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By

lason Chatzakis

Submitted to the Department of Ocean Engineering on May 7, 2004
in partial fulfillment of the requirements for the degree of

Master of Science in Ocean Engineering

Abstract

Hydrofoil ships cruise at large speeds and are often expected to operate in rough
weather conditions. The motion of these ships due to their encounter with ambient waves can
become uncomfortable or even dangerous without the use of some form of motion control.
The objective of this thesis is to study the active motion control of high-speed hydrofoil
vessels.

This work is composed of two parts, reflecting the two disciplines applied:
hydrodynamics and optimal control theory. In the first part, a two-dimensional computer code
is developed for the calculation of forces and the integration of the equations of motion for
fully submerged lifting bodies operating near a free surface. A Rankine source boundary
element (panel) method is used assuming potential flow around the body. As a result, the
motions of a hydrofoil vessel operating at high speed in ambient waves can be estimated in
the time domain.

In the second part, the application of optimal control theory to motion control of
hydrofoil ships is investigated. The code developed in the first part of this work is used as a
simulation tool for the assessment of control laws designed using state-space linear-quadratic
methods. It is found that a linear-quadratic optimal controller can attenuate the motion
response of the vessel advancing in monochromatic or ocean waves, with proper adjustment
of the cost matrices that enter the quadratic performance criterion used.

Accurate dynamic modeling is crucial in the design of control laws for any system.
Vessels that operate on or near the free surface experience hydrodynamic memory effects due
to their own motion. Casting the seakeeping equations of motion into a linear, time-invariant
state-space model suitable for the design of optimal control laws is challenging since there is
no straightforward way of including these memory effects in the model. In this work, the
seakeeping equations of motion are cast in a linear state-space form which does not include
memory effects, and the motion control simulation results show that this model is satisfactory
for the design of hydrofoil vessel control laws.

Thesis Supervisor: Paul D. Sclavounos
Title: Professor of Naval Architecture
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1. Hydrodynamic forces on lifting bodies operating near the free
surface
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1.0 INTRODUCTION

1.0 Introduction

The numerical solution of the flow around a fully submerged hydrofoil under a free

surface is treated in the first part of this work. The main objective is the estimation of

hydrodynamic forces and the integration of the equations of motion of a lifting body

operating at a relatively small draft under the surface of the ocean. These capabilities will be

used for the study of motion control of hydrofoil ships in the second part of this work.

A time domain, two-dimensional formulation is used since the vessel motions studied

in the second part will be in the heave and pitch modes. A computer code which applies a

Boundary Element (Panel) method assuming potential flow around the body is developed and

validated. This part begins with the necessary theoretical foundation and analysis.

Subsequently convergence tests and validation experiments are presented starting from simple

infinite-fluid, fixed-motion experiments and continuing with forced and free motion

experiments for free surface flows in calm water and in waves .
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1.1. THE PHYSICAL PROBLEM

1.1. The physical problem

1.1.a.Calm water

In a two-dimensional problem, a hydrofoil moving with a constant horizontal velocity

under a free surface is subject to a horizontal drag force and a vertical lift force. These forces

have different values than the ones that would occur if the hydrofoil was in an infinite fluid.

The horizontal force, apart from the friction, form and three-dimensional vortex induced drag

components also includes an additional component due to the creation of a wave flow on the

free surface, called wave drag. The lift force is affected by the free surface flow as well, in

most cases adversely.

In an ideal fluid flow, both forces have generally non-zero values. A major difference

from a fully viscous flow is that the ideal-fluid drag force is composed only of the wave drag

and, in the case of three-dimensional flow, the vortex induced drag, the two other components

being of a clearly viscous nature.

The lift and drag forces depend on parameters such as foil geometry and angle of

attack, foil velocity and submergence draft. In general there exists no analytic solution for the

ideal flow around a submerged hydrofoil of arbitrary geometry. Additionally, the large

amount of experimental and computational data available for foils operating infinite flow

cannot be used in this case since as stated before the presence of the free surface largely

affects the flow. However, knowledge of these forces is crucial for hydrofoil ship design and

operation, and hence a tool that allows an initial evaluation of the resulting flow could be

valuable in the preliminary design phase.

