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Abstract

Fullerenes are molecules comprised entirely of sp2-bonded carbon atoms arranged in
pentagonal and hexagonal rings to form a hollow, closed-cage structure. Buckyballs, a
subset which contains C60 and C70, are single-shell molecules while fullerenic
nanostructures can contain many shells and over 300 carbon atoms. Both fullerenes and
nanostructures have an array of applications in a wide variety of fields, including medical
and consumer products. Fullerenes were discovered in 1985 and were first isolated from
the products of a laminar low-pressure premixed benzene/oxygen/argon flame operating
at fuel-rich conditions in 1991. Flame studies indicated that fullerene yields depend on
operating parameters such as temperature, pressure, residence time, and equivalence
ratio. High-resolution transmission electron microscopy (HRTEM) showed that the soot
contains nanostructures, including onions and nanotubes.

Although flame conditions for forming fullerenes have been identified, the process
has not been optimized and many flame environments of potential interest are unstudied.
Mechanistic characteristics of fullerene formation remain poorly understood and cost
estimation of large-scale production has not been performed. Accordingly, this work
focused on: 1) studying fullerene formation in diffusion and premixed flames under new
conditions to identify optimal parameters; 2) investigating the reaction of fullerenes with
soot; 3) positively identifying C60 molecules in HRTEM by tethering them to carbon
black; and 4) providing a cost estimation for industrial fullerenic soot production.

Samples of condensable material from laminar low-pressure benzene/argon/oxygen
diffusion flames were collected and analyzed by high-performance liquid chroma-
tography (HPLC) and HRTEM. The highest concentration of fullerenes in a flame was
always detected just above the height where the fuel is consumed. The percentage of
fullerenes in condensable material increases with decreasing pressure and the fullerene
content of flames with similar cold gas velocities shows a strong dependence on length.
A shorter flame, resulting from higher dilution or lower pressure, favors the formation of
fullerenes rather than soot, exhibited by the lower amount of soot and precursors in such
flames. This indicates a stronger correlation of fullerene consumption to soot levels than
of fullerene formation to precursor concentration. The maximum flame temperature
seems to be of minor importance in formation. The overall highest amount of fullerenes
was found for a surprisingly high dilution of fuel with argon. The HRTEM analysis
showed an increase of the curvature of the carbon layers, and hence increased fullerenic
character, with increasing distance from the burner up to the point of maximum fullerene
concentration, after which it decreases, consistent with the HPLC analysis. The soot
shows highly ordered regions that appear to have been cells of fullerenic nanostructure
formation. The samples also included fullerenic nanostructures such as tubes and
spheroids including highly-ordered multilayered or onion-like structures. Studies of
turbulent-like benzene/oxygen/argon diffusion flames showed that these flames produce
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fullerenes over a wider range of heights than laminar flames but with lower yields. No
discernible trend could be detected in the data and the fullerene results were not easily
reproducible indicating that such flames are not suitable for fullerene formation.

Soot samples were also collected from a well-characterized laminar premixed
benzene/oxygen/argon flat flame under new conditions and analyzed by HPLC and
HRTEM. Flame studies using secondary injections of benzene or acetylene show that
two-stage flames are unsuitable for fullerene production. It seems that secondary fuel has
an adverse effect on the formation of fullerenes and creates conditions that are similar to
the early stages of a single-stage flame prior to soot formation. This means that fuel must
go through the combustion process to form fullerenes and that they cannot be formed
simply by organic pyrolysis. Additionally, fullerene data collected in this study show
significantly higher yields than in a previous study and the absence of a concentration
drop-off. The coexistence of fullerenes and soot does not support but also does not rule
out that fullerenes are consumed by soot, as was suggested by diffusion flame data.

Given the discrepancy in the data, fullerene consumption was studied in experiments
involving pure fullerenes being sublimated into a passing argon gas stream. This gas
stream then passed through a carbon black bed. As the fullerenes passed through the bed,
a certain percentage reacted with the surface of the particles and the non-reacted material
was collected downstream. Experiments at different temperatures indicate that fullerenes
are indeed consumed by soot particles but that the consumption is quite slow. The rate
coefficient obtained resembles those seen for surface diffusion controlled reactions or for
heterogenous reactions. Extrapolation of the reaction coefficient to flame conditions
would indicated that this type of fullerene consumption is not nearly enough to explain
the consumption observed in fullerene-forming flames, meaning that fullerenes are
consumed by other mechanisms.

HRTEM analysis of carbon black with and without tethered fullerenes shows that
fullerenes can in fact be observed in TEM micrographs. In this experiment,
functionalized C60 molecules were attached to the surface of carbon black particles with a
chemical tether. The resulting compound was analyzed by HRTEM and compared with
similar analysis of untreated carbon black. The post-treatment carbon black not only has
an order of magnitude greater concentration of apparent fullerene structures but size
distribution data shows a significant peak at the C60 diameter for the treated sample
whereas no peak is observed for the untreated sample. This indicates that the fullerenes
have indeed been attached to the particle surface and that they can definitively be seen in
images produced from HRTEM.

Lastly, a model was built to estimate the cost of the large scale production of
fullerenic soot. This model was based on current carbon black technology and takes into
account operating parameters specific for fullerene production. Sensitivity analyses
performed on the model indicate that soot yield and fuel price are the most important
factors in determining production cost while electricity costs are minimally important. It
was seen that operating pressure and equipment lifetime are negligible in the final cost.

Overall, combustion holds immense promise to be a much cheaper and more efficient
alternative to the current method of commercial fullerene production.

Thesis Supervisor: Jack B. Howard
Title: Hoyt C. Hottel Professor of Chemical Engineering
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1 Introduction

The family of compounds known as fullerenes consists primarily of pure carbon

molecules. Each molecule contains an even number of carbon atoms between 36 and

several thousand. Since fullerenes were first discovered, significant research has been

performed to investigate their formation methods and potential applications. There has

also been significant work to determine the mechanisms and reaction pathways that

facilitate fullerene formation. Many such mechanisms have been proposed, however,

none have thus far been conclusively proven or disproven. Despite this, the synthesis of

fullerenes and fullerenic nanostructures through combustion of hydrocarbon fuels has

been of particular interest recently and has shown potential to become a feasible method

for commercial fullerene production.

1.1 Background

Fullerenes, discovered in 1985 [1], are the third form of pure carbon material

behind graphite and diamond. They are made up entirely of sp2-bonded carbon atoms

which are arranged in pentagonal and hexagonal rings. The pentagonal rings cause strain

within the structure which is alleviated by out-of-plane deformation or curvature at each

pentagon. This curvature in the carbon structure leads to the hollow cage configuration

characteristic of fullerene molecules. The most stable configuration of rings obeys the

Isolated Pentagon Rule: no two pentagons in a stable fullerene can be adjacent. The

number of pentagons in a molecule is fixed at twelve as this provides sufficient curvature

to form a closed shell. However, the number of hexagons varies with the total number of

carbon atoms according to Equation 1-1:

carbon atoms - 20
hexagons= (1-1)

2

A C60 molecule, for example, contains 60 carbon atoms arranged symmetrically about a

sphere into 12 pentagons and 20 hexagons. The arrangement of the pentagons on the

surface determines the final cage structure. Evenly distributed pentagons will result in a

sphere, as is the case for the most common isomer of C60.

The two most abundant and well-known fullerenes are C60 and C70. C60 is also

known as Buckminsterfullerene, named for R. Buckminster Fuller, who designed the

13



geodesic domes that resemble the C60 molecule [1]. Only one configuration for each of

these two molecules obeys the Isolated Pentagon Rule. Being the most stable, these

configurations are the most common and are shown in Figure 1-1.

(a) (b)

Figure 1-1. Images of C6o (a) and C70 (b).

Fullerenes as small as C20 and as large as C>300 have also been identified [2-4].

Those that consist of less than 300 carbon atoms are generally known as 'buckyballs' and

are restricted to single-shell structures. Single metal atoms such as lanthanum or cerium

can be trapped inside the cavity of these single-shell structures [5-8] creating a class of

fullerenes known as endohedral fullerenes (or metallofullerenes). Giant fullerenes (C>300),

however, may be single or multiple shelled. Multiple-shelled giant fullerenes are known

as 'onions' as the adjacent multiple layers resemble those of an onion. Giant fullerene

'nanotubes' (or 'buckytubes') have also been identified [9]. These structures, which can

be single- or multiple-shelled, consist of cylindrical walls composed entirely of

hexagonal rings capped at each end by six pentagonal rings and the necessary hexagonal

rings to close the structure. Nanotubes with diameters as small as 4 A have been observed

[10-12] meaning that the fullerenic caps are smaller than C60 molecules, which have a

diameter of 7 A. Throughout the remainder of this work, to avoid confusion, buckyballs

will be referred to simply as 'fullerenes', while onions and nanotubes will collectively be

referred to as 'nanostructures'.
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1.1.1 Formation offullerenes and nanostructures

Since their discovery in 1985 [1], there has been significant research into methods

for synthesizing fullerenes. Kroto et al. [1] first identified fullerenes in carbon vapor from

the laser ablation of graphite; Iijima used the same method to first observe C60 directly

[13]. This method, however, resulted in microscopic quantities of fullerenes insufficient

to provide samples for characterization and research. In 1990, fullerenes were produced

in macroscopic quantities by striking an electric arc between two graphite electrodes and

evaporating the graphite in a low-pressure (<100 Torr), helium atmosphere [14]. This

method produces fullerenes along with a carbonaceous soot, from which the fullerenes

can be separated. Although the yield of fullerenes is highly dependent on operating

conditions, chamber design, and experimental technique, typical yields from this method

are 10% of the collected soot [15]. At higher pressures (-500 Torr), this method has

produced nanostructures and, using electrodes doped with metal, endohedral fullerenes

[7]. A modified version of this graphite arc-vaporization method is the predominant

method for supplying the current commercial demand for fullerenes (see Section 1.4)

[15].

Other methods of fullerene synthesis include ion sputtering and electron beam

evaporation of graphite [16], vaporization of graphite using highly concentrated solar

heating [17, 18], resistive heating of graphite [19], laser ablation of graphite [5, 20],

inductive heating of graphite [21], and carbon particle evaporation in a hybrid thermal

plasma [22]. Several production methods using non-graphitic raw materials have also

been studied and found to produce fullerenes. These methods include pyrolysis of

naphthalene in an argon atmosphere at approximately 1000°C [23], the pyrolytic

destruction of toluene in a radio frequency plasma [24], and laser-pyrolysis of benzene

[25]. None of these methods, however, produce macroscopic quantities of fullerenes.

Similarly, fullerenic nanostructures can be generated under a range of conditions

which were first identified in 1991 by Iijima [9] in solid deposits on the cathode of a

graphite arc-vaporization apparatus operating under a pressure of 100-200 Torr. By

increasing the pressure to 500 Torr, Ebbesen et al. [26] found that they could produce

large quantities of nanotubes. Iijima went on to discover single-shelled nanotubes in his
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arc-vaporization process [27], while Bethune et al. [28], among others, catalyzed

nanotube production by using metal-doped graphite rods in arc-vaporization.

Separate from fullerenes, nanostructures have also been produced independently

through arc-discharge vaporization [9-11], plasma-decomposition of benzene [29],

pyrolysis of tripropylamine [12], and in a pyrolysis flame of carbon monoxide and

hydrogen [30]. They have also been produced on large-scale by the catalytic

decomposition of hydrocarbons at about 1200°C [31].

Fullerenes and nanostructures have both been discovered in the products formed

from the combustion of organic fuels [32-38]. The combustion synthesis of fullerenes and

fullerenic nanostructures is the major focus of this work and background studies are

discussed in much greater detail in Sections 1.2 and 1.3.

In addition to synthetic methods of production, fullerenes have also been found in

nature. Evidence has been gathered from several different sources to indicate that the

formation of fullerenes is not solely a man-made occurrence. On Earth, fullerenes,

primarily C60 and C70, have been extracted from two Cretaceous-Tertiary boundary sites

in New Zealand and may be the result of extensive wildfires [39]. They have also been

found in fulgurite, a glassy rock that forms when lightning strikes the ground [40], in coal

samples found in China [41, 42], and in shungite, a carbon-rich Precambrian rock from

Karelia, Russia [43]. Fullerenes were also found in residue from the Allende meteorite

[44] and the 1.85-billion-year-old Sudbury meteorite impact structure in Ontario, Canada

[45]. Previous work has shown the presence of fullerene-like structures in soot from

regular candle flames and wood fires thereby suggesting that fullerenes may be formed in

trace quantities in such flames [37]. There is also evidence of fullerenes in outer space as

they were observed in the impact craters of NASA's Long Duration Exposure Facility

(LDEF) spacecraft [46], and are believed to be present in interstellar material [47, 48],

where they serve as carriers for extraterrestrial noble gases [49-51]. These observations

of fullerenes indicate that they are formed in highly energetic, natural processes as well

as by synthetic methods [37].
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1.1.2 Fullerene properties and reactivity

Fullerenes have attracted enormous interest because of their stability, high

symmetry, and other properties which have important practical applications. They have

been found to have a number of unique physical and chemical properties that makes them

ideally suited for wide array of applications and specific reactions (which are discussed in

the next section). These properties stem primarily from the three-dimensional closed-

shell configuration that occurs with the inclusion of 12 carbon pentagons into a molecule.

Most significantly, fullerenes such as C50, C60, and C70 have been identified as

'magic number' carbon clusters meaning that their ionization potentials are greater than

other carbon clusters immediately around them [52-54] and also that the reaction rates of

their ions with metallocenes are anomalously slow compared to those of other large

clusters [52]. Additionally, thermochemical calculations have shown that the heats of

formation for C60 and C70 may be significantly greater than other carbon molecules of

similar size [55] indicating that an enormous amount of energy is being stored in the

delocalized a-bond system. The enthalpies of formation for many fullerene molecules

have also been calculated by various investigators resulting a fairly large database of

thermodynamic values [56, 57]. These results indicate that fullerenes are more stable than

neighboring clusters which would be expected from their spherical nature.

Fullerenes also exhibit an uncharacteristic behavior in that their solubility in

organic solvents goes through a peak with respect to temperature. This solubility

behavior is caused by an aggregation of fullerenes molecules in solution and by a change

in the solid-phase at high-temperatures leading to a disordered solution. Although the

peak temperature is variable for different solvents, this phenomenon has found lots of

different applications in extraction and purification procedures [58].

In terms of more practical properties of both fullerenes and nanostructures, they

have been found to have both superconductivity [59] and semiconductivity [60, 61], have

a high affiliation for hydrogen storage [62], and posses the ability to assemble themselves

into rods [63]. Additionally, fullerenes have the ability to trap other gases, metal atoms,

or molecules inside their hollow cavities making them useful for transport and delivery

[5-7]. It has also been discovered that the sublimation temperatures of different species of
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fullerenes are sufficiently different from each other and from soot to allow for the

separation and purification of fullerenes via sublimation [64].

The chemistry of fullerenes has also been the focus of intense research over the

past few years. While once thought to be relatively stable and chemically inert [65-67], it

has now been shown that fullerenes do in fact react with a variety of other molecules

under a range of conditions. In 1993, Taylor et al. found that they undergo reactions that

are characteristic of alkenes and that fullerene derivatives formed from these reactions

offered new directions for organic chemistry. Among other things, they found that

fullerenes, C60 in particular, undergo addition reactions, nucleophilic and electrophilic

substitutions, and even polymerization [68].

Suzuki et al. discovered that phenyl rings could be added to fullerenes to make

fulleroids ranging from C61 to C66 [69]. Fullerene-phenyl compounds in the form of C60-

C5H6 have also been identified as products from flames [70] as well as from a Diels-

Alder reaction [71].

It has also been shown that fullerenes are subject to attack by benzyl radicals

resulting in both radical and non-radical adducts [72]. The radical products were found to

have extraordinary stability as a result of the steric protection of surface radical sites by

surrounding benzyl substituents while non-radical products were found to have up to 34

methyl groups attached to the fullerene surface.

It is these radical and Diels-Alder reactions that have provided an explanation for

the chemical interaction between carbon black, which is mature combustion-generated

soot material, and diene rubber during mixing [73, 74]. The observation of fullerene-like

sites on the surface of the carbon black accounts for the addition of polymer rubber

chains to the surface of carbon black.

Fullerenes have been identified in countless other reaction pathways and kinetic

systems involving a wide range of industries. However, the diverse nature of these

reactions precludes a comprehensive review of all fullerene properties and reaction

systems. The reactions discussed here form a small basis set of this database and are

meant to provide a general background to explain the vast number of fullerene

applications have been proposed and are currently being researched.
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1.1.3 Applications

Due to their diverse chemistry and properties (as discussed in the previous

section), potential applications for both fullerenes and fullerenic nanostructures have

been identified in a wide range of fields. These applications together form a highly

diversified technology portfolio [75].

It has been found that fullerenes are versatile building blocks for making a variety

of molecular and supramolecular structures such as inorganic superconductors, organic

polymers, and biologically active molecules [63]. Potential applications for fullerenes

include: use as optical limiters and photoconductors, for film growth and patterning, as

catalysts for organic reactions, for hydrogen and energy storage, in lubrications and

separations [76], and in extractions and purifications [58]. More specifically, biological

applications have been proposed including use in AIDS and cancer treatment [77] and to

make immunological antibodies [78], its electrical properties make them good candidates

to be superconductors [59] and electronic transistors [79, 80], and it has been used as a

precursor molecule for nanocrystalline diamond film growth through chemical vapor

deposition [81]. On a commercial basis, The Goodyear Tire and Rubber Company has

obtained a patent for the use of fullerenes and fullerenic soot in the production of curable

and vulcanized rubber indicating that the rubber made from these raw materials is

superior to that manufactured from ordinary carbon black [82].

Nanostructure applications include use in construction materials, heavy-duty

shock absorbers, heat sinks, and chemical probes [75]. Nanotubes have also been

identified as a potential hydrogen storage medium for use in fuel cells [62], a probable

successor to silicon in making faster microprocessors [60, 61], and a superior sorbent for

the removal of dioxin [83].

Despite the multitude of potential applications, extensive research has been

impeded by the prohibitive cost of producing and isolating fullerenes. One of the

objectives of this work (as discussed in Section 2) is to identify a less expensive

production method for fullerenes and fullerenic soot in an attempt to lower the

commercial price and spur the use of identified applications as well as research into new

applications.
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1.2 Fullerene formation in flames

Since fullerenes were first positively identified as products of flames [35],

fullerene-forming combustions systems have been the subjects of quite extensive study.

In an attempt to realize the optimal conditions for fullerene yield, numerous flames have

been characterized and documented with respect to fullerenic content. In conjunction, a

vast effort has been made to predict and verify the mechanisms of fullerene formation to

better understand and design desirable flame conditions. The overall goal of this

combustion work is to someday identify a combustion system that would be suitable for

the large-scale production of fullerenes and fullerenic soot.

1.2.1 Methods ofproduction

The existence of fullerenes in flames was first suggested in 1986 [67] and

fullerene ions were detected in flat premixed acetylene-oxygen and benzene-oxygen

flames in 1987 [84]. It was not until 1991, however, that fullerenes were first identified in

material recovered from flames. Fullerenes were found in soot produced from low-

pressure premixed benzene/oxygen/argon flames [35, 85-87]. This work produced

macroscopic quantities of C60 and C70 and identified combustion as a feasible process for

the synthesis of fullerenes. Results from this work indicated that the fullerenic yield was

highly dependent on temperature, pressure, residence time, and fuel to oxygen ratio.

Variables to control these parameters, such as chamber pressure, dilution, and cold gas

fuel velocity, were adjusted over wide ranges to produce various flames and characterize

fullerene production. In these studies, the yield of C60 ranged from 0.003% to 9% (by

mass) of the collected soot and 0.001% to 0.7% (by mass) of total carbon fed.

Additionally, fullerenes as large as C1 16 have been seen in similar flame experiments

performed by others [88].

The formation of fullerenes has also been studied in flames that arise from the

combustion of other organic fuels. These include naphthalene [32], butadiene [32],

toluene [33], and organics with halogen additives [34]. Of the pure organic fuels, it has

been shown that benzene produces the greatest amounts of fullerenes [32, 33], but that

production may be enhanced by the addition of a chlorine additive [34].

20



Recently, both premixed and diffusion laminar benzene/oxygen/argon flames

have been researched in much greater detail. Premixed flame studies indicate two distinct

regions of fullerene formation and consumption with increasing height above burner [37,

89]. Results also showed that fullerene formation has only marginal dependence on

pressure and dilution but is significantly correlated to gas velocity [86]. The effect of

velocity is an indirect relationship as gas velocity affects temperature in the flame, and

temperature affects fullerene formation. Diffusion flame studies have shown that

fullerene formation reaches a maximum at the stoichiometric surface of a flame and

peaks with increasing argon dilution. Results have indicated that fullerene formation is

strongly correlated to flame length and temperature. These two parameters are both

correlated to chamber pressure, argon dilution, and cold gas fuel velocity. Typical

fullerene yields of 0.5% (by mass) of total carbon fed were observed but can possibly be

higher [90, 91].

1.2.2 Fullerene formation mechanisms

Although the mechanism for fullerene formation in combustion systems has not

been definitively described and is still under much debate, many possible pathways have

been proposed. These pathways all involve reactions or rearrangements of carbon

molecules believed to be present in flames and can be categorized as gas-phase or solid-

phase mechanisms. The proposed mechanisms, it should be noted, do not describe

specific reactions among particular molecules but instead provide broad

conceptualizations of the types of reactions that may be occurring to produce fullerenes.

The formation of fullerenes in the gas-phase is thought to occur mainly through

molecular weight growth reactions similar to those seen in the formation of polycyclic

aromatic hydrocarbons (PAH) and soot. These reactions can involve either the step-wise

addition of low-molecular weight species, such as acetylene, to radical sites on larger

aromatic compounds [92], or the coagulation of two larger specific PAH molecules

and/or carbon clusters [93]. Similar to the HACA mechanism proposed for PAH

formation [94], the step-wise addition mechanism for fullerenes would proceed through

abstraction of an H-atom from an aromatic molecule. This would be followed by C2H2

addition and cyclization leading to ring closure. Eventually, once the molecule had grown
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large enough, this mechanism would lead to cage closure and the formation of a fullerene

molecule [92]. The reactive coagulation mechanism would involve two or more larger

aromatic molecules (and most likely curved, indicating the presence of pentagonal rings)

coming together with hydrogen elimination to directly form fullerenes [93]. It is thought

that both of these mechanisms contribute to fullerene production in flames [92], but has

been suggested that coagulation is the predominant method [95].

