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ABSTRACT

Axiomatic Design principles are used to design a vehicle suspension system. The use of
Axiomatic Design helps to guide the design of a decoupled system. The Design Matrix (DM)
illustrates the independence among the Functional Requirements (FRs) and the Design
Parameters (DPs). The ultimate goal is the design of a fully independent suspension system in
which the FRs stiffness, ride height, and damping can be varied as needed. To achieve the three
FRs, three DPs are chosen - the volume of an air spring for stiffness, the volume of fluid in a
fluid chamber for ride height, and orifice control for damping.

This thesis investigates two DPs in depth, the air spring and fluid chamber. The nonlinearity of
the air spring is studied and its effect on the system as a whole is simulated in Simulink. Two
control systems are proposed in which stiffness and ride height are kept constant. The desired
values for stiffness and ride height are predetermined by the user or by an optimization algorithm.
The physical design for the control systems is also proposed in this thesis. The design for the air
spring system uses an electropneumatic design, and the design for the fluid chamber system uses
an electrohydraulic servovalve design.

Thesis Supervisor: Nam Pyo Suh

Title: Ralph E. & Eloise F. Cross Professor of Mechanical Engineering
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1.0 Introduction

The suspension system of a car is one of the car's most integral parts. It prevents the car body

from shaking and vibrating from road noise, helps to sustain wheel contact with the ground,

interacts with the steering system to provide vehicle control, and also aids in maintaining a

comfortable car ride. A basic suspension system includes springs and dampers. There are three

parameters that characterize a suspension system - the stiffness, the damping, and the ride height.

The levels and values of these parameters for a specific car are determined by the type of car and

the type of user.

There are tradeoffs associated with each parameter. For example, a car with a stiff suspension

handles well but does not give a comfortable ride. This would be suitable for a road enthusiast

or race car driver, and a softer suspension would be more suitable for a family. With ride height,

a low one gives the driver stability at high speeds, but a high one allows the driver to see better

and also allows the car body to clear the ground in rough and bumpy road conditions. The high

ride height, however, causes the center of gravity of the car to be higher, and therefore more

unstable.

Ideally, the three parameters for any given car would be able to be set for specific drivers and

road conditions. In order to achieve this, a fully adjustable suspension system must be

constructed. Subsequent chapters of this thesis will review active suspension systems and

axiomatic design, and will describe the design for a proposed suspension system that allows for

the independent variation of the three parameters.
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2.0 Active Vehicle Suspension Systems

Suspension systems can be categorized as the following - passive, self-leveling, semi-active, and

full-active. In recent years, active components have been integrated into suspension systems in

order to improve comfort of ride, handling of vehicle, etc. Passive suspension systems are

comprised of conventional springs and shock absorbers with properties that do not depend on

time. Self-leveling suspensions can adjust for variations in load. In semi-active suspensions, the

properties of the spring and damping elements can be changed by external control. Semi-active

suspensions can be further broken down into slow-active, low-bandwidth, and high-bandwidth

systems. Slow-active systems, also called adaptive systems, allow for the spring and damping

properties to be switched among a number of distinct levels. The changes in these properties are

due to road and driving conditions. In low-bandwidth systems, the changes in spring and damper

properties are made in response to the low-frequencies of the sprung mass. In high-bandwidth

systems, changes are made due to both the high-frequency axle oscillations and low-frequency

sprung mass oscillations. Full-active suspensions use actuators in place of springs and dampers

in order to produce desired forces in the suspension system. [1]

Active suspension systems are a research topic of great interest as evidenced by comprehensive

surveys compiled in [2, 3]. The value of these suspension systems has been recognized by [4] in

which the authors have investigated varying the stiffness and damping coefficient. They have

also recognized the disadvantages of fully active suspensions - "complexity, power requirements,

and cost." However, according to [4], the use of passive systems, in which measured external

signals are used to actively change the parameters of the system, "can come close to optimal

performance."

Variable damping is already a recognized technology in high-end automobiles today [5, 6, 7, 8].