1.1.b. Ambient Waves

A hydrofoil ship operating in ambient waves is subject to unsteady excitation forces

due to the incident waves, in addition to the calm water lift and drag. These excitation forces

are usually quite large since the vessel is moving at a high mean velocity and hence the

encounter frequency with the incident wave system is also large, especially in the head sea

condition. The resulting motions of the vessel is characterized by high accelerations and

deviations from its mean position. This is quite troublesome for the operation of such craft,

military or commercial.

Moreover, hydrofoil craft with fully submerged foils (non surface-piercing) are

either marginally stable or even unstable in some modes of motion. As an example we can

17



1.1. THE PHYSICAL PROBLEM

look at the unstable coupling between the heave and pitch modes as shown in the sketch of a

two-foil vessel in figure 1. When the vessel pitches by a small angle E5, a negative angle of

attack of the same magnitude is induced upon the foils causing a negative heave force. In

seakeeping terms (see Newman [1]) this means that a negative restoring coefficient c 35

between pitch and heave exists. This is an unstable mode of motion for the vessel.

F3 AFT

C35 <0 F3FORE

Figure 1: Hydrofoil ship unstable coupled heave and pitch mode

Hence it is quite apparent that an active feedback control system is required to make the

vessel dynamically stable.

1.1.c. Computational Tool

In order to study the physical problem of force and motion prediction for hydrofoil

ships, a two-dimensional, time domain, boundary element method computer code has been

developed and tested. The code as a computational tool predicts the force and moment on a

fully submerged hydrofoil operating in calm water and in incident monochromatic or

stochastic waves, while in fixed, forced or free motion. It also calculates the hydrofoil's

motion in the time domain, in the free motion case. Finally it can be used to test and evaluate

various feedback control systems activating trailing edge flaps using optimal control laws.

18



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

1.2. Numerical calculation of hydrodynamic forces and moments

The calculation of the hydrodynamic force and moment on the hydrofoil requires

knowledge of the flow field around the body. An assumption on the nature of the flow is

made here: the flow is considered to be inviscid, irrotational and incompressible. In general

hydrofoil ships operate at high velocities with Reynolds numbers in the order of 109 and at

small angles of attack with little or no flow separation. This justifies a flow calculation under

the above assumptions since inertial and gravity forces will dominate the free surface and

lifting flow..

In this section, the boundary value problem for the fully submerged lifting or non-

lifting body is presented and the numerical method used for its solution described.

1.2.a. The Boundary Value Problem

Exact Boundary Value Problem
Given the previous assumptions on the nature of the flow, a total velocity potential T

can be defined representing the flow about the body. T is measured at the reference frame

moving with the mean body velocity U, and the total flow velocity at a point x on the

reference frame is u(x,t) = V T. The exact boundary value problem for T is then

conservation of mass: V2 T = 0, in the fluid volume

kinematic free surface condition: + V z - (x, t)]= 0,

on SF z=L(xt) free surface

dV 1
(1.1) dynamic free surface condition : -= - VT -VT,

dt 2

on SF z=((x,t) free surface

body boundary condition: -= 0, on SB body surface
an

far - field condition: P --+ Ux, for SFAR fXJ -+ 00

The coordinate system used in defining the BVP (1.1) can be seen in Figure 2.

In the dynamic free surface condition we assumed the atmospheric pressure to be

constant and equal to zero since the air's density is three orders of magnitude smaller than the

water's [2].