Another gas-phase assembly mechanism that has been proposed involves the

zippering up of one or two carbon molecules followed by intramolecular rearrangement

to form a stable fullerene species. In one method, two PAH molecules (most likely

planar) align their peripheries so they can be easily connected as if the molecules were

being zipped together [32]. This zippering forms a closed-shell structure that would

necessarily have the correct number of pentagons and would then rearrange itself to form

the most stable isomer of fullerene. In a similar proposed method, a large ribbon-shaped

molecule, such as polyacetylene or a PAH already containing five-membered rings,

would curl up and zip to itself [96]. Once zipped up, the molecule could then undergo

intramolecular rearrangement, reaction with benzene molecules, and/or hydrogen

elimination if necessary. While it is believed that the first zippering mechanism could be

plausible in flames, the second is considered unlikely [93].

It has also been proposed that fullerenes are formed in flames in condensed solid-

phase mechanisms. They have been observed as products of internal rearrangement

reactions occurring on the surface of carbon black particles subjected to heat treatment

and electron beam irradiation under an inert atmosphere [97]. This study indicates that

pentagonal defects are created in hexagonal sheets of graphite and suggests that a similar

process could be occurring on soot particle surfaces on flames. A second possibility for

solid-phase formation is the occurrence of heterogenous reactions analogous to the gas-

phase reactions discussed above. In such a scenario, fullerene precursor molecules could

adsorb (physically or chemically) to a soot particle, undergo the necessary reactions for

cage closure, and then be released back into the vapor phase [98]. Alternatively, a

precursor molecule need not adsorb to a soot particle as the fullerene forming reactions

could occur with a PAH or carbon molecule already present on the surface.
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It is important to note that all of the mechanisms discussed here could be

contributing to observed fullerene concentrations. The mechanisms are not mutually

exclusive and each may be predominant at different residence times and different flame

conditions, as suggested by Grieco et al. [89]. It appears that consumption of fullerenes

by soot also plays a role in fullerene production suggesting that the observed fullerene

yields are actually small differences between large formation and consumption reactions

[89]. Trying to separate the effects of these mechanisms, and of the consumption of

fullerenes, is one of the focuses of this work (Chapters 2 and 5).

1.3 Nanostructureformation inflames

The formation of fullerenic nanostructures in combustion was first identified in

1994 [38] and has since been studied in both premixed and diffusion laminar

benzene/oxygen/argon flames [36, 37, 90, 91]. These studies all used high resolution

transmission electron microscopy (HRTEM) images to perform a qualitative analysis of

the evolution of nanostructures in flames while Grieco [37, 99] also performed a

quantitative analysis. It was observed that nanostructures are formed in fullerene-forming

flames and that the amount of closed-shell structures and fullerenic material increases

with residence time, or distance from the burner. These HRTEM images show that soot

becomes more ordered farther from the burner [37, 90, 91, 99]. The premixed study also

found that nanostructures require a much longer residence time to form than do fullerenes

[37]. The diffusion flame analysis showed that nanostructures are formed higher than the

point of maximum fullerene production where soot and fullerenes are being consumed by

oxidation and the flame is the hottest [90, 91]. Additionally, structures similar to those

observed in fullerene-forming flames have also been found in commercially-produced

carbon black [100, 101].

Although considerable interest has been given to the formation of nanostructures

in the methods described here and in Section 1.1.1, there has only been limited work into

formation mechanisms and even less into mechanisms in combustion systems. The

mechanisms that have been proposed can again be split into gas-phase and solid-phase

mechanisms. The gas-phase mechanisms are similar to those of fullerenes and involve

step-wise addition that lead to tube lengthening instead of cage closure [102]. The solid-
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phase mechanisms involves a graphitic sheet (or sheets) of carbon rolling up to form

cylinders that can be capped to form nanotubes [37]. Structural rearrangement of such

tubes or other graphitic sheets can also be used to explain the formation of fullerene

onions and other nanostructures [37]. A plethora of nanotubes have also been found in

flames with metal additives suggesting a catalyzed formation process [103, 104]. These

proposed mechanisms, however, are still highly speculative and none have been proven

or disproven.

1.4 Commercial production offullerenes

The prevalence of so many useful applications for fullerenes and the large

potential market for them has spurred an acute interest in the large-scale commercial

production of both fullerenes and fullerenic soot. Although fullerenes still remain

prohibitively expensive for the vast majority of the proposed applications and even for

basic research, the cost has dropped quite significantly over the past decade from $10,000

per gram in 1991 to around $50 per gram in 2000 for C60 [105] and up to $55,000 per

gram for larger fullerenes in 1999 [106]. Currently, the price of 99.9% pure C60 is $20 per

gram [106]. It is estimated that current C60 prices may be low enough for expensive

applications, such as those in the pharmaceutical industry, but for cheaper uses, such as

electronics and polymers, the price would need to drop to at least 10¢ per gram and

maybe as low as 1¢ per gram [105, 107]. Using the current predominant method for

commercial production of fullerenes [15], it has been estimated that the fullerene cost

could drop no lower than 25¢ per gram [108], and probably not even that low [109].

Fullerenic soot, on the other hand, which would need to compete with the current carbon

black cost of 35¢ per pound (77¢ per kg), currently has only severely limited commercial

production and costs around $1500 per pound ($3300 per kg) [106]. The current

production technology is not expected to provide a significant drop in these prices in the

near future.

Given the disparity between the estimated lowest future fullerene price using

graphite-arc vaporization and the necessary price ceiling to make fullerenes widely

competitive, it is natural that other methods of fullerene synthesis be explored and studied

in detail for possible commercial scale-up. One method that has emerged as the most
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likely to replace arc vaporization in commercial production is combustion synthesis.

Combustion offers several advantages over carbon-arc vaporization: the raw material

costs are much lower since organic fuels are cheaper than the pure graphite rods used in

arc vaporization; operating costs are significantly reduced as vaporization requires a

significant energy input; and combustion systems can be easily scaled up for mass

production whereas arc vaporization cannot due to limitations on the diameter of the

graphite rod. Additionally, a comparison study of five different fullerene synthesis

methods concluded that sooting hydrocarbon flames would be the most suitable for

industrial production [110]. Preliminary analysis of a commercial fullerene synthesis

plant utilizing combustion indicates that fullerene costs could drop as low as 7-8¢ per

gram [ 1 1 ], which would make fullerenes affordable for a wide variety of applications.

Lastly, sooting flames have an enormous advantage in the production of fullerenic soot

(soot containing fullerenes prior to their extraction) given that the whole purpose is to

make soot. A slight modification to the operating conditions of current carbon black

production technology, which uses combustion to generate vast amounts of soot, may be

sufficient to commercially produce fullerenic soot.

Before combustion synthesis can be used successfully, however, it is necessary to

identify the optimal operating conditions for fullerene and soot production from both a

yield and economic point-of-view. These conditions can only be identified through a

more detailed characterization and study of potential combustion systems coupled with a

greater understanding of the formation mechanism to help design a suitable flame. Only

once such a flame condition (and corresponding maximum fullerene yield) is determined

can combustion be viewed as a practical alternative to graphite arc-vaporization. It is with

this overall goal in mind that this study was performed.
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2 Objectives

The main objectives of this work were to investigate the yield of fullerenes and

fullerenic nanostructures in various combustion systems involving premixed and

diffusion benzene/oxygen/argon flames at low-pressure. In each system, operating

conditions such as chamber pressure, argon dilution, cold fuel velocity, and fuel flowrates

were varied to gain a better understanding of the flame characteristics. In addition, the

formation and consumption mechanisms of fullerenes in flames were investigated

through heat-treatment experiments to effect a better understanding of the response of the

yield to changes in operating conditions. An HRTEM study of fullerenes tethered to soot

material was also performed to positively identify round soot structures seen in images as

fullerenes rather than false indications of fullerenes. Lastly, the commercial production of

fullerenic soot was considered. The objectives are outlined as follows:

1. Investigate fullerene and nanostructure formation in diffusion flames

under various conditions including laminar flow conditions and turbulent

conditions with high fuel and cold gas feed rates.

2. Investigate fullerene and nanostructure formation in premixed flames

under various conditions including those previously studied (for

comparison) and the decoupling of the energy and reactant supplies for the

flame through the use of two-stage flames.

3. Provide an understanding of the mechanism of fullerene formation and

consumption through the study of the reaction of fullerenes. with soot.

4. Positively identify fullerene structures in HRTEM images by tethering

fullerenes to soot to verify that fullerenes are indeed being observed.

5. Investigate the scale-up of a combustion synthesis process for the

commercial production of fullerenic soot.

26



3 Diffusion flame studies

To accomplish the objectives for diffusion flames outlined in Section 2, a number

of experiments were performed in a diffusion flame combustion chamber and quantitative

and qualitative analyses were performed on collected material. These experiments

involved the study of fullerene and nanostructure formation in both low-flow laminar

flames (referred to as 'laminar' in this section) and high-flow turbulent-like flames

(referred to as 'turbulent'). In general, laminar flames were found to be quite interesting

in terms of fullerenic production whereas the turbulent flames were not nearly as

promising.

3.1 Apparatus and techniques

Producing fullerenes through combustion involves burning a fuel under sooting

conditions in a combustion chamber and collecting the resulting condensable material,

which includes polycyclic aromatic hydrocarbons, fullerenes, and of course soot. The

fullerenes can then be extracted with toluene and separated from the soot, which is

toluene insoluble, by filtration. A sample of the filtered liquid is then injected into a high

performance liquid chromatography (HPLC) instrument to determine the fullerene

concentration. Additionally, a sample of the condensed material before or after extraction

can be placed on an electron microscope grid for examination by HRTEM, which is used

to identify and characterize soot structure and nanostructures.

3.1.1 Flame chamber

The diffusion flame chamber, shown schematically in Figure 3-1, consists of a

burner and fuel injection system mounted in the bottom of a cylindrical chamber housing.

Two chamber extensions can be connected to the top of the housing and a plate seals the

chamber at the top. The chamber has several view and auxiliary ports allowing viewing

from multiple heights and angles, and allowing the quartz sampling probe, which is used

for collecting condensable material, to be inserted in a number of locations including the

top. The two-headed arrows in Figure 3-1 indicate the adjustable parts of the chamber.

The chamber is evacuated with a vane-type Mannesmann-Demag rotary vacuum

pump (Model WPSO 53) with a capacity of 80 liters per second. The pressure is
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maintained by bleeding air into the vacuum system and is monitored by an MKS

Instruments Baratron capacitance manometer (Model 690).
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Figure 3-1. Diffusion flame chamber with burner andflame sampling probe.

3.1.1.1 Flame burners

Two different burners were used in the diffusion flame chamber. The first, shown

in Figure 3-2, was used for low-flow flames while the second, discussed later in this

section, could accommodate liquid fuel and was used for high-flow flames.
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Figure 3-2. Low-flow diffusion flame burner.

The burner shown in Figure 3-2 consists of a stainless steel hollow disc (12.7 in.

OD x 2.0 in. thickness) that is attached axially to the top of a stainless steel tube (11/2 in.

OD x 24 in.) and welded on the bottom. The tube supports the burner inside the chamber

and passes through a port in the bottom plate. The tube can be moved to allow for the

vertical adjustment of the burner.

A stainless steel tube burner (1'/2 in. ID) is also attached axially inside the disc

and is encircled by a removable bronze porous plate that extends to the disc edge. O-rings

are used to seal the burner to the porous plate and the plate to the disc. The burner is

threaded allowing the use of burner caps with varying diameters. Several auxiliary burner

caps were built with varying inner diameters. A diagram showing dimensions of several

of the caps is shown in Figure 3-3. In addition to those shown, a cap with an outlet

diameter of 3 mm was also fabricated.

Four smaller tubes (1/4 in. OD), located inside the larger tube, are the feedthroughs

for the fuel, oxygen, and diluent. The middle tube feeds directly into the tube burner

while the other three, through with oxygen is fed, feed into the disc and through the

porous plate. The middle of the four tubes surrounds a smaller tube ('/8 in. OD) through
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which the fuel and diluent flow. Methane is fed through the annular region between the

two tubes and is used as an ignition fuel for the flame. The ignition source for a flame is

an electrical spark between the top of the burner and an igniting rod.

I mrn

- 7 mm

I

Cs

j I 
r

.- 2 rnrn
1f6 mm

- 1Q0 m

14 MnM

I i i 

Figure 3-3. Burner caps with varying outlet diameters.

The second burner, used for turbulent flames in the diffusion chamber, is shown

three different ways in Figure 3-4. Part (a) shows a side-view, part (b) shows a top-view

and part (c) shows a cross-section to illustrate how the burner nozzle fits into the burner.

The burner consists of a stainless steel tube (11/2 in. OD x 30 in.) and contains

seven feedthrough tubes instead of four as in the previous burner. Oxygen is fed to the

four smaller tubes (1/4 in. OD) on the periphery and is rerouted outside the tube to allow

for its diffusion into the fuel at the burner outlet. A fourth oxygen feed is used here to

compensate for the absence of the porous bronze plate, which ensured an evenly

distributed oxygen flow. The smaller tube along the axis of the burner is used for the

methane starter fuel while the two larger tubes (3/% in. OD) are used for the fuel and

diluent feed.
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(b)

(a) (c)

Figure 3-4. High-flow diffusion flame burner: side-view (a); top-view (b); and cut-away
side-view with nozzle attached (c).

This burner allows for the use of an air-atomizing nozzle (Spraying Systems

Company Model 1050 with Spray Cap Model 67147), which is shown mounted on the

burner in Figure 3-4(c). Such a nozzle has two inlet ports and mixes liquid and vapor

phases to produce an atomized spray. With this setup, it is possible to dilute the fuel, fed

as a liquid to achieve turbulent flames, with vapor diluent.

To stabilize the nozzle and the flame, a burner cover, shown in Figure 3-5 was

built. As can be seen, this cover consisted of a stainless steel base with a ceramic top and

could be screwed onto the top of the burner. The large hole in the middle ( in. OD) fits

exactly on top of the outlet of the nozzle and the sixteen smaller holes (1/16 in. OD)

surrounding the center allow the methane to flow through to the top of the cover.
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(b)

Figure 3-5. High-flowflame burner cover: side-view (a); and top-view (b).

The cover has four main effects: 1) it separates the methane flame from the

benzene flame; 2) it protects the nozzle from the heat produced by the flame, which

prevents flash evaporation of the fuel inside the nozzle; 3) it keeps the nozzle exactly in

the center of the burner; and 4) it ensures the nozzle is always at the same height relative

to the top of the burner. All four of these effects help in achieving a stable and consistent

flame.

3.1.1.2 Chamber sections

The chamber consists of three sections. The top two sections are identical and

removable so neither, one, or both may be used. If both are used, flames up to a length of

51 in. can be achieved. The bottom section (with the bottom plate and burner attached) is

shown in Figure 3-6; the upper two sections are shown in Figure 3-7.

The bottom section consists of a cylindrical stainless steel chamber (13 /4 in. ID x

24 in.) equipped with two end flanges, six auxiliary ports, and four viewports. The

viewports are used for visual observation and are equipped with glass windows of 53/4 in.

(1) and 4.0 in. (3) diameters. The three 4-in. auxiliary ports are sealed with stainless steel

plates and house connections for pressure relief lines and a pressure transducer. The

remaining three auxiliary ports are 1 in. and sealed, but provide access points for a
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sampling probe or other accessories. The base plate seals the bottom of the chamber and

provides a mounting location for the burner.

Viewport

Bottom

Figure 3-6. Bottom section of diffusion flame chamber with burner and bottom plate.

Viewports - Auxiliary Ports

Figure 3-7. One of two identical top sections of diffusion flame chamber.

Like the bottom section, the upper two sections consist of cylindrical stainless

steel chambers (11.8 in. ID x 19.4 in.) equipped with two end flanges, three auxiliary

ports, and four view ports. The view ports are all equipped with 6-in. glass windows for

visual observation. Two of the auxiliary ports are 1 2 in. while the third one is 2 in.

Again, the auxiliary ports are sealed but provide access points. These sections are
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constructed so they may be used directly between the bottom chamber and top plate

without an adapter. One or both of these sections may be removed to accommodate

flames of different lengths. For the low-flow flames, only the bottom chamber section

was utilized, while all three sections were used for the turbulent flames.

3.1.1.3 Top plate

The top plate, shown schematically in Figure 3-8, consists of a stainless steel disc

(18 in. x /2 in) that seals the chamber and contains three 1 /2-in.diameter access ports.

Center Port Exhaust Ports

Top Plate

Copper Plate Water Lies

Figure 3-8. Top plate of diffusion flame chamber.

The two outside ports lead to water-cooled exhaust lines feeding to the vacuum

pump system and the center port provides access for the flame sampling probe or other

accessories. A water-cooled copper disc (11 in. x /4 in.) mounted to the bottom of the

plate prevents overheating.

3.1.2 Fuel delivery

Fuel can be delivered to the burner in either liquid or vapor form. The preferred

fuel for fullerene formation are aromatics, which are liquid at room temperature so

vaporization is required to feed them as gases. This is not simple for the large flowrates

required for turbulent flames and hence, liquid fuel is generally preferred for these.

Conversely, when high flowrates are not required, as in laminar flame systems, feeding

vaporized fuel is not a problem.

For a vaporized flow, the fuel is initially stored in a 1 O-liter cylindrical stainless

steel reservoir that is heated at the base by a Cimarec (Model 3) 1690-watt hot plate with

a magnetic stirrer. The reservoir is fitted with a 2-in. flange at the top and has an
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adjustable pressure relief valve and a /4-in. vapor outlet. An Omega Engineering pressure

transducer (Model PX205) connected to the outlet monitors the vapor pressure of the

fuel. This transducer is connected to an Omega Engineering Proportional-Integral-

Derivative (PID) controller (Model CN76130) that controls the outlet pressure by

adjusting the setting of the hot plate. The vapor flow to the chamber is controlled by a

heated Tylan mass flow controller (Model VC4900) and can regulate flows up to four

liters per minute. Heating of the various vapor lines in the system with heat tape prevents

the recondensation of the fuel vapor.

For a liquid flow, the fuel is stored in the 500-mL cylinder of an Isco syringe

pump (Model LC5000). The pump is used to deliver a steady and stable flow of liquid

fuel to the burner.

In the diffusion flame chamber, the flows of oxygen and argon are controlled by

critical orifice meters, while the flow of methane for the ignition flame is controlled by a

metering valve. The upstream pressure of each orifice is controlled with a metering valve

and monitored with Omega Engineering pressure transducers (Model 242PC100G).

3.1.3 Quartz sampling probe

A microprobe sampling system, consisting of a quartz probe with an orifice

diameter of about 1.5 mm and housed in a stainless steel water jacket, is used to collect

samples from the flames. The housing of the probe can be seen in Figure 3-1 and the

dimensions of the probe are shown in Figure 3-9.

The probe design minimizes the temperature drop from the flame to the probe tip,

which minimizes the rate of carbon deposition in the probe orifice and maximizes the

flame sampling time. Depending on the sootiness of the flame, this probe design allows

for sampling times of up to 5 minutes. The probe is held in a water-cooled jacket and

operated at a pressure of approximately 2 Torr, maintained by a Welch (Model 1397)

vacuum pump. The flow of noncondensable gas through the probe is collected in a

graduated water column where it is measured for use in the calculation of soot and

fullerene concentration in the sampled gas. Condensable products, including soot and

other compounds are collected on a preweighed filter consisting of glass wool packed

into an aluminum foil sleeve. The probe can be inserted into the chamber from either the

35



top sampling port or any of the smaller side auxiliary ports of either chamber. This allows

the collection of samples from many different locations in the flame. Most often, samples

were taken from the side ports in the diffusion chamber.

minimum
17" or 43.2 cm

* O.D. 12 mm; I.D. 10 mm

minimum 1 or40.6 cm

aluminLI m foil and glass wool

1" onr 2 cm

I.D.: 1.5 to2mm

Figure 3-9. Quartz probe design.

3.1.4 Fullerene extraction

Once the sampling is completed, the mass of the collected flame material is

determined by weighing the filter system again. The contents are then submerged in

toluene and ultrasonicated using a Branson Sonifer (Model 450) set at output 2 and 50%

duty cycle for 10 minutes. This ensures that most of the fullerenes present in the

condensable material will dissolve into the toluene. Samples of the dispersion are then

drawn off for HRTEM analysis and the remainder is vacuum filtered through a 0.45-pm
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nylon filter. The resulting solution is then concentrated by nitrogen blowdown to a final

volume of one to five milliliters.

3.1.5 High-performance liquid chromatography

To analyze the concentration of fullerenes, a 20-l sample of the filtered

toluene/fullerene solution is injected into a Hewlett-Packard high-performance liquid

chromatography (HPLC) instrument (Model 1050). This instrument is equipped with a

quartenary pump and a variable wavelength detector (VWD). A column with 2-(1-

pyrenyl) ethylsilica stationary phase (Cosmosil Buckyprep, 4.6 mm x 20 mm) is used

with a toluene flowthrough rate of 1.0 ml/min. Fullerenes and other material can then be

identified by the retention times and UV-VIS spectra. Fullerene concentrations are

calculated by integrating the area under the peaks and comparing with calibration curves

that have been obtained from standard solutions. Nanostructures are too large to be

measured by HPLC and are thus analyzed only by HRTEM.

3.1.6 High-resolution transmission electron microscopy

A qualitative and quantitative analysis of fullerene and nanostructure formation

was performed with HRTEM images. The sonicated sample described in Section 3.1.4 is

first subject to further toluene dilution and ultrasonication. A few drops of the ensuing

mixture are then placed on an EM grid and the toluene is allowed to evaporate. The grids

used are lacey carbon films on a Formvar polymeric substrate on a 200 mesh copper

substrate (Ted Pella, Inc.). The HRTEM analyses are carried out on two Jeol microscopes

(Models 2000 and 2010) operated at 200 keV with resolutions better than 0.2 nm. In most

cases, the images of the material are taken at 590,000 times magnification. Once the

images are obtained, the evolution of fullerenic material can be examined. In addition to

qualitative analysis, the images are examined quantitatively using an analysis tool

developed in MATLABTM. This tool allows quantification of the radius, length, and

curvature distributions of curved layers observed within the fullerenic material.

3.1.6.1 Qualitative analysis

The images obtained from HRTEM analysis are examined for the presence or

absence of fullerenic nanostructures and their precursors, and for the scarcity or
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abundance of fullerene-like structures. The relative curvature of observed carbon

structures are assessed as well. Although qualitative analysis can be quite subjective,

trends and characteristics can be observed rather conclusively. By examining the images

in this manner, favorable conditions and locations for fullerenes can be identified and

fullerene chemical data obtained by HPLC (Section 3.1.5) can be verified or refuted. To

further confirm the qualitative conclusions, though, the images were also examined with

a quantitative method (Section 3.1.6.2).

3.1.6.2 Quantitative analysis

The technique used for quantitative analysis of the TEM images, which has been

described previously [37, 99], allows for the quantification of radius, length, and

curvature of observed carbon structures within the soot material. Figure 3-10 shows a

schematic outlining the basics and theory of the technique.

tI - L D = Arcdiameter

U

U = LJ

L = Arc length

Jser specified
+ markers

Software
generated arc

)n laver

Figure 3-10. Methodfor quantitative analysis of TEM images.

