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Abstract
A noninvasive method for in vivo measurement of tissue oxygen concentration has
been developed. Several techniques currently used suffer limitations that prevent
their practical clinical use. Our method is to use the paramagnetism of molecular
oxygen to build a method for noninvasive tissue oxymetry. By using paramagnetism
of molecular oxygen, magnetic resonance spectroscopy (MRS) can be used to measure
tissue oxygenation. Chemical shifts of brain metabolites and water have a downfield
shift with increased amounts of oxygen. Chemical shifts were linearly dependent
on the fraction of inspired oxygen (FI0 2) and the slope is approximately 0.0003
ppm per percent change of oxygen. The slope was not significantly different between
brain metabolites or water. Furthermore, the slope agreed with simple theoretical
predictions using Henry's law and the magnetic susceptibility of molecular oxygen.
Changes in brain oxygenation in the same animals was confirmed using gradient
echo BOLD measurements of changes in R2* as a function of F10 2 in the same
animals. The results demonstrated the promising potential of this technique. The
implementation of this method in stroke and tumor models is discussed.
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Chapter 1

Introduction

The concentration of oxygen in tissue is a major parameter describing organ viability,

and tissue oxygen content is a vital parameter for a number of important pathologies.

Regional oxygen tension, which reflects the overall health of tissue, depends on the

extent of perfusion and the level of local metabolic activity requiring oxygen con-

sumption. Effective radiotherapy for tumors requires tissue to be well-oxygenated.

Recently, hyperoxia has been found to reduce infarct size after stroke [26]. In addi-

tion, tissue oxygen saturation can change during activation associated with normal

brain activity as well as in states such as status epilepticus, in which energy demands

greatly increase [25] [24]. Many magnetic resonance (MR) techniques have been used

for the measurement of oxygen tension, or parameters related to oxygenation. Unfor-

tunately, there are no effective, non-invasive methodologies for accurate quantification

of local tissue P0 2. While very safe and effective methodologies exist for measure-

ment of arterial oxygen saturation, the methods that exist for non-invasive, in vivo

measurement of tissues such as the brain are quite limited. We propose to perform

experiments relevant to the development of more comprehensive MR measures of lo-

cal tissue PO2. The advantages and disadvantages of a number of MR techniques that

have been used for measurement of local tissue oxygen content will be discussed in

the following sections.
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1.1 BOLD

The most common MR technique for obtaining oxygenation-dependent information

is a semi-quantitative approach that relies upon the changes in magnetic field gra-

dients around blood vessels due to changes in the oxygenation states of iron in

hemoglobin. Structure of hemoglobin is shown in figure 1-1 which is taken from

www.people.virginia.edu/rjh9u/hemoglob.html.

Hemoglobin Molecule h__ tome
a chain rain

ain

he
Mule

' chain 

Figure 1-1: Structure of the hemoglobin.

This method is referred to as BOLD (blood oxygenation level dependent con-

trast) [21]. The origins of this technique go back to the 1930's with Pauling's work [23]

which demonstrated changes in magnetic susceptibility of hemoglobin depending upon

its oxygenation state. The figure 1-2 shows structural change of hemoglobin during

the oxygen binding process. The picture is taken from www.chemistry.wustl.edu/-

edudev/LabTutorials.

The spin state of the iron changes from 2 to 0 when 02 binds reversibly to iron-

porphyrin active sites in hemoglobin and causes deoxyhemoglobin to be paramagnetic.

The paramagnetic nature of deoxyhemoglobin causes a local magnetic field inhomo-

geneity which can be exploited by MR techniques to obtain information about deoxy-

hemoglobin concentration and therefore oxygenation. However, the BOLD signal can

14



Figure 1-2: When hemoglobin is deoxygenated as shown at the left, the heme group

adopts a domed configuration. When hemoglobin is oxygenated as shown at the

right, the heme group adopts a planar configuration. The conformational change in

the heme group causes the protein to change its conformation.

be affected by changes in blood flow, blood volume, motion, and anything else that

leads to a change in T2*. T2* is the empirical constant associated with the decay of

the transverse magnetization. The BOLD contrast is dependent upon blood flow and

oxygen consumption as described below [10]:

CMRO2 (t)3 CMR0 2(0) (ARBOLD(t) oc vf(t) CBF(t) - vf(0) CBF(O) (1.1)

where AR2* (=1/T2*) is the change in the transverse relaxation rate,CMRO 2(t)

is the oxygen consumption and CBF(t) is the blood flow. Thus, extraction of oxy-

genation from measurements at a single oxygenation state is quite difficult. One

recent paper examined the utility of BOLD for examining p 0 2 in tumors by compar-

ing BOLD measurements with measurements made from a regional implanted oxygen

electrode. These data are shown in Figure 1-3 below
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25 + 

21 0 64.) 80 100

p02 /mmHg

Figure 1-3: Variation in local R2* as a function of variations in p 0 2. Each symbol

represents a different tumor. Note that the sensitivity of R2* to changes in pO2

is variable from one tumor to another. Note also that a given value of R2* is not

predictive of the pO2 value. This picture is taken from Figure 5 of [3].
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While there was in general an excellent correlation between the measured P0 2 and

the R2* value, it was determined that absolute quantification of P0 2 was impossible

with BOLD [3] [4]. The reason for the failure of this technique is that it is impossible

to turn an R2* value directly into a P0 2 value.

1.2 Measurement of T1

Another method is to measure the effect of oxygenation on the Ti (longitudinal

relaxation time) [12]. In this approach the researchers investigated whether the 02

dissolved during hyperoxygenation is responsible for the reduction of T1 rather than

02 bound to hemoglobin. They found that there was a negative linear relationship

between p 0 2 and T1.

3,100 ..............

1003,500

Percentage ofO2 ngc

Figure 2. Ti in sotons saturated with varfing gaseous 0 concentraons (8.45.
Tels* mane" * '

Figure 1-4: Measurement of Ti with various oxygen percentage in three solutions.