19



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

/\Z

- --- SF

X

SB

u(x,z)= VT

SFAR

Figure 2: Coordinate system for Boundary Value Problem

Linearization

The total potential T is decomposed as follows:

(1.2) 'T =(Do +#,,,

(Do represents the basis flow around which the problem is linearized [2]. In this work the free

stream flow -Ux is chosen as the basis flow. The memory potential (Pm represents the flow

perturbation due to the body presence. Linearizing around the basis flow and the mean free

surface position z = 0, the boundary value problem for the memory potential is

V2 ,, = 0, in the fluid volume

U - C(x, t) , on z=0
O 'at ax az

(1.3) C U- , a =-g, on z=O
at x

a~m - _L

n -Uh, on the body surface

4,, -+0, for jx -+ 00

where ( is the free surface elevation, and n^ is the unit normal vector on the body surface

pointing inside the body.

20



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

Solution

Green's second identity is used to transform the previous boundary value problem for

the memory potential into boundary integral equations. In two dimensions, Green's identity

produces

(1.4) 7t,,(i)- "' -G(;) + I , ,,(( f ds, =0
SBUSF SBUSF

where SB is the body boundary and SF the free surface. In this work, the two-dimensional

Rankine source

(1.5) G(i; ) = In r, r = -ij

is used as a Green function. This Green function satisfies the Laplace equation in the fluid

domain.

The body boundary condition is satisfied through the forcing of the memory potential

on the body, in the boundary integral formulation.

The free surface conditions are satisfied through the time evolution equations. If t=tn

is the current timestep, the kinematic free surface condition is satisfied using an explicit Euler

time discretization with the solution for the memory flux on the free surface from the previous

timestep t=t-n-. The free surface elevation is thus calculated explicitly for the current timestep.

The dynamic free surface condition is then satisfied using an implicit Euler time

discretization. The solution for the free surface elevation in the current timestep is thus used

for the implicit calculation of the memory potential on the free surface. This method is known

as an Emplicit Euler scheme and a detailed description can be found in [2].

1.2.b. Geometry Discretization

In this section the geometry discretization methods which are used for the creation of

the free surface and body panels are described.

Free Surface

The free surface discretized simply with constant-length panels which span the free

surface domain. The length of the free surface panels proved to be an important parameter

21



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

that affected solution convergence and numerical stability. The non-dimensional panel Froude

number:

FnH - , where U is the foil speed and h the free surface panel length

is a measure of free surface panel size and roughly speaking expresses the number of panels

per wave. In later sections, free surface panel length convergence tests are carried out before

the execution of numerical experiments.

Foil

The foil geometry is input through a set of points (offsets). While a bigger number of

offsets generally guarantees a greater accuracy in the geometrical representation, the nurnber

of panels that are used to describe the body is independent of the number of input offsets. The

user can create a foil-shaped body with as few as 4-5 offsets on each side.

For the purposes of the code's validation, a Karman-Trefftz foil geometry is used in

many of the numerical experiments that follow in later sections, since an analytical solution

for the flow around it exists through conformal mapping methods.

The panel creation method for the foil body follows.

Cubic Spline Interpolation

Initially cubic spline curves are interpolated through the input offsets. In particular,

two spline curves are used, one for each side of the foil (upper and lower). An end condition

of a normal tangent is enforced at the fore end of the foil in order to provide a rounded

leading edge. The spline curves provide an analytic approximation of the foil surface and are

available for the creation of the body panels.

Consequently, a number of panels is created on the body. Each panel's endpoints

(vertices) lie on the spline curve. In areas of high curvature, the panel center's distance from

the spline curve is greater and hence it makes sense to use higher panel densities in order to

describe areas of high curvature.

The number of panels used is user-specified. In general a larger number of panels

offers a more accurate description of the foil geometry and contributes positively to the

simulation accuracy as will be demonstrated in later sections. However, the computational

effort is burdened with the square of the total number of panels and hence the minirnum

required number of panels should be used.

Panel Spacing (even, cosine, half-cosine)

22



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

The way panels are distributed on the body also has an effect on solution accuracy,

since as mentioned before, areas of high curvature require a higher panel density. This area is

in most cases the foil leading edge.