Using a MATLAB® program that was developed and written by former group

members*, the user identifies in digitized images three points on a carbon structure, the

two end points and any point on the interior. The program measures the length of the

specified arc, L, the diameter of the apparent circle, D, and then calculates the curvature,

C. The curvature is defined as C=L/zrD and varies from zero for a flat structure to unity

for a closed loop. By examining these three parameters, apparently fullerenic structures

can be identified (for C60, L = 2.1 nm, D = 0.7 nm, and C = 1). By aggregating the

The program was designed by Dr. Bill Grieco and developed by Dr. David Kronholm and Murray Height,
all from the Combustion and Fuels Group at MIT.
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measurements of many structures across many images and compiling distributions, trends

and characteristics can be observed more objectively than by qualitative analysis alone.

However, this technique does not have the capability to measure or account for

nanostructures. They unfortunately must still be assessed qualitatively.

3.2 Low-flow laminar diffusionflames

The highest yields of fullerenes in flames are obtained under conditions of

substantial soot formation. To understand the mechanism of fullerene formation and

enable the design of practical combustion systems for large-scale fullerene production,

more information on fullerene yields under various conditions is needed. Little work has

been reported on the formation of fullerenes in diffusion flames.

To explore the effects of pressure and diluent gas on fullerene yields in diffusion

flames, samples of condensable material from laminar diffusion flames under different

conditions were collected and analyzed to determine the concentration of fullerenes, to

identify nanostructures, and to characterize the curvature of the carbon layers.

3.2.1 Experimental conditions

In these flames, a burner cap with an inner diameter of 10 mm (as described in

Section 3.1.1.1) was used as the fuel outlet. The flames consisted of vaporized benzene

mixed with an argon diluent burning in an flowing oxygen atmosphere. The cold gas

velocity of the unburned benzene/argon mixture, vu(fuel/Ar) was 820 or 840 cm/s, and

the argon dilution, dilAr, was varied from 65% to 87.6%. Oxygen was kept at a cold gas

velocity, vu(oxy), of 3.65 cm/s. The pressure, p, in the chamber varied from 12 to 40 Torr.

More heavily sooting conditions than those studied here could not be measured due to

rapid clogging of the microprobe sample.

To characterize the fullerene production in the flames, the ratios of the total mass

of fullerenes to the total mass of condensable material and to the total volume of

noncondensable gas were used. In all cases, C60 and C70 accounted for over 95% of the

mass of fullerenes analyzed by chromatograph. Consequently, for data comparison, the

sum mass of C60 and C70 was used as representative of the total mass of fullerenes.

Nine different laminar flames were studied here and the parameters of the flames

with initial results are shown in Table 3-1.
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In addition to the flame operating conditions, Table 3-1 shows the distance, hx,

from the fuel outlet to the probe inlet for the samples with the maximum percentage of

fullerenes in the condensable material, the actual maximum percentages, the temperature

at the location of these maxima (which was also the temperature maximum for each

respective flame), and the flame reference number used in later graphs. The temperatures

presented in Table 3-1 are not quite accurate as spectral emissivity has not been

considered or accounted for due to an absence of data for these flames. However, it is

believed that the data still portray accurate relative differences between the flames and as

such, the temperatures were considered only in this manner.

Table 3-1. Laminar diffusion flame parameters

3.2.2 Fullerene and soot results

The highest soot concentration in diffusion flames is in the wings of a flame,

where the radial fuel and oxygen concentration gradients are highest and the temperature

is maximum. Further from the flame axis, the soot is consumed by oxidation. The flame

wings collapse to one point at the top of the stoichiometric surface, where the flame

reaches its highest overall temperature; therefore, the axial concentration gradients of

fuel, oxygen, and products including soot are similar to the radial gradients closer to the
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P vu(fuelVAr) dilAr Vu(OXy) hmax C60+C70 Tmax Flame

(Torr) (cm/s) (% Ar) (cm/s) (mm) (mass %) (K) (Ref #)

20 840 66.5 3.65 84.5 2.97 1659 5

20 840 71.0 3.65 74.5 6.83 1689 4

20 840 76.0 3.65 61.5 5.13 1635 3

40 820 80.3 3.65 96.5 3.15 1694 10

40 820 82.8 3.65 88 3.73 1726 8

40 820 85.3 3.65 74 4.49 1754 11

40 820 97.6 3.65 69 4.86 1694 12

12 820 65.0 3.65 57 12.44 1599 13

12 820 67.5 3.65 53 12.40 1583 14



burner. Aggregate results from these flames indicate that fullerene concentration sees a

peak with respect to argon dilution but increases at lower pressures and shorter flames.

Consistent with analytical results, soot structure evolution results show that the soot

becomes more ordered and more curved with increasing residence time (analogous to

height above burner) until the fullerene maximum, at which point, curvature decreases

again. Nanostructures were also found at long residence times after the fullerene peak.

3.2.2.1 Fullerenes

Results from the three 20 Torr flames with different argon dilutions are shown in

Figure 3-1 l(a) and (b). The amount of C60 and C70 as a mass percentage of the

condensables is shown in Figure 3-11(a), and the concentration of C60 and C70 in the cold

sampled gas is shown in Figure 3-1 l(b), both versus the height above the burner, h.
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Figure 3-11. Quantity offullerenes C6 0 and C70 in the condensable material (a) and
concentration offullerenes C60 and C70 in the cold probed gas (b) from different heights

above the burner in different laminar diffusion flames at p=20 Torr.

The highest concentration concentration of fullerenes always occurred just above

the visible stoichiometeric surface of the flame, where the temperature maximum also

occurs. Therefore, the locations of the maxima of the curves are indicative of the

stoichiometric flame length. Figure 3-1 l(a) and (b) and Table 3-1 show that diluting the

benzene with argon results in a shorter flame but not necessarily in a lower temperature,
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and that a higher fullerene percentage does not necessarily indicate a higher fullerene

concentration. A decrease in the concentration of condensable material can be large

enough to offset the increase in fullerene percentage.

Estimation of the percentage of the carbon feed that is converted into fullerenes

from the flame #4 data gives 0.5%. This value, for non-optimized conditions, is

comparable to the largest value observed in premixed benzene flames [85, 86].

Data for flames at 40 Torr (Figure 3-12(a) and (b)) compared with those for 20

Torr (Figure 3-11 (a) and (b)) show that increasing the pressure increases the flame length

while decreasing the flame diameter, resulting in a more heavily sooting flame. In

general, the percentage of fullerenes is lower at 40 Torr than at 20 Torr. At lower

dilutions than those shown in Figure 3-12(a) and (b), large soot concentrations at 40 Torr

caused rapid probe clogging. With increasing dilution, the 40 Torr flames show an

increase in the maximum percentage of fullerenes (Figure 3-12(a)) and a decrease in the

maximum fullerene concentration (Figure 3-12(b)). Although measurements were taken

at dilutions up to 87.6%, where the temperature is lower than that of the next lower

dilution, the peak in percentage of fullerenes is still higher (discussed in Section 3.2.3.1).

At lower dilutions, the concentration would be expected to decrease with decreasing

dilution because the flame temperature goes down due to increased soot radiation. Such

behavior is seen premixed flames [85, 86], where the concentration of fullerenes

decreases with decreasing fuel dilution over a specified range of dilutions.

Two flames were studied at 12 Torr (Table 3-1). Consistent with the other results,

the flames were shorter and the percentage of the fullerenes was higher than at 20 Torrn.

The maximum percentage of fullerenes in the condensable material from the

different flames decreases with increasing flame length in a strong relation, as shown in

Figure 3-13(a). Shorter flames, which result from higher dilution or lower pressure, favor

fullerenes over soot, as has also been suggested based on behavior seen in premixed

flames [89]. This consumption should be slower for lower pressure and higher dilutions

because of lower soot concentrations. The effect of a lower precursor concentration

seems to be overwhelmed (discussed in Section 3.2.3.1).
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Figure 3-12. Quantity offullerenes C60 and C70 in the condensable material (a) and
concentration offullerenes C6o and C70 in the cold probed gas (b) from different heights

above the burner in different laminar diffusion flames at p=40 Torr.
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Figure 3-13. Maximum amount offullerenes C60 and C7o (a) and mass ratio of C6o to C70
(b) in the condensable material at the height above the burner corresponding to

maximum fullerene concentration in laminar diffusion flames, at different pressures (p)
and different argon dilutions (dilAr).

For each set of flames at different pressures, the mass ratio of C60 to C70 at the

maximum fullerene concentration for each flame increases with increasing dilution
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(Figure 3-13(b)). However, unlike the fullerene percentage trend, this effect is pressure

dependent.

3.2.2.2 Soot structure evolution

An example of an HRTEM micrograph of soot from flame #11 (75 mm) is shown

in Figure 3-14 (the white color in the images represents carbon layers or shells). The inset

shows an enlarged area with closed shells. Significantly more ordered and more curved

carbon layers of shells were seen in this study than in premixed benzene combustion [99].

Figure 3-14. Representative HRTEM image of material collected at h=75mm inflame
#11 (p=40 Torr, vu(fuel/Ar)=820 cm/s, vu(oxy)=3.65 cm/s, dilAr=85.3%).
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Figure 3-15 shows soot from four different heights above the burner that were

used from curvature analysis. Carbon structures along the periphery of the soot particles

were analyzed quantitatively to determine the evolution of the structures with increasing

height above the burner. Only the periphery of the particles was thin enough to allow for

accurate measurements of the layers since the interior of the particle contained many

stacked layers of carbon material. The hand-drawn lines show the boundary between the

outside areas that are counted and the particle interior.

Figure 3-15. Representative counted material from soot collected at h=72 mm (a), 74 mm
(b), 75 mm (c), and 77 mm (d) inflame #11 (p=40 Torr, v(fuel/Ar)=820 cm/s,

vu(oxy)=3.65 cm/s, dilAr=85.3%).

Two properties of the curved layers or shells, arc length (L) and diameter (D),

were measured directly and used to calculate a non-dimensional parameter, curvature

(C=L/rD). Normalized histograms of each of these parameters and scatter plots of arc

length versus diameter for each of the four samples and amorphous carbon (for
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comparison) are shown in Figures 3-16 thorough 3-20. The truncation of the x-axes in

these figures causes some of the histograms to sum to less than 100 (nothing of

importance was excluded).
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Figure 3-16. Normalized histograms of curvature (a), arc length (b), and diameter (c)
and arc length versus diameter scatter plot (d) of amorphous carbon material.
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Figure 3-17. Normalized histograms of curvature (a), arc length (b), and diameter (c)
and arc length versus diameter scatter plot (d) of condensable material collected at h=72

mm inflame #11 (p=40 Torr, v(fuel/Ar)=820 cm/s, v(oxy)=3.65 cm/s, dilAr=85.3%).
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Figure 3-18. Normalized histograms of curvature (a), arc length (b), and diameter (c)
and arc length versus diameter scatter plot (d) of condensable material collected at h=74

mm in flame #11 (p=40 Torr, vu(fuel/Ar)=820 cm/s, vu(oxy)=3.65 cm/s, dilAr=85.3%).
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Figure 3-19. Normalized histograms of curvature (a), arc length (b), and diameter (c)
and arc length versus diameter scatter plot (d) of condensable material collected at h =75

mm inflame #11 (p=40 Torr, v(fuel/Ar)=820 cm/s, v(oxy)=3.65 cm/s, dilAr=85.3%).
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Figure 3-20. Normalized histograms of curvature (a), arc length (b), and diameter (c)
and arc length versus diameter scatter plot (d) of condensable material collected at h=77

mm inflame #11 (p=40 Torr, vu(fuel/Ar)=820 cm/s, vu(oxy)=3.65 cm/s, dilAr=85.3%).

It can be seen that the structures in the amorphous carbon sample, compared with

those of any flame sample, have very low curvatures and relatively short arc lengths. The

large diameters seen in the amorphous carbon are due to the relatively flat nature of the

structures. As a consequence of the analysis method, the flatter of two structures with

equal arc lengths will have a greater measured diameter.

In Figure 3-21, a comparison of the curvature histograms in parts a in Figures 3-

16 through 3-20 shows that curvature increases with distance until the fullerene

maximum (74 mm), where it then decreases. This indicates that the observed fullerene

peak is also the peak for the generation of completely closed shell structures. The

histograms in parts b of the figures show a similar behavior in that arc lengths increase

until a dropoff is observed after the fullerene maximum. The part c histograms show a

decrease in diameter with increasing distance until the fullerene maximum, followed by

an increase. The diameter peak is seen at 0.7 nm, the diameter of a C60 molecule, and is

highest at 74 mm, the becoming less pronounced after the fullerene maximum. In the

scatter plots of parts d, points that lie on the delineated lower boundary represent

completely closed-shell structures. It appears that larger closed-shell structures are more

prevalent with increasing distance until they practically disappear at 77 mm.
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Considering these trends collectively, it can be seen that the carbon structures in

the soot become more curved and more closed until the fullerene peak, then change to

flatter, smaller structures.
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Figure 3-21. Curvature comparison forflame #11 (p=40 Torr, v,(uel/Ar)=820 cm/s,
vu(oxy)=3.65 cm/s, dilAr=85.3%).

The sample images were examined qualitatively for the emergence of fullerenic

nanostructures. Figure 3-22 shows a micrograph representative of the nanostructures

from flame #13 at 61 mm. The areas that resemble amorphous carbon in Figure 3-22 are

the lacey carbon grid supports on which the samples are deposited. The structures consist

of stacked layers of fullerenic carbon and include nanotubes and highly ordered onion-

like structures. The inset in Figure 3-22 shows an enlarged onion-like closed-shell

nanostructure. Similar structures have been seen in fullerene-forming premixed benzene

flames [99, 112-114].
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Figure 3-22. HRTEM image offullerenic nanostructures in condensable material
collected at h=61 mm inflame #13 (p=12 Torr, vu(fuel/Ar)=820 cm/s, vu(oxy)=3.65

cm/s, dilAr=65.0%).

3.2.3 Discussion

The results from the samples taken from the laminar diffusion flames indicate that

high levels of dilution are needed to achieve optimal concentrations of fullerenes and that

fullerene production is sensitive to both pressure and dilution changes and is subject to

competing effects. In addition, data obtained from the soot micrographs are consistent

with the chemical analyses and indicate that fullerenes are being incorporated into the

soot and into nanostructures. Quantitative determinations, however, for maximum

fullerene production and nanostructure formation are unfortunately still not possible.

3.2.3.1 Fullerenes

The elimination of CO from oxidized PAH is thought to be a source of five-

membered rings [115] in the structure of combustion-generated PAH, which are

precursors to fullerenes in flames [32, 92, 116]. However, the highest concentration of
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fullerenes is in the region of the flame where the precursor concentration is decreasing

due to oxidation. Oxidation reactions are also responsible for the decomposition of the

fullerenes at greater distances.

That the maximum fullerene percentage is at such high fuel dilutions as those

seen here may indicate the fullerene consumption by soot is important. At 40 Torr

(Figure 3-12(a) and (b)), the percentage of fullerenes is highest at the highest dilution, yet

the temperature is lower compared with lower dilutions. Both the overall carbon

concentration in the flame and the soot formation decrease with increasing dilution. The

lower soot concentrations at higher dilutions reduce radiative heat loss from the flame,

partially offsetting the lower heat production due to less fuel. At the same time, the

concentration of precursors for fullerenes, as well as soot, is decreasing, but the flames

with the lowest total concentration exhibit the highest fullerene percentage. Similarly,

decreasing pressure lowers total soot and fullerene concentration but still raises the

percentage of fullerenes. Associated with these effects is the observed strong correlation

in which shorter flames yield higher percentages of fullerenes in the condensable

material.

Although this provides a qualitative explanation for the appearance of a maximum

rate of fullerene formation, a quantitative prediction for the optimal dilution is not yet

possible. It is possible, however, to establish empirical guidelines based on the

combustion parameters in this work.

3.2.3.2 Soot structure evolution

The electron microscope images show a soot microstructure that is different from

samples collected from higher pressure flames as well as low-pressure premixed flames

[99]. Structures similar to those seen here have also been found in commercially

produced carbon black [100, 101]. Quantitative analysis of the micrographs using the

curvature parameter indicates that carbon layers or shells in the soot become more curved

(i.e., more fullerenic) with increasing distance in the flame up to the fullerene maximum,

after which the curvature declines (Figures 3-16 through 3-21). The arc length increases

with distance, indicating growth to larger structures, while diameter decreases, indicating

an increase in curvature of layers already present in the soot or the addition to the soot of
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smaller-diameter fullerenic carbon. Together, these trends indicate that gas-phase-formed

fullerenes are consumed by, and presumably incorporated into, the soot and

nanostructures. This behavior is consistent with the hypothesis that fullerenes added to

the soot from the gas-phase are a source of the fullerenic structures, including closed

shells, of around 0.7 nm diameter seen in the soot micrographs. The added fullerenes

might also contribute, along with other PAH in the soot, to the growth of larger curved

layers indicated by the increase of arc length. The correspondence of the diminishing of

the 0.7 nm diameter peak and the fullerene maximum is also consistent with the

fullerene-addition hypothesis.

The quantity of nanotubes and onion-like structures (Figure 3-22) seen here is

higher than that observed in premixed flames [99], where nanostructures are seen only at

long residence times after oxygen depletion. In our flames, nanostructures appear soon

after the stoichiometric flame surface where the maximum temperature occurs and the

fullerenes and soot are being oxidized. Consequently, the timescale for nanostructure

formation in laminar diffusion flames must be shorter than that for premixed combustion.

It can be concluded that fullerenic nanostructures are formed after the fullerene peak

where soot and fullerenes are being consumed by oxidation. The images also appear to

show nanostructure precursors that were being formed from the soot material.

3.2.4 Summary

The evolution of fullerenes, fullerenic soot material, and fullerenic nanostructures

with increasing distance from the fuel outlet, as concluded by the findings in this work,

can be summarized as follows:

Prior to the stoichiometric surface:

* Pre-C60 incubation

* Presence of relatively flat soot structures

* Concentration of C60/C70 increasing with distance

* Curvature of soot structures increasing with distance

Just above the stoichiometric surface:

* Peak of C60/C7 0 concentration

* Maximum temperature
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* Maximum soot structure curvature

* Presence of nanostructure precursor cells

After stoichiometric surface:

* Fullerenes consumed by oxidation

* Fullerenes incorporated into nanostructures

* Curvature of soot structures decreasing with distance

* Concentration of C60/C70 decreasing with distance

* Appearance of fullerenic nanostrucutres

3.3 High-flow turbulent-like diffusionflames

The work on laminar diffusion flames indicates that higher temperatures lead to

increased fullerene formation. Since turbulent flames in general bum hotter than laminar

flames fullerene formation was studied in diffusion flames under turbulent-like

conditions. The term 'turbulent-like' is used here because the calculated Reynolds

number indicated that the flame is still in the laminar regime. However, visual

observations of the flame reveals flow eddies and erratic behavior making the flames

appear turbulent. For brevity, 'turbulent' will be used to refer to the flames described in

this section.

Other advantages to using a turbulent flame include higher heat transfer rates,

greater mixing leading to higher temperatures, as well as a greater mass of fuel per unit

volume of flame, both of which contribute to a higher fullerene-producing potential. In

addition, although they have not been performed before, turbulent flame studies are

important, as any commercial fullerene-producing combustion process would most likely

use turbulent diffusion flames.

It was believed that turbulent diffusion flames would be promising for fullerene

formation but experimental results have proven otherwise. While fullerene production is

possible in a large flame region, the yields are minimal with no observable maxima or

trends with increasing residence times. It was also seen that varying oxygen and argon

flowrates had a limited effect on the turbulent flame fullerene yield.
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3.3.1 Experimental conditions

Initial experiments involved the use of a Hago oil burning spray nozzle (Model

.30-45°-B) inside the burner at the top of the fuel/diluent feed line. This nozzle produced

a 45° spray of fuel at the nozzle tip. Liquid benzene fuel was injected using a syringe

pump to reach the desired flowrates. Pure fuel was fed to the system since the argon

diluent is vapor and a two-phase feed was unfeasible with this nozzle. Initially, the

chamber was operated at a pressure of 20 Torr, a fuel flowrate of 408 ml/h, and an

oxygen flowrate of 19 SLPM. These conditions give a Reynolds number of only about

700, indicating that flow is not yet turbulent (the Reynolds number here is computed

using the observed flame diameter and the velocity of all gases being injected into the

flame). However, these initial experiments indicated that turbulent flames are promising

for fullerenes.

Based on these results, turbulent flames using the Spraying Systems Co. nozzle

discussed in Section 3.1.1.1 were studied. Again, the liquid benzene flowrate was set to

408 ml/h and the chamber pressure was set to 20 Torr. The argon dilution varied from

70.1% to 77.5% and the equivalence ratio, which was controlled by adjusting the oxygen

flowrate, from 0.889 to 1.27. More heavily sooting conditions could not be studied due to

flame instability. These conditions also give Reynolds numbers of around 700-800 but

visually, the flames appeared to be turbulent. For these flames, both chamber extensions

were used and the sampling probe was positioned in the center of the flame and

introduced from the side. The height above burner was varied by vertically adjusting the

burner. Like the laminar study, the collected samples were analyzed by HPLC and by

HRTEM.

Four different turbulent flames were studied and the operating parameters of the

flames are shown in Table 3-2. The four flames shown in Table 3-2 cover each

combination of low vs. high oxygen flowrate and low vs. high dilution percentage. The

methane flow was increased or decreased in conjunction with the argon to ensure stability

of the flame system. The quoted equivalence ratios include the carbon added by the

methane fuel. The reference numbers are used for flame identification in the following

sections.

54



Table 3-2. Turbulent diffusion flame parameters

3.3.2 Fullerenes results

The results of the fullerenes analysis from the turbulent flames is shown in

Figures 3-23, 3-24, and 3-25. Figure 3-23 show the percentage of fullerenes (C60+C70) in

the condensable material, Figure 3-24 is the fullerene concentration in the cold sample

gas, and Figure 3-25 shows the ratio of C60 to C70. In Figure 3-24, the data at the lowest

height above burner has been omitted. Including its value of almost 1900 tg/L would

have compressed the data from the other samples making it difficult to observe variation

in the data. This point is most likely an outlier in any case. The data presented in Figures

3-23 to 3-25 are tabulated in Appendix 1.
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Figure 3-23. Quantity offullerenes C60 and C70 in the condensable materialfrom
different heights above burner in different turbulent diffusion flames.
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Pressure Benzene Methane Oxygen Argon Argon Equivalence Re Flame

(Torr) (ml/h) (SLPM) (SLPM) (SLPM) (%) Ratio # (Ref. #)

20 408 1.20 13.20 4.0 70.1 1.16 675 11
.............................. ............... .................... ...................... ....... ................... ................. ...I........................... .;..........

20 408 1.96 13.20 5.9 77.5 1.27 747 12
.............................................. ............................................. ............................................... .............................................. ......................... ................. ........................................................................ .. ......................................... ...............................

