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ABSTRACT

The quality of a product to a large extent determines the success of that product in
competitive markets. Measuring and improving quality is thus a primary objective of the
designer. The aim of the following work is to provide an introduction to the methods of
quality optimization and to illustrate these techniques through examples. Quality is first
defined and quantified. The robust design method, which is a technique that focuses on
improving quality without adding cost, is then described. Particular attention is paid to
experiment design, which is a major factor in the effectiveness and efficiency of the
robust design process. The effect of product variability on the mean performance of a
product is also explained along with the various ways that can be used to predict a shift in
the mean value of the performance.

Two examples are then developed. The first focuses on the application of the robust
design method to illustrate the steps of the process. The second example primarily
focuses on creating a comparison of the Monte Carlo, Latin Hypercube, and star pattern
sampling methods on predicting mean shift. The benefits of the star pattern sampling
method are apparent through the example. The error in the prediction of mean shift of the
star pattern is less than 1%, and the execution time was less than one fifth the times of the
Monte Carlo and Latin Hypercube methods.

Thesis Supervisor: Daniel Frey

Title: Assistant Professor of Mechanical Engineering
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1.0 Introduction

The goal of a firm is to produce products that are useful, that people want to buy,
that make money, and that are efficient (cause minimal loss). In many markets, the
products that gain market share and make the most money are those that are the highest
quality. The better a product can achieve its desired performance in spite of the
variability in the conditions of its operating environment, the manufacturing process
which produced it, and the conditions imposed on it by the consumer, the more robust
and higher quality a product is considered to be. High quality products are also the most
efficient in that they produce the least amount of loss (often in the form of a cost) to both
the firm and to the consumer. As an engineer and as part of a company, the goal of the
designer is to produce high quality products.

Many methods of improving quality exist, but the real goal is to improve the
quality of a product without adding cost. However, system variability comes from
component variability, and the general misconception of the engineer is that the only way
to get rid of this variability is to add higher tolerance components. Adjusting tolerances
can be a step in the design process, but it will result in higher costs, and there are other
techniques that don't create higher costs. The objective in the next several sections is to
describe these alternative methods, specifically focusing on robust design and the
supporting techniques of design of experiments and computer simulated sampling
techniques. The final sections contain two examples. The first focuses primarily on the
robust design method, and the second pays more attention to the idea of mean shift and
the ways that it can be quantified. The first several sections, however, define and quantify
quality, and place the quality design techniques in the larger setting of the design of a
product and the objectives of the firm.

2.0 Understanding Quality and its Benefits

Firms differentiate their products "by their characteristics or attributes" to gain
market share (Church and Ware, 2000, p. 369). Products within a market are similar in
that they perform similar functions and can thus be substituted for each other. The closer
one product is to the next, the more substitutable the products, and the more they compete
directly on price. In a market where all products are essentially identical and no
differentiation occurs, consumers simply buy the product with the lowest price. In an
undifferentiated market, if no agreement takes place between firms on what price to set
(implied or illegally), then the price of the product is driven to the marginal costs of the
firms, and the firms that actually sell the product because they have the lowest marginal
costs make no money. By differentiating a product, a firm sets it apart from the other
products in the market, making it less substitutable, which gives the firm market power
and consequently the ability for increased profits and market share. It is thus in the
interest of a firm to differentiate its product by any means possible.

In economic terms, products can be differentiated either horizontally or vertically.
A product is in a horizontally differentiated market when consumers have heterogeneous
preferences for products within that market; that is, consumers cannot agree on which
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products are best. The markets for breakfast cereals, toothpaste, and music are all
horizontally differentiated. A product is in a vertically differentiated market when
consumers have homogenous preferences. If all prices were the same in a vertically
differentiated market, all consumers would purchase the same brand because consumers
(all?) agree on the same quality index and thus the brand with the highest quality. Quality
is defined as "the vertical attributes of a product" (Church and Ware, 2000, p. 184).
"Automobile brands within a class - like subcompacts - are horizontally differentiated...
but automobile classes are vertically differentiated - if the price of a Ford Escort was the
same as a Saab Turbo 900, most (all?) consumers would purchase the Saab" (Church and
Ware, 2000, p. 369). The noticeable quality difference between these two cars is due to
the hardware that goes along with the Saab. A turbo, a larger engine, and a more
aggressive suspension are all attributes that can improve a car's quality. To determine the
quality between a Saab and a BMW however, to say that these two cars are only
horizontally differentiated is not always true (the goal of the manufacturer is to make sure
it is not true). In fact, quality that is obtained by attributes other than larger engines and
moving into different car classes is a major goal of the manufacturer in the automotive
market (as well as any other market).

Aside from quality obtained from the "stuff" added to a product, or the materials
used, quality can also be improved by improving the product's ability to perform on
target. Consider again the Saab 900 and the Ford Escort. Looking at the hardware and the
class of these cars tells the consumer about price, and what he or she gets by buying the
car. However, the hardware tells the consumer nothing about the durability of the car,
how often it might break down, how long it will last, or if the performance will
deteriorate over time. From Escort to Escort this may even be difficult. The target
performance of a car is to have a life of maybe 100 thousand miles, to never break down,
and to not deteriorate in performance. Any deviation from this target value results in a
loss of quality. The vertical integration of these two products might completely disappear
to a customer if he knew that the Saab he was buying was a "lemon" and the Ford would
never break down. Customers want a car that is reliable, and reliability in the automotive
industry is thus a huge issue in asserting quality.

The problem with automobiles in determining quality is that they are essentially
experience goods. Referring again to economic terms, experience goods are those
products that must be used after purchase in order to determine quality (Church and
Ware, 2000). Companies can and do attempt to signal quality (which is why a buyer may
not be worried about getting a Saab that is a lemon) by advertising, warranties, brand
reputation, and any other way a firm can communicate to a consumer the quality of their
product. Even with these signaling methods however, consumers never have complete
information about an experience good until they have tried that product. Looking at the
product from an engineering perspective, how exactly a firm conveys more information
to consumers is not a concern, but how to make the product perform closer to the target
value very much is the concern of the engineers. If the marketing team is trying to sell a
fleet of lemons, the reputation and the brand will not last very long.
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The quality of a product directly relates to how well the product performs on
target. Deviation from the target results in a loss of quality which essentially results in a
cost to the consumer and ultimately the manufacturer; the consumer has to replace or fix
the product, and the manufacturer sells less of the product and loses money from
warranties. From the viewpoint of the engineer, several methods exist to control quality.
Quality is considered in both the manufacturing phase (online quality control) and the
design phase (offline quality control) of a product.

3.0 Online vs. Offline Quality Control Methods

Quality control techniques applied to the manufacturing process are known as on-
line quality control methods. Manufacturing control of quality is a major step in the
creation of a product due to the variability involved in the manufacturing process and the
quality loss that can result if the process is not in control. On-line control methods
include control charts, reliability studies, cause and effect diagrams, process capability
studies, and statistical process control (Logothetis and Wynn, 1989). The advantage of
these techniques is that they can reduce waste in the manufacture process since low
quality products often are discarded through the screening phase. They can also improve
quality loss due to the manufacturing process itself; that is, variability introduced by poor
manufacturing. However statistical process control and the other methods cannot
compensate for poor quality of design (Logothetis and Wynn, 1989). These processes
also cannot "guarantee a product robust to deterioration and variability due to
uncontrollable environmental factors" that arise once the product is actually in use
(Logothetis and Wynn, 1989, p. 241). Thus even with these processes optimized, a design
can still produce waste and loss once it has left the factory. In order to get the quality to
the desired level, sometimes the necessary on-line control strategies can also become
prohibitively expensive. "Economically successful design is about ensuring high product
quality while minimizing manufacturing cost" (Ulrich and Eppinger, 2000, p. 237). The
alternative to online control methods is to attempt to design quality into the product
before the product is introduced to environmental factors, manufacturing variability, and
process control issues.

Offline quality control methods seek to improve quality before production. Doctor
W.E. Deming, one of the major contributors to the development of the offline techniques,
stressed that industry must "cease dependence on inspection to achieve quality... by
building quality into the product in the first place" (Logothetis and Wynn, 1989, p. 3). Dr.
Deming was an American who worked for 30 years in Japan on improving quality by
using statistical techniques. Dr. Genichi Taguchi is one of Dr. Deming's major followers,
and the application and ideas of the robust design method described in later sections is
largely a result of his efforts. The techniques developed by these two individuals for
improving quality while reducing costs have "been an important factor in the rapid
industrial growth and subsequent domination of international markets in [the electronics,
automotive products, photography] industries by Japan" (Phadke, 1989, p. 3). Japan is a
good example of how reduced costs and improved quality results in increased market
share and profits. Before considering the robust design technique, the next section
reviews the general design process.
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4.0 Overview of the Design Process

The design of a product from conception to product launch and entrance into the
market is a detailed process. The process begins essentially with the creation of an idea,
taken from research and technology development activities, and ends with the launch of a
product. The steps of design are

0. Planning: The result of the planning stage is the product mission
statement which specifies the target market, business goals, key
assumptions, and constraints.