Ride height adjusters are also a reality in recent years' luxury cars in additional to variable

damping [1, 7, 8]. These adjusters are responsive to the car's velocity, the roughness of the

terrain, and the car's load. However, with these systems, there is no independent control of the

stiffness. The stiffness of these systems is the value that results after setting the damping

coefficient and ride height. In [9], the need for variable stiffness and the need for variable ride
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height are developed. Deo and Suh have demonstrated that softer suspensions provide more

comfort and that stiffer suspensions provide better vehicle handling.

Previous work has been done in [9] on a fully customizable suspension system with independent

control of stiffness. Deo and Suh have proposed a design through the use of axiomatic design for

such a system. An alternative design for an adaptive suspension system with independent

control of stiffness, damping, and ride height responsive to road conditions and user input is

proposed in this thesis. The alternative design uses an air spring to provide variable stiffness and

a fluid chamber to generate an appropriate ride height. Novel component designs and control

systems designs for these two elements are detailed in this thesis.
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3.0 Axiomatic Design

Axiomatic Design is a method of design in which design is mapped out into four domains -

customer, function, design, and process. The characteristic vectors of these domains are

Customer Attributes { CAs }, Functional Requirements {FRs }, Design Parameters {DPs }, and

Process Variables {PVs}. Product design requires mapping from the function to the physical

domains, and process design requires mapping from the physical to the process domains.

FRs are defined as the least number of independent requirements needed to fully describe the

overall intention of the product. The DPs are the physical attributes of the design that satisfy the

FRs. Two axioms guide the design of the DPs - the Independence Axiom and the Information

Axiom. The Independence Axiom states that independence should be maintained among the FRs.

The Information Axiom states that information content of the design should be minimized.

There is a one-to-one correspondence between the FRs and DPs, and a Design Matrix, DM, is

used to represent the effect of DPs on FRs:

{ FRI } Al A 12 {DP1 (1)
FR2 LA, IA22 [DP2J'

where Al shows the effect of DP1 on FR1 and A2 1 shows the effect of DP1 on FR2, etc. The

Independence Axiom is fulfilled if the DM is diagonal or triangular. If the DM is diagonal, the

design is uncoupled, and each FR can be fulfilled by modifying a single DP. If the DM is

triangular, the design is decoupled, and the FRs can only be fulfilled if the DPs are set in the

proper sequence. If in Equation 1, there were no effect of DP2 on FR1 (i.e. A 12 = O), then the

DPs would have to be determined in the order DP1 followed by DP2. If the DM is completely

filled out, the design is coupled, and the fulfillment of FRs is more difficult due to the couplings.

Varying one DP would affect more than one FR.

According to the Information Axiom, DPs with the least information (i.e. the least complexity)

are better solutions. Information is defined as:
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I: lo ) (2)

where I is information, and p is the probability of fulfilling the FR. For an uncoupled design, the

total information content equals the sum of the information content for each DP. [10]
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4.0 Proposed Design

In order to fully understand existing suspension systems and the improvements that could be

made, the kinematics of linear systems were studied. It is very important that suspension

kinematics not change with the modifications.

4.1 Linear System

The most common design for front-wheel suspension systems is the short long arm configuration

shown in Figure 1. The schematic in Figure 1 can be modeled as the quarter-car, single degree

of freedom system shown in Figure 2.

Figure 1. Kinematic schematic of existing short long arm suspension system.

M S~ t X~

K C

tI ///////////
Figure 2. Quater-car, single degree of freedom model.

In Figure 2, Ms is the sprung mass, K is the stiffness of the linear spring, C is the damping

coefficient, XL, is the suspension travel, Xr is the road disturbance, and F is the force on the

9
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suspension system due to the load in the car, inertial forces, forces generated during driving, etc.