20 408 1.20 17.16 4.0 70.1 0.889 795 13

20 408 1.96 17.16 5.9 77.5 0.978 867 14
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Figure 3-24. Concentration offullerenes C60 and C70 in the cold probed gas from
different heights above burner in different turbulent diffusion flames.
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Figure 3-25. Mass ratio of C60 to C70 in the condensable material from different heights
above burner in different turbulent diffusion flames.
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Figures 3-23 and 3-24 indicate that fullerenes are formed in turbulent diffusion

flames and that they are formed in a rather large region of the flame, anywhere from 300

to 600 mm height above burner. However, the overall highest fullerene percentage

recovered is only about 3% of the condensable material, with the vast majority of the data

points falling below 2% (Figure 3-23). Additionally, there is no clear trend in any of the

data and there is an absence of a fullerene concentration maximum with increasing height

above burner. In fact, Figures 3-23 through 3-25 show data that appear erratic and

random, with some flames exhibiting points of minimum fullerene concentrations. Lastly,

despite varying the oxygen and argon flowrates in the four flames, the data all lie at

similar concentrations and heights above burner. Some sets of flame data even cross each

other several times with increasing height. This indicates that the four flames all

essentially have the same flame height and the same heat and mass transfer conditions.

No fullerenic nanostructures were found in any of the HRTEM images taken from the

samples of these flames.

3.3.3 Discussion

The presence of any fullerenes in the turbulent flames shows that production of

fullerenes is possible in a wide range of diffusion flames and that they can be produced in

turbulent as well as diffusion flames. This result alone is positive and promising for

commercial production of fullerenes, which would most likely use a turbulent diffusion

system. Another promising characteristic of the data is the production of fullerenes in a

wide range of residence times, as measured by height above burner. Figure 3-23 shows

that some flames (such as #11) have a fullerene-producing region as wide as 200 mm.

Laminar diffusion flames show fullerene producing regions of a maximum of 20 mm

(Figures 3-11 and 3-12). Hence, turbulent flames exhibit an order of magnitude increase

in the region where fullerenes can be harvested. This observation also makes turbulent

flames attractive for commercial production and even more so given that more heavily

sooting conditions than those studied here would most likely give higher fullerene yields.

Possible explanations for the larger fullerene-producing region include the

increased velocity of the fuel and oxygen and also the presence of flow eddies and

vortices. The increase in velocity, independent of any other effects, would tend to
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increase the production region. If diffusion rates of oxygen and fuel are similar to those

found in laminar flames, a reasonable assumption given that the pressures are similar,

then fullerene formation should occur at similar residence times in both flames. Since

higher gas velocities translate to a higher height above burner for a given residence time,

it is not surprising that formation occurs at an increased range of heights. This

explanation is supported by the fact that fullerene formation in turbulent flames occurs at

heights entirely higher than in laminar flames (>300 mm for turbulent vs. <100 for

laminar - see Figures 3-11, 3-12, and 3-23). The flow eddies that were visually

observable in the flames may also be contributing to the increased region of production.

Any uncombusted fuel that is ejected out the side of the combustion zone (of which some

was observed) can be caught by a vortex and reinjected into the flame region. This would

bring fresh fuel into the flame and possibly create pockets of combustion that have

conditions similar to those found closer to the burner. These pockets could then add some

fullerene production downstream of where it would otherwise occur and extend the

fullerene-producing region. Enough of these pockets of combustion aggregated together

could significantly alter the fullerene concentration profile. Furthermore, flow vortices

can help explain the erratic nature of the data as explained below.

Despite the confirmed presence of fullerenes and the increased region of

production, it appears that turbulent flames under conditions studied here may not be so

promising for commercial production. The primary reason is that the yields are much

smaller than laminar flames in terms of fullerenes as a percentage of the total

condensable material. Figures 3-11 through 3-13 show that laminar flames have yields

consistently over 4% and up to 12% while turbulent flames have a maximum of 3%

(Figure 3-23). Similar discrepancies are seen in terms of fullerene concentration in the

cold sample gas. Figures 3-11 and 3-12 show gas concentrations greater than 1000 tg/L

in general and up to 6000 gpg/L for laminar flames while turbulent flames lag at less than

500 Ctg/L (Figure 3-24). This drop in yield may be the result of lower flame luminosity

(indicating but not proving lower flame density), which was visually evident, or the flow

eddies, which may pull more oxygen into the combustion zone and thus accelerate the

consumption of the fullerenes.
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In addition to the low yields, the turbulent flame results are disappointing due to

the absence of any fullerene maxima with respect to increasing height above burner or

with respect to varying operating conditions. In contrast to the results for laminar flames,

turbulent flames show no trends that would indicate the effect of residence time or

operating parameters on fullerene synthesis. Again, the data sets seem quite erratic and

even a bit random. The results of all four flames (Figure 3-23 and 3-24) lay on top of one

another, cross each other on several occasions, and are clearly not separated as they are

for laminar flames (Figures 3-11 through 3-13). One interpretation of this is that varying

oxygen and diluent flowrates in turbulent flames has only limited effects on fullerene

production. This is merely a postulation since only a small number of flames were tested

but the results indicate that, if true, increasing fullerene yield in such types of flames will

prove to be a difficult task.

The scatter in the data may be the result of the turbulent nature of the flames with

the turbulence causing erratic and non-uniform flow patterns and concentrations that are

reflected in the results. Consequently, reproduction of these results becomes unlikely and

making predictions for other flame designs becomes highly speculative. Making accurate

predictions and designing flames rich in fullerenes requires a detailed understanding of

the effects of variations in operating conditions, which this data set unfortunately fails to

provide.

The absence of any nanostructures in these turbulent flames is most likely the

result of the general nature of turbulent flames and, more specifically, of the flow

vortices. Nanostructures are generally found at longer residence times than fullerenes and

the increased velocity of turbulent flames makes it difficult to take flame samples at

suitable residence times. It is quite possible that nanostructures could be found at higher

height above burner (HAB) than were studied here. Additionally, the flow vortices

introduce and eliminate gases at all points along the flame changing effective residence

times and preventing the accurate prediction of where nanostructures will occur. As

mentioned above, the aggregation of the eddies could result in the significantly altered

soot samples that lack nanostructures.
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3.3.4 Summary

The production of fullerenes in turbulent diffusion flames was tested in four

different flame designs involving both high and low oxygen flowrates and high and low

diluent flowrates. The results show that fullerenes can indeed be formed in such flames

and that the fullerene-producing region is much greater than in laminar diffusion flames.

However, the observed fullerene yields are significantly smaller than laminar flames and

the data exhibit no detectable trends or maxima with respect to any parameter calling into

question the presumed effect of changing the oxygen and diluent flowrates. It appears

that even though turbulent flames can produce fullerenes, they are most likely unsuitable

for commercial production as designing flames with higher yields based on the present

data would be nearly impossible.

3.4 Conclusions

The study of diffusion flames for the production of fullerenes C60 and C70 has

shown that while both laminar and turbulent flames are capable of making fullerenes,

only laminar flames can make them in a predictable manner.

In laminar flames, the concentration of C60 and C70 increases with residence time

until the point of fullerene maximum, which is just beyond the stoichiometric surface of

the flame, after which it decreases. Curvature of carbon structures in the soot follows a

similar pattern and nanostructures are found at much longer residence times than

fullerenes. The fact the C60/C70 concentration declines after the stoichiometric surface,

where soot production becomes prevalent, indicates that fullerenes may be consumed by

soot in situ. Another possible explanation for the decline is oxidation, which may also be

occurring. In terms of operating conditions, fullerene concentration goes through a peak

with respect to increasing argon dilution, implying that increasing the dilution results in

competing effects. Overall, shorter flames and flames that are hotter tend to have higher

fullerene concentrations.

Turbulent flames do produce fullerenes but the increased gas flow velocity and

the presence of flow vortices produce some unfavorable characteristics. The fullerene-

producing region is larger than in laminar flames but the yields are much smaller and the

data are erratic and unpredictable with respect to both residence time and operating
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conditions. Making predictions for productive turbulent flames from these data cannot be

done with any accuracy.

It can be concluded that diffusion flames in general are promising for fullerene

production given that fullerenes were found in every flame that was studied and the

likelihood that diffusion flames are generally preferred for commercial production of

materials. Laminar flames are more desirable due to their higher yields and distinct and

predictable trends but turbulent flames would be easier for scale-up to commercial plant

size. While this study accomplishes the thesis objectives for diffusion flames (Chapter 2),

more study is needed to develop and optimize combustion systems for maximum

fullerene production (Chapter 4).
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4 Premixed flame studies

Low-pressure premixed flames have been studied quite extensively in previous

work and have identified a wide range of fullerenes and nanostructures in resulting

condensable material [35-37, 85-88, 99]. However, results of recent studies on diffusion

flames indicate that it may be possible to further increase the yield of premixed flames. In

accordance, the previous studies were expanded to include conditions promising of high

fullerene yields. These conditions consisted of two-stage flames with a premixed primary

flame with varying equivalence rations and secondary feed. It was hypothesized that two-

stage flames would be highly fullerenic but the opposite was discovered to be the case.

4.1 Apparatus and techniques

The setup used for studying premixed flames was similar to that used in the

diffusion flame study. Benzene was burned under sooting conditions to produce

condensable material that was then analyzed for the presence and abundance of

fullerenes. The fullerenes are extracted from the soot by sonication in toluene and then

filtered before being injected into an HPLC instrument. Samples of the soot material were

also analyzed by HRTEM prior to fullerene filtration.

4.1.1 Flame chamber

The premixed flame chamber, shown in Figure 4-1, is similar to the diffusion

flame chamber discussed in the previous chapter. The premixed system, described

previously [99, 117], consists of a burner mounted in the bottom of a cylindrical chamber

housing that is sealed at the top. As this chamber is used only for laminar low-flow

flames, which are generally shorter than diffusion flames, it has just one extension but

does have a number of view- and auxiliary ports. Only the bottom section is shown in

Figure 4-1. In this setup, the quartz sampling probe is inserted into the flame through the

top plate, ensuring that flame sampling always occurs along the center axis of the flame.

The chamber is evacuated from the bottom with the same rotary vacuum pump as

is used for the diffusion flame chamber (Mannesmann-Demag Model WPSO 53). The

vacuum is maintained by bleeding air into the pumping system and is monitored by a

pressure transducer (MKS Instruments Model 390HA-00100).
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Figure 4-1. Premixedflame chamber with burner, top plate, secondary ring injector, and
flame sampling probe (from Grieco [37]).

4.1.1.1 Flame burner

The burner, shown up close in Figure 4-2 with an accompanying top-view, is a

premixed one-dimensional laminar flat flame burner. It is water-cooled to prevent

melting and consists of a thick copper plate (100 mm diameter x 12 mm) mounted on top

of a cylindrical body through which the gases are fed. The plate is drilled with

approximately 1500 1.0 mm holes through which the fuel, oxygen, and diluent flow. As

seen at the top of Figure 4-2, the burner is divided into a 70-mm diameter core, where the

main flame is stabilized, and a 15-mm wide annulus, which supports a non-sooting

premixed thermally-shielding ethylene/oxygen flame.

The body of the burner is packed with stainless steel wool to quench any

flashback of the flame and to distribute the gas flow uniformly across the diameter. The

entire assembly is mounted on a vertical translation stage controlled with a stepper motor,

mounted and controlled from outside the chamber. The motor allows the burner height to

vary during a single flame run and also allows for a greater range of distance from the

sampling probe. More importantly, since the changes in the height of the burner can be
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measured more accurately than those of the probe, moving the burner vertically instead of

the probe results in a higher resolution of flame data.
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Benzene/Oxygen/
Argon Inlet

Figure 4-2. Premixedflame burner with top view (from Grieco [37]).

For two-stage flames, a secondary ring injector was mounted inside the chamber.

The location and setup of the ring injector can be seen in Figure 4-1. The injector consists

of a stainless steel tubular ring with injector holes that is supported by a stainless steel

supply tube through which the secondary fuel is fed to the system. The supply tube passes

through a feed port in the bottom of the chamber and can be adjusted vertically to allow

for secondary injection at varying height above the burner.

In the two-stage flames studied here, two different ring injectors were used.

Figure 4-3 shows top views of both rings to highlight the differences. The large injector,

Figure 4-3(a), has an inner diameter of 100 mm and contains four outlet holes that are

evenly distributed around the inside of the ring and used for fuel injection. The small

injector, Figure 4-3(b), has an inner diameter of 50 mm and has eight holes distributed

about both sides of the ring. The holes in both rings have a diameter of 1/16 in. The larger

ring has the advantage of disturbing the primary flame only minimally, if at all, as the
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ring is not immersed in the flame, but the smaller ring provides a more evenly distributed

secondary fuel flow due to its greater number of injection holes and their configuration.

Secondary Fuel

Main Riirnpr

(a) (b)

Figure 4-3. Top view of large (a) and small (b) secondary ring injectors

4.1.1.2 Chamber bottom and extension

The chamber consists of two sections, the top section of which is removable. Both

sections are made from stainless steel, have inner diameters of 24 cm and have a

combined height of 25 in. allowing flames up to 18 in. in height to be operated (the sum

of the chambers less the burner height). The bottom section is already shown in Figure 4-

1 and the top section is shown in Figure 4-4.
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Figure 4-4. Top section of the premixedflame chamber.
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The bottom chamber has one viewport of 6 inch in diameter, and six smaller

auxiliary ports, three with diameters of one inch and three with diameters of two inches

(not shown in Figure 4-1). The auxiliary ports can be adapted to support feedthrough

lines, thermocouples, transducers, and even optical windows for laser scatter or optical

pyrometry. The bottom plate seals the chamber, has two 1 2 in. diameter ports for

chamber evacuation, and has multiple feedthroughs for the burner. The top section is

nearly identical to the bottom, the only exception being fewer auxiliary ports. Again there

is a large 6 inch diameter viewport and two one-inch auxiliary ports for various uses.

4.1.1.3 Top plate

The top plate for the premixed chamber is identical to the one used in the

diffusion chamber and is thus not shown again here (see Figure 3-8). The only difference

between the two is the use of the ports - the premixed chamber is evacuated from the

bottom meaning that the two larger ports on the top plate are sealed off.

4.1.2 Fuel delivery

Vaporized benzene was the sole fuel used in the premixed flame burner. See

Section 3.1.2 for a description of the vaporizer used in these experiments. All the flows

(argon, oxygen, ethylene, acetylene) are controlled with critical orifices and upstream

metering valves. Here, the pressures are monitored with similar Omega engineering

pressure transducers.

4.1.3 Soot sampling

The quartz probing system described in Section 3.1.3 was used here with the

probe entering from the top (Figure 4-1). In addition to samples obtained from the quartz

probe, condensable material was collected after a flame had been extinguished from

deposits on the chamber walls and the top plate. These deposits were sampled simply by

scraping the surfaces with a spatula and collecting the material into a preweighed vial.

More condensable material deposits on the top plate than on the chamber walls. This is

because the top plate is water-cooled and the flame gases flow closer to the top plate than

the chamber walls. The soot collected in this manner was most in providing material for

the heat treatment experiments that are described in the next chapter.
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4.1.4 Extraction and analysis

The method of fullerene extraction and HPLC analysis was identical to that used

in the diffusion flame studies. The details are provided in Sections 3.1.4 and 3.1.5 and not

reproduced here. Qualitative analysis of soot material with HRTEM images was also

performed on premixed two-stage flame soot material.

4.2 Premixedflames

Before beginning investigation into two-stage flames, a single-stage premixed

flame was studied. This flame has previously been studied extensively and the objectives

here were two-fold: reproduce earlier data and ensure the system is working properly;

and provide a baseline to compare data taken under altered two-stage conditions. The

flame was analyzed for fullerene concentration by HPLC; HRTEM analysis was not

performed.

4.2.1 Experimental conditions

The baseline flame consisted of pure benzene fuel mixed with oxygen and argon

diluent. The secondary ring injector was not used for this flame and hence, was removed

from the system. The operating conditions of the flame were as follows: equivalence

ratio, 2.4; cold gas velocity, 25 cm/s; pressure, 40 torr; argon diluent, 10 vol%. This

flame has been well-characterized and identified as fullerene forming [35-37, 85-88, 99].

The flame was designed by Tom McKinnon [117] and is often referred to as the

McKinnon flame, as it will be called in the remainder of this chapter.

4.2.2 Fullerene results

Consistent with previous studies, the McKinnon flame was found to be very

fullerenic with the concentration of fullerenes increasing with residence time. A plot of

the C60 and C70 data is shown in Figure 4-5 and a plot of the soot data is shown in Figure

4-6. These data sets and a sample calculation are documented in Appendix 2.

It can be seen in Figure 4-5 that C60 and C70 concentrations follow similar trends.

They are quite low in the primary flame zone (5-20 mm) but increase steadily with

residence time above 20 mm. A couple of oscillations are seen in the data as the

concentration increases. This is most notable at 50 and 80-90 mm HAB. No data could be
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collected above 120 mm HAB as the limit of the extended combustion chamber had been

reached. It should be noted that even at the longest residence time studied here, a drop-off

in the fullerene concentration was not observed. It is believed that measurements at

higher HAB would result in similar increases in concentration due to cooling of the flame

gases.
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Figure 4-5. Concentration of C6 0 and C70 in a premixed benzene flame (p = 40 torr, o =
2.4, velocity = 25 cm/s, dilution = 10%)

In Figure 4-6, it is seen that the soot concentration increases steadily with

increasing residence time (with the exception of oscillations at 50 mm and 80 mm HAB).

The oscillations coincide exactly with the oscillations in fullerene concentration seen in

Figure 4-5 and could possible be related. Again, no drop-off in soot concentration was

observed even at the longest residence time studied here.

Fullerene and soot data from Grieco's study of the same flame [89] are

reproduced in Figures 4-7 and 4-8 for comparison to the present data. Figure 4-7 shows

fullerene concentration against HAB while Figure 4-8 shows soot data, represented by

DCM insoluble material, over the same region. In Figure 4-7, once can see a marked

oscillation at 50 mm and a drop-off in fullerene concentration at 78 mm. The data in

Figure 4-8 indicate that soot concentration is low in the primary flame zone but
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significantly increases thereafter. The trend is almost exactly similar to that of fullerene

concentration (Figure 4-7). The DCM soluble material in Figure 4-8 represents the sum

of PAH, fullerenes, and other light gas species and is not important in the present study.
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Figure 4-6. Concentration of soot in a premixed benzene flame (p = 40 torr, = 2.4,
velocity = 25 cm/s, dilution = 10%)

Comparison of Figure 4-5 with Figure 4-7 shows that the data from this

experiment are greater than previous data by approximately a factor of two at all HAB

along the flame and that there is no fullerene drop-off above 70 mm as does the previous

data. In fact, the fullerene concentration keeps increasing until the limit of soot collection

capabilities is reached.

By comparing Figure 4-6 with Figure 4-8, it can be seen that the present soot data

are also greater than the previous soot data, but the difference here is approximately a

factor of six at all HAB. Similar to the fullerene data, the present soot data show an

oscillation at 50 mm but this data point is conspicuously absent in Figure 4-8, preventing

a comparison. The soot concentration also continued to increase above 70 mm with

another oscillation at 80 mm.
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All data sets, however, exhibit similar trends up until 70 mm and the

concentration oscillations coincide at 50 mm. In fact, the similarity of the data otherwise

is what would be expected for data that are collected from what are believed to be

identical flames.

If Figure 4-5 is compared to the soot data in Figure 4-6, it becomes evident that

significant fullerene production coincides directly with the increase in soot material.

Fullerene concentration is almost insignificant below 20 mm, which is the exact region

where soot is relatively low. Beyond 20 mm, where the primary flame reactions zone

ends, a steep rise in soot concentration is observed and correspondingly, a rise in

fullerenic material is seen. The increase in both materials continues until the limit of the

flame data, i.e. the apparatus, is reached.

4.2.3 Discussion

As noted above, the major differences between the data from this experiment and

the previous data are the disagreement in the magnitude of the fullerene concentration

and the absence of a concentration drop-off above 70 mm in the present data. It was

expected that reproducing the McKinnon flame would produce results that were in better

agreement with previous data. The question then arises: what is causing the discrepancy.

Why are the two data sets different when the flames are supposedly identical?

Although the true cause is still unknown, several possible explanations for this

inconsistency can be stipulated. The first is that in the previous study, Grieco used a

macroprobe sampling system [37], while a microprobe sample system described in

Section 3.1.3 was used here. Although Grieco claims that the differences between the two

sampling systems are negligible, there are important structural differences that can lead to

inconsistent data. The macroprobe system is used in place of the chamber top plate. This

means that the flame is significantly disturbed by the intrusion of the 'massive' probe and

an obstruction just downstream of the sampling location. In contrast, the microprobe is

relatively unintrusive and allows the flame gases to flow beyond the probe until they

reach the top plate, which is significantly downstream. Additionally, since the

macroprobe is part of the top plate, the extension must be moved to sample at any of the

points that Grieco measured, meaning that the top plate could be quenching or otherwise
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affecting the flame reactions. Moving the microprobe, on the other hand, ensures that any

top plate effects are always well downstream of the sample location. A disturbance in the

flame such as the macroprobe could cause suppressed fullerene production as well as a

significant unexpected drop-off.

Another explanation is the fact that different benzene vaporizer systems were

used to deliver fuel to the chamber and burner. Grieco used an old vaporizer system that

was rather unstable [118]. It consisted of a syringe pump delivering liquid fuel to a

heating element that provided a continuous evaporation of the flowing benzene.

Theoretically, the mass flow delivered to the burner was identical to that set on the

syringe pump but visual observations showed that the flame was unstable and pulsated

with variable fuel flow even several hours after start-up [118]. The system used here,

described in Section 3.1.2, used a mass flow controller to meter in benzene that had been

vaporized upstream of it. This system provides an accurate and steady flow for the

duration of all experiments. No instability or strobing was observed in the present study.

Although it is difficult to explain exactly how such a difference in delivery systems could

result in the observed data discrepancy, it is reasonable to assume that this inconsistency

may somehow be attributed to differences in the flames that are caused by their

respective fuel vaporizers.

Despite this discrepancy, the data from the two flames are similar enough to

conclude that the flame has effectively been reproduced and that a true McKinnon flame

was studied here. It should be kept in mind that the differences in the data are only a

factor of two, not an order of magnitude, and that the trends and oscillations exactly

coincide until 70 mm, which is beyond the primary region of interest. The results of the

McKinnon flame have provided a reasonable baseline for which to compare two-stage

flame data outlined in the next section.

The coincidence of the fullerene trend (Figure 4-5) and the soot trend (Figure 4-6)

is interesting as it contradicts the assertion from diffusion flame data that soot consumes

the fullerenes (Section 3.4). If Grieco's data are to be believed (Figure 4-7), then the

decline between 70 and 78 mm could be attributed to consumption by soot which is

consistent with the diffusion flame conclusion. However, the current data exhibits no

such decline (neither does Grieco's data lower than 70 mm HAB), which is inconsistent
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with the hypothesis of fullerene consumption by soot. This could be explained by

assuming that fullerene concentration is a net result of consumption and formation

reactions and that the formation reactions are fast enough to overcome the consumption

in the McKinnon flame but not so in the diffusion flames studied. Still, the observations

in the McKinnon flame cast doubt on the consumption of fullerenes by soot mechanism.