Using an even panel spacing in not efficient computationally since one has to use a

very fine overall panel density in order to get the required density at the leading edge. Cosine

spacing and half-cosine spacing proved to be much more efficient, making for fine

distributions on the leading edge while allowing lower densities in the middle of the foil

where curvature is very small. Half-cosine spacing specifically proved to be the most efficient

spacing, since apart from providing very high leading-edge panel density it also keeps the

panels large near the trailing edge. A comparatively large trailing edge panel size is beneficial

for the numerical implementation of the Kutta condition.

Figure 3: Uniform, Cosine and Half-Cosine panel spacing

In Figure 3 a Karman-Trefftz foil discretization is shown, with the panel centers symbolized

with circles and the vertices with x's. 10 panels were used on each side of the body for clarity

of presentation. The top plot is an even-spaced discretization where the loss of accuracy in the

23



1.2. NUMERICAL CALCULATION OF HYDRODYNAMIC FORCES AND MOMENTS

leading edge is apparent. The second and third plots are cosine and half-cosine spacing

discretizations respectively.
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1.3. CODE VALIDATION AND CONVERGENCE IN INFINITE FLUID FLOW

1.3. Code validation and convergence in infinite fluid flow

A set of numerical experiments was carried out in order to investigate the numerical

robustness and physical accuracy of the computational tool. This section includes the

experiments for steady and unsteady infinite flow, in the absence of a free surface. First, the

added mass of the 2D circular and square cylinders is calculated and compared with the

analytical result for potential flow. The pressure distribution on a circular cylinder is

calculated and compared to the analytic result, and the pressure distribution on a lifting

Karman-Trefftz airfoil is subsequently calculated and compared to the conformal mapping

solution. Finally, the same airfoil geometry is set to a time-harmonic forced motion and the

resulting force calculation is confirmed qualitatively. Numerical convergence tests are shown

for the third and fourth experiments. This allows the investigation of the effect that various

discretization parameters (such as panel density and wake length) have on the solution.

1.3.a. Steady Flow

Added mass and Pressure Distribution of simple forms

As a first validation for the code, the computational added mass estimation of two

simple forms was compared to their analytical values. The forms tested were a 2-D square

cylinder and a 2-D circular cylinder. The analytic calculation of the infinite-fluid added mass

of those forms has been carried out by conformal mapping methods and can be found in [1].

The computational results showed good agreement in the order of 0.3% with the theoretical

predictions. The results can be seen in Table 1. The panel geometry for square and cylinder

can be seen in Figure 4 and Figure 5 respectively.

Form All (theoretical) kg All (comp.) kg Accuracy No. of Panels

2D square 4.754 pa 2= 1218.2125 1222.4170 0.3% 160
2D circular 7[pa2  = 805.30311 805.03750 0.03% 100

where p=10 2 5 kg/M 3

Table 1

25



1.3. CODE VALIDATION AND CONVERGENCE IN INFINITE FLUID FLOW

Added Mass check
2D square, a=1.0m, rho=1025 kg/m3
All theor. = 1218.2125 kg/m span
80 panels: All cale. = 1228.536
160 Panels: All calc. = 1222.477

0.5

0.25-
U 

U

-0.25 -

-0.5- ---------------------

0 0.25 0.5 0.75 1 1.25

XCP

Figure 4: Discretization for square-section cylinder

-0.8 Added Mass check
-0.8 2D cylinder, R-0.5m, rho-1025

All theor. - 805.03311 kg/m span
-0.9 All cale. = 805.03750 kg/m span

60 Panels

-1.2 l

-1.3

-1.4

U-1.5-

- U

-2-

-2.1

-2.2

-0.5 0 0.5
XCP

Figure 5: Discretization for circular-section cylinder
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1.3. CODE VALIDATION AND CONVERGENCE IN INFINITE FLUID FLOW

The next step was to check the computational estimation of the pressure distribution

on a 2D cylinder without circulation with the theoretical solution which can be found in [1].

The comparison was satisfactory, after a numerical solution using 100 panels. A graphic

comparison can be seen in Figure 6.