The equation of motion for this system is

MsXs + C(s -. r) + K(xs- X) -F = O0. (3)

4.2 Development of Design

The same basic configuration can be used for an adaptive suspension system so that suspension

kinematics are not changed. Since the goal is to design a fully customizable suspension system,

the functional requirements are variable stiffness, variable ride height, and variable damping. In

the redesigned system, variable stiffness can be accomplished with an air spring. If we model

the air in the air spring as ideal, and the process as adiabatic, we know that

PVY=PoVo' = constant, (4)

where P is the pressure in the air spring, V is the volume of the air spring, Po is the initial

pressure, V0 is the initial volume, and y is the specific heat ratio which is equal to cp/cv where cp

is the specific heat capacity of a gas at constant pressure and cv is the specific heat capacity of a

gas at constant volume. For air, this ratio is equal to -1.4. From Equation 4, assuming air, we

find that P = NVY where N is a constant, and in Figure 3, the pressure vs. volume curve (N = 1) is

plotted to give us a general idea of the nonlinearity of the air spring.

i

Figure 3. Nonlinear pressure vs. volume curve for the air spring.
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For a regular spring, we know that

dF = -kdx, (5)

where F is the force on the spring, k is the stiffness, and x is the deflection of the spring. From

basic principles and geometric relationships,

dF = AdP (6)

and

dV
dx = d

A
(7)

where A is the cross sectional area of the air spring. After differentiating Equation 4, combining

Equations 5-7, and rearranging terms, we find that

k - OrA
V ),+1 

We can simplify Equation 8 by substituting in Equation 3 so that

k= PA 2k - / A

V

By controlling V, the volume air spring, we can change the stiffness k of the air spring.

(8)

(9)

Variable ride height can be obtained with a fluid chamber that extends and contracts based on

how much fluid is inside the chamber. A simple geometric relationship is used to determine the

height of the fluid chamber:
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uv 
U= Vf

A'
(10)

where U is the height of the fluid, Vf is the volume of fluid inside the chamber, and A is the cross

sectional area of the chamber. Again, we control the volume in order to change ride height.

The existing technology of orifice control can be used to obtain variable damping. The system is

configured as shown in Figure 4. The absence of the damper in the schematic is for the sake of

simplicity. The damper would connect the lower arm to the vehicle frame so that it would be in

parallel with the spring.

Figure 4. Kinematic representation of redesigned suspension system.

The design matrix is as follows:

Stiffness X

Ride Height = X

Damping J 0

O 0 Volumeof Air 1
X 0 Volume of FluidX

0 X L Orifice Control J

( 1)

Because the DP air spring changes both FRs stiffness and ride height (i.e. the design is

decoupled), the setting of the air spring must be determined before the setting of the fluid
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chamber can be established. Also, for damping, since the FR is not affected by other DPs and

orifice control does not affect other FRs, we can forgo the analysis of this FR/DP pair for reason

of simplicity. And instead, rely on the technology that is well established.

4.3 Behavior of System

The fluid inside the fluid chamber is modeled as incompressible; thus, the fluid chamber acts as a

rigid body, and we can model the system as shown in Figure 5 where K, the stiffness of the

nonlinear air spring, is what was derived in Equation 8.

JAx

Figure 5. Model of redesigned suspension system.

The equation of motion of the quarter-car, single degree of freedom model in Figure 5 can still

be modeled with the equation in Equation 3. However, we must remember that here, K is

nonlinearly dependent on the difference between the suspension travel and road disturbance.

Substituting Equation 8 into Equation 3, we obtain

M sxs + C(i -Xr)+ Y) P voy
Ar-l(x - r)r

-F =0. (12)

We can model Equation 12 in Matlab's Simulink environment as shown in Figure 6. Note that in

this figure, K is not the stiffness of the spring, but the constant in Equation 12 that is multiplied

with (-xr) ' and B is used for the damping coefficient in place of C. For the Simulink simulation
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that was performed in this thesis, to which Figure 6 belongs, the road input xr is modeled as a

sine function with a frequency of 5 rad/s and amplitude of 1. All constants are set equal to 1, and

y is set equal to 1.4 to represent air. A constant value of 100 is fed into the summing junction

along with xs and Xr in order to provide the function block [A-Y] with a positive input value. A

simulation was run from 0.1 seconds to 100 seconds with two inputs - the constant force F and

the sinusoidal road input Xr shown in Figure 7. The result of the simulation is shown in Figure 8.

