µ

V0

cp
ln
(

1 + µ
cpt

h

)
. (7.212)

Setting t = t1 in the above equation yields the indentation depth at the end of the first

stage, u1,
u1

h
=

ln (1 + µ)
µ

V0

cp
. (7.213)

The indentation is due to the compressive plastic wave, hence u1 can be thought of as the

shortening of the plug. The linear relation between the shortening of the plug and the
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initial impact velocity indicated by Eq. (7.213) is consistent with the experimental results

by Børvik et al. [100]. Eq. (7.213) provides one possibility of estimating the plastic shock

wave speed from tests by measuring the shortening of a recovered plug. Since Eq. (4.1)

governs the relationship between the indentation depth and the crack length over the whole

process, the crack length at the end of the first stage, a1, is given by

a1

h
=
(

u1

ucr

)λ

=
[
1 + µ

µ
ln (1 + µ)

c

cp

]λ

. (7.214)

Note, that the plastic shock wave speed is an order of magnitude higher than the initial

impact velocity and the transverse plastic stress wave, c. For example, the shock wave

speed of 2024 aluminum alloy ranges from 5, 300 to 7, 700 m/s as an increasing function of

pressure [158], while the impact velocity is of the same order of magnitude as the transverse

plastic stress wave, i.e. V0 ∼ c, and c = 457.6 m/s. Therefore, a1 can be neglected compared

with the response in the second stage.

7.5.3.2 Stage II: crack propagation

At the end of the first stage, the whole plug acquires the common velocity, V ∗
0 , with the

projectile. In the second stage, the plug moves as a rigid body with the projectile, and

the cracks initiating in the first stage rapidly grow ahead of the projectile. The shear force

exerted by the surrounding material decelerates both the plug and projectile until the cracks

reach the distal surface of the target. Finally, both the plug and projectile will exit at a

residual velocity.

The inertia force of the projectile-plug system is balanced by shear force acting on the

ligament, i.e.

M0 (1 + µ)
d2u

dt2
= −k1 (h − a) , (7.215)

where k1 is the shear force per unit length, for a circular plate,

k1 = πdτ0, (7.216)

where τ0 = σ0/
√

3 is the plastic shear flow stress from the von-Mises yield criterion. Most
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of theoretical solutions in the literature do not account for the fact that the shear resistance

decreases with the crack growth. Note, V = du/dt, and thus Eq. (7.215) can be recast as

M0 (1 + µ)V dV = −k1h
(
1 − a

h

)
du. (7.217)

Substituting the expression for a/h given in Eq. (4.1) and integrating the above equation

yields the transient velocity of the projectile as a function of the indentation depth

(
V

c

)2

=
(

V ∗
0

c

)2

− 8√
3

h

d

µ

1 + µ

(
u

h
− 1

1 + λ

u

h

a

h
− u1

h
+

1
1 + λ

u1

h

a1

h

)
, (7.218)

where the initial condition of the second stage has been used: V = V ∗
0 and u = u1. The

residual velocity of the projectile, Vr, is obtained by setting a = h and u = ucr in the above

equation

(
Vr

c

)2

=
(

V ∗
0

c

)2

− 8√
3

µ

1 + µ

λ

1 + λ

ucr

d
+

8√
3

µ

1 + µ

u1

d

(
1 − 1

1 + λ

a1

h

)
. (7.219)

By neglecting the contribution of the first stage, the residual velocity is approximated as

(
Vr

c

)2

≈
(

V ∗
0

c

)2

− 8√
3

µ

1 + µ

λ

1 + λ

ucr

d
. (7.220)

Setting Vr = 0 in Eq. (7.220) yields the ballistic limit of the target

Vbl

c
=

8√
3

λ

λ + 1
h

d

µ

K1/λ
. (7.221)

This predicted ballistic limit is expressed in terms of all the input parameters of the problem.

However, the value of Vbl is underestimated because the transverse momentum transferred

to the surrounding material is neglected. An improved solution considering the global

deformation of the target will be given later on.
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The physical time in the second stage can be related to the indentation depth by

t =
∫ u

0

1
V

du

=
∫ u

0

[
(V ∗

0 )2 − 8√
3

h

d

µ

1 + µ

(
u

h
− 1

1 + λ

u

h

(
u

ucr

)λ
)

c2

]−1/2

du,

(7.222)

which can be integrated using numerical methods. Setting the upper limit of the above

integral u = ucr gives the time duration of the second stage

t2 =
∫ ucr

0

[
(V ∗

0 )2 − 8√
3

h

d

µ

1 + µ

(
u

h
− 1

1 + λ

u

h

(
u

ucr

)λ
)

c2

]−1/2

du. (7.223)

The time duration, t2, can also be quickly estimated by assuming the uniform deceleration

of the projectile in the second stage

t2 =
2ucr

V ∗
0 + Vr

. (7.224)

The duration of the whole perforation process is given by

tf = t1 + t2 +
h − ucr

Vr
, (7.225)

where the third term in the right hand side represents the duration that the projectile passes

through the rest of the target thickness after the plug is completely formed. For a thin or

intermediately thick plate, the third component may be larger than the sum of t1 and t2.

The perforation time is recorded in some tests, e.g. Børvik et al. [100], and thus it can be

used to make a comparison with the present solution.

The loss of the kinetic energy of the plug-projectile system in the second stage is

∆E2 =
1
2
M0 (1 + µ) (V ∗

0 )2 − 1
2
M0 (1 + µ) (Vr)

2

=
8√
3

h

d

c

V0

λ

1 + λ

µ

1 + µ

E0

K1/λ
.