1. Concept Development: One or more concepts are chosen out of many
ideas to proceed in the design process. A concept includes the
"description of the form, function, and features of a product" but not the
details (Ulrich and Eppinger, 2000, p. 17).

2. System-level Design: The product architecture is determined, and the
product is broken into subsystems and components for further design.

3. Detail Design: The geometry, materials, and tolerances of all product
features are specified. The suppliers for the individual parts are
determined. The process plan is also created, and the necessary tooling
identified. This stage also includes the Design for X (DOX) processes.

4. Testing and Refinement: The product performance is validated and
improved.

5. Production Ramp-up: The work force is trained. The final problems
are solved, and the product is launched.

(Ulrich and Eppinger, 2000, p. 17)

Quality is a topic that can be in the mind of the designers throughout the entire
process. For instance, quality can be considered in concept development, which "can play
an important role in reducing the sensitivity to noise factors as well as in reducing the
manufacturing cost" (Phadke, 1989, p. 33). "Quality Function Deployment (QFD) and
Pugh's concept selection method are two techniques that can improve the quality and
productivity of the concept design step" (Phadke, 1989, p. 33). The most substantial
quality improvement occurs in the detail design phase, in which the parts are defined and
design for X takes place.

4.1 Design for X

By the end of system-level design, the design is no longer significantly driven by
needs of the customers and product specifications. Customer needs and specifications are
a huge part ot the process, but by this stage, design is more focused on details of the
actual parts. As a goal then in this phase, the team focuses on design for X, where "X
may correspond to one of dozens of quality criteria such as reliability, robustness,
serviceability, environmental impact, or manufacturability" (Ulrich and Eppinger, 2000,
p. 237). As stated above, improvements in quality and cost result in vertical
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differentiation and cost reduction which are hugely beneficial to product and company
success; thus, design for X is very beneficial.

Two major steps for quality improvement in the DOX process are design for
manufacturing (DFM) and parameter design (robust design). Both have the same goal in
mind, reducing cost while keeping or increasing quality, but the two methods don't
always necessarily achieve the goal in the same manner. The Steps of DFM entail
reducing the costs of components, the assembly, the manufacturing, and the supporting
production. I)FM tries to find more efficient, sometimes simply cleverer, ways of
creating a product and choosing better components and manufacturing techniques.
Robust design can be a step within this process. However, DFM and Robust design are
not necessarily the same, since if robust design is not considered during the DFM phase,
"in some cases actions to decrease manufacturing cost can have adverse effects on
product quality (such as reliability or robustness)" (Ulrich and Eppinger, 2000, p. 257).
For instance, reducing the cost of a component part often results in a lower quality
component with increased performance variability. Adding this higher variability part to
the system will increase the variability of the system performance (in relation to the target
value) which will reduce the quality of the system. Thus a negative relationship between
quality and cost is often observed and understood by designers. "Engineers and
managers, unaware of the Robust Design method, tend to achieve higher quality by using
more costly parts, components, and manufacturing processes" (Logothetis and Wynn,
1989, p. 5). This negative relationship is true in certain situations, but is a major
misconception if applied to all levels of design.

4.2 Taguchi's Design Steps

Taguchi defines design at the DOX stage as consisting of two steps: parameter
design and tolerance design. Both aim to decrease the output of the system's deviation
from the target value, but their methods are very different.

4.2.1 Tolerance Design

Allowance or tolerance design, or what Taguchi also called tertiary design, is the
classic quality improvement step (Logothetis and Wynn, 1989). If the variability of the
output of the system is even considered, often the means to deal with improving it is by
buying parts with higher tolerances. This step is where the understanding that increased
quality results from increased cost, and in this step, this relationship is true. If the
designers want an output with a higher tolerance, then they buy inputs that have higher
tolerances.

4.2.2 Parameter Design: Taking Advantage of Non-linearity

In contrast to tolerance design, parameter design increases quality without
increasing costs. Parameter design (secondary design) is the step that is often skipped, but
can be highly beneficial. In parameter design, the designer takes advantage of system
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characteristics in order to be able to use low cost components and still obtain high quality
system outputs. In parameter design, increasing quality often results in decreasing costs.

Parameter design entails choosing different values of system inputs to improve
system output. The "product and process" are optimized "to make the performance
minimally sensitive to various causes of variation" and is ultimately the key element of
the technique known as robust design (Phadke, 1989, p. 6). Parameter design is an
involved process, but the general concept is very straightforward. Figure 1 shows a
simple function, f(x), where the value of f depends on x in a non-linear way. This could
be a function for a host of different processes and systems. The idea can be applied
equally well to all of them. An input of the system, x, is assumed to have variability. f(x)
could represent the output of a manufacturing process involving a stove, and x may be the
temperature of the stove. The operator of the stove sets x to say 500 C. However, due to
the inconsistencies in the system, the temperature could be anywhere from 480 C to 520
C. This variability is represented by the dotted lines in Figure 1. x may be set to x2, but it
ranges in values between the vertical dotted lines of x2-A2 and x2+A2. xl exhibits the same
type of variability, but it changes over a smaller range. In the example of the
manufacturing process, variability in the temperature may result in variability in the yield
of the process; Figure 1 illustrates this fact, showing the tolerances seen in the output.
Figure 1 also illustrates the effect of non-linearity. As is apparent from the figure, the
range of f(x) for x2 is considerably smaller than the range of f(x) for xi, even though x2
has greater variability. By changing the value of x from xl to x2, the variability of the
process can thus be reduced. The idea of parameter design is to change the values of
parameters to where the function is minimally sensitive to noise.

x cannot be the only parameter (variable) involved in the process, however.
Changing xl to x2 is going to change the output of the process (or system or product), so
to compensate there must be an additional factor known as an adjustment factor. The
adjustment factor, by definition, is a parameter which changes the output of the process,
but does not contribute to variability. By the use of the adjustment factor and setting x
and all the other factors involved in a process to their optimum levels (levels that produce
the least variability in the output) the process can be designed robustly.
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f(x)

x2 -AX

Figure 1: The effect of non-linearity on the variability of process output due to a process
input.

5.0 Deviation from Target Performance

The deviation from the ideal system performance, the tolerances in Figure 1, can
be quantified by means of the standard deviation of the data set and the mean of the data
set. If a system is run 100 times, a graph like in Figure 2 might be developed. Figure 2 is
a histogram which shows the number of data points that fall within certain ranges of the
data set. Two parameters are used that describe a set of data. The mean, Ft, is defined as

Ex
g=

N, ~~N,~~~~~~ ~(1)

where N is the number of elements in the data set, and x represents each individual
element. The standard deviation, a, can then be defined as

i - )(x 2

N (2)

The mean is the average of all the points of the system. The standard deviation is a
measure of the "width" of the distribution (Del Vecchio, 1997, p. 11). "The majority of
naturally occurring things have distributions of [the normal distribution] form" (also
called a Gaussian distribution and recognized by a bell-shaped curve) (Del Vecchio,
1997, p. 11). The normal distribution, of which Figure 2 is an example, is 6 standard
deviations wide.
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Histogram of System Output (100 trials)
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Figure 2: Histogram of a process output containing 100 data points.

6.0 Noise factors

The better the designer's understanding of the noise factors that the system or
process will encounter, the greater the number of factors that he can consider in the
design process, the more complete the design will be, and the more likely that the
optimum conditions will be discovered. The major groups of noise factors are described
in the following sections.

6.1 Outer Noise

External noise factors (or what Taguchi referred to as outer noises) include
"variations in environmental conditions such as temperature, humidity, vibrations, dust,
or human interactions in operating a product" (Logothetis and Wynn, 1989, p. 243). As
an example consider the life of a car in San Diego versus Philadelphia. The hot and sunny
environment characteristic of San Diego is going to affect the life of a car in a very
different way compared to the snowy and cold weather characteristic of Philadelphia in
winter. The life of the car in either environment is also going to depend on how hard it is
run (the conditions at which it is driven). The more often the car spends at wide-open

10

-1



throttle (the accelerator pedal fully depressed) the harder the engine has to work and the
more deterioration that will take place.

6.2 Inner Noise

Taguchi's inner noises include anything that results in "deviations of the actual
characteristics of a product from the corresponding nominal settings" (Logothetis and
Wynn, 1989, p. 243). Inner noise results from several different sources, of which,
manufacturing and deterioration are two of the most significant. The MIG welding
process is an example of manufacturing noise. MIG welding is often used as the joining
process for a huge number of products. If the MIG welding process is not in control, if
the speed, wire feed-rate, or current vary, then the quality of the weld will vary.
Variability in the quality of a weld results in variability in the strength and durability of
the weld, which will result in variability in the quality of the product that has been
welded.

Deterioration also is a source of inner noise. Initially, "the functional
characteristics of the product may be on target" (Phadke, 1989, p. 23). As the product is
used however, the characteristics change because of wear. Changes in the characteristics
of a product result in a reduction in product performance due to deviation from the ideal
performance. One example of deterioration is in the brakes of a car. Over time the brake
pads wear and the brake fluid leaks, producing weaker more sluggish breaks (Phadke,
1989, p. 23).