This doubt was part of the motivation for the more detailed study of the fullerene-soot

reaction in Chapter 5.

4.2.4 Summary

The data from the McKinnon flame study were relatively consistent with those

from a previous study by Grieco. A few discrepancies between the two data sets did arise

but the major trends in the data are similar (within an order of magnitude) indicating that

the flame has been reproduced. The current data provides a baseline to which two-stage

flame data can be compared. Comparison of the fullerene data with previously collected

soot concentration data indicated that fullerenes might not be reacting with the soot in a

manner that consumes the fullerenes as was asserted by the diffusion flame data. At this

point, no suitable explanation can be found for the inconsistency but the matter provides

motivation for the fullerene-soot reaction study later in the thesis. The acquisition of new

McKinnon flame data allows for further premixed flame study, which is presented in the

remainder of this chapter.

4.3 Premixedflames with secondary injections

Benzene is used as the primary fuel here because, among the tested organic

solvents, it provides the highest yield of fullerene material [32, 33]. However, much of

the benzene is used in providing energy for the combustion process instead of for

producing fullerenes. It may be possible to use a different, perhaps cheaper, fuel for the

energy supply than the benzene needed for product formation. Separating the combustion

process from the fullerene production process (in a two-stage flame) has the potential to

greatly increase the overall fullerene yield and also reduce costs. More carbon material

may be consumed in the two fuel feeds but it is believed that a greater fullerene

production will offset this consumption. This type of premixed combustion system had

not been previously studied.
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4.3.1 Experimental conditions

The two-stage flames studied here utilized the secondary fuel ring injectors

described in Section 4.1.1.1, which were positioned at various heights above burner for

different flames. The location of the secondary fuel injection was always downstream of

the primary flame reaction zone so as to only minimally disturb the primary flame.

Flames with both benzene and acetylene as secondary fuels were studied. Not

only was the flowrate of the secondary fuel varied but the equivalence ratio of the

primary flame was also varied to provide both sooting and non-sooting primary flames.

All of the flames, however used the McKinnon flame as a baseline and incorporated

variations to it involving the secondary injection. This means the pressure was held

constant at 40 Torr and the argon flowrate was also held constant for all the flames.

Six different two-stage flames were studied. Their operating conditions are

summarized in Table 4-1.

Table 4-1. Two-stageflame parameters.

In Table 4-1, the number in the first column is used for flame identification in the

results in the next section. The 'Difference from McKinnon' documents explains how the

McKinnon flame was altered to achieve that two-stage flame. For example, in flames 1

and 4, additional fuel was added beyond that used for the McKinnon flame while in the

others, some of the McKinnon fuel was replaced by the secondary fuel. In flames 5 and 6,

25% of the primary fuel was removed but only 22% was reinjected in the secondary feed.

Note that flame 6 was the only one to use the small ring secondary fuel injector. The last
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# Secondary fuel Location Difference from McKinnon Primary p Total p

1 Benzene 35 mm 25% more fuel 2.4 3.0

2 Benzene 35 mm 25% rerouted 1.8 2.4

3 Benzene 15 mm 43% rerouted 1.37 2.4

4 Acetylene 35 mm 11% more fuel 2.4 2.66

5 Acetylene 35 mm 25% replaced with 22% 1.97 2.4

6 Acetylene 35 mm 25% replaced with 22% - small ring 1.97 2.4



two columns respectively give the equivalence ratio of the primary flame only and the

overall equivalence ratio. The percentages given in Table 4-1 represent the percentages of

carbon atoms being fed that were altered. The volume percentage changes for the

benzene two-stage flames would be similar but those for acetylene would be tripled as

one molecule of acetylene contains only 1/3A as much carbon as one of benzene.

The collected sample material was analyzed by HPLC for fullerene concentration

and the HPLC chromatograms were used to compare soot across different flames and

make inferences as to the conditions present at the locations that those soot samples were

taken. This chromatogram analysis provided another basis for comparing the results in

additions to the C6 concentration. Analysis by HRTEM was also performed on selected

soot samples.

4.3.2 Fullerene Results

The data from the six two-stage flames are shown in Figures 4-9 and 4-10. To

avoid clutter, the data were split into two sets, and lines for the data sets were omitted.

The C70 data, which follows the same trend as the C60 data, was also omitted. Figure 4-9

shows the results of the three secondary benzene flames while Figure 4-10 shows the

three secondary acetylene flames (all tabulated in Appendix 2). In each plot, the C60 data

from the regular McKinnon flame (Figure 4-5) is shown for comparison.

In Figure 4-9, it can be seen that the two-stage flames are very poor producers of

fullerenes. The data, which begin at the point of secondary fuel injection, show a

significant decrease in (flame #1) or complete absence of (flames #2 and #3) fullerene

concentration. It should be noted that the only two-stage flame produce fullerenes at all

was #1, which was the only one of these three to have a sooting primary flame. Still, even

in flame #1, while the fullerene concentration is comparable to the McKinnon flame at

the location of secondary injection, it subsequently drops drastically and does not recover

until much later in the flame. The other two flames do not even show a hint of fullerene

production anywhere in the flame.
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Flame gas concentration of C6o in McKinnon flame and three two-stage
flames with benzene as secondary fuel.
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Figure 4-10. Flame gas concentration of C6o in McKinnon flame and three two-stage
flames with acetylene as secondary fuel.

Similar observations can be made for the three secondary acetylene flames shown

in Figure 4-10. Flame #4, which was the only with a sooting primary flame, also was the

only one to show a significant amount of fullerene production. Again, though, the

concentration levels are well below those observed in the McKinnon flame and begin to
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recover only downstream. The data in flame #4 also show a more immediate effect of the

secondary injection. Note that the concentration at 35 mm HAB, the location of the

secondary injection, is already a fraction of the McKinnon flame's. Flames #5 and #6 do

show some traces of fullerene formation at 50 mm HAB and higher but these

concentration levels are negligible and not interesting enough to warrant further

characterization of the flames.

In fact, characterization of flames #3-#6 above 60-80 mm was not performed as it

was believed that no more interesting data would be collected at these heights. Flame #2

data provided uninteresting data at these heights and as such were used as justification for

abandoning Flames #3, #5, and #6. Flame #4 could have been interesting at higher HAB

but the small soot yields (and the disappointment in Flame #1 results) precluded any

interest in further characterizing that flame.

Qualitative HRTEM analysis was performed on three selected samples from the

two-stage flames. However, no nanostructures or other interesting structures were found

and thus, quantitative analysis was not performed.

4.3.3 Discussion

After examining all of the two-stage flame data collectively, it seems that

secondary fuel has an adverse effect on the formation of fullerenes. Results from both the

secondary benzene and secondary acetylene flames were quite similar and they indicate

that fullerenes are formed only when the primary flame is sooting. It was seen that the

injection of secondary fuel actually caused a decrease in fullerene concentration

subsequent to the location of injection and that fullerene production recovered only at

much higher HAB, if at all.

The fact that only flames with sooting primary flames produced fullerenes at all

indicates that the combustion process is necessary for making fullerenes. Simple

pyrolysis of the fuel, which is presumably what is occurring to the secondary fuel, seems

to prevent the formation of fullerenes. This pyrolysis may be preventing the breakdown

of the fuel into radicals and molecules that are precursors to fullerenes. Without

combustion to form these precursors, the secondary fuel has no mechanistic pathway for
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becoming fullerenes. Additionally, there may be some sort of barrier to fullerene

formation that can only be overcome by combustion.

This scenario of a combustion process requirement is bolstered by the appearance

that the secondary fuel is creating conditions very similar to the early stages of the

McKinnon flame, prior to the primary flame reaction zone and to the onset of fullerene

formation. Figure 4-11 through 4-13 show HPLC chromatograms of three extracted soot

samples collected at various points along the McKinnon flame and two-stage flame #3.

Figure 4-11 shows the chromatogram from the extract of soot from the two-stage flame

taken at 60 mm HAB, while Figure 4-12 is the McKinnon flame at 50 mm HAB and

Figure 4-13 is the McKinnon flame at 5.8 mm HAB.
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Figure 4-11. HPLC chromatogram of soot extract from two-stageflame #3 at 60 mm
HAB.
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Figure 4-12. HPLC chromatogram of soot extract from McKinnon flame at 50 mm HAB.
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Figure 4-13. HPLC chromatogram of soot extract from McKinnonflame at 5.8 mm HAB.

Comparison of Figures 4-11 and 4-12 highlights the differences between the two-

stage flame and the McKinnon flame. Had secondary fuel been creating conditions

similar to corresponding locations in the McKinnon flame, then these two chromatograms

should have been roughly similar (accounting for the 15 mm HAB secondary fuel

injection). However, it can be seen that they are starkly different. The two major peaks in

Figure 4-12 at 7.5 and 12.0 minutes elution time correspond respectively to the presence

of C60 and C70 molecules. No such peaks are seen in Figure 4-1 1. Had the absence of C60

concentration in the two-stage flame been simply a matter of magnitude, then the

chromatogram should still have shown peaks, albeit much smaller ones, at 7.5 and 12.0

minutes. But in fact, the major peaks in Figure 4-11 all occur at less than 7.0 minutes

indicating the presence of vast amounts of PAH. Since PAH are normally observed prior

to fullerene formation [37], this indicates that the conditions even at later stages of the

two-stage flame are similar to conditions in the early stages of the McKinnon flame.

This observation is strengthened by the comparison of Figure 4-11 with Figure 4-

13. The chromatogram in Figure 4-13 shows the McKinnon flame at 5.8 mm HAB,

which is prior to fullerene formation (Figure 4-5) and prior the primary reaction zone

where combustion occurs. Figure 4-13 shows a prominence of peaks at less than 7.0

minutes, again indicating PAH like the peak in Figure 4-11 do. Beyond the mere

appearance of peaks in the same region, these two figures show patterns of peaks that are

remarkable similar. Both have their largest peaks at -3 minutes with localized peaks at
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~3.65 and -3.95 minutes and a gradual tapering of the remaining signal. Such a strong

similarity in peak patterns indicate the presence of similar concentrations of individual

PAH species and thus similar flame conditions.

Such behavior and similarity may be expected as both chromatograms (Figures 4-

11 and 4-13) come from regions of fuel pyrolysis. At such low HAB in the McKinnon

flame, the fuel is being pyrloyzed prior to undergoing combustion slightly downstream.

In the two-stage flame, the fuel is being pyrolyzed at much higher HAB as the oxygen

has been mostly depleted when the fuel is injected and achieving pyrolysis is the whole

goal of secondary fuel injection. As mentioned above, pyrolysis does not result in the

formation of precursor molecules that may be necessary for fullerene formation. The

combustion reactions necessary for these precursors occur in the McKinnon flame

subsequent to 5.8 mm HAB whereas no such combustion occurs higher than 60 mm HAB

in the two-stage flame. Additionally, combustion could possible have another effect as

there may some barrier, energy or other, that prevents fullerene formation and can only

be overcome by combustion. In any case, fullerene formation occurs in the McKinnon

flame but not in flame #3 even though their conditions are similar at the two selected

points.

Based on these results, it seems that two-stage flames are not at all suitable for

fullerene production. The data indicate that something is occurring in the combustion

process that allows for fullerene formation, either through precursor generation or

overcoming a barrier. The absence of fullerenes when fuel is injected into gases that are

seemingly ideal for fullerene formation indicates that increasing fullerene yield in

combustion requires a much more detailed understanding of the mechanisms involved

with the production of fullerenes. This highlights the great need to understand what is

occurring in a fullerene-forming flame and what reactions are involved in both the

formation and consumption of fullerenes. This gap in understanding provides a major

motivation for the fullerene reaction work outlined in the next chapter.

4.3.4 Summary

Six different two-stage flames were characterized for fullerene concentration and

the data from all six indicate that secondary fuel has an adverse effect on the formation of
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fullerenes. In the two flames that had sooting primary flames, the concentration of

fullerenes in the flame dropped immediately after the secondary fuel injection and never

fully recovered to previous concentrations in the region studied. Those flames with a non-

sooting primary flame, that is flames with no primary fullerene production, showed no

fullerene production at all except for some trace amounts at long residence times. HPLC

chromatograms for various samples indicated that the secondary fuel may be creating

conditions that are very similar to the early stages of the McKinnon flame, a single-stage

premixed flame known to be fullerene-forming. This similarity might be expected as both

are regions of fuel pyrolysis. It is believed that such pyrolysis does not result in the

precursors necessary for fullerene formation, which may be formed by combustion.

Additionally, there may be some sort of barrier to forming fullerenes that can only be

overcome by combustion. Consequently, it appears that the combustion process is

necessary for making fullerenes even if the flame gases are otherwise ideal for fullerene

formation. Two-stage flames seem to be unsuitable for the production of fullerenes. This

highlights the need to better understand fullerene formation and consumption

mechanisms before yield can be increased.

4.4 Conclusions

The present study of premixed flames extends and adds to the premixed studies

performed previously by McKinnon and Grieco [37, 117]. Although there were some

discrepancies between the current data and Grieco's data, the data trends and orders of

magnitude were sufficiently similar to allow for further study with the confidence that the

same flame was being investigated.

The McKinnon flame study was extended to include a characterization of several

two-stage flames for fullerene concentration. The flames all used the McKinnon flame as

a baseline but none of them were suitable for fullerene production and indicated that the

secondary fuel was having an adverse effect on fullerene formation. Furthermore, HPLC

chromatogram results indicate that the secondary fuel is creating pyrolysis conditions

similar to those seen in the very early stages of the McKinnon flame where pyrolysis is

also occurring. This supports the hypothesis that combustion is needed for fullerene

production, either through precursor production or overcoming some sort of formation
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barrier. Because of the lack of promise in producing fullerenes, further and more detailed

characterizations of two-stage flames were not performed.

The coexistence of soot and fullerenes in the McKinnon flame (when diffusion

flame data indicated that fullerenes are consumed by soot) and the unexpected two-stage

flame results emphasize the lack of understanding of fullerene formation and

consumption reactions. Having a better understanding of such mechanisms would help in

designing flames more promising for higher fullerene yields. Completing the objectives

for premixed flames has provided the motivation and justification for investigating the

fullerene mechanism in more detail by studying the reaction of fullerenes with soot. This

is the focus of the next chapter.
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5 Reaction rate coefficient of fullerene (C60) consumption by soot

The flame studies presented in the previous two chapters provide some evidence

that can be interpreted to mean that fullerenes might be consumed by reaction with soot

material in situ, but also provide some evidence that this is not the case. In diffusion

flames, it was found that fullerene concentrations peak at the stoichiometric surface of the

flame just prior to the onset of significant soot formation (Section 3.2.3.1). This

observation can be interpreted to mean that fullerene molecules might be consumed by

soot material. Similarly, in premixed flames, Grieco et al. [89] observed a severe drop-off

in the flame concentration of fullerenes at relatively long residence times in the post-

flame zone of a sooting flame (Figure 4-6). The region of fullerene loss occurs within a

region of continued soot production, suggesting that fullerenes might be consumed by

soot. However, the present premixed study (Figure 4-5) along with Grieco's data at

relatively short residence times suggest otherwise. They show that fullerenes continue to

be formed even in the presence of soot, in apparent contradiction to the former theory.

Other studies have drawn conclusions about fullerene consumption by soot that

appear to be conflicting or might be indicative of different behavior under different

conditions. Mochida et al. [119, 120] found that fullerenes are carbonized at temperatures

in the range of 473-2673 K by heat treatment of fullerene-containing soot produced by

graphitic carbon vaporization in an electric discharge. However, Fuller et al. [121] and

Burden et al. [97] observed the formation of fullerene molecules from the electron

irradiation of soot also produced in an electric discharge.

To determine the behavior of fullerene molecules in the presence of combustion-

generated carbon particles pertinent to soot and to test the hypothesis that a consumption

reaction occurs, fullerene molecules were exposed to commercially-produced carbon

black, used as a well-characterized soot surrogate, at temperatures pertinent to the post-

flame zone of sooting flames. The resulting data sets were analyzed quantitatively to

determine the rate coefficient of the observed fullerene-soot reaction. This rate coefficient

was evaluated by comparing it to the theoretical upper limit from simple collision theory

and it was used to help interpret previous evidence that fullerenes may be consumed by

reaction with soot during the combustion synthesis of fullerenes. It was found that
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although fullerenes do react with soot in a manner that consumes them (consistent with

first-order kinetics), the reaction rate is not enough to be significant when extrapolated to

flame conditions, indicating that fullerenes are consumed primarily by other mechanisms.

5.1 Experimental system and techniques

The experiments consisted of subliming pure C60 fullerenes into a passing argon

stream that was then passed through a soot-laden quartz wool bed. After passing through

the bed, the gas contacted a water-cooled probe where any unreacted fullerenes

condensed out. The reactor setup was designed to allow a continuous flow of gas over the

heated sample and also to allow the collection of vaporized material downstream of the

reaction bed.

5.1.1 Reactor and furnace setup

The setup for the heat-treatment experiments is shown in Figure 5-1. The reactor

consists of a quartz tube (17 mm ID x 22 in.) which contains a combustion boat (Coors

Model 60032) with pure C60 fullerenes upstream from a quartz-wool plug containing an

approximately uniform distribution of carbon black. The quartz tube is positioned inside

a 305 mm long x 50 mm ID tubular furnace (Lindberg Model 55036) whose edges are

indicated in the figure.

Edges of furnace
/ Probe

boat with L60 uaruz WOOl

with soot

Gas inlet Gas outlet

Figure 5-1. Schematic of equipmentfor study offullerene-soot reaction
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The combustion boat was placed sufficiently upstream of the quartz wool to allow

for radial diffusion of C60 prior to reaction. This arrangement ensured a uniform cross-

sectional profile of C60 concentration at the beginning of the reaction zone. The system

temperature was monitored with a thermocouple located inside and midway along the

furnace, between the quartz tube and the furnace tube. The residence time of fullerenes

inside the reaction bed was calculated as the ratio of the bed length to the argon gas

velocity.

5.1.2 Vapor collection

Argon gas flow is introduced at one end of the reactor while a water-cooled

collection probe made of Pyrex® glass (12 mm OD) is mounted at the other end

upstream of the exhaust. As indicated by the arrows in Figure 5-1, the gas enters the

reactor, passes over the combustion boat, and proceeds past the water-cooled probe,

where condensable material is deposited. Gas flow to the reactor is controlled with a

metering valve in conjunction with an upstream pressure regulator. The flow is measured

and monitored with a mini-Buck Flow Calibrator (Model M-30).

Fullerenes sublime into the argon gas stream and are carried through the soot-

laden quartz wool. The fullerenes react with the soot along the length of the bed and any

unreacted fullerenes physically condense, and are collected, on the water-cooled glass

probe, whose temperature and surface area are designed to ensure the condensation of

any vapor material.

5.1.3 Analysis

The initial mass of fullerenes used inside the combustion boat was measured

gravimetrically; the post-reaction mass was determined by HPLC. Once the material is

deposited on the probe, it can be collected at the conclusion of cool-down by submerging

the probe in toluene and sonicating. These samples generally do not require extraction as

species other than fullerenes are not observed. After collection, the toluene-fullerene

samples are analyzed by HPLC in the same manner as described in Section 3.1.5. In these

experiments, however, the total mass of fullerenes collected, not the concentration, was

the primary result of interest.
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5.1.4 Experimental conditions

Prior to experimental runs, base case runs were performed with no quartz wool

and with soot-free wool to determine the extent of C60 loss due to reactions other than

those with the soot or due to filtration by the quartz wool. No such loss or reactions were

observed. Additionally, it was observed that the sublimation of pure C60 resulted in a 20%

residue of non-volatile material, consistent with previous studies [122]. The initial weight

of the fullerenes in each subsequent run was corrected by this factor.

The fullerenes were 99.5% pure C60 from Hoechst Corporation. Commercial

carbon black was used as a surrogate for lab-generated soot because its physical

properties are well-characterized and it is commercially-available for reproduction or

extension of the experiments. The carbon black, Regal 330 from Cabot Corporation, had

an average particle diameter of 33 nm. The bulk density of carbon black in the plug of

quartz wool in the reactor was 0.0083 g/cm3, so the specific surface area of the carbon

black in the bed, SA,,,soot, was 7551 cm2/cm3. The porosity of the quartz wool with

deposited carbon black in the quartz tube was 98% and a new bed was used for every

experimental run. An experiment time of nine minutes was used to ensure maximum C60

sublimation at all temperatures studied.

Experiments were run with a constant four-second residence time at different

furnace temperatures in the range of 1023-1273 K. The reaction bed length was 6.1 cm

and the argon flowrate for the difference experiments was in the range 50-60 cm3/min (at

273 K and 1 atm).

5.2 Reaction rate results

It is assumed that the gas flow through the reaction cell is plug-flow, thus

allowing the bed length to be correlated directly to residence time. To obtain a rate

coefficient for the reaction of fullerenes with soot, the following first-order reaction rate

expression was used:

d[C6 0 /dt = -k[C6o]SAsoot (5-1)
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where [C60 ] is the concentration of C6oo, t is time, k is the rate coefficient, and SAsoo is the

soot surface area per unit volume. To simplify the expression, it is also assumed that the

fullerene-soot reaction is heterogenous with C60 being the limiting reactant and soot

surface area constant. This allows the incorporation of the soot surface area into the rate

constant, giving

d[C6o]/dt = -k'[C6 o] (5-2)

where k'=kSA,,soot. Integration of Equation 5-2 in terms of fullerene mass instead of

concentration gives

In[M(C6o)oM(C6o)d = k't (5-3)

where M(C60)o is the initial mass of fullerenes, M(C60)f is the mass of unreacted fullerenes

collected downstream from the reactor, and t is the gas residence time in the reactor bed.

Defining k'=A exp(-E/RT) and taking the natural logarithm of both sides, the final rate

expression is

In n[M(C6o) M(C 6o)f-lIn t = In A-Ea/RT (5-4)

According to Equation 5-4, a plot of the left side of the equation against 1/T should give a

straight line with a slope of-Ea/R and a y-intercept of In A.

A plot of the collected data is shown in Figure 5-2. It can be seen that the data fall

into a linear trend, thus allowing the parameters of the reaction rate coefficient to be

calculated from the graph. Using the quoted value of SA,oot and accounting for the scatter

of the data with error limits of one standard deviation, the following expression for k is

obtained:

k =0. 0042(±0. 0002)exp[-4914(±580)/T] cm s-1 (5-5)
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The data in these experiments were collected over two different days and the daily

data sets are represented individually in Figure 5-2. It can be seen that data collected on

the same day are perfectly collinear but the slopes of lines are somewhat different

between the two days' data. The reason for this difference is unknown. Thus the two sets

of data yield similar but not exactly the same kinetic rate coefficients. The parameters

given in Figure 5-2 are obtained from a regression of all the data together.
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Figure 5-2. Fullerene-soot reaction rate plot - Day one data (i) with regression (long-
dashed line), Day two data (A) with regression (short-dashed line), andfull regression

(solid line) with equation.