(7.226)

The lost kinetic energy is dissipated in the form of shear cracking and the plastic deformation

of the target. The loss of the kinetic energy in the first stage is given in Eq. (7.28).
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7.5.3.3 Crack propagation speed

Differentiating Eq. (7.205) with respect to time gives the instantaneous crack propagation

speed, v,
v

V
= λ

(
u

ucr

)λ−1 h

ucr
(7.227)

where v = da/dt. Substituting the expression for the instantaneous projectile velocity V ,

one obtains the crack propagation speed as a function of the indentation depth, u,

v

c
= λ

(
u

ucr

)λ−1 h

ucr

√√√√(
V ∗

0

c

)2

− 8√
3

µ

1 + µ

u

d

[
1 − 1

1 + λ

(
u

ucr

)λ
]
. (7.228)

The history of the crack propagation speed for a specific case is shown in Fig. 7-54. It

appears that the heavier the projectile and the higher the impact velocity, the faster is the

crack propagation speed. Due to the decrease in the shear resistance, the process of the

crack propagation is accelerated. The maximum value of the crack growth speed occurs at

the end of the process, and is given by

vmax

c
=

Vr

c

λh

ucr
=

λh

ucr

√(
V ∗

0

c

)2

− 8√
3

µ

1 + µ

λ

1 + λ

ucr

d
. (7.229)

As can be seen from Fig. 7-54, the crack propagation speed (∼ 2, 000 m/s) is one order of

magnitude higher than the impact velocity of the projectile (∼ 200 m/s), and is lower than

the elastic Rayleigh wave speed given in Eq. (4.6).

The average crack propagation speed can be approximately expressed as

v̄

c
=

h

ct2
=

V ∗
0 + Vr

2c

h

ucr
. (7.230)

A plot of the average crack propagation speed vs. the target thickness for a specific case is

shown in Fig. 7-55. It is seen that the average crack propagation speed decreases with the

increasing target thickness.
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Fig. 7-54: Time history of the instantaneous crack propagation speed of a 2024-T351 aluminum

alloy circular plate. Other parameters are used: c = 457.6 m/s, h = 10 mm, d = 20 mm,

K = 10 and λ = 4.
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Fig. 7-55: Average crack propagation speed vs. target thickness for a 2024-T351 aluminum alloy

circular plate. Other parameters are used: c = 457.6 m/s, V0 = 240 m/s, µ = 0.1, and

d = 20 mm.

7.5.3.4 Shear zone width

As the impacted zone is indented, the surrounding materials of the target rotate due to

shearing, and the plastically deformed region grows with indentation, see Fig. 7-56. This

kind of plastic deformation is verified by an etched cross-section of a post-perforation alu-

minum plate (Fig. 1 in Ref. [145]). The plastically deformed region is the widest at the

distal surface and the narrowest at the proximal surface, which is different from quasi-static

punch tests where the widest deformed region is located in the center through the target

thickness [159]. Note, that in quasi-static punch tests the target is supported by rigid

anvils while in high velocity perforation the target is supported by its own inertial force.

The plastically deformed region is usually called the shear zone since shearing is dominant.

The average width of the shear zone as an empirical data was introduced by Awerbuch

and Bodner [148] in their three-stage model. By contrast, the width of the shear zone

can be determined analytically from the present solution. Following the blanking model
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proposed by Zhou and Wierzbicki [159] for quasi-static punch tests, it is assumed that the

shear zone consists of numerous parallel material elements with unknown length from the

proximal surface to the distal surface, and each material element is subjected to uniform

shear deformation. The element grows with the indentation depth, and simultaneously

rotates around its center due to shearing. A typical material element located in front of the

crack tip is shown in Fig. 7-57. When the propagating crack arrives at this elements, the

element is about to break. At this time, both the size and rotation angle of the element

reach their maximum values. The maximum rotation angle, θf , is related to shear fracture

strain, γf ,

γf = tan θf =
u

e
. (7.231)

where e is the final width of the considered element. Substituting Eq. (4.1) gives the final

width of the shear zone as a function of position represented by the crack length a

e (a) =
(a

h

) 1
λ ucr

γf
=
(a

h

) 1
λ

emax (7.232)

where emax = ucr/γf is the maximum value of the width of the shear zone located at the

distal surface.

Shear zone

Fig. 7-56: Plastic shear strain contour showing plastically deformed zone around a crack.
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a

u

u

e

θf

Fig. 7-57: Schematic representation of a shear element in the shear zone.

Alternatively, the average width of the shear zone, ē, can be calculated by assuming

that the loss of the kinetic energy is completely dissipated in shear plastic deformation,

∆E2 = πdhēτ0γf , (7.233)

where πdhē represents the volume of the shear zone. Substituting the expression for ∆E2

into the above equation, one obtains the average value of the shear zone width

ē

h
=

1
γf

V0

c

1
1 + µ

λ

1 + λ
K−1/λ. (7.234)

The present result that explicitly accounts for the impact velocity and mass of the projectile,

and the material properties of the target in the expression for the size of the shear zone is a

major improvement over Li and Jones’s solution [77], in which a constant value, ē = 0.866h,

was given. This value is much larger than that predicted by Eq. (7.234), e.g. ē = 0.41h

for γf = 1, K = 10, λ = 4, µ = 0.1, and V0 ≈ c. Woodward and Morton [145] presented a

photo of an etched post-test aluminum specimen clearly showing plastic slip lines around

the impacted area. A rough estimation gives the average width of the shear zone about

one-third of the target thickness. This experimental data is much closer to the present

prediction than the theoretical value given by Li and Jones [77].
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7.5.4 Perforation analysis for a beam

In the preceding section, the case of a circular plate perforated by a cylindrical projectile was

investigated. Now consider a beam impacted by a rigid, flat-nosed, high velocity projectile.

Due to various expressions for the shear force per unit length, results for a beam are slightly

different from those for a circular plate.