This image is taken from [12].
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They believed that the dissolved molecular oxygen contributed to this reduction of

T1 during hyperoxygenation. The authors claimed that during hyperoxygenation, the

free fraction of 02 that is dissolved in the solution is the main source of the reduction

of T1 due to its paramagnetic properties. However, like T2* signals, T1 signals are

complex and many biological factors can lead to a change of T1 signal, including,

importantly, changes in blood flow. Furthermore, measurements during hyperoxia

may not be relevant to the normal physiologic state. Thus, it is not possible to

measure P0 2 quantitatively by change of T1 signals alone.

1.3 19F Spectroscopy and Imaging

In another technique, the linear dependence of the T1 relaxation rate of perfluorinated

contrast medium (PFC) on oxygen content is used. It was found that the longitudinal

relaxation rate (1/T1=R1) of the fluorine nucleus depended linearly on the partial

pressure of oxygen. For this approach, PFC has to be delivered to the tissue being

sampled, and fluorine 19 MR imaging is used to measure R1 [1]. The researchers used

perfluorotributylamine to investigate the relationship between the longitudinal relax-

ation rate of the fluorine nucleus and partial pressure of oxygen [22]. The data from

this study is shown in Figure 1-5 taken from http://cip.swmed.edu/LPR/pO2.htm.

18



Figure 1-5: The longitudinal relaxation rate of fluorine nucleus linearly increased with

P 0 2 [1]
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P0 2 maps are then produced from calculated 19F T1 images of PFCs through

application of the calibration curve data from the linear relationship between PFC

19F relaxation rate and P0 2 [9] [20]. The major limitation of this technique is

the low signal to noise ratio (SNR) of (19)F NMR and the requirement injection of

an exogenous agent. These limitations make this approach impractical for routine

human use.

1.4 17 0 Methods

Another MR spectroscopic method is measurement of 17 0 MR signal after inhalation

of gaseous 17 0. Detection of 170 may be done directly by 170 MR imaging or spec-

troscopy, or indirectly by detecting the effect of 170 on a 1H water image [32] [31] [29].

Natural After 170
...... __inhalatin
aDundance

2 min

0.6 0.2 -0.2 -0.8 "0, Inhalation

Figure 1-6: 170 signals increased after breathing 170 label oxygen for two minutes.

This illustration is taken from [32]
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The direct method suffers from poor sensitivity and hence poor spatial resolution.

Some researchers have tried to solve the sensitivity problem through ultra high-field

170 chemical shift imaging, which shows a fourfold increase in NMR sensitivity from

4.7T to 9.4T and can rapidly image the CMRO 2 (cerebral metabolic rate of oxygen

consumption) in the rat. The experiment demonstrated several advantages; however,

the procedure required an invasive implantation of a 170 radiofrequency receiver coil

that would not be applicable to humans. Furthermore, 170 is quite expensive and

requires injection in the subject, and there are problems involved in modeling the

H2 0 formation in brain due to the influx of labeled water from large metabolically

active tissues such as the liver. Again, this approach has not found wide acceptance.

1.5 EPR

Finally, EPR (electron paramagnetic resonance) methods including both spectro-

scopic and imaging systems are used to generate possible oxygen quantification meth-

ods. A major problem with EPR imaging is the heating of the imaged object due

to the dielectric loss during the imaging process. This restricts its use to only small

tissue samples or small animals. Researchers were able to solve this problem by using

the Overhauser effect to indirectly detect the EPR-signal [13] with a new contrast

medium based on a single electron substance [16] [15] to enhance the signal through

dipole-dipole interaction. This signal enhancement is a function of RF power and of

the EPR linewidth of the substance, which is influenced by the oxygen concentra-

tion. However, the downside of the Overhauser EPR is the requirement of special

equipment such as the special low magnetic field scanner.

21
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Magnetic field (mT)

2.0

1 .5

0.5

0 1 2 3 4 5
%02

FIG. 1. Sensitivity of the EPR linewidth to the oxygen environment.
Results obtained using Printex U. Top: EPR spectra recorded in
X-Band (9 GHz) in different oxygen environments. Bottom: Calibra-
tion curve of the Printex U in a muscle homogenate.

Figure 1-7: The linewidth is increasing with percentage of oxygen. The image is taken

from [17].
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Carbon blacks [17] were demonstrated to be suitable EPR contrast media and they

have several advantages such as long-term stability and absence of toxicity. However,

we would like to find an endogenous way to measure P0 2 without injecting or using

any contrast medium in the human body. Also, another crucial disadvantage of this

method is the power deposition caused by the EPR B1 field, which might cause

undesired heating, especially above 300 MHz.

In summary, while a variety of approaches have shown sensitivity to tissue P0 2,

none have shown the ability to absolutely quantify P0 2 levels non-invasively.

1.6 Motivation and Rationale

After reviewing several commonly-used MR techniques for measuring tissue oxygena-

tion, we are motivated to develop a technique that will avoid some of the limitations

outlined above. First, we want to use a paramagnetic endogenous contrast agent

such as molecular oxygen that requires no injection or implantation and can be ex-

ploited by MR techniques. Second, by using 1H MR, we solve the low sensitivity

problems that 1 9F and 170 encountered. Thus, we hypothesize that magnetic reso-

nance spectroscopy can be used to measure the chemical shifts of brain metabolites

and water that are induced by paramagnetic molecular oxygen and we can explicitly

demonstrate the relationship between chemical shift and molecular oxygen.

1.7 Thesis overview

Chapter 2 will describe the theory behind our proposed technique. Chapter 3 will

contain a detailed description of our experimental procedure. Chapter 4 will present

the results that we obtained from our proposed technique. Chapter 5 will contain the

summary and outline the future work on our technique and possible implementation

of this technique in clinical practice.
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Chapter 2

Theory

2.1 Introduction

In this section, the advantage of paramagnetism as an essential property to use in

measuring tissue oxygenation will be discussed. Also, how paramagnetism will affect

the chemical shift and how relaxivity is influenced by paramagnetism will be discussed.

2.2 Paramagnetism and chemical shift

2.2.1 Paramagnetism

A paramagnetic material is one whose atoms have permanent dipole moments. If

a magnetic field is applied to such a material, the dipole moments try to line up

with the magnetic field, but are prevented from becoming perfectly aligned by their

random thermal motion. Because the dipoles try to line up with the applied field,

the susceptibilities of such materials are positive, but in the absence of a strong

ferromagnetic effect, the susceptibilities are rather small, say in the range 10- 5 to

10- 3 .