X a/a-m\ U computational
-. --. I theoretical

2.5

2

1.5

12 1

0.5

0

-0.5

p

p

p

-0.25

p

I I I
0

XCP

0.25

Figure 6: Pressure distribution on 2-D cylinder

Pressure Distribution and Lift Force on Karman-Trefftz Airfoil

Since an analytical solution (through conformal mapping methods) exists for the 2-D

Karman-Trefftz foil, the next validation step was to compare the code's predictions with the

conformal mapping solution. A symmetrical foil with the following characteristics was used:

Karman-Trefftz foil geometry
xc yc
-0.1 0.0

tail angle
200

Table 2
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Figure 7: Karman-Trefftz section

In Figure 7 we can see the foil geometry used.

Panel density convergence

The first numerical test was to examine the solution convergence with increasing

panel density. We ran the code with the foil at an angle of attack of 8.0* increasing the

number of panels on the foil from 10 to 200. The resulting calculation for the lift coefficient

can be seen in Figure 8. It is evident that there is convergence using more than 60 panels on

the foil. Most of the following runs in this study were conducted using 80 to 100 panels on the

foil, as an acceptable trade-off between accuracy and computational speed.

Panel density convergence

-j
0.

1.4000 -

1.2000 -

1.0000

0.8000 -

0.6000

0.4000

0.2000 -

0.0000

10010 20 40 60

panels

150 200

Figure 8: Panel Density Convergence
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Wake length convergence

Theoretically the wake sheet streaming from the foil's trailing edge extends to an

infinite distance aft. This is not possible in the computational case where the wake sheet has

to be truncated at some finite distance downstream. In the steady flow case, one single huge

wake panel can be modeled, extending to a very large distance downstream without additional

computational burden. In the unsteady case however, where at each timestep the change in

circulation around the foil is shed into the wake, the wake has to be modeled using a large

number of small wake panels, whose length defines the timestep length. Using a large wake

sheet length increases the required number of panels and hence adds to the computational

burden.

Since the total wake length (at which the wake sheet is truncated downstream) was

found to have an important effect on the solution, a convergence test is presented below using

the total wake length as a parameter.

Using the same foil and angle of attack as in the previous test (alpha = 8.0 0) we ran

the code using a truncated wake length starting from 1 chord aft of the trailing edge and

gradually increasing it to 200 chords. The result can be seen in Figure 9, together with the

analytical result calculated using conformal mapping. It is evident that there is satisfactory

convergence above 30 chords wake length, where the difference with the theoretical result is

less than 2%. In most of the following runs in this work a wake length of 30 to 50 chords was

used.

wake length convergence

1.20

1.00

0.80

0.60 - conputatio
analytic result

.0.40

-0.20

0.00
1 2 3 5 10 20 30 50 100 150 200

Wake Length (chords)

Figure 9: Wake length convergence

Another good display of wake length effect and convergence is the pressure

distribution. In Figure 10 we can see the pressure distribution in the region of the suction peak

in the forward part of the foil for 8.0' angle of attack. As in the lift coefficient results, the
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solution converges in a satisfactory manner above the 30 chords wake length. As we will see

in the next section, solution accuracy compared with theoretical results is quite high.

Wake length:

3 chords
- 10 chords

-.--.--. 30 chords
50 chords
150 chords
200 chords

-1.75 -1.5 -1.25 -1
x

-0.75 -0.5 -0.25

Figure 10: Pressure distribution near pressure peak

Solution accuracy

In Figure 11 we can see the comparison between the pressure distribution on the foil

as predicted by the code and as calculated using conformal mapping methods at 8.0 degrees

angle of incidence The computation was done using 100 panels on the foil and half-cosine

spacing.
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Figure 11: Pressure Distribution on foil - numerical and analytical comparison
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In Figure 12 we can see the lift coefficient versus angle of attack as predicted by the

code in comparison with the conformal mapping result, for angles of incidence up to 16.0 .

The computation was done using 100 panels on the foil and a total wake length of 50 chords.

Uft coefficient

2.50......................-....