The problem can be formulated in a similar way as presented for the case of a circular

plate. Some important results are summarized in the following. First, the shear force per

unit length in a beam is given by

k1 = 4bτ0. (7.235)

The instantaneous velocity of the projectile is

(
V

c

)2

=
(

V ∗
0

c

)2

− 4√
3

h

d

µ

1 + µ

(
u

h
− 1

1 + λ

u

h

a

h

)
. (7.236)

Setting a = h and u = ucr in the above equation, one obtains the residual velocity of the

projectile (
Vr

c

)2

=
(

V ∗
0

c

)2

− 4√
3

µ

1 + µ

λ

λ + 1
ucr

d
. (7.237)

By comparing Eqs. (7.237) with (7.220), it can be seen that the residual velocity of the

projectile in the case of a beam is higher than that in the case of a circular plate, if both

targets are of the same material, aspect ratio, mass ratio, and impact velocity. This result

gives a clear explanation of the difference in the residual velocity history between the beam

and the circular plate as shown in Fig. 4-11.

The time duration of the second stage, t2, is

t2 =
∫ ucr

0

[
(V ∗

0 )2 − 4√
3

h

d

µ

1 + µ

(
u

h
− 1

1 + λ

u

h

(
u

ucr

)λ
)

c2

]−1/2

du, (7.238)

which is smaller than the value given by Eq. (7.223) provided that the beam and the

circular plate are under the same impact conditions. This finding is also consistent with

the numerical results presented in Fig. 4-11.
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The loss of the kinetic energy of the system in the second stage is

∆E2 =
4√
3

h

d

c

V0

µ

1 + µ

λ

1 + λ

E0

K1/λ
, (7.239)

which is half of the corresponding value in the case of a circular plate. However, the average

width of the shear zone is the same in both cases.

The instantaneous crack propagation speed for a beam is given by

v

c
= λ

(
u

ucr

)λ−1 h

ucr

√√√√(
V ∗

0

c

)2

− 4√
3

µ

1 + µ

u

d

[
1 − 1

1 + λ

(
u

ucr

)λ
]
, (7.240)

which predicts that crack propagation is slower in a circular plate than in a beam.

7.5.5 Coupled shear-tension analysis

In the preceding solutions, only localized shear deformation is taken into account in the

second stage, and the transverse momentum transferred to the surrounding material is ne-

glected. Hence, the predicted residual velocity of the projectile is underestimated, specially

for the case of the initial impact velocity near the ballistic limit of the target.

For either a thin or intermediately thick beam/plate impacted by a projectile at an

impact velocity near the ballistic limit, the maximum deflection of the target is larger than

or close to the thickness of the target, as observed from the experimental results by Børvik et

al. [100], Liss and Goldsmith [150]. Jones [133] proved that when the maximum transverse

deflection of a rigid-perfectly plastic beam exceeds one-half of the beam thickness, axial

stretching response becomes dominant over bending response. Hence, it is necessary to

introduce membrane response for the case with the initial impact velocity near the ballistic

limit. Here, a coupled shear-tension solution that accounts for the global deformation of the

target is developed. By comparison, most of coupled solutions presented in the literature

considered both shear and bending response at the same time, e.g. Jones et al. [152], Chen

and Li [153], but not shear/membrane response.
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7.5.5.1 Circular plate

In the following, we focus on the response of the projectile-target system in the second

stage. The solution for the first stage is the same as the preceding, which provides the

initial conditions of the second stage.

Since axial stretching is dominant and bending response is negligible, a beam/plate can

be simplified as a string/membrane. Immediately upon impact, transverse disturbances

(transverse plastic stress waves) are generated and propagate away from the impacted zone

with the constant speed c defined by Eq. (7.4). Note, that this transverse plastic stress

wave propagating along the radial direction in the second stage is different from the plastic

shock wave cp through the target thickness in the first stage. The momentum conservation

approach, used in the preceding sections for the global membrane response of an impacted

beam/string, is extended to the present coupled problem with through-thickness crack prop-

agation. This coupled shear-tension procedure was first developed by Wierzbicki and Hoo

Fatt [11] to predict the ballistic limit of a membrane under rigid mass impact. The theo-

retical solutions were compared with experiments by Calder and Goldsmith [160] showing

good correlation. As opposed to the analysis by Wierzbicki and Hoo Fatt [11] in which a

constant shear resistance was assumed in the ligament, here, the shear force decreases as the

cracks grow through the target thickness. Similarly to the preceding sections, the uniform

distribution of the transverse velocity field is assumed in the surrounding material, and the

velocity suffers a jump from the impacted zone to the surrounding material, see Fig. 7-58.

This type of velocity field is different from the triangular form commonly adopted in the

coupled shear-bending solution, e.g. Chen and Li [153].

Applying transverse momentum equilibrium to the projectile-plug system and the sur-

rounding materials of the target, respectively, gives

⎧⎨
⎩

d
dt [M0 (1 + µ) ẇp] = −k1h

(
1 − a

h

)
d
dt

{
ρπh

[(
ct + ς + d

2

)2 − d2

4

]
ẇt

}
= k1h

(
1 − a

h

) , (7.241)

where the terms on the left hand side represent the rate of change of the transverse momen-

tum in the projectile-plug system and in the surrounding material, respectively; the terms
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on the right hand side represent the shear force in the ligament; t is the time measured from

the beginning of the second phase; wp is the displacement of the plug; wt is the maximum

deflection of the target at r = d/2; ẇp is the velocity of the projectile-plug; ẇt is the trans-

verse velocity of the surrounding material, which is constant in space and varies with time;

and ς is the initial length of the bending response. The reason for introducing the initial

length ς in the formulation is as follows.

d ct + ς

ẇt

ẇp

r

Fig. 7-58: Schematic of a transient velocity profile in a target.