7.0 Quantification of Quality

If quality is to be optimized, then it must be quantified. One method of
quantifying quality is fraction defective where the quality can be related by a step
function, as shown in Figure 3. Quality is acceptable as long as it is within the range of
m-A and m+A. The use of fraction defective has classically been applied to
manufacturing where the tolerance limits of Figure 3 describe which parts coming out of
the process are acceptable enough to enter the market and which must be discarded. The
major shortcoming of fraction defective is that it assumes all parts within the tolerances
are equally good.

The other major method of quantifying quality is quality loss. Taguchi described
quality as "the loss a product causes to society after being shipped, other than any losses
caused to society by its intrinsic function" (Logothetis and Wynn, 1989, p. 5). Ideal
quality is where the performance of the system, the output, is the ideal (target) value.
Thus any deviation, however small, results in a loss of quality. These losses include
direct losses due to warranty and increased service costs and the dissatisfaction
experienced by the customers as well as indirect losses due to lost market share and the
need for increased marketing to sell the product (Logothetis and Wynn, 1989). All these
losses can ultimately be expressed as a cost.
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In equation form, quality loss can be stated as

L(x) = k.(x- [t)2

where k is the quality loss coefficient described as

Ao
k=

2
Ao

(3)

(4)

where A0 is the cost of quality loss and A0 are the functional limits in Figure 3. As
Equation 3 shows, quality immediately begins to decrease to a squared power as the
performance moves off target.

~m

I-l -g3W
-;y

Taguchi Quality Loss

.6.

I.. .

m - A m m+A

Parameter Value
Figure 3: Taguchi Quality Loss versus fraction defective (Phadke, 18).

Equation 3 describes the quality loss for each element in a data set. An average
quality loss can be assigned to the entire data set by manipulation of Equation 3. The
result is

Q= k[( - m)2 + °y2], (5)

where m is the desired mean of the value. Note that the average quality loss has two
components. The first is the standard deviation around the mean of the process, and the
second is a result of the entire process shifting from the desired value. The greater the
standard deviation, the further the data points are from the target value, and the lower the
level of the average quality (the greater the quality loss). As would be expected, a shift in
the mean of the data results in an immediate loss of quality due to the offset from
performance. Both the deviation and the mean shift must be minimized to achieve
optimum quality.
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8.0 The Robust Design Method

The idea of the robust design method is to minimize the quality loss (Equation 5)
of a system by the use of parameter design (and eventually tolerance design as
economically justifiable). "Robust design is a methodology for finding the optimum
settings of the control factors to make the product or process insensitive to noise factors"
(Phadke, 1989, p. 67). Graphing the system with relation to each parameter as shown in
Figure 1 is not practical, and in many cases is impossible when there is no equation to
describe the system. Also an equation like in Figure 1 does not take into account the
effect of interactions, which can be important. Section 8.1 lists the steps of the robust
design method. Sections 8.2 and 8.3 then discuss the ideas of the experiments used in the
robust design method and the choice of the variable that should be optimized.

8.1 The Taguchi Procedure (the Steps of Robust Design)

The robust design process follows essentially eight steps (Logothetis and Wynn, 1989):

1. Define the problem: Establish what the experiments and the
application of the method is intended to achieve.

2. Determine the objective: The output of the system which is to be
optimized needs to be determined, as well as the appropriate method of
measuring the chosen output.

3. The Brainstorming Session: Once the problem is understood and the
objective set, a meeting must take place between statisticians and
engineers to determine the controllable and uncontrollable factors, the
experimental range, and the appropriate factor levels.

4. Design of the Experiment: The appropriate efficient experiment is
chosen. The result of this step are reduced experiments that seek to
achieve the desired results in the shortest amount of time and lowest
cost commitment possible (refer to the next section).

5. Set up the experiment and collect data
6. Analyze the data: Determine the optimum levels of the control

parameters. Run analysis of variance techniques, or alternative methods.
7. Interpret the results
8. Run a confirmatory experiment and plan for future actions

Step 4 is paid substantial attention to and is described in the next section. Steps 5 through
8 are explained in detail in the examples. More information can be found on the steps of
robust design in the references.

8.2 Design of Experiments

If the problem is not clearly defined, the objective determined, and the factor
levels correctly chosen, then design of experiments has little use. However, if care is
taken in the early steps of Robust Design, a well-designed experiment can result in a fast
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and efficient means to find out a lot about a system. The information from the experiment
is used to set the control factors at the desired levels in order to achieve a more robust
system design.

8.2.1 Basic Construction of a Simple Design

Objective is to "extract a large fraction of the information in a matrix from a
smaller fraction of the numbers in that matrix" (Del Vecchio, 1997, p. 1). If it is desired
to test 4 factors (parameters/ inputs to a system) at 3 levels each, the required number of
experiments to test every possible combination is 81 (34). However, with efficient
experimentation, "doing as few as 16... can reveal a great deal about the process; doing
25 experiments... can furnish almost as much information as doing 81 might" (Del
Vecchio, 1997, p. 2). Thus in order to save time as well as avoid costly trial and error,
design of experiments can be very beneficial.

The goal is to avoid 1-FAT (one factor at a time) experiments in which an
operator simply changes one control factor at a time to see how the output of the process
or system changes. If not organized, such as when an experienced technician just trys to
"feel out" the best settings, 1-FAT experimentation can take a very long time and will
most likely result in suboptimal conditions. "-FAT experiments by their nature are not
capable of finding" interactions, which can also be very important in finding the optimum
of a process (Del Vecchio, 1997, p. 3).

Consider an experiment of three factors at two levels each. The full experiment,
where all combinations are considered is shown in Figure 4, where the + and - signs
represent the higher or lower level of factor A, B, or C. This pattern is the same as a cube
in space on x, y, and z axes, as shown in Figure 5. Statistical theory states that from 8
pieces of data, 7 comparisons can be made. We can thus expand are initial experiment by
either considering interactions or considering other levels.

A B C
1 + + +
2 + + -
3 + -+
4 + --
5 -+ +
6 - + -
7 - - +

8 -

Figure 4: Full design involving 3 factors at two levels each.
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A

B

Figure 5: Cube representing a 3 factor (A, B, C) design where each factor has two levels
(, ).

The first option is to add 4 additional columns to the initial 3 (for a total of 7
comparisons) in order to determine interactions, as shown in Figure 6. The numbers 1
through 8 on the left of Figure 6 denote the experiment number. The matrix shown in
Figure 6 is a fully expanded design, every combination of the factors occurs and all the
interactions have been considered.

The way Figure 6 is created is by multiplying combinations of the first three
columns. As an example, consider column AB. The first element in column A (the higher
value of A represented by a plus sign) is multiplied by the first element in column B (B's
higher value) to give the first element in column AB (+). Likewise, the third element of
AB (in the third row) is created by multiplying the positive in A with the negative in B to
give a negative value in AB. Going down column AB, one will note that it is simply the
multiplication of A and B. The other columns have been created in the same manner. If
the average of the results of all experiments marked with a positive sign in column AB is
compared to the average of all the results marked with a negative sign, the difference
between these two data sets gives a solid understanding of the effect of the AB
interaction on the system output value. Columns AC through ABC can be analyzed in the
same manner. The difference between the positive and negative values of each factor can
then be plotted as a quick means to determine the magnitude of the effect of that factor.
This type of plot, known as a Scree plot, will be used in the example section and is an
effective means of separating the important effects from the unimportant or those simply
caused by background noise.
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A B C AB AC BC ABC
1 + + + + + + +

2 + + - + ---
3 + - + -+ --
4 + - + +
5 - + + --+ -
6 - + --+ -+
7 - - + + --+
8 - - - + + + -

Figure 6: Full L8 design where every possible combination of the three factors is
considered (all interactions are accounted for).

If the pluses and minuses are added in each column, the total is zero. If the
settings in any one column are multiplied by settings in any other column, the total sum is
again zero. This property of the table makes the design orthogonal, and thus called an
orthogonal arrTay. "Orthogonal arrays are typically most efficient" (Del Vecchio, 1997, p.
29).

The exact same design in Figure 6, instead of being used to determine the effects
of interactions can be used to determine the effects of other factors. Columns AB, AC,
BC, and ABC can be replaced with new factors, as shown in Figure 7. The array shown
in Figure 7 can no longer compare interactions; however if interactions are not present or
insignificant, this experiment reduces a 27 experiment, which would require 128
experiments, to a mere 8. A design such as that shown in Figure 7, known as a saturated
design, is both useful as a screening test to determine which factors are important to the
process and which are not, as well as to run a heavily reduced experiment where the
designer is certain that no interactions are present.

A B C D E F G
1 + + + + + + +
2 + + - + ---
3 + - + -+ --
4 + - + +
5 - + + --+ -
6 - + - -+ -+
7 - - + + --+
8 - - - + + + -

Figure 7: Saturated L8 design; seven factors at two levels each.

As an analogy to saturated versus full designs, consider again the cube in Figure
5. The purpose of a saturated design is to get information about the full data set from only
a sampling of that data set. Likewise, the shape of the cube shown in Figure 5 (the full
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data set) can be described from only the shadow of the cube cast by selected points, as
shown in Figure 8. The information contained in the cube in Figure 5 can be fully
described by the shadow in Figure 8 if no interactions are present. The cube in Figure 5 is
the full design (an L8 with three factors), and Figure 8 is the saturated design represented
in Figure 9.