If, on the average, only a relatively small fraction of the atoms are aligned with

the field, then the magnetization obeys Curie's law:

25



M=C Bet (2.1)

where C is a constant (different for each different material), where T is the tem-

perature in Kelvins, and where Bext is the applied magnetic field. Curie's law says

that if Bext is increased, the magnetization increases (the stronger magnetic field

aligns more of the dipoles). It also says that if the temperature is increased, the

magnetization decreases (the increased thermal agitation helps prevent alignment).

Curie's law only works for samples in which a relatively small fraction of the atoms

are aligned, on the average, with the magnetic field.

When a paramagnetic material is placed in a strong magnetic field, it reinforces

the applied field, and as long as the strong magnetic field is present, it will remain

magnetized. But when the strong magnetic field is removed, the net magnetic align-

ment is lost as the dipoles relax back to their normal random motion.

The ground-state electron configuration of 02 is

KK(ua2) 2 (a * 2,) 2(7r2px)2 (72py)2 (u2p )2 (7r * 2px)l (r * 2p) 1 (2.2)

According to Hund's rule, the 7r * 2p, and r * 2py orbitals are occupied by one elec-

tron such that the spins of the electrons are parallel. Therefore, an oxygen molecule

has a net electron spin and is paramagnetic. This means that oxygen is attracted to

a region between the poles of a magnet. A particularly interesting demonstration of

this is shown in Figure 2-1 which is taken from http://demoroom.physics.ncsu.edu/.

26



Figure 2-1: An oxygen molecule in its ground electron state has two unpaired elec-

trons, and so has a net electronic spin. This net spin causes an oxygen molecule to

act as a tiny magnet. Therefore, oxygen is a magnetic substance and is attracted to

a region between the poles of a magnet as shown above.
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B

Magnetic field produced

by circulating electron

Figure 2-2: The magnetic field at the nucleus is not equal to the applied magnetic

field; electrons around the nucleus shield it from the applied field.

2.2.2 Chemical shift

The magnetic field at the nucleus is not equal to the applied magnetic field. The elec-

trons around the nucleus shield it from the applied field. The difference between the

applied magnetic field and the field at the nucleus is called nuclear shielding or chemi-

cal shift. Chemical shift is a function of the nucleus and its environment. The demon-

stration 2-2 is taken from www.shu.ac.uk/schools/sci/chem/tutorials/molspec/nmrl.

The chemical shift can be influenced by many factors including: the diamagnetic

contribution, the paramagnetic contribution, the neighbor anisotropy effect, the ring-

current contribution, the electric field effect and the solvent effect. We are interested

in the paramagnetic effect on the chemical shift.

Paramagnetic compounds have unpaired electrons and their magnetic susceptibil-

ity, X, is positive. Interactions between paramagnetic centers and other molecules can

lead to what are know as Fermi contact interactions between the nuclear spin and the

unpaired electron. These interactions lead to alterations in the chemical shifts of the

nuclear spins. Years ago, before the onset of high static magnetic fields this effect was

used to generate large shifts that enabled separation of overlapping protons. Such

paramagnetic agents were known as shift reagents.

We are interested in the paramagnetic effect on the chemical shift [19] [11] [7].
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An addition of paramagnetic species will shift the nuclear resonances. In the NMR

spectrum of a paramagnetic species, the total observed chemical shift is described by

6obs = 6 dia + 6pm (2.3)

where obs is observed, dia is diamagnetic, and 5ppm is paramagnetic shift. The

paramagnetic shift can be expressed as sum of three different contributions [28],

6 pm = 6con + 6 dip + 5X (2.4)

where 5co, is the complex formation shift, dip is the dipolar contribution, and 6 is

the bulk magnetic susceptibility (BMS) shift. The two former mechanisms are known

as the hyperfine interaction. The hyperfine interaction requires at least transient

chemical bonding between the nondiamagnetic agent molecule and the host molecule

bearing the nuclear spin of interest. The BMS interaction specifically does not involve

such bonding. Another important distinction between complex formation shift and

the bulk magnetic susceptibility shift is that the hyperfine shift is quite specific for

each kind of nuclear spin, whereas the BMS shift is the same for any nuclear spin in

a given location in any particular compartment. If we are interested in measuring

shifts due to dissolved oxygen, the likelihood that direct interactions between 02 and

water (or other molecules) will lead to any hyperfine interaction shifts is small. More

likely, the 02 will lead to a change in bulk magnetic susceptibility. The x, the BMS

shift, can be expressed as in

AX = - 6a(0) (2.5)

where 6x is the BMS contribution to the frequency of spins when an agent is

present and 6x(O)is the contribution when all other terms are the same and only the

agent is absent. We can thus express the BMS effect from oxygen as

AX = [02]X02 (2.6)
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where [02] is the concentration of the oxygen in the tissue and X02 magnetic sus-

ceptibility of the oxygen. Therefore, we can predict AX from magnetic susceptibility

of the oxygen and by using Henry's constant of the oxygen or solubility coefficient of

oxygen in the blood, we can relate partial pressure of oxygen (pO2) to concentration

of oxygen in the tissue. Mass magnetic susceptibility of the oxygen is 133.6 * 10- s

m3 /Kg and the Henry's Law constant of oxygen at 37 Celsius is around 1.04 * 10-2

mol/L-atm. By doing some calculations for unit conversion,

133.6x108 _3 x 1.04 x 10 - 2 mole x 0.00132atm X 329 X kg X 1000L X 106kg L-atm mmHg mole 1000g m

= 5.869 x 10- 4 1mmHg

we can have a prediction of change of chemical shift induced by oxygen as shown

in Figure 2-3.

y = 0.0005869x R= 

U.Ub

0.05

E
Q. 0.04

e0 0.03

E 0.02
(1)

0.01 

- -.-- T .... . ·q ... . T ----- T ----T w 1- .

i ~ ~ ~~~~/:
chemical shift (ppm) | ,!