As the transverse momentum is transferred to the impacted zone in the first stage, plastic

shear force is generated in the ligament. When the entire impacted zone acquires a common

velocity with the projectile, the whole ligament through the target thickness becomes fully

plastic. Hence, before entering into the second stage, the surrounding materials are already

subjected to the plastic shear force. The bending response of the surrounding material is

dominant. The plastic bending hinges travel to far fields as the plastic shear force increases,

see Fig. 7-59. At the end of the first stage, the moment equilibrium with respect to the

far-field plastic hinge gives

M̄bπd + M̄bπ (2ς + d) = k1hς, (7.242)

where the contribution of the inertia force of the target is neglected; and M̄b = 1
4σ0h

2 is

the fully plastic bending moment per unit length. Solving the above equation yields the
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position of the far-field plastic bending hinge

ς

h
=

1
2/
√

3 − h/d
, (7.243)

where ς is smaller than the target thickness. Mathematically, if the initial length, ς, was

set to zero in Eq. (7.241), an unrealistic numerical result that ẇt > ẇp, i.e. the velocity of

the target would be higher than that of the plug, would occur.

k1h

ς

Mb

Mb
h

Plug

Projectile

Fig. 7-59: Schematic of the initial length and the bending response.

It can be observed that Eq. (7.243) imposes a restriction condition for the present

formulation, i.e. h/d < 2/
√

3. For the case of the aspect ratio larger than this critical

value, shear or coupled shear-bending response could be dominant, and a target could be

sheared off before entering into the axial stretching phase.

As the deflection increases, the membrane response becomes dominant in the second

stage. The plastic hinges continue to travel to far fields with the constant speed, c. By

contrast, in the coupled shear-bending solution developed by Jones [133] for the beam case

and by Chen and Li [153] for the circular plate case, the plastic bending hinge immediately

reaches a certain location and is fixed during the whole impact process. This is a conse-

quence of constant shear resistance and bending moment in the ligament assumed in their

formulation.
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By means of Eq. (7.205), the crack length is related to both wp and wt:

a

h
=
(

u

ucr

)λ

=
(

wp − wt

ucr

)λ

, (7.244)

where u = wp − wt. Thus, Eq. (7.241) furnishes a system of two second-order ordinary

differential equations (ODEs) in wp and wt, which can be rewritten equivalently as a system

of four first-order ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

İp = −k1h
(
1 − a

h

)
ẇp =

Ip

M0 (1 + µ)

İt = k1h
(
1 − a

h

)
ẇt =

It

ρπh
[(

ct + ς + d
2

)2 − d2

4

]
, (7.245)

where Ip is the transverse momentum in the projectile-plug system; It is the transverse

momentum in the surrounding material. The problem is subject to the following initial

conditions at t = 0

Ip = M0V0, wp = 0, It = 0, wt = 0, (7.246)

where the contribution of both the transverse momentum and the deflection in the bending

phase (Stage I) to the surrounding material is neglected. The present formulation is much

simpler than most of theoretical analyses presented in the literature, where except for the

transverse momentum equilibrium, both the angular momentum equilibrium and the energy

conservation are involved.

Using the Runge-Kutta finite difference method implemented in the ODE Toolbox of

Matlab, a computational routine was developed to solve the above system of ODEs. When

the difference between wp and wt reaches the critical indentation depth ucr, the routine

stops the calculation and outputs the residual velocity of the projectile.

Note, the present shear-tension solution is applied to the case of a thin or intermediately

thick plate. For a target whose thickness is comparable to the diameter of the projectile,

the bending response is always dominant, and thus it must be taken into account instead
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of the axial stretching. Such a coupled shear-bending model with traveling plastic hinges

can also be formulated. Corresponding to three unknowns: wp, wt, and the location of the

plastic bending hinge, a system of three ODEs can be built from transverse momentum

equilibrium for the projectile-plug system, angular momentum equilibrium for the target,

the energy conservation including the effect of the circumferential bending moment. The

problem is more complicated and beyond the scope of the present paper.

7.5.5.2 Beam

The case of a beam can be formulated in the same way as the preceding. The transverse

momentum equilibrium gives a system of four first-order ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

İp = −k1h
(
1 − a

h

)
ẇp =

Ip

M0 (1 + µ)

İt = k1h
(
1 − a

h

)
ẇt =

It

2ρbh (ct + ς)

, (7.247)

which are subject to the same initial conditions as Eq. (7.246). Similarly, the initial length

is given by

ς =
4M̄bb

2τ0hb
=

√
3

2
h. (7.248)

The present initial length is one third of the value given by Jones [133] where the inertial

force was considered in moment equilibrium.

7.5.6 Validation of the analytical solution

7.5.6.1 Experiments on 2024 aluminum alloy plates

Comparison with virtual tests

In Chapter 4.5, a comprehensive parametric study on beams/plates struck by vari-

ous rigid, flat-nosed projectiles was performed using ABAQUS/Explicit. The constants in

Eq. (4.1) K = 10 and λ = 4 for 2024-T351 aluminum alloy were obtained by fitting the
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curve of crack growth. With these two material constants known, Eq. (7.218) can be used

to predict the transient velocity of the projectile during the perforation process. Figure 7-60

shows a comparison of the velocity history of the projectile for a specific case between the

present theoretical prediction and the finite element solution given in Chapter 4.5. The

agreement is excellent.
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Present analytical solution

Finite element results

1st stage

2nd stage

Fig. 7-60: Comparison of the velocity history of the projectile impacting against a circular plate

made of 2024-T351 aluminum alloy. The parameters are used: h = 10 mm, d = 20 mm,

c = 457.6 m/s, cp = 5, 000 m/s, ρ = 2, 700 kg/m3, V0 = 240 m/s and µ = 0.1.

Comparison with Liss and Goldsmith’s tests

Liss and Goldsmith [150] conducted perforation experiments on 2024-O aluminum alloy

circular plates. Two material constants K = 10 and λ = 4 for 2024-T351 aluminum alloy

are tentatively used here to predict the residual velocity of the 2024-O aluminum alloy

plate, see Fig. 7-61. Note, that 2024-T351 is much stronger than 2024-O, but both have

approximately the same fracture elongation [161]. It appears that the predicted residual

velocities correlate rather well with the experimental results, except that the ballistic limit

of the plate of h = 6.4 mm is underestimated.
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Fig. 7-61: Residual velocity vs. impact velocity. The circular points denote Liss and Goldsmith’s

experimental results [149]. The solid curve represents the coupled shear-tension solution.