Figure 8: A cube can be described just by its shadow, just as a full design can be
described just by the equivalent saturated design.

A B C A B AB
1 + + + or + + +

2 +
3
4

+

+ +
+ +

Figure 9: The design on the left of Figure 9 is the
Figure 8. The design on the right is the equivalent

saturated design for the cube shown in
two factor design with an interaction.

8.2.2 False Data due to Interaction

"Taguchi believes that it is generally preferable to consider as many factors
(rather than many interactions as economically feasible for the initial screening"
(Logothetis and Wynn, 1989, p. 249). Ignoring interactions is often okay: "In many
processes, factor interactions are not common, and the use of saturated designs is very
appropriate and highly efficient" (Del Vecchio, 1997, p. 30). However, in "many
mechanical/ chemical systems, interactions are regularly encountered, and the use of
saturated designs can result in false or misleading data" (Del Vecchio, 1997, p. 30).
Determining interaction levels and accounting for them if they are present is thus very
important.

If interactions do exist their effects become mixed in with the rows already in the
experiment. For the design in Figure 9, if the columns are multiplied together to create
interaction columns, the resulting interaction columns are identical to the single factor
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columns, as shown in Figure 10. Examination of Figure 10 reveals that A is the same as
BC, B is the same as AC, and C is the same as AB. The interactions are now part of a
particular column; the isolation of the effect of the interaction as seen in Figure 6 has
been lost. Thus if an interaction between A and C is occurring, this will show up falsely
as an effect due to factor B.

A B C AB AC BC ABC
+ + + + + + +2 + + +

3 - + - - + - +
4 - - + + --+

Figure 10: The L4 design compared to columns representing the interactions between
columns in the L4. The interaction columns are the same as the single factor columns; the
interactions cannot be separated.

If there are interactions, then the more lengthy experiments must be performed.
The opposite of the L4 matrix in Figure 10 can be run to improve data and help the
design consider interactions. The opposite matrix along with the original L4 is shown in
Figure 11. Combined, these two matrices happen to be the full L8.

A B C A B C
1 + + + ---
2 + - - -+ +
3 - + - + -+
4 - - + + + -

Figure 11: An L4 design and the complimentary matrix. The combination of these two
designs produces the L8 design.

Saturated designs and full designs are not the only two types available to
experimenters. Some columns in a design can be left empty for the purpose of
interactions, while others are used for additional factors. A linear graph is a tool used to
quickly describe how a design accounts for interactions. Figure 12 is the same design as
in Figure 6, but the columns have been rearranged slightly and numbered instead of
lettered. The individual factors do not have to be placed in the first 3 columns; they and
more factors can be placed in any column. The two possible linear graphs for the L8
design in Figure 12 are shown in Figure 13. Referring to option 1, if the designer wants to
estimate the interaction between columns 1 and 2 then he leaves column 3 empty. The
second option depicts that if the only interactions that occur are between factor 1 and the
other factors, then these interactions can be estimated by leaving columns 3, 5, and 6
empty and putting the other factors in 2, 4, and 7. By leaving a column empty, just that is
meant. Nothing is placed within the column, and the extra experiments that the saturated
design would have required to estimate the effects of the factor in that column are now
instead used as extra data to estimate factor interactions between columns. Linear graphs
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are very effective for quickly determining what experiments would be best for a
particular system.

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Figure 12: Rearranged L8 (27) design.

1

7
0 1

6 4
7

Option 1 Option 2

Figure 13: Linear graphs for the L8 shown in Figure 12. Each number represents a
column in Figure 12.

8.2.3 More Complex Designs

Designs with only two levels for each factor are the most straightforward because
the way they are created and analyzed is readily apparent. However more detailed designs
involving more levels as well as different types of designs are shown in the references
and used in the examples. The L9 design is listed below in Figure 14 to provide an
example. The linear graph for Figure 14 is shown in Figure 15. As is apparent from
Figure 15, to estimate interactions between columns 1 and 2, all other columns must be
left empty. Designs can become more complicated and more detailed in their methods
and include other types of designs other than the straightforward orthogonal arrays
described here (such as Plackett-Burman, Box-Behnken, etc). For a full discussion, refer
to the references. Regardless, the designs described here can be extremely useful in
introducing efficiency to the robust design method. The next step is to consider the
parameter that will actually be measured in the experiments.
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1 2 3 4
1 1 1 1 1

2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1

6 2 3 1 2
7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Figure 14: Taguchi L9: Saturated design with four factors at three levels each.

3, 4
1I- u 2

Figure 15: Linear graph for Taguchi L9.

8.3 The Signal to Noise Ratio

The signal to noise ratio (SN ratio) is the main parameter used by the robust
design method to obtain the optimal settings of the control factors. The signal to noise
ratio is the output used for each of the experiments shown in the last section when they
are applied to robust design techniques. The choice of the signal to noise ratio depends on
the nature of the system.

8.3.1 Signal to Noise Ratio for Nominal-is-Best Type Problems

The idea of robust design is to decrease the sensitivity of a system to variability in
the inputs of that system. As the quality loss equation (Equation 5) describes, both the
shift of the mean from the target value and the standard deviation need to be considered
when attempting to optimize a system to a particular value. Equation 5 can however be
misleading. As was discussed, there is an adjustment factor that is used to shift the mean
back onto target, so the sensitivity to noise of Equation 5 needs to be isolated from the
corresponding mean shift that goes along with each new combination of control factors
since the adjustment factor will eliminate this mean shift. If a parameter was used that
didn't include adjustment, the mean shift would most likely dominate, and the system
would not be properly optimized. If the standard deviation without adjustment is a, then
the predicted standard deviation after adjusting the mean on target is

to
Cya a-

(6)
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where 6a is the standard deviation after adjustment, go is the mean before adjustment, and
a is the mean after adjustment. If Ga is then placed into Equation 5, the result is

2
2 r

Qa = k' 't 2
2 ~a11~~~~~~ . (7)

The constant in Equation 7, ka02, does not contribute to the optimization of the system,
so it can be ignored. Equation 7 rearranged is given as

2

A1= 10log ~
Cr (8)

where 11 is now the common form of the signal to noise ratio for nominal-is-best type
problems. In contrast to Equation 7, which must be minimized to achieve the highest
quality, Equation 8 should be maximized. Maximizing Equation 8 becomes the primary
objective of the robust design method.

All problems are not nominal-is-best type problems, so multiple variations for
signal-to-noise ratios exist. The designer of a system may be attempting to maximize or
minimize the system. The system may also not be static, where the value of the output is
dependent on the value of a signal factor, such as with a temperature controller (a
continuous dynamic system). Appropriate signal to noise ratios for these different
situations can be found in the references.

8.3.2 SN Ratios for Larger-is-Better or Smaller-is-Better Type Problems

In a maximum or minimum type problem, the concern is not about the standard
deviation since the standard deviation, in itself, is part of what produces the mean shift
and does not allow the function to reach the ideal level. In problems where larger/smaller
is better, there also exists no adjustment factor. The signal to noise ratios for these type of
problems are thus only functions of essentially the mean of the system. The SN ratio for a
smaller-the-better type function for a static problem is given as

n

r = -113og · Yii=l , (9)
where y is each individual data element and n is the number of elements in the sample.
For a larger the better type problem, the SN ratio is

il =-oog ()] (10)

i= 1 (Y . ~~~~~(10)
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In both Equations 9 and 10, the designer is just looking for essentially an average. In
contrast to the thinking of many designers, this average can often be lower than expected
due to a mean shift.

9.0 Mean Shift

The occurrence of a mean shift in a system's output is often a completely
unexpected event. Whether or not a system is being designed to minimize variation, the
designers of the system know that variability in the inputs will result in variability in the
output. The designers expect to see variability in the performance of the product. When it
comes to the mean performance however, designers rarely consider that the variability
will have an effect. The misconception is that plugging the optimum input values (the
nominal values) into either a prototype or a simulation and reading the output will give
the mean performance with variability even though variability has not been considered;
the assumption is that variation will just occur around the nominal mean. For some
systems using only the intended inputs without considering variations may predict the
output even under variability. However in systems where a maximization or minimization
occurs, the ideal values will predict a mean value closer to the optimum than what will be
apparent in the actual system; a mean shift will occur in the performance of the real
hardware.

9.1 The Importance of Mean Shift

Even a small shift in the mean can be important. For example, consider a large
shipping company that intends to buy a large volume of engines for a fleet of new trucks.
The performance of the engines, measured in terms of the efficiency of the engines, is of
considerable interest to the shipping company. The more efficient the engines, the better
the gas-mileage of the vehicles, and the greater the savings the company gets on gasoline.
Assume that the shipping company was quoted a fuel consumption rate for the engines (a
parameter that directly relates to the engine efficiency). In considering which engines
from which company to buy, the shipping company takes into account fuel efficiency.
Also, having then bought the engines, the company budgets money for fuel. If the
engines have a lower efficiency than expected, this is going to result in an unexpected
cost for the company.