It is interesting to note that the resulting suspension travel without any control is a sinusoid

oscillating around a line with positive slope. The frequency of the oscillations is identical to the

frequency of the sinusoidal road input.

Z R~~~Sope of *

Constani F p ol

Figure 6. Block diagram of governing equation of motion used in Simulink simulation.
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Figure 7. Graph of sinusoidal road input xr from ti = O. Is to tf= l00s with frequency 5 rad/s and
amplitude 1.

Figure 8. Graph of the output, suspension travel, xs from t = O.ls to tf= 100s.
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5.0 Design of Control Systems

In order to fulfill the functional requirements of our system, we have to be able to control the two

design parameters - the volume of air in the air spring, and the volume of fluid in the fluid

chamber. The ultimate goal is to keep both ride height and stiffness constant at their

predetermined levels. There are several options available for the user when inputting his

preferences. One option is to have predetermined modes like luxury, sport, etc. for the user to

select. Each mode would have a specific stiffness, ride height, and damping associated with it.

Another option is to have the parameters determined by an algorithm, based on road conditions,

velocity of the car, the user's driving behavior, etc.

5.1 Stiffness Control

The goal of the controller is to keep the stiffness in the spring at a constant level. Equation 9 is

used to calculate the required volume of the air spring for a specified stiffness. Since the cross-

sectional area of the air spring stays constant, we can use the extension of the spring to find the

volume (volume = cross-sectional area * extension). As a result, Equation 8 can be rewritten as:

k= YPoVyr (13)
gr_lxr+l 

From geometric relationships, the extension of the spring can be expressed as a function of the

angles shown in Figure 9:

x = x 0 +L 3 sin 02 -L 2 sin 0, (14)

where x is the desired spring extension, xo is the "equilibrium" spring height when 01 and 02 are

equal to 0. Because the user is inputting a specific stiffness k, calculations can be done internally

to find the desired extension x of the spring unique to the k.
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Figure 9. Kinematic schematic of redesigned suspension system with important parameters

labeled.

The controller can then control the extension x of the spring. A block diagram of the control

system is shown in Figure 10. Two encoders on the upper and lower arms of the suspension give

a measurement of Xact, the actual value of the spring extension. This value is compared with the

desired value of the spring extension xdes, and the error is fed into the PID controller of the motor.

Unity feedback is used.

PID Controller Motor + Compressor

Figure 10. Block diagram for controlling stiffness.

5.2 Ride Height Control

As with stiffness, ride height is to be kept constant. The required volume of fluid for a height U

of the fluid chamber is given by Equation 10. The ride height of the car is equal to the sum of

the extension of the spring and the height of the fluid chamber, and it is also equal to the

17
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difference between the suspension travel and road noise. It can be calculated if the angle 01 in

Figure 9 is known:

ride height = uo + x + L2 sin 06 = - r , (15)

where uo is the "equilibrium" fluid chamber height defined as the height of the fluid chamber

when 02 is equal to 0.

Figure 11 shows the block diagram for the control system for ride height. A low pass filter is

necessary since we would like to filter out the high frequency road noise. The actual ride height

(Xs-.Xr')act is measured by the encoder on the lower arm of the suspension system, and the error is

fed through a low pass filter and a controller in order to obtain the desired fluid chamber height

Udes. The controller of the electrohydraulic servovalve, which is controlling the height of the

fluid chamber, sets Ude, and feeds the result into the plant.

Electrohydr aulic

(x,- Xr)d5

(x3- Xr

Figure 11. Block diagram for controlling ride height.
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6.0 Physical Design of System

Actual designs for the air spring and fluid chamber systems are proposed in the following

sections. An electropneumatic system was devised for the air spring, and an electrohydraulic

system was developed for the fluid chamber.