5.3 Discussion

Consistent with the diffusion flame study (Chapter 3) and the latter portion of

Grieco's premixed flame study, the results from the plot shown in Figure 5-2 indicate that

fullerenes are indeed being consumed by soot and that the reaction is dependent on

temperature in a manner that is consistent with first-order kinetics. It might be possible

that the decline in fullerene mass is due in part to fragmentation of the fullerene

molecules in addition to consumption by soot. However, previous studies have shown

that C60 is thermally stable in inert gas up to 1720 K [123, 124]. As the temperature in
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these experiments did not exceed 1300 K, it is unlikely that any unimolecular

fragmentation occurred. Similarly, Whetten and Yeretzian found that fragmentation of

fullerenes due to surface collision, independent of the surface or temperature, required an

unusually high impact energy [125]. This makes it unlikely that any collisional

fragmentation of the fullerene molecules occurred. The exclusion of these two

mechanisms leaves reaction with soot as the apparent mechanism for observed fullerene

consumption.

To determine whether the fullerene-soot reaction observed in this experiment

could explain the rates of fullerenes consumption previously observed in the McKinnon

flame and tentatively attributed to a possible fullerene-soot reaction, and also to see if

consumption is significant in the present premixed study (Section 4.2), the present data

were used in the following analysis. From simple collision theory, the collision rate of

C60 with the surface of soot particles is:

kco., = [kBT/(2m)j2 [C6o] (5-6)

where kB is Boltzmann's constant and m is the mass of one molecule of C60. If T is

expressed in degrees K and [C60] in mol/cm3 , Equation 5-6 can be expressed as

kco = 135.5T t/ 2[C6o] cm s-l (5-7)

Using the collision rate as a basis for expressing the reaction rate and defining y as

the fraction of the collisions resulting in reactions, or collision efficiency, the reaction

rate can be written

d[C60/dt = -kollySAsoot (5-8)

Eliminating kco, between Equations 5-7 and 5-8, we have

d[C6o/dt = -135.5 Y1[C 6o]ySAsoot (5-9)
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Comparison of Equations 5-1 and 5-9 reveals that

k = 135.57"'2r (5-10)

Eliminating k between Equation 5-5 (without the uncertainties) and Equation 5-10 and

solving for y:

y = 3.1xlO5STqa/2exp[-4914/T7 (5-11)

Collision efficiencies computed from Equation 5-11 are less than unity as they

should be and they rise with temperature qualitatively as might be expected, but the

magnitude is very small at any temperature of interest. The efficiency is only 2x10-8 at

the upper temperature limit of this experiment, i.e. 1273 K. This rate would be

insignificant on the time scale of flame reactions. If the observed temperature dependence

remained valid up to flame temperature, the indicated collision efficiency would still be

insignificant at flame temperatures, e.g., y = 6x10-8 at 2000 K, as described below.

The measured collision efficiency was applied to fullerenes data from Grieco's

premixed flame study and the present premixed study of the McKinnon flame. Soot

particle size data obtained by McKinnon [1 17] were utilized in conjunction with fullerene

concentration, temperature, and soot mass concentration data from Grieco et al. [89] and

from Chapter 4 (Figures 4-5 and 4-6) to see if the measured reaction rate could explain

the rate of fullerenes consumption corresponding to the observed decline in fullerene

concentration in post-flame zone (Figure 4-7) and to see if the reaction is significant

during the observed increases in fullerene concentration (Figure 4-5). Of course, Grieco's

soot concentration data was used for calculating his fullerene consumption rates while the

present soot data was used for consumption rates in the present flame. Although the soot

particle size data only extend 50 mm above the burner while the drop-off in fullerenes

concentration is observed in the region of approximately 70-80 mm, size information in

the latter region was obtained by extrapolation. Soot surface area per unit volume of

flame gases at different distances from the burner was computed from the profiles of soot

mass concentration and particle size, taking into account approximately the reduction in
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surface area due to particle agglomeration using electron micrscope images of the soot

[99].

The consumption rates of C60 at different heights above the burner were computed

using Equations 5-9 and 5-11 and the experimental temperature profile [117]. The results

for Grieco's McKinnon flame data are shown in Figure 5-3 and those for the present

McKinnon flame data are shown in Figure 5-4. It is seen that the data in both of these

figures follow the general trends of the respective data on which they are based. The

decline in consumption above 80 mm HAB in Figure 5-4 is primarily due to the lower

temperatures observed later in the flame. The differences in the consumption rates are

also reflective of the relative differences between the two fullerene and soot

concentration data sets (Figures 4-5 to 4-8). However, the overall magnitude of both

consumption rate data sets is still _10-17 or 10-1 6.
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Figure 5-3. Predicted consumption rate offullerenes by soot in the McKinnonflame
usingfullerene and soot data from Grieco 's study [89].
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Although the validity of Equation 5-11 and hence the accuracy of the calculation

are unknown at temperatures above 1273 K and the flame temperature varies from about

2000 K to about 1350 K over the region 20-80 mm above the burner where the main

fullerenes formation and consumption occur (Figures 4-5 and 4-6), the results are

nevertheless of interest for primary analysis. In Grieco's data (Figure 4-6), in the region

of the fullerene concentration drop-off at 70-80 mm above the burner, the net rate of

fullerene C60 consumption calculated from the data is about 2x10-10 mol cm 3 s l which is

a factor of 107 larger than the rate calculated for that region of the flame based on the data

of this study (Figure 5-3).
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Figure 5-4. Predicted consumption rate offullerenes by soot in the McKinnon flame
using fullerene data from the present study.

Evidence for fullerenes consumption can also be seen earlier in the flame where

fullerenes concentration is increasing in the region 20-70 mm above the burner, as well as

in the entire range of data in Figure 5-4. Although the net rate of fullerenes reaction in

these regions is clearly formation, it can be assumed that consumption reaction such as

that evidenced at 70-80 mm in Figure 5-3 is also occurring in the other regions where

they compete with, and are overshadowed by, formation reactions. As shown by
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Kronholm et al. [94] in the case of soot formation, analysis of the competition between

formation and destruction can account for oscillations in the concentration profiles such

as those seen for fullerenes in Figure 4-5 and 4-7. Accordingly, the net rate of fullerene

formation is a relatively small difference between two large rates, i.e., the sum of all

consumption reactions and the sum of all formation reactions. Subtle changes in either of

these summed rates can result in significant changes in the net fullerenes reaction rate and

account for the observed concentration oscillations. It can be calculated from the C60

concentration data in Figures 4-5 and 4-7 that the increase in C60 consumption rate that

would be required to explain the decreased net rate of formation between about 40 mm

and about 60 mm above the burner, and hence to account for the oscillation in the C60

concentration profile in that region, is approximately six orders of magnitude larger than

the consumption rate estimated for that region based on the present data (Figures 5-3 and

5-4).

Thus the fullerenes-soot reaction studied in this experiment is much too slow and

its observed temperature dependence is much too small to allow the rates predicted for

the flame to be of any significance in the region of major net fullerenes consumption or

the earlier region of smaller changes in the net rates of fullerenes reaction. If a fullerenes-

soot reaction were to be responsible for the fullerenes consumption rates in the flames, it

would have to be a mechanism whose rate increases by a factor of 106 or more going

from the conditions of the experiment to flame conditions. For example, calculations

show that temperature dependence of the mechanism would have to be equivalent to an

overall activation energy of about 160 kcal/mol to increase the rate of the fullerenes-soot

reaction observed here to the incremental C60 consumption rate possibly reflected by the

above-mentioned oscillation in the C60 concentration profile in the region 40-53 mm from

the burner (Figures 4-5 and 4-7) where the temperature is about 1700 K. Similar

calculations for the 70-80 mm region where C60 concentration drops (Figure 4-7) and the

temperature is about 1380 K show that the required overall temperature dependence

would have to be the equivalent of a 490 kcal/mol activation energy to increase the

fullerenes consumption rates observed in this experiment to that seen in the flame. The

latter value is so large as to suggest that the mechanism of the fullerene-soot reaction
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studied in the present experiment would not play a significant role in the fullerenes

consumption observed in the region of the large decrease of concentration.

The mechanism of fullerenes consumption by soot under the conditions of the

present experiment has not been established. The magnitude of the observed activation

energy, i.e., Ea = 9.8 kcal/mol, would not be inconsistent with surface diffusion. Such a

process might involve a reversible chemisorption of fullerene molecules on the soot with

simultaneous surface diffusion to active sites where reactions with the soot material

occurs. Given that the observed reaction rate is a small fraction of the collision rate, e.g.,

y = 2x10-8 at 1273 K, most of the fullerenes arriving at the soot surface would be either

reflected or quickly desorbed according to this mechanism. An alternative explanation of

the data might be a heterogeneous reaction between fullerenes and soot. In this

interpretation, the observed activation energy would be the energy barrier for

chemisorption, and this value along with the small magnitude of the observed collision

efficiency would imply that a substantial fraction of the collisions have sufficient energy

for reaction but that the probability of colliding at a suitable site in the soot structure is

exceedingly low. In either mechanism, one might expect the population of radical centers

or active sites in the soot structure to be important, and the role of reactions between the

soot and flame radicals could be important. Accordingly, one might expect the

temperature dependence of the concentration of radicals, which can be the equivalent of

overall activation energies of around 50-70 kcal/mol in fuel-rich flames of interest in

fullerenes formation, to give rise to a higher temperature sensitivity than was observed in

this work. Therefore, if the mechanisms being considered were to be important, the

overall activation energy of the fullerenes-soot reaction would be expected to exceed

substantially the value observed here. The possibility of such higher activation energies

and possibly a higher reactivity of in situ flame soot as compared to the collected carbon

black used here might leave open the possibility of a significant role for the fullerenes-

soot reaction in flames. Another possibility for explaining the observed consumption of

fullerenes in flames is the reaction of fullerenes with other combustion intermediates and

products such as PAHs, carbon monoxide, flame radicals, etc. Investigations of these

different possibilities are interesting topics for further research.
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5.4 Conclusions

Fullerene C60 reacts with soot represented by a commercially available carbon

black in the temperature range 1023-1273 K with the fullerenes being consumed in

accordance with first-order kinetics. The collision efficiency of the reaction is very small,

of the order 10-8 at the temperatures studied, and the activation energy is 9.8 kcal/mol.

These characteristics would be consistent with reaction rate control by a surface diffusion

controlled process or a heterogeneous reaction. Extrapolation of the observed

consumption rates to flame temperatures using the observed activation energy would give

a rate too small by a factor of 106 to 107 to explain the rate of fullerenes consumption

observed in a fullerene-producing flame. The temperature dependence that would be

required to allow the observed fullerene-soot reaction when extrapolated to flame

temperatures to be significant compared to observed rates in flames is so strong as to

suggest that mechanisms other than those studied here must control fullerenes

consumption in flames. Such other mechanisms are reactions of fullerenes with other

flame species and heterogeneous soot-fullerenes reactions with the reactivity of the soot

dependent on soot reactions with other flame species, especially radicals.
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6 Observations of fullerenes tethered to carbon black particles

In the HRTEM images that have been analyzed thus far in support of the work

done in this thesis, various observed carbon structures have been assumed to be fullerene

molecules. For example, the circular structures seen in the inset of Figure 3-14 and in

Figure 3-15 (particularly 3-15 (b)) were all believed to have been actual fullerene

molecules. However, it is not yet certain that these structures are in fact fullerenes.

Furthermore, up until this point, it has not been proven that fullerenes can definitively be

seen by HRTEM analysis.

There is actually some debate currently in the literature as to whether circular

structures seen in HRTEM are fullerenes or not. Several previous studies [121, 126] show

HRTEM images of circular structures and treat them as though they were fullerene

molecules. In contrast, Ajayan et al. [127] argue that a similar structure must be a single-

walled nanotube aligned perpendicular to the plane of the image because its contrast is

similar to that of a polygonized carbon tube structure. Burden et al. [97] counter that such

structures must be isolated fullerenes, rather than nanotubes, because nanotubes are

unlikely to form in the conditions and manner described. Although it's quite possible that

all the authors are correct in their assessments drawing on the differences in their

respective experimental conditions, it still does not conclusively answer the question of

whether fullerenes can or cannot be observed by HRTEM.

To answer this question, the present study was performed where pure fullerene

molecules were chemically bound, or tethered, to the surface of carbon black particles

and then analyzed quantitatively by HRTEM. Comparison of these analyses with an

analogous analysis of pure carbon black indicates that fullerenes are successfully being

tethered to the carbon black and furthermore, that observed circular carbon structures are

indeed fullerenes proving definitively that they can be observed under HRTEM.

6.1 Experimental

Three different samples were prepared for investigation by HRTEM. The first

sample consisted of pure carbon black suspended in a toluene solution. The carbon black

used here is commercially available as Regal 330 carbon black from the Cabot

Corporation.

96



A second carbon black-toluene solution was prepared to which a specified amount

of functionalized fullerene molecules were added. The functionalized fullerenes, obtained

from the University of Kentucky [128], consisted of dichloromethano[60]fullerene. The

properties of this compound and similar ones, such as dibromomethano[60]fullerene,

have been studied extensively [128]. The functional group bridges two carbon atoms on

the fullerene molecule and the halides can be readily substituted to provide a chemical

tether to the compound of interest.

After a uniform dispersion was ensured with vigorous mixing, the toluene was

allowed to evaporate and the resulting dry powder mixture was sealed inside an argon-

filled glass tube. The entire unit was then placed inside a tubular furnace (Lindberg

Model 55036) and heat treated at approximately 4000C for 4/2 hours.

After sufficient cooling, the mixture was sonicated into toluene for 13 minutes to

dissolve any untethered fullerenes. The sample was then extracted through a 0.45-Gpm

nylon filter under vacuum. Prior to extraction, however, a fraction of the sample was

drawn-off to be analyzed as a pre-extraction sample. The remaining extracted solid was

analyzed as the post-extraction sample.

All three samples were deposited onto lacey carbon grid supports and the toluene

was allowed to evaporate in each case. The samples were then analyzed in a JEOL 2010

electron microscope operating at 200 kV.

The images obtained from the microscope were qualitatively analyzed for the

presence of fullerene-type structures, or structures that appear fullerenic, meaning

completely closed cages. Only the perimeters of photographed particles were analyzed as

the internal carbon density is too great to allow for accurate structural characteristic

assessment when a fullerene has a supporting particle below it [99]. In each image, the

number of fullerene-type structures per length of perimeter was counted and the diameter

of each of those structures was measured. The data was then aggregated across all the

images of a particular sample to provide linear fullerene concentration data and fullerene

size distribution data.
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6.2 Tethering results

Figures 6-1 and 6-2 show two images that are representative of the images

analyzed from the different samples. Figure 6-1 is an image of a particle taken from pure

carbon black while Figure 6-2 shows a particle from the post-extraction sample.

Figure 6-1. HRTEM images ofparticlefrom pure carbon black sample.

The black dashes in Figure 6-2 are user-added indications of structures that were

deemed to be fullerenic and included in the concentration and size data. The absence of

black dashes in Figure 6-1 indicates the lack of fullerene-type structures in the carbon

black sample. Qualitatively, the images show quite clearly that the carbon black doped

with tethered fullerenes has many more fullerene-type structures than the pure carbon

black particles.

Quantitative analyses of the same images reinforces the qualitative observation.

Table 6-1 gives a summary of the fullerene concentration data; Figure 6-3 shows the

fullerene size distribution of the observed structures.
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Figure 6-2. HRTEM images ofparticle from post-extraction tetheredfullerene sample
with user-entered dashes to identify fullerene-type structures.

Table 6-1. Fullerene-type structure linear concentration data.
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Fullerenic Perimeter Fullerenic structures/
Sample

Structures Length (nm) perimeter length (nm')

Carbon Black 21 1775 0.012

Tethered C60 - Pre-extraction 209 2220 0.094

Tethered C60 - Post-extraction 172 1970 0.087
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Figure 6-3. Fullerene-type structure diameter distribution data on an absolute basis.

From Table 6-1, it is seen that both samples containing tethered fullerenes have a

fullerene concentration almost an order of magnitude greater than the pure carbon black

sample. It should be noted that the post-extraction sample does have a slightly lower

concentration than the pre-extraction samples. This is not surprising as it is expected that

less than 100% of the functionalized fullerenes would react with the carbon black,

leaving some untethered fullerenes to be separated during extraction.

It should also be noted that both the pre- and post- extraction samples exhibit

concentrations less than what would be expected from theoretical calculations. From the

relative amounts of carbon black and functionalized fullerenes utilized, and assuming a

uniform surface distribution, it is expected that the area concentration of fullerenes would

be 0.25 fullerenes/nm2, translating to a linear density of 0.50 fullerenes/nm. Both tethered

samples yield a density approximately 20% of this expected value indicating that many of

the fullerenes are not observed. Possible explanations for this are discussed in the

following section.

The size distributions in Figure 6-3 show that while the carbon black sample has

no significant peaks, the tethered fullerene samples show strong peaks at 7A, which is the

diameter of a C60 molecule and represented in the figure by the dotted line. Figure 6-3
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also shows that the carbon black distribution is, in total, significantly lower than the other

two samples.

The size distributions indicate that most of the differences in concentration data

between the carbon black and fullerene-doped samples are due to the addition of actual

fullerene molecules.

6.3 Discussion

Previous researchers [126] have observed C60 in magnesium oxide in an

experimental situation similar to that used in the present work. Given this precedent and

the data presented above, we believe that the contrast observed in Figure 6-2, for

instance, is consistent with single C60 molecules. The order of magnitude increase in

observed fullerenic-type structures is strengthened by the emergence of a significant size

distribution peak at 7 A in the tethered fullerene samples compared to the pure carbon

black sample. This coupled with the qualitative observations indicates quite strongly that

fullerenes have indeed been tethered to the carbon black surface, and furthermore, that

these fullerenes are observable with HRTEM.

Nonetheless, precautions must be taken to reduce the influence of radiation

damage and/or beam heating on the observations. Such influences include degradation of

the sample [129], incorporation of smaller structures into larger ones, and migration of

molecules. All three of these scenarios have been observed during HRTEM imaging and

all can contribute to an artificially low frequency of fullerene observations. For example,

we have observed C60, and other fullerenic molecules, migrating "behind" the carbon

black under some observation conditions, in accord with earlier reports [121].

Precautions must also be taken to analyze images taken of a particular soot area at

all possible focal lengths. The position of the soot particles along the optic axis of the

instrument will create variations in contrast and image characteristics which can render

some structures uninterpretable. This effect can compound errors due to other influences

discussed above and again, can suppress successful observation of fullerenic structures.

Through focal series can help to alleviate this source of error.

While care is taken to minimize the effects of these imaging artifacts, some error

will still be incorporated into the imaging results. This reduction in fullerenic structure
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observations gives a plausible explanation as to why, as mentioned in the previous

section, the observations account for only 20% of the expected theoretical value.

Normally, a 20% agreement would be cause for concern but given the fact that we still

observe an order-of-magnitude increase in fullerenic structures with tethered fullerenes,

our conclusions are not weakened.

6.4 Conclusions

Pure fullerene C60 molecules were functionalized with a dichloromethano group

and this functional group was used to tether the C60 molecules to the surface of

commercially available carbon black particles. Two different samples of the tethered

compound were taken, one prior to toluene extraction and one subsequent, and both were

analyzed by HRTEM for the abundance of fullerene-type structures and the size

distribution of the diameters of those structures. The results were compared to similar

observations of a pure carbon black sample and it was found that both tethered fullerene

samples had approximately an order-of-magnitude greater occurrence of fullerene-type

structures. Furthermore, the size distributions of the tethered samples both show a strong

peak at 7 A, the diameter of C60, while that of the pure carbon black shows no such peak.

This indicates that the functionalized fullerenes have, in fact, tethered themselves to the

carbon black particles and, more importantly, that these fullerenes are observable under

HRTEM. The linear density of fullerenes in the tethered fullerene samples are about 20%

of the expected value from experimental calculations, raising some concern. However,

the well-documented imprecision and artifacts of HRTEM imaging, combined with the

observed order-of-magnitude differences, preclude any weakening of the stated

conclusions.
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7 Economic cost modeling of commercial fullerenic soot plant

The overall goal for combustion synthesis research is to provide an alternative to

graphite vaporization for the commercial production of fullerenes. As discussed in

Section 1.4, combustion offers several advantages over vaporization including cheaper

raw materials, lower operating costs, and adaptability to large-scale systems. Any

combustion process proven to be efficient and productive in fullerene formation would

need to be scaled-up for macroscopic production.

Although the details of such a process were unfortunately not identified for pure

fullerenes through the course of this work, it was observed that fullerenic soot (soot

containing fullerenic character) could be efficiently made through combustion. The

prevalence of carbon black (conventional flame-generated particulate carbon synthesized

in industry with no fullerenic content) to make rubber, tires, inks, and other products

[ 130] indicates a potential niche market for fullerenic soot may exist if it can prove to be

economically competitive and superior in desired bulk properties, which it has for certain

applications 1[82].

To evaluate the cost of a large-scale fullerenic soot plant, an incremental cost

model was developed based on existing carbon black technology. This model examines

the extra cost incurred by taking an existing carbon black production line and converting

to make fullerenic soot. In this manner, it becomes relatively straightforward to determine

the competitiveness of fullerenic soot with conventional carbon black.

Sensitivity analyses performed on the model indicate that fullerenic soot will be

more expensive than carbon black, even given optimal operating conditions and expected

increases in efficiency. However, the price may be low enough to justify production for

separate applications and markets. Limitations on the model, though, leave room for and

necessitate a more detailed study before the same conclusions can be drawn for a pure

fullerene product. More study is also needed to identify optimal parameter settings before

a commercial fullerenic soot plant can actually be built.
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7.1 Model basis

The economic cost model was based on current carbon black production

technology as outlined by Donnet et al. [130].* The model involved analyzing Donnet's

plantt and determining changes necessary to convert it into a fullerenic soot producing

plant. The costs of these changes were estimated and totaled to provide the incremental

cost of producing fullerenic soot above and beyond the cost of producing carbon black.

The main reasons for doing such an analysis instead of estimating the cost from scratch

were that the two plants are nearly identical making many of the calculations redundant

and information concerning the cost of a carbon black plant is not readily available.

A schematic of Donnet's plant is shown in Figure 7-1. In this figure, the reactor

(1) is fed with fuel feedstock, hot air, and natural gas fuel. The gas and the air are fed

upstream of the fuel feedstock, which usually consists of liquid hydrocarbon oils. This

configuration allows for the combustion of the gas, which provides the energy and

temperature for the subsequent product formation and also consumes most of the

available oxygen. This leads to the pyrolysis of the feedstock into carbon black.