Engine performance can often be described by detailed computer simulations. A
prototype of the engine could also be built to give an idea of how the engine performs.
The computer program, with the nominal values of the engine parameters, as well as the
prototype may give a specific description of engine performance in terms of the nominal
values of the input parameters. However, most likely variability will not be considered by
the engine manufacturer.

To get an idea of how this shift in engine performance takes place, consider the
plot of fuel conversion efficiency versus the fuel air ratio in Figure 16, where the line
plotted is for a particular engine compression ratio. This graph is for an ideal cycle, a
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simple prediction of engine performance, but the trends it conveys are the same seen in
real engine performance. The vertical dashed lines on the graph represent the limits of the
data variability. A sudden change in the slope of the graph takes place at a fuel-air
equivalence ratio of 1. If variability occurs in the fuel-air ratio, which is common in an
engine, that variability will have an effect on the efficiency of the engine. If the fuel-air
ratio is set at 1, which is often the case, the difference in slope on the left versus the right
of this point can result in a mean shift from the expected value of the efficiency, as shown
in the figure. The mean shift, even if small, over a large number of vehicles can result in
costs to the company that would not have been considered before the purchase of the
fleet. If the variability of the process is not accounted for, unexpected loss in quality can
result.

Fuel Conv. Effic. vs FA Equivalence
Ratio

Ve I

.' 

P.l.

IC

OW

0

Pr4

I

Fuel - Air Equivalence Ratio

Figure 16: Engine fuel conversion efficiency vs. the fuel air equivalence ratio for a
particular compression ratio (Adapted from Heywood, 1988, p. 182). Variability in a
nominal fuel air ratio of 1 can result in a mean shift in the output.

9.2 Sampling Methods

Up to this point, the discussion has been general in the sense that all the ideas
discussed can be applied to essentially any system. The system can be described by an
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equation, and the variability in the inputs can be simulated by giving the data a mean and
a standard deviation. The system or process could also be a real system where the only
way to test variability and run experiments is to actually run the hardware of the system
or process. For the real processes, the sampling methods described in the following
sections are not very applicable. However for computer simulations, sampling methods
can be very helpful.

9.2.1 Monte Carlo

Monte Carlo is the most straightforward method of simulating variability in a
system process. The inputs to the simulation are chosen from a probability distribution. In
the case of the normal distribution, the input values would be chosen randomly from a
distribution with a mean and standard deviation. Since there is no method to choosing the
samples from the distribution, the Monte Carlo sampling method is described as a
"random walk" type of method. After a certain number of trials, the output of the
computer program settles down to having its own mean and standard deviation due to the
variability in the inputs. The issue with the Monte Carlo method is that the number of
trials before the final value settles down can be large. The fact that a computer program is
being used certainly helps, but in functions of many variables the time commitment of the
computer can still be extensive when running experiments.

9.2.2 Latin Hypercube

Latin Hypercube sampling is not a random walk, but attempts to apply a method
to the sampling to decrease the ultimate number of trials needed before the output values
settle. Latin hypercube sampling breaks the distribution of the variable into sections of
equal probability. Values of the parameter are then taken from each "bin." The result is
that fewer samples are needed to get a set of input values that portrays the desired
characteristics (mean and standard deviation) assigned to the input. Histograms
comparing Latin Hypercube sampling to Monte Carlo sampling are shown in Figures 17-
19. The histograms are each broken into 25 sections. As is apparent from the figures, the
Latin Hypercube sampling quickly converges to the normal distribution, while even after
600 trials (not shown), the Monte Carlo sampling hasn't completely settled down. The
faster the inputs exhibit their intended behavior (in this case, with a mean and a standard
deviation) the faster the output will settle to its respective mean and standard deviation.
Statistically, the Latin Hypercube sample set will become valid faster than the Monte
Carlo sample set.
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9.2.3 Star Patterns, 2n+1 and 4n+1

The third sampling method is very different from the Monte Carlo and Latin
Hypercube techniques because it no longer uses random sampling. The star patterns
instead attempt to create a curve fit at the point of interest. Consider the function f(x) as
shown in Figure 20. Variation in the value of x causes variability in the output value of
f(x). Since the output is at a maximum, any value other than the ideal value of x causes
the output to be less than the maximum value of f (similar situation to that shown in
Figure 16). The result is that all the data is bunched against the peak of the graph, and a
mean shift results, as shown in Figure 20.

._C
U)
couM

3

I-

Figure 20: Mean shift in the output due to variability in the input at a maximum.

The star pattern creates a curve fit by first reassigning the origin. The value of f(x)
at the nominal value of the input, x, is redefined as the value at x = 0, as shown in Figure
21. After the origin has been redefined, the curve fit for the star pattern is created by
solving a system of equations. The equations are developed by defining an equation from
the peak and then solving for different deviations from the new x=0 point. Figure 22 is a
depiction of the function input values and the sampling that takes place. The center of the
figure is not the original origin, but instead is the redefined origin as shown in Figure 21
for each input factor. For the 2n+1 pattern, each factor is considered at three different
points.
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Figure 21: To create a star pattern, the origin of a function is first reassigned to the point
of interest for an input value.
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x

Figure 22: Star pattern for 2n+1 sampling method.

The equations for a 2n+1 pattern are given as

2
f(x) = fo + c-x+ k-x (14)

f(x+ ) = fo + c.(x + ) + k.(x+ )2 (15)

fx- e)= fo+ c.(x- e-) + k.(x- ) (16)

where £ is a step size to be determined, and f0, c, and k are constants. Equation 14 is the
actual curve-fitting function being solved for. The other two equations are this same
function, but at different x values just a small step away from the original value. The
result of solving for f0 , c, and k is

fo = f(0) (17)

1-

2 E ,(18)

1 f(-e) - 2-f(0) + f(-)k= 1 _ _ _ _ _ _ _

2 2
E *(19)

Thus, f0 is the value of the function at x = 0 (the reassigned origin). To deal with the fact
that f(x = 0) in Equations 17 through 19 does not refer to the original origin is a trivial
matter. The equations are modified to account for this discrepancy:
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1 X +F) - X-F)

2 F (20)

2 ) 2 ) + xo + )_ . .2

(21)

where x0 is the nominal value of the input parameter x. If the noise in the input variable is
Gaussian then only the even parts of the curve fitting function are necessary to give an
accurate prediction of the system output. Pure quadratic terms as well as fourth order
terms have an influence, but st and 3 d order terms as well as any interactions between
different factors (for instance x and y interactions) are not considered since they are odd.
The prediction value of f(x) due to the shift for the 2n+1 pattern is then

2
f(x) = fo+ kcy (22)

where f0 and k are the constants defined in Equation 17 and Equation 19 (which is the
same as Equation 21).

The prediction for
the 2n+1. The star pattern

the 4n +1 pattern is determined by the same procedure as for
is shown in Figure 23.

y

z

Ax

x

Figure 23: Star Pattern for 4n+1

The results of the 4n+1 pattern, listing only the quadratic and fourth order terms, is

go= g(O)

-1 -16-g(£) + 30-g(O) - 1&g(-) + g(2-F) + g(-2-e)
24 2

FE

1 -4 g(e) + 6. g(0) - 4-g(-E) + g(2. E) + g(-2. e)
24 4

£

(23)

(24)

(25)
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where the function is now g(x) and the step size c in Equations 23-25 is different from the
£ in Equations 14-22. Equations 23 - 25 must again be shifted back to the original x value
at the point where mean shift is being estimated (as was done between Equations 18 and
19 and Equations 20 and 21). The mean for the 4n+1 pattern can then be predicted by

2 4
g(x) = go + k + 3.q.a (26)

The only term in the star pattern equations still needed is £. For the 2n+1 pattern

E = G(ye
= 2 (27)

where a is the standard deviation of the variable in question. For the 4n+1 pattern,

1

()= k, llJ , ~~~(28)

where again 6 is the standard deviation of the input variable. Note that the constants have
been considered for f(x) in terms of only x, but since only even functions have an
influence and no interactions need to be considered, the technique is applied to many
variables by simply adding up the terms and combining the prediction equations for each
variable. Thus the 4n+1 patter for 3 variables can be written as

g~x2 = 2 o 2 Kql 54 4 q34)g(x = go+ k3'la + k2-2 + 3(q + 2c2+ q3 CY3 ) (29)

where the subscript of each term refers to the variable.

10.0 Illustrative Model: Development of a Novel Fluid Heating Device

To illustrate the ideas of the robust design method, particularly the analysis
methods, two examples are developed and then worked through in the following sections.
The first model involves the optimization of a fluid heating device by the application of
the robust design method. The goal of this model is to provide an illustrative example of
the design method as well as to describe how the data obtained from the experiments is
analyzed.

10.1 Description of the Device and Problem

A fluid flowing through a tube can be heated by means of a finned surface, as
shown in Figure 24. The plate (surface) of the finned heating device is kept at a constant
temperature higher than the fluid temperature. The goal of the device is to provide a
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constant heat transfer to the fluid flowing past the fins. However due to variability in the
size of the fins, the material properties, the fluid properties, and the water velocity, the
rate of heat transfer is also variable. Thus the objective is to apply the robust design
method in an attempt to reduce the variability in the output of the process due to the
variability of the input parameters. Figure 25 shows a 3-D view of the heating device
imbedded in the tube shown in Figure 24. The fins used are pin fins.