,,· /

/

! ~~~~~~/
,

,]
r '7

L /I/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~.,
/

i /

,_ a .. _. E _- _.. 1 _.I __ X. .... _ -.i .. . __ *... ..... _ _ _ 

0 20 40 60 80 100 120

p02 (mmHg)

Figure 2-3: The predicted chemical shift induced by paramagnetic molecular oxygen

within tissue oxygenation ranges between 0 mmHg to 100 mmHg.
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In a sample such as biological tissue, it is convenient to express the Larmor fre-

quency as

Weff = YBeff (2.7)

where Weff is the effective Larmor frequency and Beff is the effective magnetic

field. The Beff can be obtained from three factors: the magnetic field gradient, the

BMS effect from paramagnetic molecular oxygen and the chemical shielding tensor.

The magnetic field gradient can be written as vector,

G aB, OB z (2.8)B
G= ( ,3 Z. ,3 ZX ,) Z) (2.8)a ' y' &z

The BMS effect from paramagnetic molecular oxygen can be expressed as [02]X02-

The chemical shielding tensor, a, for the water protons is modified by biological factors

such as pH and temperature. The chemical shielding tensor can thus be expressed as

O = Uo + CpH + UT (2.9)

where ao is the standard chemical shielding tensor caused by molecular environ-

ment, pH is the chemical shielding tensor influenced by pH and aT is the chemical

shielding tensor influenced by temperature. The chemical environment parameters

such as pH and temperature can affect the shielding tensor because the water protons

can undergo chemical exchange processes by giving up or obtaining another proton

from the environment. Therefore, we can express 02 paramagnetism for changing

bulk and or specific chemical shifts as

Beff = Bo(AG + [2]X02 + U) (2.10)

Thus, in order to convert an observed chemical shift into a P02 we must know

the effects of temperature and pH, as well as the intrinsic changes due to BO in-

homogeneities. The latter includes both the intrinsic inhomogeneity of the applied

magnetic field, as well as other gradients that may be induced due to tissue compo-
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sition and geometric factors. We propose later a method for taking such factors into

account.

2.3 Paramagnetism and relaxivity

2.3.1 Relaxivity

The net macroscopic magnetization of proton spins, which is aligned parallel with

the applied field along the z axis, is perturbed by application of one or more radio

frequency pulses. The component of the magnetization along the z axis relaxes back to

its equilibrium value with an exponential time constant, T1, the longitudinal or spin

lattice relaxation time. The figure 2-4 is taken from www.cis.rit.edu/htbooks/mri.

The equation that describes this behavior is:

Mz = Mo(1 -e) (2.11)

t

Figure 2-4: T1 is the time to reduce the difference between the longitudinal magne-

tization (Mz) and its equilibrium value by a factor of e.

The time dependence of the magnetization perpendicular to the z axis is charac-

terized similarly by T2, the transverse or spin-spin relaxation time. The figure 2-5

is taken from www.cis.rit.edu/htbooks/mriinside.htm. It demonstrates the effects of
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increasing the echo time, TE, upon the decay of the transverse magnetization to its

equilibrium value of zero.

M~ = MZ(e)T2 (2.12)

MXYL e
t

Figure 2-5: The time constant which describes the return to equilibrium of the trans-

verse magnetization, My, is called the spin-spin relaxation time, T2.
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There are two factors affecting the decay of transverse magnetization. The first

one is the pure T2 molecular effect of the molecular interactions. The second one

is the variation in Bo which leads to an inhomogeneous T2 effect. The combination

of these two factors contributes the actual decay of transverse magnetization. The

combined time is called T2*. The relationship between T2* and the inhomogeneities

in the magnetic field can be described as the following equation

1 1 1

T2* T2 T2inhomo (2.13)

The spin-spin relaxation time, T2, is the time to reduce the transverse magnetiza-

tion by a factor of e. T2 and T1 processes are shown separately; however, in reality,

both processes occur simultaneously and T2 is always less than or equal to T1.

Paramagnetic species can also cause an increase in the longitudinal and transverse

relaxation rates, /T1 and 1/T2, respectively. Time-dependent fluctuations of the

magnetic field resulting from the unpaired electrons provide relaxation mechanisms

that give rise to shorter T1 (longitudinal) and T2 (transverse) relaxation times and,

in the case of T2, linebroadening. This can be described with the following equations,

Ti-l = Ri = Ri(O) + (Ri)p (2.14)

Ti- 1 is the reciprocal of the relaxation time when i=- is the longitudinal relaxation

and i=2 is the transverse relaxation. Thus, the relaxation time is the sum of the value

measured in the absence of the paramagnetic agent, Ri(O), and the enhancement

caused by the presence of the agent, (Ri)p in which p represents paramagnetic agent.

The enhancement can also be expressed as the product of hyperfine relaxivity, Ri,

and the concentration of the agent [CA], as in the equation

Ri[CA] = (Ri)p = (Ri)is + (Ri)os (2.15)

where (Ri)i is the innersphere contribution or the Fermi contact interaction and

(Ri)o8 is the outer sphere contribution or the dipolar interaction. More specifically, we

can express oxygen as our contrast agent and since the relaxation rates are additive,
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we can rewrite the equation as

R'= R + rC (2.16)

where r is the specific relaxity, which describes how much the contrast agent

changes relaxation rates per molar concentration.

Thus, measurement of change in relaxation time, T1, T2, T2*, may provide an-

other value by which to characterize the 02 concentration. The Solomon-Bloembergen

(SB) equations describe the sum of scalar and dipolar contributions to relaxation time

in a comprehensive way [5] [27]. As mentioned in chapter one, however, both T1 and

T2 measurements are often affected by so many biological factors that their unique

determination with regards to the oxygen concentration is fraught with difficulty.
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Chapter 3

Methods

3.1 Introduction

The technique we are proposing is to use molecular oxygen as a contrast agent because

of its paramagnetic properties and its direct effects on the relaxation of water protons,

as well as its effects on bulk magnetic susceptibility. Molecular oxygen has a positive

mass magnetic susceptibility and can be considered to act as a contrast agent rela-

tively uniformly distributed in the MRI voxel. The idea is to design high-resolution

NMR experiments to reveal 02 -induced chemical shift perturbations and support the

oxygen level change with R2* measurements [2]. As mentioned above, there are

many potential confounds in trying to assign a change in chemical shift to 02- If we

can control pH and temperature to be constant and AB from non-oxygen sources to

be as close to zero as possible, the chemical shift we observe will be mainly affected by

oxygen level. The chemical shift and linewidth of different brain metabolites and wa-

ter will be observed with different oxygen percentages. We will measure the chemical

shift of water in the brain as well as those of other neurochemicals because some of

these may reflect tissue compartmentation, allowing us to examine whether there are

sub-voxel level changes in oxygen. For instance, N-acetylaspartate is found only in

neurons and is synthesized in the mitochondria. Myo-inositol is found predominantly

in glial cells. In addition, many of the other neurochemicals in the brain have much

lower self-diffusion coefficients than water, thus they will experience less loss of phase
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coherence as a result of diffusion through local tissue magnetic field gradients and will

have less susceptibility change based upon the BOLD mechanisms described above.