The dash-dot curve represents the pure shear solution.
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7.5.6.2 Experiments on Weldox 460 E steel plates

Børvik et al. [100] performed a series of perforation tests on Weldox 460 E steel plates and

provided the abundant experimental results, which allow us to verify the present theoretical

solutions.

Shock wave speed

The shock wave is usually related to the impact problem in the range of the ordnance

velocity or hypervelocity. A question is naturally raised: are there any shock waves gen-

erated in the case with a sub-ordnance impact velocity? To answer this question, three

material points of the impacted zone were selected to track the time history of pressure

and equivalent stresses for the case of the plate of h = 10 mm impacted by the rigid mass

moving at V0 = 241.5 m/s, see Fig. 7-62. It appears that the pressure is much higher than

the corresponding equivalent stress in the initial phase (t < 3 µs). The shock wave travels

through the target thickness. Hence, it is reasonable to use the shock wave approach to

formulate and solve the response of the impacted zone in the Stage I.
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Fig. 7-62: Time history of pressure and equivalent stress of three material points of the impacted

area for the case of a Weldox 460 E steel circular plate of h = 10 mm impacted by a rigid

cylinder moving at V0 = 241.5 m/s.
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The plastic shock wave speed can be estimated from the recovered plugs using Eq. (7.213).

As shown in Fig. 7-63, the shock wave speed for Weldox 460 E steel under high velocity

impact ranges from 2, 500 to 6, 000 m/s depending on the impact velocity and the target

thickness. The shock wave speed is the same order of magnitude as the elastic wave speed

(5, 172 m/s), but much higher than the transverse plastic stress wave speed (c = 321 m/s).

At such a high speed, the shock wave immediately arrives at the distal surface of the target.

The duration of the first stage is approximately 2.5 ∼ 8.0 µs, and the shortening of the plug

is about 5% ∼ 6% of the plate thickness in most cases. Hence, it is reasonable to assume

that the impacted zone immediately acquires a common velocity V ∗
0 with the projectile.

The contribution of the first stage to crack growth can be neglected.
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Fig. 7-63: Axial shock wave speed vs. impact velocity for plates with various thicknesses. The shock

wave speeds are calculated based on data provided by Børvik et al. [100].

Determination of K and λ

A straightforward way to determine two constants, K and λ, for a specific material is

curve-fitting of the relation between the crack length and the indentation depth, if these

data are recorded in perforation experiments. Alternatively, K and λ can be obtained by

combining the present theoretical analysis and perforation tests. Combining Eqs. (7.204)

with (7.220) gives K and λ as a function of the critical indentation depth and the residual
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velocity, respectively,

λ

1 + λ
=

√
3

8
1 + µ

µ

d

ucr

[(
V ∗

0

c

)2

−
(

Vr

c

)2
]

, (7.249)

and

K =
[
(1 + µ)

ucr

h

c

V0
.

]−λ

. (7.250)

Table 7.1: Comparison of the residual velocity between the experimental and numerical results.

Thickness Impact velocity Experimental Numerical

h (mm) V0 (m/s) Vr (m/s) Vr (m/s)

Case 1 12 224.7 120.43 117.79

Case 2 10 241.5 169.73 164.34

Case 3 10 277.5 201.65 206.0

Normalized indentation (1 + µ) c
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Fig. 7-64: Crack length vs. indentation depth for three cases in Børvik et al.’s tests.

Here, three cases were simulated using ABAQUS/Explicit to determine K and λ for

Weldox 460 E steel. The finite element modeling was presented in Chapter 5.3. The calcu-

lated residual velocities are listed in Table 7.1. It is seen that all the numerical predictions

are quite close to the corresponding experimental values. Plots of the crack length vs. the
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indentation depth obtained from the numerical simulations are shown in Fig. 7-64. Curve-

fitting gives two constants: K = 0.5 and λ = 4.0 for Weldox 460 E steel. Note, K = 10.0

and λ = 4.0 for 2024-T351 aluminum alloy, which is less ductile than Weldox 460 E steel.

Residual velocities

With the two material constants known, Eq. (7.220) can be used to predict the residual

velocity of the projectile. Figure 7-65 shows comparisons between the experimental and

predicted results. The target thickness ranges from 6 mm to 20 mm. Due to large difference

in the measured residual velocity between the projectile and the plug, the experimental

residual velocity is defined in an average sense

Vr =
M0Vr,pr + MplVr,pl

M0 + Mpl
, (7.251)

where Mpl is the mass of the plug, Vr,pr and Vr,pl are the residual velocities of the projectile

and the plug, respectively. It appears that the pure shear solution neglecting the global

deformation of the target gives a rather good prediction for the impact velocity higher

than 200 m/s. At such a high velocity, the impact duration is so short that the transverse

momentum transferred to the surrounding material can be neglected. Most of the kinetic

energy is dissipated in the form of plastic shear deformation and plastic compression in

the impacted zone. The prediction of the pure shear solution becomes poor as the impact

velocities approach the ballistic limits. At a relatively low impact velocity, the maximum

deflection of the target is comparable to its thickness, and a rather large portion of the

kinetic energy is dissipated in the surrounding material in the form of axial stretching and

bending. Instead, the coupled shear-tension solutions accounting for the global deformation

of the target correlate well with the experimental results.