Rows of Heated Fins

Water In Water Out

Plate supplying heat to fins

Figure 24: Finned heating device.

Figure 25: 3-D view of the actual heating
temperature heats aligned rows of pin fins

device. A plate kept at a constant surface
which then heat the fluid flowing past the fins.

10.2 Model Derivation

The model is straightforward. The system is in steady state, so the heat transfer
from the fins can be modeled according to the equation

Qdotfin = Jhc- P-k-Ac-(T - Tinf)-tanh(mL) (30)
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where he is the convective heat transfer coefficient, Ts is the temperature of the plate, Tinf

is the bulk temperature of the fluid, L is the length of each fin, P is the parameter of a fin,
Ac is the cross-sectional area of a fin, k is the thermal conductivity of the metal of the
heating plate and fins, and m is the fin parameter. The fin parameter is defined as

m= I
k'AC (31)

The convective heat transfer coefficient in Equation 31 is determined by a correlation
where the Nusselt number is related to the heat transfer coefficient by

Nu.kw

hc =C D (32)

where Nu is the Nusselt number, kw is the thermal conductivity of the fluid, and D is the
diameter of the fins shown in Figure 25. The appropriate Nusselt correlation for a bank of
fins with aligned rows is

0.36 0.63
Nu = Pr e0.27-Re (33)

where Re is the Reynolds number and Pr is the Prandtl number. This correlation holds
for 103 < Re < 2 105 and St/SI > 0.7 where St and SI are the distances between fins in
each row and each column respectively, as shown in Figure 26. Since Equation 23 is truly
valid only for the rows in the center of the tube bundle, a correction factor is used as the
number of rows is reduced. The correction factor can be found in the references
(Lienhard, 2003, p. 383). The Pr number can be further defined as

WCp v
Pr= -

kw c (34)

where is the dynamic viscosity of the fluid, v is the kinematic viscosity, a is the thermal
diffusivity, kw is the thermal conductivity of the water, and cp is the heat capacity of the
water. Finally, the Reynolds number is defined as

Re = p v.D

At, (35)

where the velocity, v, is the flow rate taking into account the fact that the area has been
reduced due to the presence of the fins, and p is the density of the fluid.
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Figure 26: Schematic representation of the heating element.

The flow rate increases as the fluid enters the rows of tubes since the cross
sectional area available to flow is reduced. The volumetric flow rate into the heater is set
at a constant 1.93 kg /sec. The flow velocity into the heater is allowed to vary, so to
compensate for the constant mass flow rate, the area of the inlet to the box varies. As the
velocity increases, the area must decrease to keep the mass flow-rate constant. For an
initial velocity of 0.75 m/s, the cross-sectional area of the "box" containing the fins which
the flow enters is set at 4 square inches regardless of the length or diameter of the fins.
Thus as the fins become longer the available row length, Lc, decreases. The number of
fins per row is chosen so that the distance between 2 fins is 2.2 times the diameter of each
fin. The number of fins per row is however many fins can fit given this requirement. The
heat transfer obtained by all the fins is then given as

Qdot = MN-j hc.P. k. Ac-(T - Tinf)- tanh(m-L) , (36)

where M is the number of rows and N is the number of fins per row. The heat transfer to
each successive row actually decreases since the temperature difference driving the heat
transfer decreases as the fluid heats up; this effect however is ignored in the model.

10.3 Development of the Experiment

The control factors for the device are chosen to be the velocity (v) of the
incoming fluid before it reaches the tube bundles, the diameter (D) of the fins, the length
(L) of the fins, and the thermal conductivity (k) of the fin material. The aim is to design
an experiment that incorporates three test levels for each factor. The nominal value
originally assigned to the control factor is set as the intermediate level, and then a
positive and negative deviation from this nominal value are set as the higher and lower
values respectively for each factor. The desired levels for each factor are listed in Table
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1. The range in each of the parameters was chosen to be large, so as to be able to consider
many different options in the design of the heater.

Table 1: Test levels of the four chosen control factors

Levels
Parameter 1 2 3
k (W/m-K) 30 60 90
D (mm) 0.769 5.083 9.398
L (mm) 12.7 25.4 38.1
v (m/s) 0.225 0.75 1.275

The output of the system that is chosen to be optimized is the heat transfer rate of
the fins (Equation 36). The desired output is 3.85 kW, even though the greater concern is
to attempt to reduce the variability. The signal to noise ratio for a nominal-the best type
problem is chosen as the appropriate optimization parameter (Equation 8). The
adjustment factor chosen is the number of fin rows, since the total heat output is only a
multiplication of the number of rows.

10.4 Testing for Factor Interaction

To design the correct matrix experiment, the parameter values were first tested in
an L16 design to determine what interactions occurred if any. The L16 design is shown in
Figure 27, where the control factors, k, D, L, and v are assigned to columns A, B, C, and
D respectively. As explained in earlier sections, a very convenient way to determine
factor effects is to create a Scree chart. The output of each experiment (row) is a value for
the heat transfer rate as a function of the parameter levels specified in columns 1 through
4. The experiment is run using the lowest level in Table 1 as the lowest level in Figure 27
and the highest level in Table 1 as the highest level in Figure 27. The output values of the
experiments are placed into a single column. To then determine factor levels for say
column 5 (the AB interactions) the average of all the output-values in the output column
corresponding to the rows with a 2 in column 5 are subtracted from the average of the
output values corresponding to a row with a 1 in column 5. The difference between these
two values results in the factor effect. If this is done for each column, and then plotted,
the result is the Scree chart shown in Figure 28. Figure 28 shows significant factor
effects. Fortunately, Equation 36 can be linearized by taking the natural log of the
equation. Using the natural log of the heat transfer as the output, the Scree chart for the
interactions is shown in Figure 29, which shows virtually no interaction between factors,
so a saturated design can be used.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2

2 1 1 1 2 2 2 1 2 1 1 1 2 2 2 1

3 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1

4 1 1 2 2 2 1 1 1 1 2 2 2 1 1 2

5 1 2. 1 1 1 2 2 1 1 2 2 2 1 2 1

6 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2

7 1 2 2 1 1 1 2 2 1 1 1 2 2 1 2

8 1 2 2 2 1 1 1 2 2 2 1 1 2 1
9 2 '1 1 1 1 1 1 2 2 2 2 2 2 1 1

10 2 1 1 2 1 1 2 2 1 1 2 1 1 2 2

11 2 1 2 1 1 2 1 1 2 1 1 2 1 2 2

12 2 1 2 2 1 2 2 1 1 2 1 1 2 1 1

13 2 2 1 1 2 1 1 1 1 2 1 1 2 2 2

14 2 2 1 2 2 1 2 1 2 1 1 2 1 1 1

15 2 2 2 1 2 2 1 2 1 1 2 1 1 1 1

16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 27: L16 experiment; the full design includes four factors at two levels each.

Figure 28: Scree chart for the L16 experiment where the heat transfer (Equation 36) is
the measured output. The scree chart indicates that significant factor effects exist.
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Scree Chart

Figure 29: Scree chart for the L16 experiment where the natural log of the heat transfer
(Equation 36) is the measured output. The Scree chart indicates that factor effects are
negligible compared to single factor effects.

10.5 Choosing the Appropriate Design and Setting up the Experiment

Since for the natural log of the heat transfer interactions between factors are very
small compared to the effects of the factors, interactions are ignored. As stated earlier, the
preferred number of levels for each factor is three, so the resulting design used is the L9
shown in Figure 14. Since a computer simulation is used to estimate factor effects, each
of the parameters that are to be varied is assigned a mean and standard deviation, as
shown in Table 2. In order to ensure that the inputs have enough time to accurately
portray their given characteristics, 300000 trials were run to obtain the value of the SN
ratio. The results of the simulation are given in the next section.

Table 2: Mean and standard deviation of both the control and Noise factors.