Finally, molecules such as NAA are often used as standards in measurement of brain

temperature via differences between the water and NAA resonance since the latter is

relatively unaffected by temperature.

3.2 Measurement of chemical shift and linewidth

Magnetic resonance spectroscopy experiments were performed on Sprague-Dawley

rats which weighed between 250mg to 300 mg under 1.5 percent halothane according

to guidelines of care established by the Research Review Board of the Massachusetts

General Hospital.

3.2.1 Free breathing

In these experiments we measured various MR parameters as a function of inspired 02

concentration. Thus, we performed graded hypoxia and hyperoxia experiments. We

simultaneously measured the arterial oxygen saturation (SaO 2) using pulse oxymetry

and the relationship between FI0 2 (fraction inspired oxygen) and SaO2. For each rat,

we ran two spectroscopy scans to get water suppressed and water unsuppressed data

and we ran one gradient echo experiment to determine changes in R2* [30]. Thus, for

each oxygen level, there are three sets of data. The water-suppressed spectra consisted

of brain metabolite chemical shifts and linewidths. The second, unsuppressed, water

spectra allowed for measurement of the water chemical shift and linewidth. The third

experiment was a gradient echo experiment to give us the signal average and change

in R2*. We used a PRESS (point resolved spectroscopy sequence) pulse sequence for

the spectroscopy experiments [6]
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Figure 3-1: Single-voxel PRESS pulse sequence timing diagram. It uses a 90180180

pulse train and detects the spin echo following the second 180 pulse. The image is

taken from Figure 21 of [6].
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and shimmed it with the FASTMAP [14] tool provided by BRUKER. The spec-

troscopy data can be run with a short echo time which minimizes the BOLD effects

based upon changes in local deoxyhemoglobin concentrations. The basic sequence

comprises one selective 90 radiofrequency RF pulse followed by two slice selective

180 pulses. All three pulses are mutually orthogonal. The three pulses generate an

echo from a single region at the intersection of these planes. The experiments were

performed on either 4.7 T or 9.4 T. The data was fit with Nuts 1-D NMR program

to obtain the brain metabolites' linewidth and peak position.

3.2.2 Ventilation

In order to gain better control of the animals respiration, and hence more stability

in the oxygen values, we performed a ventilation technique on the rats. Male rats

(250-325 gm) were anesthetized with 1.5 percent halothane in oxygen for insertion of

femoral arterial and venous cannulae and placement of tracheal catheter for mechan-

ical ventilation (16 gauge intravenous catheter). All wounds were infiltrated with 1

percent lidocaine before incision. Following surgery, the inspired halothane concentra-

tion was reduced to 1 percent and the rats were paralyzed with 2 mg/kg intravenous

pancuronium, followed by a continuous intravenous infusion of 2 mg/kg/hr. Rats were

mechanically ventilated (small animal volume controlled ventilator, Harvard Appa-

ratus, Inc.) with a 2/1 liter per minute oxygen/nitrogen mixture, an inspiratory to

expiratory ratio of 1:1, and an initial tidal volume of 4.0 ml at a rate of 40 breaths

per minute. Ventilation parameters were adjusted to maintain normal arterial blood

gases (pH = 7.40 0.01, PaC0 2 = 40 2, PaO 2 = 145 10). Rat torsos were wrapped in

two heating blankets (Gaymar, Orchid Park, NY) circulating warm water to maintain

core temperature at 37-38 C. In order to minimize MRI motion artifact, rats were

placed into a custom plastic cradle attached to a head frame machined from delrin

plastic; heads were fixed with plastic ear bars and a bar inserted under the front in-

cisors. After placing an MRI surface coil over the head, the animals were positioned

in the magnet center. Blood pressure (from arterial catheter), heart rate (from A-line

and pulse oximeter), arterial oxygenation (pulse oximeter), and body temperature
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were monitored continuously to assess anesthetic depth and physiological stability.

MRS experiments then performed on rats in 4.7T or 9.4T as described in the above

section. The oxygen level was varied from 16 percent to 100 percent throughout the

time of the experiment in a steady increase or decrease.

3.3 Standardize chemical shift

An internal reference was needed to process spectroscopy data. We tested three

different methods to standardize chemical shift. At first, we decided to use lipid from

the scalp as an internal reference since it is not well-perfused with blood and hence

has very low oxygen delivery. Thus, its chemical shift should not change much with

inspired 02 concentration. We also ran some experiments with phantoms to use as

an external reference. The phantoms were made from saline or 2 percent agar. The

solution was then poured into a 1 ml syringe or a 6 ml syringe. The phantom was

placed on top of the surface coil atop the rat's head. The water chemical shift from

the phantom was analyzed with the Nuts 1-D NMR program. The last technique that

was used to standardize the chemical shift was to scale the NAA chemical shift with

100 percent oxygen. The scaled result was around 2.046 ppm. We chose 100 percent

oxygen as our standardizing point because at 100 percent, the change in physiological

environment should be the same for all animals and tissue should be saturated with

oxygen. Thus, it was reasonable to use 100 percent as the point to scale all the

spectroscopy data.

3.3.1 Brain temperature

The temperature dependence of the water proton chemical shift could also be used to

monitor the stability of brain temperature throughout the experiments. According to

[8], in vivo brain temperature could be analyzed by examining the difference between

NAA chemical shift and water chemical shift.