It should be mentioned that for a thick plate, indentation response in the Stage I becomes

important. In the last two cases of h/d = 0.8 and h/d = 1.0, this factor is taken into account,

i.e. Eq. (7.219) was used to calculate the residual velocities. The theoretical predictions

agree well with the experimental results. At the same time, shear and bending response

would be dominant instead of axial stretching for a thick plate. The coupled shear-tension

solution is not suitable for this kind of targets.
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Fig. 7-65: Residual velocity vs. impact velocity for the Weldox steel target. The circular points

denote Børvik et al.’s experimental results [100]. The solid curves represents the coupled

shear-tension solution. The dash-dot curves represent the pure shear solution. The dash

line represents Vr = V0/ (1 + µ).
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7.5.7 Transition from tensile tearing to shear plugging

The perforation energy dissipated during the whole process can be defined by the difference

between the initial kinetic energy of the projectile and the residual kinetic energy of the

projectile-plug system

W =
1
2
M0V

2
0 − 1

2
M0 (1 + µ) V 2

r . (7.252)

Figure 7-66 shows the relation between the perforation energy and the initial impact velocity.

It appears that the dissipated energy decreases from the ballistic limit to a minimum value,

and then monotonically increases with the initial impact velocity. This phenomenon was

noticed first by Goldsmith and Finnegan [50] from experimental results. The local drop of

the dissipated energy, which is evident for a thin target, can be captured by the present

coupled shear-tension solution.
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Fig. 7-66: Dissipated energy vs. initial impact velocity for a specific case with h = 10 mm. The

circular points represent the experimental results by Børvik et al. [100].

Three ranges can be distinguished in Fig. 7-66. If the initial impact velocity is lower

than the corresponding ballistic limit (Range I: V0 < 150 m/s), the whole kinetic energy

of the projectile, represented by the dash curve, is absorbed by the plate in the form of

axial stretching, bending, or partial crack growth. For the initial impact velocity higher
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than 300 m/s (Range III), the closed-form analysis neglecting the global deformation of the

target does not much differ from the coupled solution, where most of the kinetic energy is

dissipated in the form of through-thickness crack growth and indentation in the impacted

zone. In the intermediate range, a small proportion of the kinetic energy is converted to

the deformation energy in the surrounding material.

N
or

m
al

iz
ed

ba
lli

st
ic

lim
it

V
b
l

c

Normalized thickness h
d

Chen & Li’s [153]

Wierzbicki & Hoo Fatt’s [11]

Experiments by Børvik et al. [100]

Present solution

Fig. 7-67: Comparison of the ballistic limit among various analytical solutions and experimental

results. For a thin target of h/d < 0.7, the coupled shear-tension solutions were used. For

a thick target of h/d > 0.8, the pure shear solution with the indentation depth considered

was used to calculate the ballistic limits.

7.5.8 Comparison with previous analytical solutions

Wierzbicki and Hoo Fatt [11] gave a closed-form solution for the ballistic limit of a circular

membrane perforated by a rigid, cylindrical projectile:

Vbl

c
=

4√
3

(√
µ (1 + µ) − µ

)
. (7.253)

This solution is quite simple and depends only on the mass ratio and the transverse plastic

stress wave speed. Recently, Chen and Li [153] developed a coupled shear-bending solution
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in which the ballistic limit is given by

Vbl

c
=

√
8√
3

h

d
k (1 + µ) (µ + ψ) (7.254)

where ψ is a coefficient as a function of the location of the plastic bending hinge, and k = 1

was used as an empirical data in their calculation.

Both theoretical solutions are compared with the present solutions and the experiments

by Børvik et al. [100]. Figure 7-67 shows comparison of the ballistic limit as a function of

the target thickness. It can be observed that both of the above solutions over-predict the

ballistic limits of the targets. Note, that Wierzbicki and Hoo Fatt’s solution was formulated

for a membrane, i.e. bending response is neglected. In Chen and Li’s solution, both k = 1

and the constant plastic shear force probably lead to the overestimation of the ballistic

limits.

7.5.9 Concluding remarks

Based on the newly developed relationship between the indentation and the crack length,

a two-stage shear plugging model with the advancing crack is proposed for both the beam

and the circular plate. The closed-form solutions for the instantaneous velocity, the residual

velocity, the plastic energy, the width of the shear zone, and the crack propagation speed are

obtained. A coupled shear-tension model taking into account the global deformation of the

target is also developed, which improves the prediction of the ballistic limit. Comparisons

with the virtual and real experiments presented in the open literature are made showing

rather good agreement, which validates the accuracy of the present solutions. The good

correlations further verify that Eq. (4.1) is quite general and capable of predicting the

perforation response in a wide range of the impact velocity and the target thickness.

It should be pointed out that shear plugging is not the unique failure mode for a target

struck by a rigid, flat-nosed projectile. For example, besides shear plugging, a circular plate

may fail by either discing or petalling depending on various combinations of parameters such

as the impact velocity and mass of a projectile, the thickness of a target, etc. No simple

conditions for the transition of the failure modes have been developed in the literature. In
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Chapter 4.5, the present author gave the ranges of the impact velocity and the mass ratio

for a beam impacted by a flat-nosed projectile, in which shear plugging is favorable.



Chapter 8

Conclusions and Recommendations

8.1 Summary of results

Fracture modes and fracture mechanisms of high velocity impact problems were investigated

numerically and theoretically. A number of macroscopic fracture modes were successfully

recreated for the first time in the literature. Attention was focused on crack formation

and propagation, which is difficultly captured using currently available instruments. The

applicability of the newly developed Bao-Wierzbicki’s fracture criterion was convincingly

demonstrated. Deficiencies of the existing fracture loci were pointed out. Four theoretical

models were developed and closed-form solutions were obtained. Comparison with virtual

and real experiments was made showing very good agreements.