Standard
Mean Deviation

k Levels in Table 1 10% of k

D Levels in Table 1 10% of D

L Levels in Table 1 2% of L

v Levels in Table 1 15% of v

Tinf (K) 280 5.6

Ts (K) 353.15 3.53

p (kgm-s) 0.000867 0.0000867

kw (W/m-K) 0.6103 0.061
cp (J/kg-K) 4181 418.1
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10.6 Results and Analysis of Data

The L9 experiment is depicted in Figure 30. The SN ratio, mean, and standard
deviation for each experiment are listed to the right of the design. Table 3 compares the
average values of the SN ratio for each level of each factor. The level for each parameter
that produces the highest SN ratio is given in bold; this level for each factor is the
optimum level as determined by the design.

k D L v SN Mean St Dev
1 1 1 1 1 32.312 8.8196 0.21373

2 1 2 2 2 31.403 7.8866 0.2122
3 1 3 3 3 30.654 7.3718 0.2162
4 2 1 2 3 30.616 7.2978 0.21499
5 2 2 3 1 32.171 8.6518 0.21308
6 2 3 1 2 32.575 9.1538 0.2152
7 3 1 3 2 30.854 7.432 0.21301
8 3 2 1 3 32.233 8.8142 0.21554
9 3 3 2 1 32.977 9.4372 0.21183

Figure 30: L9 Experiment and Results

Table 3: Summary of results of the L9 experiment in Figure 30

I_1 2 3 Average SS

K 31.45629 31.78734 32.0213 31.754976 0.483558918
D 31.26039 31.93575 32.06878 31.754976 1.127302482
L 32.37323 31.66523 31.22647 31.754976 2.008819274
V 32.48657 31.61074 31.16762 31.754976 2.703075774

Analysis of variance and other statistical techniques are usually run after the
experiments have been performed in order to extract more information from the data. One
of the most important measurements taken in data analysis is sum of squares which is
similar in idea to the Scree chart from before in that it gives a measurement of the
importance of the factor and its levels on the outcome of the experiment. The sum of
squares for factor A can be computed as