6.1 Air Spring System

The component design for the air spring system is shown in Figure 12.

V alve 3

Figure 12. Schematic of design for air spring system.

Atmospheric air is used for reasons of simplicity since a compressed air tank would involve

more components. However, because we are using atmospheric air, a filter must be implemented

before the compressor to filter out dust particles in the air that can damage the compressor. DC

brushless motors are common motors used to drive compressors and pumps [11]. We can use

this type of motor to power the compressor. It takes its signal from the control system described

in Section 5.1. An encoder on the lower arm of the suspension measures the angle of the arm

relative to its "equilibrium" position at 0 degrees. Another encoder on the upper arm of the

spring measures the angle of the upper arm. However, the upper arm can only be moved if fluid

is taken out or added to the fluid chamber, therefore the angle of the upper arm is a known value.

According to our DM, we must first determine the volume of the air spring before the height of

the fluid chamber can change. Changing the volume of the air spring will only affect the angle

in the lower arm. In this way, the volume of the spring can be measured.
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When air is needed, a signal is sent to the motor to begin powering the compressor. The filter

located after the compressor is included in part to allow the air coming out of the compressor to

cool down a little, and in part to filter out water and oil particles that may have gotten into the air

during compression. Valves 1, 2, and 3 are one-way directional valves so that air cannot flow

backwards in the system. Valve 1 is a check valve with two positions - open and closed. It is

operated by a solenoid that will take its signal from the motor. Once the motor is activated, the

solenoid will trigger. When the motor stops (the encoder on the lower control arm sends a signal

to the motor that the air spring no longer needs more air), the solenoid is de-triggered, and the

valve is closed. Valves 2 and 3 are proportionally controlled by motors that receive a signal

from the encoder on the lower arm of the suspension. If the desired volume change of the air

spring is relatively large, the valves are opened more to allow for more air flow. If the desired

volume change is relatively small, then the valves are only opened a small amount. Valve 2

leads to the inlet of the air spring, allowing volume into the air spring, and Valve 3 allows air out

of the spring.

6.2 Fluid Chamber System

A schematic of the fluid chamber system is shown in Figure 13. This type of setup is

characteristic of an electrohydraulic servovalve. These servovalves can be sorted into two broad

categories - single-stage and two-stage. In a single-stage servovalve, the motor is directly

connected to a spool valve, and it also positions the valve. The type of motor generally used is a

permanent magnet torque motor [12]. In this design, a single-stage servovalve is used. The

appropriate analysis and transfer functions of these servovalves can be found in [12].
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Fluid camb-

Figure 13. Schematic of fluid chamber system.

The fluid chamber is expandable and contractible in the vertical direction. An "equilibrium"

value is set for the volume of fluid inside the fluid chamber. Any added volume is added to this

value, and any removed volume is subtracted from this value. The height of the fluid chamber is

dependent on the angle of the lower arm shown in Figure 9. The relationship is expressed by

Equation 15.

When the control system described in Section 5.2 signals that more volume of fluid is needed,

the motor powering the pump is activated. Fluid is drawn from the reservoir into the pump and

subsequently through the spool valve into the fluid chamber. The amount of the change in

volume to the desired volume dictates how much the motor powering the spool valve will allow

the pathway to open. When less volume is needed in the fluid chamber, the motor opens the

other side of the spool valve to allow the fluid back into the oil reservoir.
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7.0 Conclusion

This thesis examines a proposed design for a fully customizable vehicle suspension system with

independent control of stiffness, ride height, and damping. More specifically, it discusses the

control systems and their component designs for the control of stiffness and ride height. To

obtain variable stiffness, an air spring is used in place of a conventional spring. By changing the

volume of the air spring, the stiffness parameter of the air spring can be varied. A fluid chamber

is used to compensate for the volume changes of the air spring and also to achieve a variable ride

height. The advantages of a fully customizable suspension system are illustrated by the Design

Matrix which is obtained through the use of Axiomatic Design principles. The DM shows us

that the proposed design in this thesis is a decoupled design.
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