T = 286.9 - 94(6wt,,,,,, - NAA)degreeCelcius (3.1)
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Therefore, we also measured the difference between NAA and water chemical

shift to ensure that the temperature changes were not a major cause of the effects we

observed.

3.4 Gradient echo experiment

We performed a gradient echo experiment to determine changes in R2* and confirm

the oxygen change in tissue. We used the gradient echo signals with various oxy-

gen percentages to validate that there was a change in tissue oxygenation during

each experiment. The gradient echo experiments were performed with 4.7 T or 9.4T

(Bruker) after acquiring brain metabolite and water spectroscopy using a TE=10 ms

and TR=600ms. A single loop surface coil was used for radio frequency transmission

and reception.
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Chapter 4

Results

4.1 Measurement of chemical shift and linewidth

Throughout each experiment, we used a pulse oximeter to monitor the physiological

status of the rats. We collected SaO 2 (arterial saturation of oxygen) for every ex-

periment. Figure 4-2 showed that there is a sigmoid relationship between SaO 2 and

FI0 2. The saturation point was around 30 percent of FI0 2. In other words, all

the hemoglobin was bound with oxygen after 30 percent. Thus, after 30 percent, the

paramagnetic effect is dominated by that from molecular oxygen.
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Figure 4-1: The average change in SaO 2 as a function of FI0 2 for free breathing

animals. It showed a sigmoid relationship between SaO 2 and FI0 2. The saturation

point is around 30 percent of FI0 2.

44

II, - 9 19 t

I'

l l

- - - - - -I.. ....

I i I -

I



1-

0
C\1

CO

120

100

80

60

40

20

0

-20
0 20 40 60

Fi02
80

(%)

100 120

Figure 4-2: The average change in SaO 2 as a function of FI0 2 for ventilated animals.

It showed a sigmoid relationship between SaO 2 and F10 2. The saturation point is

around 30 percent of FI0 2.

45

msg· · ' ' i ! ' 'i ' ' ' , , i , , ,[]oo

, , , , I , , , I 



4.1.1 Data from free breathing animals

A representative spectrum from one of the free breathing animals is shown in Figure 4-

3. We standardized the chemical shifts with NAA=2.046 ppm at 100 percent.

Figure 4-3: The spectra is normalized at NAA=2.046 ppm at 100 percent. TE=20

ms

Shown in Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 are chemical shift

data as a function of FI0 2. There was a linear relationship between the FI0 2 and

the chemical shift of brain metabolites and water. The changes in chemical shifts

confirmed our predictions that the peak positions would have a downfield shift with

higher oxygen percentage due to its paramagnetism.
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Figure 4-4: Averaged variation in chemical shift of NAA with F10 2 from four free

breathing animals
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Figure 4-5: Averaged variation in chemical shift of choline with FI0 2 from four free

breathing animals
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Figure 4-6: Averaged variation in chemical shift of creatine with FI0 2 from four free

breathing animals
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Figure 4-7: Averaged variation in chemical shift of water with F10 2 from four free

breathing animals
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All the neurochemicals showed an apparently linear trend with change of oxygen

percentage. Differences in the slopes were not significant.

4.1.2 Ventilation experiments

We ran the same experiment with animals under ventilation to achieve a more stable

physiological preparation.

As shown in Figure 4-8, Figure 4-9, Figure 4-10 and Figure 4-11, all of them

had a similar slope with variation of FI0 2. The chemical shift of brain metabolites

and water had a downfield shift with increase of FI0 2 due to the paramagnetism of

molecular oxygen.

y = 2.0151 + 0.00028178x R= 0.97282.06 T r - -- -.-.- . , I

NAAA A_ i^^
2.05

2.04
.. .

2.03 ·

2.02

2.01
<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-]

0 20 40 60 80 100 120

F102 avg

Figure 4-8: Averaged variation in chemical shift of NAA with FI0 2 from five venti-

lated animals

The ventilation technique offered better control in the biological system and the

data were less noisy compared to free breathing data. The R square value for the

slope of F10 2 versus chemical shift was smaller for ventilation data than for free
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Figure 4-9: Averaged variation in chemical shift of choline with FI0 2 from five

ventilated animals

breathing data as shown in Figure 4-12. However, the absolute value of the slopes

was similar. The averaged slope for the metabolites and the water was close to the

theoretical value. However, the relation between the FI0 2 and the P0 2 (the P0 2

was used to generate the theoretical slope) is not known. Some authors use P0 2 =

ax F10 2. As a matter of fact our value of the slope would allow us to determine a as

= 0.4867.

The results from linewidth experiments could also be interpreted in a similar

manner. The observed linewidth is equal to the sum of the linewidth due to the

change in concentration of the hemoglobin and the linewidth due to the change in

concentration of dissolved oxygen in tissue. Thus, during the lower oxygen period,

deoxyhemoglobin caused the change of linewidth and the paramagnetic molecular

oxygen caused the linewidth to increase after the saturation point. We observed

almost a parabolic relationship between water linewidth, averaged brain metabolite

linewidth and oxygen as shown in Figure 4-13 and Figure 4-14.
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Figure 4-10: Averaged variation in chemical shift of creatine with FI0 2 from five

ventilated animals
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Figure 4-11: Averaged variation in chemical shift of water with FI0 2 from five ven-

tilated animals
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NAA free breathing

NAA ventilated

Cho free breathing

Cho ventilated

Cr free breathing

Cr ventilated

Water free breathinc

Water ventilated

Slope

0.00031429

0.00028178

0.00031392

0.00023882

0.00033673

0.00025102

91' ... 0.00027394

0.00027466

averaged slope the

0.000285645

R value

0.8862

0.972E

0.86576

0.91782

0.9156

0.97797

0.79834

0.9260

,oretical slope

0.0005869

Figure 4-12: Table of averaged chemical shift slope from free breathing animals and

ventilated animals. The R values for ventilated animals are higher than the free

breathing ones. The averaged slope for both free breathing and ventilated animals is

close to the theoretical slope since pO2=axFIO 2.
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Figure 4-13: Averaged water linewidth with FI0 2 shows a parabolic relationship.
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Figure 4-14: Averaged brain metabolite linewidth with FI0 2 shows a parabolic re-

lationship.
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4.1.3 Use lipid as an internal reference

At first, we decided to use scalp lipid to standardize our chemical shift. We used it

as an internal reference because it is not well-perfused with blood and hence had a

very low oxygen delivery. Also, we can have scalp lipid as a control to see whether or

not the effects of increased oxygen in the air around the head leads to changes in the

magnetic susceptibility and changes of chemical shift that we observe in the brain.