2.00

1.50+ com'putation

1.00 -- confo rmal
mfepping result

0.50

0.00
0.00 2.00 6.00 10.00 14.00

alpha (degrees)

Figure 12: Lift coefficient for increasing angle of incidence

The previous indicatory results show that the code's behavior in time-steady, infinite

flow experiments is numerically robust and theoretically correct. This is an essential

validation for our solver before moving on to unsteady and free-surface computations.

1.3.b. Unsteady Flow

Time-Harmonic heave and pitch motion

As an unsteady flow test, the airfoil geometry from the previous experiments is

subjected to a time harmonic pitch and heave motion. Initially solution convergence with

panel density is tested, and subsequently the time history of the lift coefficient is calculated

with varying frequency of oscillation. The result is qualitatively confirmed with unsteady

hydrofoil theory.

Panel density convergence

As in the steady flow case, a convergence test with the panel density as parameter is

appropriate in order to validate the code's behavior. As an example, in Figure 13 we can see a

set of results for increasing panel density. A reduced frequency

k Co

2U

of 0.10 is used. The dimensionless parameter of reduced frequency gives an idea of the

'unsteadiness' of the flow - it expresses the wave number of the vorticity shed in the wake (

see Newman [1]). The same foil geometry as in the steady flow experiments is used. In Figure

13, an enlargement of the maximum lift phase during part of the oscillation cycle is displayed

for clarity.
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Figure 13: Panel size convergence for unsteady flow

In Figure 14 are the lift coefficient and heave displacement versus time, for the 100-

panel solution, with reduced frequency of 0.10. As expected, a phase difference of around 90'

results between the displacement and the force.
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Figure 14: Lift coefficient and heave displacement in unsteady, infinite flow

Change of amplitude and phase of lift force due to variation infrequency

Unsteady hydrofoil theory predicts a change in the amplitude and phase of the lift

force on a hydrofoil when the reduced frequency is varied. This change is not monotonic, and

it is described by the Theodorsen function (for more details refer to [1]). In the next figure we

can see the variation in lift coefficient as the reduced frequency is increased. The foil follows

a harmonic oscillation in pitch with an amplitude of 8.0'.
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These results confirm the code's robustness in time-unsteady experiments, which will be

necessary for time-domain motion control simulations.
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Figure 15: Lift coefficient with varying frequency
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1.4. Code validation and convergence in free-surface flow

Convergence characteristics and solution accuracy of the code in free surface flows

are tested in this section. Some important parameters that describe the physics of the free

surface flow and affect numerical convergence are initially presented. Basic spatial and

temporal convergence experiments follow. The final subsections include some experiments

with known analytic solutions or clear physical aspects, that serve to validate the simulation

performance of the code. Solution convergence checks are also presented for most of those

experiments Flow cases with calm water or incident waves and forced or free motion are

included.

1.4.a. Basic Non-Dimensional Parameters

The following five non-dimensional parameters were found to have a profound effect

on the solution. The first four have been defined as 'Froude numbers', since they have the

same form as the dimensionless Froude number which expresses the ratio of inertial over

gravitational forces. The first two (draft and chord Froude number) have a physical

significance. The other three only have numerical importance, and have been found to affect

the spatial and temporal stability of the solution.

Draft Froude number:

U
Fn -

where D the mean draft.

Expresses the magnitude of the free surface's effect on the flow around the hydrofoil - it is

essentially a dimensionless draft.

Chord length Froude number:

U
Fn -

where C is the chord length.

Has a similar significance to the length Froude number of a surface ship.

Aft domain length Froude number:

U
Fn H - -

nH gXAFT

where XAFT is the computational domain length aft of the foil.

34



1.4. CODE VALIDATION AND CONVERGENCE IN FREE SURFACE FLOW

Expresses the relative length of the wavelength of the waves radiated from the foil to the

length of the truncated free surface domain downstream of the foil - essentialy, how many

waves the computational domain fits.

Free surface panel length Froude number:

U
Fn =

where U is the foil speed and h the free surface panel length.