T.. Ic

(11 (2) (3) (4) (5) (6)
REACTOR HEAT COOLING FILTER AIR PNEUMATIC PULVERIZER

EXCHANGER

Figure 7-1. Schematic of commercial carbon black plant

All the information in this section is taken from the Donnet et al. reference cited here. Thus, this citation
is meant cover the entire section.

t For the remainder of the chapter, the plant described by Donnet et al. will be referred to as 'Donnet's
plant' for clarity.
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Further downstream, the reaction is quenched with water and the carbon black is

formed and cooled. The heat exchangers (2) provide further cooling (3), and the carbon

black is sent to a filter (4) where it is separated from the tail gas. The filtered product is

then conveyed pneumatically (5) to the pulverizer where all particles are reduced to an

acceptable size with a hammer mill (6). Although not shown in Figure 7-1, the carbon

black continues on through a pelletizer, drier, another filter, and size separator before

being discharged into a packing unit or a loading station.

The major parameters of Donnet's plant that are of importance in the cost model

analysis are listed in Table 7-1 along with their numerical values. In Table 7-1, Nm3

stands for normal cubic meters, that is volume at normal room temperature and pressure.

Table 7-1. Major parameters for Donnet 's carbon black production plant

Parameter

Plant product capacity

Soot yield

Air feed rate

Air consumption factor (k)

Stoichiometric air consumption

factor for methane fs)

Gas feed rate

Feedstock feed rate

Wet tail gas

Reactor pressure

Value

3000 kg/hr

0.70 g soot/g carbon fed

10,000 Nm /hr

65 %

9.55

681 Nm /hr

4285 kg/hr
.................................................................................

20,000 Nm/hr

760 Torr

The only major modifications to Donnet's plant that were made in this

approximate representation of fullerenic soot production were operation of the reactor at

low pressure and the use of liquid benzene as the fuel feedstock. These changes, along

with other assumptions taken in the model and adjustments to the parameters in Table 7-1

are further discussed in the next section. A more detailed description of Donnet's plant

can be found in the first chapter of the Donnet reference for this section.
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7.2 Assumptions

In developing the cost model, several simplifying and clarifying assumptions had

to be made. These assumptions fall into two major categories: those taken in identifying

what modifications would be needed to convert Donnet's plant into an approximate

representation of a fullerenic soot plant; and those taken with respect to the operating

conditions and production capabilities of the new plant. This work appreciates that

erroneous or misguided assumptions can often lead to inaccurate results and model

predictions. However, it is believed that all of the assumptions listed here are reasonable

approximations that do not alter the outcomes of the model or the conclusions drawn

from it.

7.2.1 Incremental changes and additions

Converting a carbon black plant into a fullerenic soot plant first and foremost

requires that the operating pressure in the reactor be dropped to pressures suitable for

fullerene formation - generally in the 20-100 Torr range. To achieve this, it was assumed

that high-capacity vacuum pumps would be used but that the filtering of the soot product

would be accounted for upstream and separately from these pumps. A filtering system is

already utilized to collect carbon black in the current configuration [130] making it

unnecessary to add this to incremental cost figures.

In addition, low-pressure operating requires the system to be sealed and tight-fit

to prevent air leaks, which could alter the yield, and to minimize the power needed to

keep the system under pressure. However, Donnet et al. indicate that carbon black

reactors are already sealed tight for insulation purposes to prevent thermal heat loss and

to allow material flow to be closely controlled [130]. Again, this needs not be accounted

for in the cost model.

Finally, the secondary fuel feedstock used for the majority of the soot production

is assumed to be benzene instead of the more conventional oils as studies have shown

that benzene fuel, in terms of organic materials, is the most favorable for fullerene

formation [32, 33]. Although the identity of the fuel was altered, it was not necessary to

modify the feeding system as the carbon black fuel oil is also a liquid feedstock and has

physical properties similar to those of benzene.
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7.2.2 Operating parameters

Many assumptions were made with respect to the operation and specific details of

the fullerenic soot plant. These assumptions, along with the justification and explanation

of each, are listed below:

1. The production rate of soot is equal to the typical capacity of a carbon black

plant. To make cost figures more comparable, the output of fullerenic soot

was set equal to that of Donnet's plant at 3 metric tons/hour.

2. The yield of soot is equal to 3% of the carbon fed. Although this is

significantly smaller than Donnet's yield of 70%, it is equal to the that

observed in the premixed sooting flame experiments discussed earlier in this

work, and was confirmed by thermodynamic equilibrium calculations

performed by STANJAN (see Appendix 3 for the results of both calculations).

This yield provides a more realistic assessment of plant performance.

3. Primaryflame feed gas is pure methane. Although natural gas is generally

used for this purpose, methane was assumed to simplify calculations. Given

that methane comprises about 85% of natural gas anyway, this assumption

seems reasonable.

4. Volume flows into the reactor are scaled up to compensate for the lower

operating pressure. Since it is desired to keep the production rate constant,

mass flows must be maintained at present levels. However, this requires the

volume flows to scale inversely with pressure and affects the size of the

reactor.

5. The air and gas feed rates for the primary flame are identical to Donnet 's

plant. The primary flame is not used for soot production but mainly energy

generation so it is safe to assume that this flame will not be altered.

6. The amount of conventional wet tail gas in the effluent is equal to the 20,000

Nm3/hr that is in the carbon black plant. Although there will be much more

tail gas in the fullerenic soot plant due to the low yield, the effect of this is

isolated and calculated separately as a tail gas resulting from non-yield fuel.
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Independent of the excess fuel, it is thought the tail gas would be similar in

volume and composition to the current effluent.

7. The reactor temperature is similar to the carbon black reactor temperature.

Given the similarity of the two systems and the difficulty of predicting

temperatures in a theoretical combustion setup, it is reasonable to assume the

temperature would not change appreciably between the two plants. This

eliminates the temperature from consideration in reactor volume calculations.

8. The furnace tail gas is ideal and undergoes adiabatic compression across the

vacuum pump. The ideal gas law is still valid for gases in the pressure and

temperature ranges seen here so it can be applied without consequence. The

adiabatic assumption is less solid but given that the entire system is insulated

and the gases will cool prior to the pump, heat loss should be minimal.

9. Vacuum pump efficiency is 80%. This is an efficiency typically seen in

industrial-sized pumps for converting electrical energy into pumping power.

10. The heat of combustion of conventional tail gas is 2500 kJ/m3 and that of tail

gas due to low product yield is 3141 kJ/mol. The conventional tail gas energy

is supplied Donnet et al. [130], while the low yield tail gas energy is

calculated from a rough approximation that the heating value of leftover

feedstock is in the same proportion to the initial heating value of the fuel as

the difference between the stoichiometric oxygen rate and the amount of

oxygen fed is to the stoichiometric oxygen rate. This relationship is shown in

Equation 7-1:

[TailGasHeatingValue] 2,stoich - 0 2,fed =- o- (7-1)
[FeedstockHeating Value] 02,stoich

where b is the equivalence ratio of the flame. The tail gas consists mostly of

light gaseous species meaning that condensation and coking should be

minimal. It is appreciated that the value computed is significantly higher than

what would be expected for combustible tail gas. However, this is an artifact

of the extremely low soot yield assumed in the calculation - meaning the

excess energy from the high benzene flow is assumed to be passed on to the
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tail gas. A more accurate value is needed but the absence of experimental data

at such yields prevents such a calculation.

11. The conversion efficiency of electricity generation is 40%. This is a typical

observed efficiency for converting fuel energy into electricity.

12. The cost of electricity is broken down intofuel cost and generation cost based

on industrial electricity costs for southern states. The plant would most likely

be located in the south where electricity is the cheapest. The fuel cost is based

on a fuel price of 50¢ per gallon [ 131] with an energy of 160,000 BTU per

gallon and a 40% efficiency - all industry norms.

13. The capital equipment lifetime (vacuum pump and new reactor) is ten years

with operation during 24 hours per day for 350 days per year. These are also

accepted industry figures for capital usage and duration. These values provide

a project lifetime basis for cost comparison.

As mentioned, these parameter assumptions will all affect cost predictions.

However, with the justifications provided, it is believed that corresponding effect of any

inaccuracies will be minimal. As a confirmation, where possible, the values were allowed

to vary in a specified range to test the sensitivity of the price to certain parameters. The

results of the most significant outcomes are discussed in the sensitivity analyses part of

the next section.

7.3 Cost model predictions

The cost model was constructed in Excel and used to make predictions as to the

final cost of producing fullerenic soot. Calculations were made both with base case

values representing most likely or current figures and with certain parameters varied in a

specified range to give sensitivity information. A reproduction of the spreadsheet for the

base case predictions is shown in Appendix 4. A text explanation of the logic and

calculations behind the lines in the model is also given in Appendix 4 following the

spreadsheet. All of the dollar and cent values given here are adjusted to Year 2000

dollars. The results indicate that fullerenic soot can be competitive with conventional

carbon black given the right conditions and advances in technology.
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7.3.1 Base case cost estimate

The base case cost model shows that the incremental cost to produce fullerenic

soot come to $6.543 per pound. Given that the current cost of carbon black is $0.35 per

pound, it seems that fullerenic soot could not be commercially competitive under such a

setup. Possibilities for reducing this cost are discussed in the next section. The cost is

broken down into its individual components in Table 7-2.

Table 7-2. Base case incremental costs for fullerenic soot production

As can be seen from Table 7-2, 99.7% of the total incremental cost comes from

the vast amounts of relatively expensive benzene fuel that must be fed to the system to

compensate for the low yield in the system. This indicates that the cost can be

dramatically reduced simply by using a cheaper fuel and/or improving the product yield.

Both of these options are explored further in the following section.

The cost breakdown also shows that the capital costs (the pumps and the reactor)

are negligible in the final cost, as is often the case with capital equipment. This means

that neither the cost of the pumps required to come down to pressure nor the size of the

reactor are limiting factors in fullerenic soot production. Prior to the construction of this

model, these had been concerns as it was believed that the lower pressure would result in

massive volumes of gas needing to be reacted and pumped away. The results suggest that

the reactor can be as large as necessary and as many pumps as necessary can be installed

without adversely affecting the final soot price.

Finally, it is also seen that electricity consumption is not an insurmountable cost.

Again, this was an early concern as large pumps require large energy inputs. It is

110

Component Absolute cost ($) Cost per pound ($/lb)

Reactor cost 311,702 0.0006
................... .o....................... . .........................o .... ...... .... ....... .... ....... ..... ......... ... ........... . ...............
Fuel cost 43,146 /hr 6.524

................... ...................... .................................................. .................. ........ ...... ......... ............
Pumps cost 546,933 0.0010
.. ...................................... .................................................. ......................... ...... ....... ............. ........
Power cost 118/hr 0.0178

Total 6.543



recognized that the energy requirement here is indeed quite big, but it is not

unmanageable. Additionally, there is potentially 50 times more energy in the effluent tail

gas than is required to run the pumps. Although not accounted for in this model, this

energy could be sold or used in other parts of the plant to help offset fuel costs.

7.3.2 Sensitivity to parameter adjustments

Many parameters in the model were adjusted to elucidate their effect on the final

product price but only four parameters were found to noticeably change the final values.

These four parameters were soot yield, fuel price, reactor pressure, and pump lifetime. Of

these, only two - soot yield and fuel price - were found to affect the price by more than a

couple of cents per pound. In fact, adjustments to these two variables dropped the price to

something that can be competitive with commercial carbon black.

Soot yield in the cost model was varied between 3% and 60% . This range was

chosen because the yield couldn't be much lower than it already is and while 60% is

much higher than we can hope to achieve, extending the range gives us a good indication

of the trends. The fuel price was varied between $0.50 and $1.50 per gallon. Again, at

$1.50, benzene is one of the most expensive organic fuels so it represents the top of the

scale. Other organics can be even cheaper than $0.50 but the chosen range is sufficient

for our purposes. The results of the sensitivity analyses with respect to soot yield and fuel

price are shown in Figure 7-2.
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1
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Soot Yield ( sootg C)

Figure 7-2. Senstivity of incrementalfullerenic soot cost to soot yield andfuel price
(reactor pressure = 40 Torr and pump lifetime = I0 years)
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For the data in Figure 7-2, the reactor pressure was kept constant at 40 Torr and

the pump lifetime was fixed at 10 years. As can be seen, improving the fuel price alone

can drop the price to $2.19 per pound - only 1/3 of the original cost. Bigger savings can be

realized by increasing the yield even slightly. As shown, a yield of just 20%, which

seems feasible, could potentially drop the cost to just 25¢ per pound, bringing it into a

range where it can competitive with carbon black. Of course, increasing the yield further

can bring the cost down to just a few pennies per pound. Such an extreme scenario seems

highly unlikely as there would be tradeoffs with product quality (which are discussed in

the Section 7.5) but the results do indicate that the incremental fullerenic soot price need

not stay at $6.54 per pound.

Sensitivity analyses with respect to reactor pressure and pump lifetime are shown

in Figure 7-3. In these analyses, the reactor pressure is varied between 10 and 90 Torr and

the pump lifetime from 4 to 12 years. Again, these ranges were chosen because they

represent feasible parameter values sufficient to illustrate their respective effects. The

soot yield and fuel price in these data were kept at 3% and $1.50 per gallon, respectively.

656.5

Pump Lifetime
S 656.0 (Years)

3 655.5 -- 6

655.0 , 10

654.0 Soot Yield: 0.03 g sootg C
o 653.5 - Fuel Price: $1.50 Yr2000$gal
- 653.5

653.0
0 20 40 60 80 100

Reactor Pressure (Torr)

Figure 7-3. Senstivity of incrementalfullerenic soot cost to reactor pressure and pump
lifetime (soot yield = 3% andfuel price = $1.50 per gallon)

As can be seen in Figure 7-3, changing the pump lifetime alters the price by less

than a penny while the reactor pressure variations have a maximum effect of only three

cents. Compared to the absolute price, these changes are insignificant.

To test if this was still the case at a lower absolute price, these analyses were

performed again using a soot yield of 20% and a fuel price of $0.50 per gallon. It was
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thought that the effect of pressure and lifetime may be amplified enough at a lower

overall cost to make the relative changes significant. If so, knowing the magnitude of the

effects would be helpful in determining the best possible line conditions. The results of

this sensitivity analyses are presented in Figure 7-4.
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Figure 7-4. Senstivity of incrementalfullerenic soot cost to reactor pressure and pump
lifetime (soot yield = 20% andfuel price = $0.50 per gallon)

As can be seen in Figure 7-4, the sensitivity to both pump lifetime and reactor

pressure actually decrease slightly. In fact, the total variation in price is now only 1.5¢.

At the lower absolute price, this variation does comprise a greater percentage of the price

but is still not enough to warrant any serious concern when the designing the fullerenic

soot production system. In fact, the most important result from Figures 7-2 and 7-3 is that

there exists a large degree freedom when choosing the pressure at which to operate the

system. This becomes important as soot yield, one of the parameters identified as being

of great importance, is often proportionally related to the operating pressure. This effect

is discussed in more detail in the Section 7.5.

7.4 Model limitations

As with any theoretical model, there a number of factors not taken into account

that could affect the final model results if included and should be kept in mind when

examining them. The major factors not accounted for in this model can be divided into

the two categories of making the final product more expensive and making it less

expensive. While the factors in the former category outnumber those in the latter, it
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seems that there are enough of both to prevent a prediction on the final effect on price if

all are considered simultaneously.

Factors that could increase cost include maintenance costs and associated labor,

extra physical space required, and a method for efficiently changing the product filter at

low pressure. The additional pumps and larger reactor will require regular maintenance

and servicing to remain operational. Depending on reliability, these costs could be non-

trivial. Similarly, the additional capital and low-pressure conditions may require another

operator to oversee line operation, which could drive up labor costs. The increased capital

will also require more physical space and thus more land. Although land is relatively

cheap in the south where the plant would be built, it could still add to the overall cost.

Lastly, changing the filter for product collection will also incur a cost. The carbon black

filter system (described in Section 7.1) will not be suitable because of the subatmospheric

operating pressure. A new system would need to be designed to account for the low

system pressure and minimal pressure drop across the filter. While it is believed it can be

similar to current technology, an extra cost will almost certainly be realized.

A cost savings could be seen, though, if several other factors are also considered.

These factors include profits from the sale of excess energy in the tail gas and also

increased revenue from the higher price that fullerenic soot will presumably command in

the market. A rough approximation of the tail gas energy profits using base-case data in

the model comes to over $11,000 per hour which offsets over 25% of the fuel cost.

Additionally, if this energy could not be sold, it may be feasible to recycle the excess

benzene back to the feedstock thereby offsetting the fuel costs in a different manner. It's

quite possible that with enough recycling, the soot yield could increase without any other

advances in efficiency. The increased revenue is difficult to estimate as it would be based

on market conditions but a somewhat higher price would have to be charged to turn a

profit on a more expensive product.

As mentioned, all of these factors will affect the bottom line of fullerenic soot

production and all need to be carefully evaluated before the final true incremental cost

can be known. However, it is thought that these factors will not alter the conclusions

drawn from the data presented above. In any case, the model still highlights some

important implications and recommendations for the emerging fullerenic soot industry.
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Turning our attention for a moment to a pure fullerene product, this model does

not make any estimations for the cost associated with extracting fullerenes from the

fullerenic soot. In current commercial production of pure fullerenes, this is often a

significant contributing factor to fullerene price. A detailed study of a large-scale

separation process would need to be considered before any of the results here could be

extended to pure fullerenes production.

7.5 Implications for fullerene price andfullerenic soot industry

There are two major conclusions that can be drawn from the results of the cost

model: fullerenic soot produced from combustion can be competitive with conventional

commercial carbon black; and, more importantly, purified fullerenes produced from this

method can be significantly cheaper than those currently sold commercially.

Considering first the pure fullerene price, conservative estimates of production

costs and fullerene selectivity reveal figures that are substantial improvements over the

current price. Taking the base-case scenario for soot production ($6.54/lb) and assuming

a 10% selectivity for C60 (observed in the diffusion flames in Section 3.2.2.1), gives a

base fullerene price of about $65/lb. Taking another conservative estimate that extracting

and purifying the fullerenes will cost the same as production [111], a final fullerene price

tag of $130/lb is estimated, which is consistent with previous analysis [108].

Given the current commercial price of approximately $9000/lb [ 106], this

estimated figure represents a tremendous price reduction of over 98%. This estimate is

more striking given that it was calculated using fairly conservative production figures.

The price could be reduced even further if more efficient scenarios are realized during

production. Selling fullerenes at such low prices will greatly expand their market in both

academic and industrial settings as C60 would become cheap enough for use in consumer

goods as well as research. Consequently, it appears that combustion is well-poised to

become a suitable alternative to the current commercial production method.

Now considering the production of fullerenic soot, some important studies need to

be completed before it can be competitive with carbon black. The most important of these

studies is to determine the effect of pressure on soot yield and fullerenic content. In

general, as pressure rises, soot yield also rises but fullerenic content falls resulting in a
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frustrating trade-off. Similarly, using a cheaper fuel can also drive down cost but again,

there is an undesirable trade-off. Fuels other than benzene, while cheaper, tend to produce

soot with lowered fullerenic content and altered characteristics. Determining the cheapest

fuel and highest soot yield possible that still make desirable soot will hopefully lower

costs. Additionally, other methods exist for improving the soot yield. These methods,

such as using different fuels, changing the character of the primary flame, or adjusting the

reactor size and residence time, all need more testing in an industrial setting. Most likely,

trade-offs will again exist between yield and fullerenic content so a detailed study will be

valuable in identifying the optimal operating conditions.

Applications for fullerenic soot must also materialize to make its production

economically desirable. It could compete directly with carbon black if the price is

sufficiently low. One example is its use in the formation of vulcanized rubber for tires,

where its bulk properties are superior to those of carbon black as shown in a Goodyear

patent [82]. This represents a huge market as rubber is by far the single greatest use of

carbon black worldwide. Carbon black is also made in various grades and prices and

fullerenic soot could steal market share from the more expensive grades. However,

fullerenic soot can fill niche markets unavailable to conventional carbon black. These

markets include serving as an adsorbent for hexavalent chromium and metal cations [132,

133] and dioxins [83]. In aggregate, these applications could create a market large

enough to absorb the production of as much soot as is presented here. In the absence of

such a demand though, the plant could be scaled down, to as little as 10% of the current

size, without significant cost increases.

The fact that fullerenes and fullerenic soot are produced concurrently is, while

detrimental to fullerene production, actually a boon to soot production. Even after

fullerene extraction, the soot remains fullerenic with significant fullerene characteristics.

This implies that the profit realized from fullerene sales could be used to subsidize the

fullerenic soot, thus making it even cheaper. If the costs of production can be recovered

from fullerene sales alone, then the soot could be sold cheaper than carbon black and

potentially take the entire market. Given this possibility, it seems that this production

method can be economically competitive not only with commercial fullerene production

but also with conventional carbon black.
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8 Conclusions

The work presented in this thesis has resulted in conclusions that have

implications for industry as well as for further fundamental research. While not all of the

conclusions were expected, or even favorable, they all nonetheless have added to the

database of fullerene and nanostructure formation through combustion. The major

conclusions of the thesis are summarized as follows.

* Diffusion flames

- Both laminar and turbulent-like diffusion flames are capable of making

fullerenes but only laminar flames can make them in a predictable and

documented manner.

- In laminar flames, fullerene concentration increases with residence time

until just beyond the stoichiometric surface, after which it decreases.

- The evolution of carbon structure curvature in laminar flames follows

trends similar to those of fullerene concentration.

- Nanostructures are found at very long residence times in laminar flames.

- Fullerenes may be consumed by soot in situ.

- Increasing dilution in laminar flames leads to competing effects.

- For a constant cold gas velocity, shorter flames and hotter flames tend to

have higher fullerene concentration.

- The fullerene-producing region in turbulent flames is much larger than in

laminar flames but yields are much smaller.

- Making predictions for fullerene production in turbulent flames cannot be

done with any accuracy.

- Diffusion flames are promising for fullerene production and laminar

flames are more desirable than turbulent flames.

* Premixed flames

- Secondary fuel in two-stage flames has an adverse effect on fullerene

formation.
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Secondary fuel is creating pyrolysis conditions similar to those seen in the

very early stages of the Mckinnon flame, where pyrolysis is also

occurring.

Combustion is necessary for fullerene production, either through precursor

generation or overcoming a formation barrier.

Two-stage flames with pure fuel secondary feeds are not suitable for

fullerene production.

Coexistence of soot and fullerenes in the one-stage Mckinnon flame

indicates that fullerenes are not consumed by soot in situ.

Understanding formation and consumption mechanisms better would help

in designing flames more promising of fullerenes.

* Fullerene reaction with soot

- Fullerene C60 reacts with soot in the temperature range 1023-1273 K in

accordance with first-order kinetics.

- Collision efficiency and activation energy are consistent with a reaction

controlled by surface diffusion or a heterogenous reaction.

- The reaction rate extrapolated to flame conditions is too small to account

for the observed rate of fullerenes consumption in a fullerene-forming

flame.