SSA = YE (mAi - m)2

~~~~~~~i , ~(37)

where mAi is the average of the SN ratios for the experiments in which factor A occurs at
level i (where level i can be either 1, 2, or 3 for the L9 in Figure 30), m is the average of
all the SN ratios as shown in the fifth column in Table 3, and E is the number of times the
factor level i appears in the matrix experiment. In the L9 experiment, each level for each
factor appears 3 times. As is apparent from the sum of squares values listed in Table 3,
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the velocity has the greatest effect on the heat transfer rate of the fins, followed next by
fin length and then fin diameter.

10.7 Verification Experiment and Discussion

The final results of the experiment, along with the optimum settings with and
without adjustment are shown in Table 4. In comparing the original and the adjusted
values, one immediately notes that the standard deviation has not changed (and may have
even increased slightly). On first glance it would appear as if the design did not
effectively optimize the system. An L16 was subsequently run using the lowest and
highest values in Table 1 to see how the optimum settings of the control factors might
change if interactions are considered. Since all possible interactions are included in this
type of design, heat transfer alone was optimized (no natural log function). The result of
the L16 (not shown) was that the optimum values for the control factors were the
minimum values tested in the L9 for every factor. This result is in contradiction to the
results of the L9 which concluded that the diameter and the thermal conductivity should
be increased, not decreased. When comparing the values for the mean and standard
deviation after adjustment for both designs, one realizes that no significant improvement
has taken place in the variability of the system with either optimization. The designs were
adjusted to fractional row numbers of fins, M, (an impossible situation) to try to obtain a
discrepancy even though none was found.

The conclusion of the experiments is that even for the wide range of input values
listed, the non-linearities in the system are too small to make any significant difference
through parameter design. The reason that the results of the L9 and L16 are different is
simply due to the fact that not enough trials were run to obtain the level of accuracy
desired by these results. The mean and standard deviation simply scale. More trials could
be run to improve accuracy, but since the standard deviation changes from before to after
the optimization by only about I %, the improvements are too small to justify the
designers changing the values of the fins simply to make them more robust to variation.
Within the ranges tested, the control factors cannot improve system robustness, and thus
the heater control factors should be set taking other information into account. For
instance, an mL greater than 4 results in a fin that is too long; the rate of convective heat
transfer is high enough that heat is swept away before the length of the fin can be used.
Thus the smaller diameter suggested by the L16 design should not be used. The Fin
length should be set to the smallest value and the fins should be made with the larger
diameter. If lower output variability is required, tolerance design should be used.
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Table 4: Results of the L9 experiment for the finned heater

Original Optimized Adjusted

mean 8.232842 10.144549 8.231271

st dev 0.213105 0.214751 0.214629

qout 3848.655 26044.84 3844.039

M 10 10 1.475

SN 31.73911 33.485957 31.67556

k 60 90 90

D(mm) 5.08 9.398 9.398

L(mm) 25.4 12.7 12.7

v 0.75 0.225 0.225
N 9 33 33

m*L 12.252691 2.257547 2.25757
st dev act 826.35827 5651.188 836.7254

11.0 Illustrative Model: Development of a Throttle-by-Wire System

A throttle-by-wire system is considered in the second example. The transient
response of the throttle is treated as a smaller-the-better type problem. The main objective
of this section is to compare the various sampling methods that can be used to determine
mean shift.

11.1 Description of the System

Engines in most automobiles today are of the spark ignition type. The goal of the
intake system of a spark ignition engine, as shown in Figure 31, is to control the flow of
air into the engine and evenly distribute it to the engine cylinders. The mixing of fuel
with the air entering the engine to create a combustible mixture used by the engine to
produce power also takes place within the intake system. After passing through the air
filter, incoming air moves across a throttle plate before entering the manifold and
ultimately the engine cylinders. In modem engines, fuel is introduced into the air-stream
right before it enters the cylinders by injectors incorporated into the manifold runners.
Spark-ignition engines operate with the ratio of the mixture of fuel to air always at a
roughly constant value, so the electronic control unit of the engine varies the amount of
fuel injected into the air stream depending on the rate of air flow. The amount of fuel is
always proportional to the amount of air, so the engine is controlled is by varying the
amount of total mixture that enters the cylinders (in contrast, the diesel engines used in
large trucks always have roughly the same amount of air entering the cylinders and vary
instead the amount of fuel injected). The amount of mixture is controlled by a butterfly
valve (the throttle) which varies the amount of air-flow into the engine depending on the
opening angle of the throttle plate. The throttle creates a pressure drop between the
outside atmosphere and the cylinders which reduces air flow into the engine. Figure 32
shows a picture of one of these throttle bodies.
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Figure 31: Intake system of a spark ignition engine. Spark Ignition engines are controlled
by a throttle which varies the amount of air that enters the engine.
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Figure 32: A single-barrel throttle body.

The throttle shown in Figure 32 is mechanical; the opening and closing of the
throttle is by means of hardware attached directly to the accelerator pedal of the
automobile. Recently, some companies have begun using throttle-by-wire systems which
instead use a signal from the accelerator pedal to open the throttle via a motor.

11.2 Development of the Throttle Model

The hardware of the throttle-by-wire system consists of the actual throttle plate, a
return spring, a throttle position sensor, a motor, a controller usually incorporated into the
engine electronic control unit, and a possible damping mechanism. To improve the
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accuracy of the system, the controller generally uses a closed loop feedback system
(Eriksson and Nielsen, 2000). The characteristic of the controller that makes it closed-
loop is that it actively monitors the output of the system and then actively adjusts the
system input accordingly. Closed-loop control results in both a faster response as well as
the ability to eliminate any offset that would otherwise be seen in the system.

The block diagram for the closed loop controller is shown in Figure 33. The
output of the system (the throttle angle) is read by the potentiometer, converted to a
signal, and then subtracted from the input signal (that also represents an angle). The
difference between these two signals is the error signal, which is then subsequently fed to
the controller and ultimately the hardware of the system, which then produces the new
output value. The system incorporates a proportional-integral (PI) controller. The
proportional control allows for a fast response, and the integral control eliminates the
steady-state offset of the throttle.

Error
Signal PI Control Motor Pot.

I,,, It M otor Pot.

Signal

Figure 33: Block diagram of the closed- loop system

The hardware of the mass, spring, and damper system of the throttle can be
described by the equation

d2 d
J d 2 0 = F- k( + On) k2 dSg (d0 ) (

kdt dt~ k2 {~~OjJ kdt} (38)

where F is the applied force of the motor, k1 is the spring constant, k2 is the coefficient of
the viscosity force, Ts is the static friction, 00 is the preset in the spring, J is the moment
of inertia of the throttle mass, and 0 is the angular output of the system.

The value of F is essentially determined by a value related to the input signal to
the system. In the closed loop system, F is determined by the magnitude of the error
signal and the characteristics of the control plant. Since the controller will incorporate
proportional control, F is simply replaced by the input signal to the motor, u(t).
Replacing F, and rewriting Equation 38 in the Laplace domain, the resulting transfer
function for the throttle system is
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0(s) 1

J( s + k2 s + k (39)

The transfer function of a PI controller can be written in terms of two parameters and is
represented also in the Laplace domain as

k 3 . 1 -
T3C / ,1 (40)

where k3 and Tr are constants. The schematic of the closed-loop system incorporating the
transfer functions is shown in Figure 34. The final transfer function for the system in is

k3 (1+-I
0 (S) I S

e(s) k3 - + + J-s 2 + k2
. s + k1

I-s , (41)

where O(s) is the desired throttle angle (the system input) in the Laplace domain. Note
that Equation 41 has simplified Equation 38. Equation 41 ignores the effect of Ts. To
account for Ts and the sign function, the equations are not ultimately solved in the
Laplace domain, however this domain does provide a clean description of the system,
which is why it has been included.

Error
Signal PI Control Motor and Throttle

Ir, ,I+ Iements Pot.
II IJL

Signal

Figure 34: Closed-loop block diagram for the throttle-by-wire system. The transfer
functions for the system components are included in the diagram.

The aspects of the system not shown in Equation 41 but incorporated into the final
model deal with the static friction and the modeling of the input to the system. If the
motor force and the spring force together are less than the static friction, and if the
velocity equals zero, then the sum of the forces on the system equals zero; essentially the
throttle stops because static friction is now greater than the forces driving the system.
This term can be represented by the extra term in Equation 38. The throttle input signal is
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also not modeled as instantaneous, which is in contrast to a model developed in the
references and on which this model is based (Eriksson and Nielsen, 2000). When a driver
depresses the throttle pedal with the desire to reach nearly wide open throttle, that
movement does not happen instantaneously, so the signal to the electronic throttle is not
instantaneous. For fast throttle opening times, opening might occur within about 0.1
seconds. Thus the throttle opening is modeled as

((t) = 1 - ex -E)setexpi II .'®set
Tconstant , (42)

where 0(t) is the desired throttle angle now described in the time domain, set is the
steady-state angle of the throttle, t is time, and Tconstant is a time constant.

11.3 Optimization Parameter

A particular throttle response may look like that shown in Figure 35. The broken
curve is the angular input of the accelerator pedal, and the solid curve represents the
throttle angle as a function of time. The ideal throttle angle is equal to the accelerator
angle. Thus, ideally the solid and broken curves would follow each other. The loss to the
system is thus the difference between these two curves. If we add up that distance at ever
point, or calculate the total area between these two curves, as shown in Figure 36, this
area is a good representation of the deviation of the throttle behavior from the ideal
operation. Thus, the shaded area in Figure 36 is used as the optimization parameter in the
design of experiments, where the goal is to make the shaded area as small as possible.
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Figure 35: Typical response of the throttle valve. The solid curve is the response of the
throttle. The broken line is the input produced by the acceleration pedal.
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Figure 36: The area between the throttle response and the input curve must be made as
small as possible in order to achieve optimum throttle conditions.

11.4 Test for Factor Interactions

The system is tested for 4 factors at 2 levels each, so again the L16 matrix is
incorporated. The 4 factors chosen to be considered initially are kl, k2, k3, and T. The
interaction of these factors is shown in Figure 37. o00 is the other possible control factor,
but for now, it is set to a value of 5 degrees, and only the interaction between the other
control factors is considered. The factors other than those just mentioned are not
changeable, so they are not included in the control factors (but will be considered as noise
factors later). As is apparent from the Scree chart, the interactions cannot be ignored.
Unlike with the heater example, the system model for the throttle cannot be linearized by
taking the natural log of the output. Thus a full design must be used.

Figure 37: Interactions between k, k 2, k 3, and Tr.
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11.5 Optimization

In addition to kj, k2, k3 , and T, 00 is also considered as a factor to optimize. Thus
a matrix experiment incorporating an L32 matrix, with 5 factors at 2 levels each where all
interactions can be considered is used. The SN ratio is essentially the same as shown in
Equation 9, except that the square is ignored. The average of the optimizing parameter for
each level of each factor is calculated (just as in Table 3). A sum of squares was also
determined for each level. At the end of each experiment, the optimum factor levels
replaced the previous levels in the experiment, and the tests were run again. The optimum
level of both the spring, k2, and the controller parameter, k3, (whose value is largely
characteristic of the size of the motor) were capped at the values in Table 5. The larger
the motor and spring, the faster the response and the less the inertia of the mass affects
the response. However the motor cannot be too large for cost, weight, and size issues.
The optimum values of the constants after about 20 runs are shown in Table 5. Figure 38
is a trace of the optimum response.

Table 5: Optimum settings for the throttle-by-wire system.

Factors Setting at Optimum
kl (N-m) 1.8
k2 (kg-m^2/s) 0.0435
k3 0.7

T 0.0114
e zero (degrees) 1.3525
J (kg-m^2) 7.32E-04
Oset (degrees) 60
Tconstant (s) 0.03
Ts (N-m) 0.0075

Throttle Angle vs Time
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Figure 38: Optimum response
sizes have been capped.

for the throttle-by-wire system where the motor and spring
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11.6 Calculation of Mean Shift

Each factor of the throttle system was assigned a standard deviation listed in
Table 6. The Monte Carlo, Latin Hypercube, 2n+1 pattern, and 4n+1 pattern were all then
used to predict the mean shift of the throttle from its ideal response. For the Monte Carlo
method, a total of 40000 trials were tested. For the Latin Hypercube method, 60000 trials
were performed. The trials were done in batches, or runs, of 100, 200, 400, 1000 and
2000 trials each to try to obtain a sense of the quickness with which the mean of the data
output converges.

Table 6: The
factor.

settings of the control and noise factors and the standard deviation for each

Control Factors Setting at Optimum Std. Dev.
k1 (N-m) 1.8 0.18
k2 (kg-m^2/s) 0.0435 0.00435
k3 0.7 0.07
Tau 0.0114 0.00114
Theta zero (degrees) 1.3525 0.13525

Noise Factors Settings at Optimum Std. Dev.
J (kg-m*2) 7.32E-04 7.32E-05
Theta set (degrees) 60 6.00E+00
Tconstant (s) 0.03 0.0015
Ts (N-m) 0.0075 0.00075

11.7 Results and Discussion

Figure 39 compares the results of the Monte Carlo to the Latin Hypercube
method. The graph is a plot of the mean output value of the system for a specific run
versus the number of trials sampled within that run. The Monte Carlo runs, which are
represented by the dots in the figure, exhibit more scatter than the Latin Hypercube
results, especially for the runs that included low numbers of trials. As the run sizes
become larger, the two appear to converge, even though the Latin Hypercube results still
appear to have slightly less scatter.
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Figure 39: Average output for each run versus the number of trials in the run. The Latin
Hypercube data is represented by the circles. The Monte Carlo data is shown as dots.

Figures 40 is a plot of the standard deviations for each of the runs shown in Figure
39. The run numbers are low, around 10 to 20 each, so the standard deviations are by no
means exact. However Figure 40 does noticeably illustrate that the data sets of the Latin
Hypercube method are less scattered, especially for the lower trial counts. As a final
comparison between these two methods, Figures 41 and 42 are histograms for the 2000
trial size runs for both the Monte Carlo and Latin Hypercube methods. The histogram for
the Latin Hypercube appears slightly more ordered than the Monte Carlo results. From
Figures 39 through 41, it is reasonable to conclude that the Latin Hypercube offers an
advantage over the Monte Carlo method in predicting the output of the system, especially
for the smallest trial sizes.
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Figure 40: Average standard deviation for all runs at the same trial count. The Monte
Carlo standard deviations are represented by the solid line. The Latin Hypercube data is
represented by the dashed line.
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Figure 41: Histogram of the runs for the Monte Carlo sampling 2000 trials per run.
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Figure 42: Histogram of the runs for the Latin Hypercube sampling 2000 trials per run.

Finally, Table 7 compares the results of the four sampling methods. The value of
the mean shift from the original value is listed for each sampling method as well as the
percent difference between each sampling method and the Monte Carlo method. The
2n+1 pattern consequently under-predicts the actual final value by about 0.29%, and the
4n+1 pattern under-predicts the actual value by about 0.05%.

As mentioned previously, one of the major uses of these sampling methods is in
the robust design of a maximizing or minimizing system. This experiment was performed
for essentially one set of values for the system. However, if the variability was to actually
be determined for the robust design method, many experiments would have been run. The
4n+1 pattern took about 20 minutes to set up and run and the 2n+1 pattern took about 10
minutes. In contrast, the Hypercube and Monte Carlo methods took about an hour and a
half each to run all of the trials. Thus for a system described by a complex differential
equation, if a slight inaccuracy in the data can be afforded, the star patterns have a huge
advantage over the other techniques.

Table 7: Comparison of the final values predicted by the various sampling methods.

Diff. from Monte
Prediction of Method Value of Mean Shift Carlo Prediction

Monte Carlo 37.9977 2.9367 0
Latin Hypercube 38.0687 3.0077 0.187 %
2n+1 37.8868 2.8258 -0.292 %
4n+1 37.98 2.919 -0.047 %
Value Before Shift 35.061
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12.0 Conclusion

The benefits of the techniques described in the last several sections are readily
apparent from the experiments and the discussions in these sections. The robust design
method when applied correctly can increase quality substantially while still reducing
costs. Quality distinguishes the vertical integration of the product, so applying this
method and increasing quality can have significant benefits to a company's success in the
market place. The efficiency of design of experiments is also apparent, both when applied
to robust design as well as when used on its own to increase productivity and results
when working on complicated systems with many inputs. The point is that the effect of
the variability on system performance can be quantified, and needs to be in order to
improve quality as well as accurately determine system performance (such as when a
mean shift occurs).

The designs involved in robust design can become complicated, and some
engineers focus their careers on the robust design techniques and the statistics behind
them. However, the main point to get across from the ideas presented is that accounting
for and manipulating variability by using simple statistical techniques is a relatively easy
and straightforward process that results in significant benefits to a company even when
applied at the more elementary level. For the design of a system or process that is either
known to have variability or is exhibiting variability in the early or prototype stages of
the design, robust design is a necessary tool that the engineers should be aware of. An
engineer should never be improving the quality of the design by tightening the tolerances
without having first tried to robust design the system.
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