Expresses the panel density per wave length.

Non-dimensional timestep p (free surface panel number):

dh/g
At

where At the timestep size and h the free surface panel length.

This parameter controls the temporal stability of the Euler-Emplicit free surface solution

scheme (for details see Kring [2]). We have to note here that since lifting flows are simulated

with the use of wake panels, the timestep length is defined by the ratio of wake panel length

and ambient velocity. This is because the circulation shed from the trailing edge is moved

downstream one panel per timestep. In order for this treatment to have some physical

accuracy, the timestep size has to be such that circulation would be convected for a distance

of one panel length by the ambient velocity.

Hence the timestep cannot be adjusted directly using the value of P as shown in [2] in

order to ensure temporal stability of the free surface solution. In practice, the timestep is

adjusted by the wake length and ambient velocity, and then the value of P is checked, and the

wake length and timestep re-adjusted if required.

1.4.b. Domain Length and Grid Size Convergence

The first step is to examine the code convergence relative to the aft domain and grid

Froude numbers, which were found to be the most influential parameters in the steady-state

free surface calculations.

The same foil geometry as in the infinite fluid runs that preceded is used. The angle

of attack is kept constant at 8.0 degrees. The draft and chord Froude numbers are also kept

constant at 1.634 for a chord/draft ratio of 1.0.

In Figure 16 we can see the numerical effect of the total domain length, in Figure 17

the effect of the domain length forward of the foil and in Figure 18 the effect of the grid

Froude number. It is evident that the domain Froude numbers have a more profound effect,

and a relatively long domain is required in order to achieve convergence. However,
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convergence occurs in both cases, and these tests serve as tuning runs for the definition of the

minimum domain length and the maximum grid size for the subsequent calculations.

Two numerical phenomena that were observed were a long-wavelength sloshing

effect, as the forward domain size increased and a very small wavelength, high frequency

numerical resonance which also occurred as the forward domain length increased. The long-

wavelength resonance caused a periodic fluctuation in the forces magnitude and the free

surface elevation. The high frequency resonance formed wavelets that were 3-4 panels long

and did not affect the average values; it did cause the numerical scheme to diverge though,

below a forward domain Froude number of about 0.15. Both kinds of waves radiate forward

of the body and are eventually absorbed by the numerical beach.

The first phenomenon occurs mainly in the steady-state runs and can be averaged out

in the force calculations. The second phenomenon can be treated by the correct application of

numerical filtering at certain timesteps. Both are described by Kring [2].

Aft domain length convergence

1.400
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Figure 16: Aft Domain length convergence

Forward domain length convergence
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Figure 17: Forward Domain length convergence
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Figure 19: Free surface elevation with increasing aft domain length

1.4.c. Fixed motion in calm water

In this sub-section a number of free surface experiments for which analytical

solutions exist are presented. These are a pressure distribution on the free surface moving

with constant velocity (resembling an surface-effect ship), a submerged vortex and a

submerged, circular cylinder.

Moving pressure distribution on the free surface

The flow created by a pressure distribution applied on the free surface and moving

with constant velocity has a known analytic solution [3]. In two-dimensional flow, the rate of

energy transfer from a pressure distribution p(x) moving with constant velocity U is
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W = p(x)p( ) cos v(x - )dxd,, where v= and p density
P U --c U2

The resulting wave resistance is

W
RW = -

U

The code's behavior was tested with the application of the following pressure distribution

1 _O. 005X
2

which proved to be adequately smooth, in order not to cause local numerical instabilities. The

pressure distribution and the resulting wave elevation can be seen in Figure 20.
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Figure 20: Pressure distribution moving on the free surface

Convergence
Convergence tests were run for the free surface grid size (Figure 21) and for the

domain length (Figure 22), using wave resistance as the critical variable. Free surface grid

size convergence tests showed satisfactory convergence above a grid Froude number of

around 3.00, a value very close to the one found in the convergence tests of section b. For

practical purposes, a grid Froude number between 2.90 and 3.00 was used in the subsequent

runs. Domain length tests showed a satisfactory convergence below a domain Froude number

of around 0.20.
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Figure 21: Panel length convergence