The chemical shift did not change much with inspired oxygen concentration. This

was shown in Figure 4-15.

- y = 1.5104 + 3.6069e-06x
1 Qd _

0 20 40 60

F102

R= 0. 043896

80 100 120

Figure 4-15: Lipid chemical shift with FI0 2. The correlation is low and shows that

there is no significant chemical shift with various F102 .
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4.1.4 Use of a phantom as an internal reference

Another possible internal reference could result from using a phantom. The phantom

serves two purposes. First, it provides a chemical shift standard. Second, it controls

for the effects of increased oxygen in the air around the head leading to changes in

the magnetic susceptibility that would affect the brain water and metabolite chemical

shifts. The phantom water spectra was analyzed by the 1-D Nuts program and

standardized with 100 percent NAA peak position to reserve the consistency of data

analysis for brain metabolites. As shown in Figure 4-16, the phantom water had a

very small slope with change of FI0 2. If we compared it with brain water chemical

shift as shown in Figure 4-17, we could see very clearly that phantom water chemical

shift did not vary with different oxygen levels while brain water did.

A verage Change in Water Chemical Shift in Phantoms

y = 4.7454 + 7.0703e-05x R= 0.028975
A 7,,.

4.755
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=4

$=O

4.745
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4.735

4.73
0 20 40 60 80 100 120

FiO2 (%)

Figure 4-16: Averaged phantom water chemical shift with FI0 2 from four experi-

ments. The correlation is low and shows that there is no significant chemical shift

with various FI0 2.
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Figure 4-17: Averaged phantom water chemical shift compared with averaged brain

water chemical shift with variation in FI0 2. Brain water chemical shift has a signif-

icant slope while phantom water chemical shift has a relatively flat slope.
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4.1.5 Brain temperature

By calculating the difference in chemical shift of water and NAA [8], we obtained

brain temperature information with various FI0 2. As shown in Figure 4-18, the cor-

relation was small between brain temperature and FI0 2. Also, the brain temperature

was very stable and did not show much change during the experiments.
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Figure 4-18: Averaged brain temperature with various FI0 2. The correlation was

low between brain temperature and F10 2.
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4.2 Gradient echo experiments

The third part of the experiment was to obtain gradient echo signals as a function

of inspired oxygen concentration to validate that there was a change in tissue oxy-

genation during each experiment. As shown in Figure 4-19, there was a very good

correlation between gradient echo signals and SaO 2 and the result agreed with previ-

ous studies [3]. As shown in Figure 4-20, there was an exponential increase of gradient

echo signals with SaO 2 and with signals from the arteries. Figure 4-19 showed a very

good correlation between gradient echo signals and SaO 2.
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Figure 4-19: The gradient echo signals from voxels containing predominantly artery

or vein were compared with SaO 2 and FIO 2.

We also used this equation to obtain R2*=1/T2* values.

S 1AR2* = -ln(-) * ( ) (4.1)
We used the signalO TE

We used the signal intensities from F10 2= 100 percent as the baseline, SO, to
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Figure 4-20: Gradient echo signals from

of SaO2.

R= 0.98623

80 90 100

artery and vein show an exponential increase

obtain the R2*. The relationship between blood hemoglobin oxygen saturation and

the apparent transverse relaxation rate R2* can be defined as [18]:

1
R2 = + A(1 - Y) + B(1 - Y)2

T2 0*
(4.2)

where T20* is the T2* of fully oxygenated blood, Y is the fraction of oxygenated

hemoglobin in blood, and A and B are the coefficients of a linear dependence of R2* on

(l-Y) reflecting the static spin-dephasing effect of deoxyhemoglobin and a quadratic

dependence on (l-Y) reflecting the diffusion effects.

As shown in Figure 4-21 and Figure 4-22 and Figure 4-23, the R2* would be

increased at the lower oxygen region due to paramagnetic deoxyhemoglobin. Also,

R2* was very sensitive to paramagnetic deoxyhemoglobin since it had the greatest
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changes at the lower oxygen region. R2* also fit better with SaO 2 since the R square

values were slightly higher. R2* decreased exponentially with F10 2 while decreasing

linearly with SaO 2.
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Figure 4-21: The A R2* values from 4.7 T showed an exponential

and a linear decrease with SaO 2.

decrease with FI0 2

There was a larger change in R2* in the artery region because the artery was very

sensitive to oxygen change and thus would cause a bigger reduction in R2*.
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Figure 4-22: The A R2* values from 4.7 T showed an exponential decrease with FI0 2

and a linear decrease with SaO2.
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Figure 4-23: The A R2* values from 4.7 T showed an exponential decrease with F10 2

and a linear decrease with SaO2.
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Figure 4-24: The R2* value showed an exponential decrease with FI0 2.

65

12

10
co

E
-o

co
r~

8

6

4

2 -

0
0

U3

E
C
C

O3
m!

12

10

8-

6

· · ---- ·

. . __ .. i .



y = 282.87 * eA(-0. 051828x) IF= 0.96804

0 20 40 60 80

F102 avg
y = 361.51 - 3.5886x F= 0.94788

50 60 70 80 90

SaO2 avg

Figure 4-25: The A R2* value showed an exponential decrease with F10 2.
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Figure 4-26: The A R2* value showed an exponential decrease with FI0 2
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Figure 4-24 and Figure 4-25 and Figure 4-26 showed the R2* data from 9.4 T

scanner. The 9.4 T data demonstrated the same trend between FIO2, SaO2 and

R2*. The change in R2* range was bigger because of higher magnetic strength.
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Chapter 5

Summary

5.1 Discussion and conclusion

The goals of this thesis are to test our hypothesis that magnetic resonance spec-

troscopy (MRS) can be used to measure tissue oxygenation, to compare this technique

with the popular BOLD technique by measuring R2* with gradient echo experiments

and to explore the possibilities of implementing this technique in clinical practice.