- Mechanisms other than fullerene-soot reaction must be responsible for

fullerene consumption in flames

* Fullerenes tethered to carbon black particles

- HRTEM analyses of samples containing fullerenes (C60) tethered to

carbon black show an order-of-magnitude greater occurrence of fullerene-

type structures than a similar analysis of pure carbon black.

- Diameter size distributions of the tethered samples show a strong peak at

the diameter of C60 while the carbon black sample does not.

- Circular structures seen in HRTEM images of combustion-generated soot

are in fact fullerene molecules.
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- Fullerenes can indeed be directly observed by HRTEM analysis.

* Cost modeling of a commercial fullerenic soot plant

- Increasing soot yield is the most important factor in driving down costs of

fullerenic soot.

- The price of fuel is also quite significant in determining the soot price;

using a cheaper fuel than benzene could result in massive savings.

- Capital costs and power costs are negligible in the final product price.

- By minimizing trade-offs, fullerenic soot can be competitive on a cost

basis with conventional commercial carbon black.

- Pure C60 can be produced inexpensively and sold at a cost saving of up to

98% compared to current commercial production methods.

* Overall

- Combustion has not yet been optimized for fullerene production

- The combustion process for the formation of fullerenes from organic fuels

is necessary but not yet well understood.

- Much more study is needed to effect a better understanding of fullerene

formation and consumption mechanisms in flames.

- Combustion holds immense promise to be a much cheaper and more

efficient alternative to the current method of commercial fullerene

production.
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9 Recommendations

There are many studies that can be performed to build on and complement the

conclusions presented in the previous chapter. Possibilities for future work include

experimental flame studies to identify conditions of optimal fullerene production as well

as more specific mechanistic studies to effect a detailed understanding of fullerene

interactions. There also exist several opportunities for industrial research to provide more

profitable commercial fullerene production plants. The recommendations arising from

this thesis work are outlined below.

* Characterize a greater range of conditions for fullerene-forming flames to identify

optimal fullerene production conditions both in terms of fullerene yield and

fullerene price. Both diffusion and premixed flames need more study under

varying parameters such as higher pressure, greater dilution, and more heavily

sooting. In addition, systems with completely different flame configurations

should be tested. These configurations can include:

- Thermal insulation surrounding the flame to minimize radiation loss and

increase flame temperature. Preliminary experiments with insulation were

performed as part of this thesis work but the results were inconclusive.

- Separating the fullerenes from the soot in situ through the use of an

electric field or a soot filter to prevent any sort of consumption. With such

separation, the soot/fullerene contact could be reduced essentially to zero,

thereby eliminating any consumption by soot or soot byproducts.

- Two-stage flames with a premixed secondary injection consisting of fuel,

oxygen, diluent, and/or fullerene precursor species rather than just fuel.

- Significantly increased residence times through flames in microgravity.

* Characterize fullerene-forming flames for PAH to identify fullerene precursor

species. As mentioned, there is significant disagreement about fullerene formation

mechanisms and identifying fullerene precursors would not only help reconcile

these disagreements but also help with modeling efforts (discussed below).
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* The last configuration above about microgravity flames is actually more geared

toward understanding mechanistic influences in fullerene formation. Such flames

will test the effect of buoyancy independent of pressure, which will be helpful,

but many more reactions and interactions need to be studied. Reactions that both

produce and consume fullerenes should be studied to determine their reaction rate

coefficients including activation energies and collision efficiencies. Studying

these reactions in a detailed manner will eventually produce a database of rate

constants pertinent to fullerenes much like those that exist for reactions involving

PAH. Knowing fullerene precursors will indicate which reactions to study.

Although it may be necessary to study individual reactions to determine these

fullerene precursors, mechanistic studies will give a strong indication of which

reactions and species are most important.

* Once these reactions have been studied, they can be used for modeling purposes

to create simulations predictive of fullerene concentrations. Such models can be

compared to flame characterizations for fullerene verification and then used to

estimate fullerene formation in theoretical flames, greatly improving the

likelihood of optimizing fullerene production. The development of a kinetic

model to predict fullerene formation is vital to the intelligent design of flames for

increased fullerene production.

* Characterize soot structure evolution in a more detailed manner in premixed

flames. It is unknown whether similar conclusions for soot in premixed flames

can be drawn as were drawn for diffusion flames. Knowing if soot structure

follows the same pattern as fullerene concentration, like it does in diffusion

flames, would have important implications about both the fullerene mechanism

and nanostructure formation.

* In conjunction with the preceding recommendation, soot structure evolution

should be studied during the heat treatment of combustion-generated soot. Such
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studies can provide insight to soot behavior in flames and again have mechanistic

and nanostructure formation implications. If possible, it would be preferable to do

this in an HRTEM microscope so that the same region of soot material can be

continually monitored as it undergoes changes due to thermal treatment.

* Identify conclusively the presence of fullerenes smaller than C60 in HRTEM

images. Such fullerenes have adjacent pentagons and their presence in soot would

significantly alter the soot's bulk properties. Now knowing that C60 can be seen in

HTREM, these species should also be verified. It would also be useful to identify

a spectroscopic characterization method other than HRTEM for small fullerenes

but no such method is currently available.

* Bulk properties of fullerenic soot should be tested to determine its utility in

industrial applications. Although it has been shown that fullerenic soot can

compete economically with certain carbon blacks and fullerenes from other

methods, the desirability of the fullerenic soot must be demonstrated before a

significant market will materialize.

* Other industrial research should be performed to determine the acceptable

balances in trade-offs between fullerenic soot quality and price. These trade-offs

exist, for example, in choosing the furnace fuel to produce the soot or in choosing

the operating pressure as higher pressure leads to more soot but less fullerenes.

This ties in also to bulk property testing as all qualities of fullerenic soot should

be analyzed to determine their practicality.

* A pilot-plant scale fullerene and fullerenic soot facility should be constructed to

perform this research. A pilot-plant will provide an inexpensive test bed to test

fullerene production and investigate soots that would be expected to be produced

in a commercial-size plant. Such plant will ultimately determine the feasibility of

using combustion to synthesize fullerenes and fullerenic nanostructures.
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11 Appendices

11.1 Appendix 1 - Tabulation of high-flow (turbulent)flame data

Flame #11

Height above Percent of Concentration
burner (mm) condensable material I(u/L) C60/C70

352 2.82 1877.37 1.07
367 1.05 266.91 0.92
382 1.39 356.34 1.81
406 0.93 175.39 1.55
418 0.79 155.33 1.67
436 0.52 104.16 1.30
457 0.10 13.52 1.13
482 0.45 36.61 0.95
507 0.22 29.93 0.90
531 2.02 99.45 0.94

Flame #12
Height above Percent of Concentration
burner (mm) condensable material (ug/L) C60/C70

382 0.18 32.17 0.93
400 1.70 200.38 1.16
419 0.73 135.73 1.07
441 1.60 174.88 1.00
462 1.83 245.06 0.89
482 0.76 143.41 0.88
507 1.54 195.07 0.80

Flame #13

Height abovel Percent of Concentration I
burner (mm) condensable material (ugL) C60/C70

307 0.62 256.79 1.15
324 0.33 110.31 2.16
341 0.36 104.28 0.77
358 0.42 116.97 0.61
375 0.63 127.90 0.98
392 1.18 255.83 0.62

Flame #14

Height above Percent of Concentration
burner (mm) condensable material (ug/L) C60/C70

362 1.00 306.97 1.87
382 1.44 376.23 0.75
402 1.63 453.08 1.55
422 1.08 242.98 0.60
442 0.85 140.15 2.72
462 2.99 375.13 1.06
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11.2 Appendix 2 - Premixedflame data and sample calculation

McKinnon Flame
Height above Flame Concentration Soot Conc.

nozzle (ng/cm3 ) in flame

(mm) C60o C70 (ng/cm)

5.8 0 0 102.73
12 0.47 0.63 113.93
20 1.24 1.36 118.89
30 3.06 3.08 126.95
40 3.50 3.42 149.20
50 3.62 3.35 117.39
60 4.85 4.59 170.80
70 5.48 5.22 173.69
80 4.58 4.16 171.39
90 5.05 3.82 224.98
100 6.94 6.38 269.22
110 7.32 6.59 294.82
120 9.37 8.11 309.11

Two-stage flames - all data are flame concentration (ng/cm ; )

Height above Flame #1 Flame#2 Flame #3

burner (mm) Co C70 St C0 C70 St C60 C Soot

15 0.00 0.00 680.18

20 0.00 0.00 254.77
30 0.00 0.00 183.11
35 2.38 2.34 160.70 0.00 0.00 188.09
40 2.26 2.31 179.53 0.00 0.00 192.96 0.00 0.00 297.83
50 0.98 0.76 237.71 0.00 0.00 156.07 0.00 0.00 307.14
60 0.43 0.38 202.81 0.00 0.00 155.69 0.00 0.00 274.71
70 0.58 0.49 153.38 0.00 0.00 135.39
80 0.87 0.71 151.89 0.00 0.00 115.96 
90 1.72 0.93 146.82 0.00 0.00 88.95

100 1.94 1.93 175.53 0.00 0.00 81.93
110 2.31 2.08 197.81 0.00 0.00 82.57
120 3.01 3.08 230.86 0.00 0.00 79.06

Height abov Flame#4 Flame #5 Flame #6
burner (mm) I Co C70 Soot C60 Co Soot C60 C70 Soot

30 0.00 0.00 3.727
35 0.91 0.72 100.64 0.00 0.00 -0.172 0.00 0.00 3.83
35 0.95 0.72 76.97
40 1.25 1.17 105.63 0.00 0.00 0.307 0.03 0.02 6.46
40 0.95 0.92 64.55
50 0.28 0.32 50.23 0.00 0.00 0.924 0.15 0.13 3.89
60 0.77 0.60 43.41 0.01 0.01 -0.609 0.17 0.13 1.00
60 0.85 0.64 74.18
70 1.91 1.48 43.61 0.14 0.08 1.149 0.20 0.12 1.16
70 2.62 1.62 77.72
70 2.10 1.32 88.93
80 2.69 1.45 77.40
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Sample calculation for data at 70 mm height above nozzle in the Mckinnon flame:

Soot collected: 11.62 mg

C60 collected: 366.92 g

C 70 collected: 349.11 lgg

Sample gas collected: 758 cm3

Lab temperature: 297.65 K

Water column pressure: 729.4 Torr

Flame pressure: 40 Torr

Flame temperature at 70 mm: 1440 K

(measured by weight)

(measured by HPLC)

(measured by HPLC)

(measured in water column)

(experiment control)

(from reference [37])

Adjust gas volume to flame conditions:

729.4Torr 1440K
Volume of gas in chamber = 758 cm x x = 66900cm3

40Torr 297.65K

Divide each mass value by gas volume to get the concentration:

C60: C6o concentration = 366.92pg x xng 1 = 5.48 
lpg 66900cm3 cm3

1000ng 1 ngC70: C70 concentration = 349.1 lPg x x = 5.22
lpg 66900cm3 cm3

1000000ng 1 ngSoot: Soot concentration =11.62mg x ° gx 1 = 173.69 ng
1mg 66900cm3 cm3
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11.3 Appendix 3- Calculations forfullerenic soot yield

11.3.1 Calculationsfrom observed experimental data

Data used below are taken from a height above burner of 120 mm in the regular

McKinnon flame data (Figure 4-6). This data point was used because it is at the longest

residence time and hence, closest to equilibrium. At this point, the soot concentration is

309.11 ng/cm 3. The subsequent calculations are as follows:

Soot Conc. = 309.11 ng
cm

at flame conditions

ng 760Torr 869.5K ngSoot Conc = 309.11 n x x 869 18695n
cm3 40Torr 273.15K cm3

Gas Flow Rate = 2.785SLP = 2785sccm

Soot Prod Rate = 18695 g x 2785 = 52066722 ng =
cm3 min min

L latin
Carbon Feed Rate = 0.608 x x

min Latm
0.08206 Lati x273.15K

molK

at standard conditions

assuming no mole change

54.067 mg
min

,72
g =1.952 g

mol min

from benzene

52.067 mg
Soot Yield = min =0.02667 mg soot = 2.67% 3%

1952 Ig mg carbon fed
min

So the assumed observed fullerenic soot yield is approximately 3%.
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11.3.2 Thermodynamic equilibrium calculations by STANJAN

A STANJAN equilibrium calculation was run at constant temperature and

pressure with the following inputs in the following table. The inputs correspond to those

present in the McKinnon flame. The Chemical Kinetics Library (CKLIB) in conjunction

with CHEMKIN-II Version 4.5 was used for predicting equilibrium concentrations in this

calculation.

Input Parameters

Parameter Value

Pressure 0.0526 atm
................................................................................................... .......... ...............................................................................................................................................

Temperature 1440 K

Initial benzene 0.2182 mol fraction
A_ A___ . __ . . ............................... ..............................

Initial oxygen 0.6818 mol fraction
.......................................................................In itia l a rg o n ............................... ............ ................................m o f a c tion..................................
Initial argon 0.1000 mol fraction

The important output parameters from the calculation are summarized in the next

table. STANJAN calculates equilibrium values for the physical properties of the system

as well as the mole fractions of all species involved. The table shows the ones that are

used to calculate the soot yield.

Output Parameters

Parameter Value

Initial average molecular weight 4.286 g/mol

Final average molecular weight 2.077 g/mol

Initial benzene 0.2182 mole fraction

Final solid carbon 0.0195 mole fraction

137



The soot yield can be calculated from these values by calculating the moles of

carbon fed and moles of solid carbon produced and comparing the two. The calculations

follow:

mol Carbon
Carbon Fed = 0.2182 x 6 = 1.3092mol

mol Benzene

42.856 gtolSolid Carbon Made= 0.019456x mol 0.04015mol
20.766 g

mol

0.04015mol
Soot Yield = = 0.030669 = 3.0669% 3%

1.3092mol

So this confirms the observed fullerenic soot yield of approximately 3%.
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11.4 Appendix 4 - Economic cost modelforfullerenic soot plant

11.4.1 Spreadsheetfor economic cost model- base case cost

Estimation of Incremental Costs for Commercial Production of Fullerenic Soot
1 Based on current carbon black process
2
3 Changes to fumace black plant:
4 (plant described i n Carbon Black: Second Edition by Donnet, Bansal, and Wang - 1993)
5 Low pressure:
6 Pumps and blowers including fuel and operating costs
7 Reactor already sealed and tight-fit (Donnet, p. 18)
8
9

Physical Properties:
Fuel Name:
Fuel Density:
Fuel MW:
Fuel Heat of Combustion:
Molecular Weight of Methane:
Molecular Weight of Tail Gas:
Standard Pressure:
Standard Tem perature:
Gas Constant:
Ideal Gas Heat Capacity, Cp:
Gamma, y:

Benzene
0.879
78.11

757.52
16

21.536
101325
298.15
8.314

29.099
1.4

g/cc
g/mol
kcal/mol (Perry, p. 3-156)
g/mol
g/mol (Donnet, p.46)
Pa
K
m3 Pa/mol K (J/mol K)
J/mol K

Assumptions:
Filtering of soot acco unted for upstream of p ump.
Capacity, in terms of production rate of carbon black or soot, equals typical plant capacity outlined by Donnet.

Assume hourly plant output: 3.000 metric tons/ho.
3000 kg/hr
0.03 g soot/g C
0.70 g soot/g C

Yield of Soot:
[Donnet's Yield (max):

Convert to gas rate and oil rate:
Air feed rate, air
Air consumption factor, k
Stochiometric air consum. for methane, f 

(Assume feed gas is pure methane)
Gas (fuel) rate:

Fuel feedstock rat e:

Equivalence Ratio:

Tail gas to be removed:
Amount of conventional wet tail gas:

Quench water i njected:
Gas from non-yield fuel:
Total:

10,000
65

9.550

Nm 3/hr

Nm 3/Nm 3

681 Nm3/hr
445 kg/hr

100,000 kg/hr
31,320 Nm3hr
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20,000 Nm 3/hr
0 Nm3/hr

29,976 Nm3/hr
49,976 Nm3/hr

1,764,885 Nft3/hr

To keep production rate constant, assume mass flow same as at atmospheric
pressure and adjust vol ume flows accordingly:

Assume that reacto r temperature is similar to carbon black reactor.
Reactor Pressure: 40 To

Hourly plant output:
Benzene rate:
Gas (methane) rate:
Tail Gas:

Reactor Cost:

5333
3000

100,000
445

558,880
15,826

$311,702.04

)rr

ur (Donnet, p. 23)

(Observed in premi xed burner)
(Donnet, p.42-43)]

(Donnet, p.42-3)
(Donnet, p.42-3)
(Donnet, p.22)

(Donnet, eq. 1, p. 21)

(Corresponding to obse rved yield)

(Donnet, eq. 11, p. 45)

Pa
kg/hr
kg/hr
kg/hr
ft3/min
m3/min
Yr 2000 S
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



$1.50 Yr2000$/gal
$43,146.04 Yr2000$/hr

Pump Price Estimate for 12000 scfm capacity:
Dekker Vacuum Technology:
From Peters and Timmerhaus (1980):
Ten (10) Rotary compressors in parallel each with a
capacity of 1200 scfm:

Nash Engineering Company:
Average

Pumps Needed:

Power Requirements:
Assume adiabatic compression.
Assume tail gas is ideal.

Supplied Power:
Per hour

Pump Efficiency:
Power Required:

Heat of comb of conventional tail gas:
Heat of comb of low product yield tail gas:
Tail Gas Conversion Efficiency

Power converted from tail gas:
Power to be bought:
Excess power from tall gas:

Cost of Electricity:
Fuel Cost:
Generation Cost:
Power Cost:

Translate Costs to per kg basis:
Pump lifetime:
Hours operation per day:
Day operation per year:

Total Cost:
Total Production:
Cost per kg:

Total Incremental Cost
for fullerenic soot:

2

2

1,55

1,53

175,000 Yr2000$

110,000 Yr1979$
196,051 Yr1999$
201,933 Yr2000$
170,000 Yr2000$

$182,311 Yr2000$
3

24,625 J/m3

.3,382,667 kJ/hr
80 %

.9,228,334 kJ/hr
2500 kJ/m3

3141 kJ/mol
40 %

i9,631,685 kJ/hr
0 kJ/hr

30,403,351 kJ/hr

(Peters et al., p. 882)

(Dekker Technology)

(Peters et al., p. 559)
(Marshall & Swift)
(3% inflation)
(Nash Engineering)

(McCabe, p. 209)

(Donnet, p.45)

0.0267 Yr2000$/kWhr
0.0146 Yr2000$/kWhr

$118.32 Yr2000S/hr

10 years
24 hr/day

350 days/year
$3,635,064,570 Yr2000$

252,000,000 kg
$14.42 Yr2000$/kg

$14.42486 Yr2000$kg
$6.54301 Yr2000$slb

References:
Dekker Vacuum Technologies, Inc., Personal Communication, 20 April 2000.
Department of Energy Weekly Petroleum Status Report

(as reported in Oil & Gas Joumal, 10 Jully 2000, p. 89).
Donnet, J.-B., Bansal, R.C., Wang, M.-J. Carbon Black: Second Edition, Revised and Expanded,

Marcel Dekker, Inc., New York 1993.
Energy Information Administration, Form EIA-826, "Monthly Electric Utility Sales and

Revenue Report with State Distributions."
Marshall and Swift Equipment Cost Indices

(taken from the journal Chemical Engineering for 1979-1999).
McCabe, W.L., Smith, J.C., Harriot, P. Unit Operations of Chemical Engineering: Fifth Edition,

McGraw-Hill, Inc., New York, 1993.
Nash Engineering Company, Facsimilie Communication, 16 May 2000.
Perry, R.H., Green, D.W., Maloney, J.O. Perry's Chemical Engineers' Handbook: Sixth Edition,

McGraw-Hill, Inc., New York, 1984.
Peters, M.S., Timmerhaus, K.D. Plant Design and Economic for Chemical Engineers: Third Edition,

McGraw-Hill, Inc., New York, 1980.
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62 Fuel Price:
63 Fuel Cost:
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105



11.4.2 Explanation of cost model

This section explains the entries in the economic cost model spreadsheet

presented in Section 11.2.1. This appendix is meant to provide only explanations behind

the numbers as the assumptions have all been discussed in Section 7.2. Some things to

note globally about the spreadsheet are:

· Assumptions are in italics

* Major section headings and final costs begin in the first column of text

· Parameters, constants, and calculated values start in the second column

· Units are immediately to the right of the value they describe

* If used, the reference for the value follows to the right (the full list of

references is given at the end of the model)

* Values in bold are important or final section parameters

* All dollars and cents have been converted into Year2000 figures.

The values that need further explanation or clarification are outlined below:

Lines 33-35: These are parameters necessary for the calculation of gas and

feedstock federates. The air consumption factor is the percentage

of total oxygen used for complete combustion.

Lines 37-40: Gas (fuel) is the primary flame fuel source used for energy

generation and goes to complete combustion (here, we use

methane). Fuel feedstock is the liquid secondary fuel used for

product formation (benzene here).

Line 45: No quench water is injected as combustion will already be

incomplete due to the high equivalence ratio (line 41).

Line 46: This gas is produced solely from the excess benzene feed and was

treated as tail gas additional to that produced by the conventional

gases (which is also present in line 44).

Line 60: The reactor cost was estimated by using a scaling factor given by

Peters & Timmerhaus in 1980. The ratio of reactor volumes was

used to calculate the cost of the new reactor. The original reactor

price was subtracted to get the incremental cost.

141



Lines 62-63: The fuel cost for benzene was converted to an hourly cost by

incorporating the feedstock flowrate and subtracting out the

original flowrate.

Lines 65-73: Three pump price estimates were made; two were quotes obtained

from outside commercial companies, and one was calculated from

an engineering design text (Peters & Timmerhaus). The average

was taken as a fairly accurate pump cost.

Lines 74: The number of pumps needed was obtained by comparing the tail

gas volume in Line 48 to the 12000 scfm capacity.

Lines 80-81: The power requirement was obtained using gas pressures and heat

capacities and then converted to an hourly basis using the

volumetric flowrate (line 59).

Line 87: The potential power recovered from the tail gas was calculated

using the heats of combustion in lines 84 & 85 with respective

flowrates in lines 44 & 46.

Lines 88-89: These lines compare the power required in line 83 to that available

in the tail gas in line 87 and reports the amount to be bought or the

excess depending on their relative magnitudes. In theory, any

excess power could be sold but that is not accounted for here.

Lines 90-93: The power required is combined with the fuel and generation costs

to get the final power cost. Only power to be bought is subject to

the fuel cost but all of the power is subject to the generation cost.

Line 99: The total cost is found by adding the pump and reactor costs

(capital costs) to the fuel and electricity costs (operating costs) on a

project lifetime basis.

Line 100: Total production is also calculated for the duration of the project

lifetime.

Line 105: Final incremental cost to producing fullerenic soot instead of

carbon black on a per pound basis.
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