Qualitative analysis of failure modes

The deformation and failure response of a long, plane-strain beam impacted by a rigid,

flat-/round-nosed projectile was studied numerically in a wide range of impact velocities

using the BW’s fracture criterion. Three distinct failure modes were identified including

fragmentation, shear plugging, and tensile tearing. The corresponding failure mechanisms

were revealed by tracking down the time history of the effective plastic strain and the stress

triaxiality of critical points at crack pathes. Effects of material ductility are highlighted

by introducing two metals: 2024-T351 aluminum alloy and Weldox 460 E steel. It was

found that tensile tearing is a favorable failure mode for both materials at a velocity near
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the ballistic limit. The steel beam tends to break by tensile tearing while the aluminum

beam fails by shear plugging at an impact velocity well above the ballistic limit. At an

intermediately high impact velocity, the target fails by a mixed mode of shear plugging

and tensile tearing. The numerical findings are consistent with experimental observations

published in the open literature.

The failure process and failure mechanism of a three-dimensional solid cylinder fired

against a rigid wall in the Taylor test was studied. The cylinder is predominated by com-

pression for which ductile fracture could not be easily predicted. Three fracture modes

observed in experiments were successfully recreated for the first time in the literature: con-

fined fracture inside the cylinder, petalling of the front surface, and shear cracking on the

lateral surface. Petalling would more likely take place in a more ductile projectile moving

at a high velocity while shear cracking in a less ductile material. Confined fracture is a

common failure mode for both materials, which occurs in a wide range of the impact veloc-

ity. The research provides an insight into the mechanics and mechanism of ductile fracture

in the Taylor test.

Adiabatic shear banding and subsequent fracture

A recently performed dynamic compression test on an axisymmetric hat specimen was

simulated. The formation and propagation of adiabatic shear bands and subsequent cracks

were successfully captured and the corresponding mechanisms were explored. In contrast

to the analyses published in the literature, fracture was clearly distinguished from adiabatic

shear banding in this research. Cracking is thought of as a final, catastrophical failure

mode. The adiabatic shear banding was automatically resolved using a very fine mesh

model with the minimum element edge length of 10 µm while the prediction of cracking

was achieved by implementing the BW’s fracture locus. The experimentally observed hot

spots that periodically occur in a propagating shear band were convincingly recreated using

conventional finite element procedures. Most importantly, it was found that these hot spots

act as the initiation sites of the crack. Thus, the formation of the crack within the shear

band resembles a linkage of small cracks rather than the growth of a single major crack.

Comparison with the experimental results was made showing very good agreements, which
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prove the accuracy of the present numerical studies.

Properties of through-thickness crack growth

An analytical expression controlling through-thickness crack propagation for a beam/plate

under impact by a flat-nosed projectile was proposed. An extensive parametric study was

performed to verify this expression in a wide range of impact velocities, projectile weight,

target thickness, etc. It was found the maximum value of crack propagation speeds in

ductile shear plugging reaches half of the Rayleigh wave speed (∼ 3000 m/s).

Applicability of the BW’s fracture criterion

The successful recreation of a number of failure modes clearly demonstrates the applica-

bility of the BW’s ductile fracture locus to high velocity impact problems. The effectiveness

of the BW’s fracture model was further examined by comparing the predicted failure re-

sponse of three types of problems using two other fracture criteria: the JC’s fracture locus

and the constant critical plastic strain. Since the JC’s fracture model and the critical

fracture strain were calibrated from tensile tests alone, they do not represent real fracture

characteristics of a material dominated by compression. This deficiency leads to the unreal-

istic failure patterns that a number of elements were artificially eroded in the critical region.

By contrast, the BW’s fracture criterion predicted distinct crack pathes and macroscopic

fracture modes.

Mesh size effects

High strain gradient and strain softening were identified as two critical factors leading

to mesh size sensitivity. Mesh size effects were studied through two typical problems: a

circular plate struck by a flat-nosed rigid cylindrical mass and a hat specimen under dynamic

compression. It was found that crack growth and residual velocities at high impact velocities

are not much dependent on element size. However, the prediction of ballistic limit and the

evolution of adiabatic shear bands is quite sensitive to the mesh size.

Four benchmark analytical solutions

Motivated by the September 11th attack, three theoretical models were developed using
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the momentum conservation approach. These three models include rigid mass-to-beam

impact, the single impact of beam-to-beam, and the multiple impact of beam-to-beam.

The corresponding solutions are applicable to large deformation problems, in which axial

stretching dominates over shearing and bending. Closed-form solutions were developed for

transient velocities, deflection, plastic strain, and critical impact velocities to fracture the

impacting bodies. Comparison with finite element solutions are made showing very good

correlations. In rigid mass-to-beam impact, the range of applicability of the theoretical

solution was determined. In the single impact of beam-to-beam, five fracture scenarios

were identified and the corresponding conditions were specified. In the multiple impact, a

recursion formula for plastic tensile strain was derived.

Based on the analytical expression controlling through-thickness crack growth, a two-

stage shear plugging model with advancing cracks was built for beams and circular plates.

Closed-form solutions for the instantaneous velocity, the residual velocity, the crack prop-

agation speed, etc. were derived. The explicit expressions for the shear zone width and

the critical indentation depth, which were taken as empirical data in the literature, were

also determined explicitly. A coupled shear-tension model taking into account the global

deformation of a target was also formulated, which improves the prediction of the ballistic

limit. The theoretical solutions agree well with virtual and real experiments published in

the literature, which further verify that the crack growth curve is quite general and capable

of predicting the perforation response in a wide range of the impact velocity and the target

thickness.

8.2 Suggestions for future studies

• Ductile fracture criteria are usually calibrated from monotonically loaded tests. How-

ever, a structural component may have a complex loading history before fracture.

For example, in the initial phase of the impact process, compression is dominant in

the impacted zone of a target beneath a projectile, where cracks are often gener-

ated. As transverse deflection increases, shear, bending, and axial stretching becomes

important leading to crack formation in the impacted zone, see Fig. 3-7. The Bao-
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Wierzbicki’s fracture locus assumes that the increase in the effective plastic strain

would not contribute to the damage accumulation in the compression dominated

phase. However, preliminary strain reversal tests performed by Wierzbicki and Bao [5],

in which a notched, axisymmetric specimen was first compressed to a certain level of

plastic strain and then stretched to fracture, reveal that the final fracture strain of

the specimens clearly depends on the magnitude of the first compressive deforma-

tion. Therefore, it is necessary to incorporate effects of loading histories into a ductile

fracture criterion for practical applications.