Both free breathing and ventilated rats showed the same downfield trend for chem-

ical shift change with increased FI0 2 and had similar slopes. However, ventilated

animals had a better correlation with FI0 2 and smaller error bars. Thus, ventilation

proved to provide better control in the biological system. Brain metabolite slopes

showed no different slope from the water slope and thus indicated little effect of com-

partmentalization on the effects of molecular oxygen. By obtaining brain temperature

data from NAA chemical shift and water chemical shift, the chemical shift that we

observed from various FI0 2 level was not due to the temperature fluctuation because

the temperature was stable throughout the experiments and showed no correlation

with FIO2.

Scalp lipid proved to be a very good possible internal reference due to its low

perfusion and hence low change in chemical shift with FI0 2. Phantom proved to be

a better internal reference choice and the water chemical shift from phantom showed

no correlation with FI0 2.
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Gradient echo experiments demonstrated R2* was very sensitive to SaO2 changes.

Despite its major advantage of being quite simple and providing high sensitivity at

low oxygenations, the disadvantage is the complexity of signal interpretation in terms

of its relation to P0 2 change. At the lower oxygen saturations, R2* had a large change

with only a little change in FI0 2 or SaO2 values. It might seem attractive to simply

run gradient echo experiments and measure the change of R2* values to coordinate

with tissue oxygenation. However, the change in R2* values was confounded due to

the combination of oxygen consumption and blood flow, and we could not quantify

the oxygen level with the change of R2* values. Nonetheless, the gradient echo BOLD

data served to show that the changes we observed in chemical shift as a function of

FI0 2 were likely due to changes in tissue oxygenation. Future studies will involve

use of invasive MRI-compatible oxygen electrodes to verify the sensitivity to tissue

oxygenation.

The results showed a very promising possibility for using chemical shift as an

oxygen sensor. Most encouraging was that the actual slopes attained from the mea-

surements of the metabolites were fairly linear with FI0 2 (and hence tissue P02) and

the absolute values of the slopes we obtained were quite similar to those predicted

from simple use of Henry's law and the known paramagnetic susceptibility of oxygen.

However, like other techniques, our method suffered some difficulties too. Although

the ventilation technique proved to reduce some biological error, we would like to

work on reducing the error bars. Interestingly, in a subset of animals (n=2) where

the experimental quality was extremely high, we obtained slopes closer to the the-

oretical prediction. The differences between these animals and the majority of the

other animals remains to be investigated.
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5.2 Directions for future research

5.2.1 Implementation in stroke and tumor models

Two very important clinical conditions in which knowledge of tissue P0 2 is vital are

strokes and tumors. Our technique could likely serve as an important adjunct to

current methodologies. Hypoxia is known to exist in certain brain tumors. High

oxygen levels are crucial for effective radiation therapy because radiation kills tumor

cells by forming oxygen radicals - highly reactive oxygen atoms that damage DNA.

Chemotherapy might be affected by the fluctuations because if tumor blood flow

drops, the drugs might not be delivered efficiently throughout the tumor. Thus,

tumor tissue will have a different oxygenation environment from the normal tissue

and our technique can be well applied to measure the tumor oxygenation. The idea

can be illustrated in Figure 5-1.

Figure 5-1: An illustration of the tumor tissue in the brain
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The idea is to take the voxel in a normal tissue region near the tumor tissue and

take another voxel in the tumor tissue. Most tumor tissues have low oxygen levels

because of lack of oxygen delivery. We can use the normal tissue's chemical shift

induced by oxygen as the baseline and predict the oxygen level of the tumor from our

method. We will first determine the normal tissue oxygen level by varying the oxygen

level to obtain at least two different oxygen points so we can linearly fit and obtain

our normal tissue oxygen level. Then we can obtain the difference in chemical shift

of normal tissue and tumor tissue to obtain the oxygen level of the tumor tissue.

6normal - 6tumor = X02P0 2 (5.1)

The same procedure can also apply to a stroke model to determine the tissue

oxygenation in ischemic areas.

5.2.2 Future work

Future work on this project will mainly consist of improving the precision of our sys-

tem and reducing the source of errors. In addition, one of the biggest problems with

this technique is the Bo inhomogeneity because all chemical shift differences increase

in proportion if Bo is increased. Thus, for instance, if one could determine the ab-

solute chemical shift of water, independent of non-oxygen dependent Bo changes then

one could in principle use this chemical shift of water to predict the P0 2. In practice

this is likely to be quite difficult. First, there are Bo changes due to the magnetic field

inhomogeneity. These are likely to exhibit smaller gradients as a function of space

(i.e. dB/dx has a small value). These have the potential to be corrected for by mak-

ing Bo field maps. A more severe problem is changes in Bo due to effects like tissue

iron. This can likely be corrected by using multiple offset gradient echoes. Since the

tissue water diffuses around the iron (most of which will be bound on the form of

macromolecules like ferritin or hemosiderin), then the R2* contrast properties should

be quite dependent upon echo time. In contrast, T2 changes due to molecular oxygen

are likely to be much less echo time dependent since the molecular oxygen has high
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diffusivity and will affect the dipolar T2. In our case, the Bo is not constant through-

out the human head. Thus, we can't really have an absolute change of chemical shift.

We can correct this by using an external reference; however, in such cases the mag-

netic field Bo for the sample is not strictly comparable with that for standard because

the external reference and tissue will have different magnetic susceptibilities. Having

a constant Bo is important for our technique because chemical shift difference is very

sensitive to Bo field.Our method of using the graded hyperoxia has some attractions.

First, as we showed, the technique appears to be equally sensitive across the entire

range of FIO2 values, unlike gradient echo techniques that are very insensitive at

high oxygenations. Second, the anticipated slope change should be independent of

the starting Bo. Thus, by measuring the slope one can predict the original P0 2.

To implement this technique in strokes or tumors, we might encounter one diffi-

culty. We used 100 percent NAA=2.046 ppm to standardize our chemical shift data.

However, for the tumor or stroke tissues, the oxygen delivery might not be efficient

or not as perfused as the normal tissue and the tissue will not be saturated even with

FI0 2=100 percent. Thus, with our technique of standardization of chemical shift,

we might get a different -specifically a smaller- slope for stroke or tumor tissues.
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