• Solid elements were used in the present thesis to model growth of cracks and evolution

of adiabatic shear bands through the target thickness. However, such a finite element

model is not affordable for failure analysis of a large structure such as a colliding car

or a grounding ship, for which large shell elements have to be adopted. A preliminary

study indicates that numerical results are strongly sensitive to element size of shell

models. At the same time, it is impossible for a shell model to capture through-

thickness crack growth, adiabatic shear banding evolution, or spallation. These types

of localized damage would significantly reduce the load carrying capability of a com-

ponent, or even a whole structure. It would be very interesting if effects of mesh size

and localized damage could be taken into account in large shell element analysis. In

such a way, a large shell element model would be able to predict a failure process.

• The BW’s fracture criterion was essentially developed for the prediction of crack

formation rather than crack propagation. Crack growth was thought of as a series

of crack formation for each failed element. Although it has been shown that this

approximation is able to make a reasonable prediction of the failure process, it is still

attractive to develop a ductile fracture criterion for crack propagation.

• As shown in Chapter 5.3, the formation and evolution of adiabatic shear bands and

the prediction of ballistic limits is quite sensitive to mesh size. An effective approach

to remedy this deficiency should be derived.

• The crack growth curve, Eq. (4.1), was developed in Chapter 4 using curve-fitting the

numerical results. It would be desirable to theoretically determine this expression or
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relate two coefficients K and λ of Eq. (4.1) to fracture properties of a material.

• Experimental investigation, numerical simulation, and theoretical analysis is comple-

mentary to each other. The present thesis focused on the latter two methods. Ex-

periments should be conducted to corroborate the obtained theoretical and numerical

solutions. In particular, an advanced experimental instrument need to be developed

to track down crack propagation and to capture deformation and temperature fields

in the vicinity of a propagating crack tip.



Appendix A

Choice of Parameters in Finite

Element Modeling

This appendix summaries the rationale for the choice of important technical parameters in

finite element modeling of the problems considered in the present thesis.

• Time step

In ABAQUS/Explicit, the central-difference time integration rule is used to solve gov-

erning differential equations. This integration operator is conditionally stable. The stable

time increment can be manually defined or automatically determined by the code. In this

thesis, the latter was adopted. The stable time increment is proportional to the element

size. In the case of adiabatic shear banding of the hat specimen (Chapter 3.4) where the

minimum element edge length is about 10 µm, the typical value of the time increment is

about 10−10 ∼ 10−11 s. The total increment number is of the order of 105 for the impact

duration 100 µs. It was noted that the nodal displacements increase without much oscilla-

tion and the total energy almost keeps constant. These results indicate that the obtained

solutions are stable.

• Elements

Only first-order elements with reduced integration are available in ABAQUS/Explicit.

These first-order elements are essentially constant strain elements. Hence, they can be used

to approximately model discontinuities in the gradient field of solution variables, which are
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common in dynamic plasticity problems such as adiabatic shear banding.

• Hourglass control

Reduced integration decrease CPU time and storage requirements but introduces a zero-

energy deformation mode called “hourglassing”. To suppress excessive deformation due to

hourglassing, an additional artificial stiffness is added to the elements. ABAQUS/Explicit

provides four options to control hourglassing. In this thesis, the integral viscoelastic ap-

proach, which is the default option in ABAQUS/Explicit, was chosen. No excessive deforma-

tions were observed in all the numerical simulations and thus this approach is quite effective.

However, in a preliminary numerical simulation of the single impact of beam-to-beam using

three-dimensional solid elements, where both beams are deformable and breakable, none of

the four hourglass control options work well. This problem need to be further investigated.

• Adaptive meshing

In Chapter 3.4, adaptive meshing was used to maintain the high-quality elements of

the gauge section of the hat specimen throughout the analysis of adiabatic shear band-

ing and subsequent fracture. There are two major control parameters: the frequency and

the intensity of adaptive meshing. ABAQUS/Explicit suggests adaptive meshing every 5-

100 time increments. The author found adaptive meshing should be performed every time

increment for the present problem. Otherwise, the calculation would be terminated prema-

turely due to excessive distortion of elements. In an adaptive meshing increment, a new,

smoother mesh is generated by relocating elemental nodes. This process is called sweep-

ing in ABAQUS/Explicit. The number of sweeps was set to two in the present modeling.

There are three basic mesh smoothing methods: volume smoothing, Laplacian smoothing,

and equipotential smoothing. The first one is the default option and it works well for the

present problem.

• Contact modeling

The momentum and energy of a projectile is transferred to a target through contact.

ABAQUS/Explicit provides two algorithms for modeling contact events: general contact

algorithm and contact pair algorithm. The latter was adopted since all the problems con-

sidered in the present thesis involve a deformable surface of targets and a rigid surface of
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projectiles, which contact with each other during the impact process. For two deformable

contact surfaces such as long rod penetration into a thick plate, the general contact algo-

rithm is a more suitable option.

A contact surface can be defined based on either nodes or elements. Considering that

elements in contact with the projectile may fail, a node-based contact surface should be

defined in contact pairs instead of an element-based contact surface.

ABAQUS/Explicit offers two contact constraint methods: kinematic and penalty al-

gorithms. The kinematic algorithm is a more stringent enforcement and was used in this

thesis. However, a preliminary study indicates that the penalty algorithms is more effective

for impact problems associated with two deformable bodies.

ABAQUS/Explicit accounts for three possible relative motions between two contact

surfaces: finite, small, and infinitesimal sliding. The first one, which is the most general,

was defined.
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