Domain length convergence
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Figure 22: Domain length convergence

Comparison with analytical solution

The converged results for wave resistance were compared with the analytical solution

for the pressure patch's wave resistance. We must note here that the calculation of wave

resistance was done through pressure integration on the free surface (accounting for the free

surface slope in the x-direction). In order to validate our solution we also calculated the wave

resistance through the wave momentum flux of the two-dimensional trailing wake:

RW = - pgA 2, where A the amplitude of the free surface elevation
4

This formula has been derived for plane progressive waves of amplitude A, and

therefore is used here as an approximation. However, a relative agreement between the

pressure integration and the momentum integration values can help ensure the consistency of

our solution. An accuracy in the order of 1% was achieved when calculating resistance with

pressure integration, and in the order of 5% when calculating with momentum integration.

The results can be seen in Table 3.
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Wave Resistance of Pressure Patch

Results value (N)

Run parameters Analytical 921.70

Computational

FN GRID = 2. 9150 (pressure 930.30

FN DOMAIN= 0.1843 integration)
Computational

(wave momentum) 965.90

A t 0.643 m

Table 3

error

0.9%

4 . 7%

Submerged vortex

Circulation

Before we describe the next validation step, we can take a quick look at the accuracy

of the numerical pressure integration around the body which is performed in order to calculate

hydrodynamic forces. While lift and drag forces are calculated by integrating the

hydrodynamic pressure on the body surface, the Kutta-Joukowski theorem in infinite fluid

claims:

L = pUP

The circulation F in our case is equal to the potential jump at the foil's trailing edge:

r = AOT.E

Hence the lift coefficient can be calculated, apart form pressure integration, by the formula:

2F
L = U.Chord

If the numerical pressure integration scheme is sound, the values of the lift coefficient

calculated by pressure integration and by the previous formula should be very close. A brief

test of this claim follows, for an angle of attack of 8.0 degrees:

CL (calculated

pressure integration)

1.009

by CL (calculated from the

value of circulation)

1.005

The previous will help calculate the total force on a submerged vortex and compare the result

with the analytical solution.

Comparison with analytic solution for submerged vortex

The lift and drag forces on a submerged vortex of strength F are given analytically

[3]:
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r
2  

[ 2
L = pUF - p - + p - ve 2VDEi(2vD)

47ED 71

D = pUF 2 e-2vD,

where v= , D draught
U2

We expect an agreement between the theoretical and computational calculation of the

lift and drag forces starting from deep water and ascending to a draft Froude number of about

1.50. Above this draft, the distance of the foil to the free surface starts becoming too small for

it to be approximated by the flow field of a single point vortex. In Figure 23 we can see the

comparison of the lift coefficient for analytic and computational solutions, and in Figure 24

the drag coefficient. Comparison is satisfactory up to a draft Froude number of around 1.60.

Sumerged Vortex Lift coefficient

1.2000 .- -- -...-- V -o --- - - -.....

1.1000
1.0000
0.9000
0.8000
0.7000- n b
0.6000--anytic
0 cculabon0.5000
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0.3000
0.2000
0.1000
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,Orb ci. ~ 0 
0

Fn_draught

Figure 23: Submerged vortex lift coefficient (computational and analytic comparison)

Sumerged Vortex Drag coefficient
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Figure 24: Submerged vortex drag coefficient (computational and analytic comparison)

Two-dimensional circular cylinder under a free surface
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Convergence Tests

Since a circular cylinder produces a different flow case than that of a lifting body like

the previous ones, some convergence experiments are initially conducted. The two main

parameters investigated are, as before, domain length and free surface panel length. The non-

dimensional timestep size was also found to greatly affect numerical stability, so the

following convergence tests were conducted after a proper range for the non-dimensional

timestep is established, where the free surface solution is stable.

In Figure 25 we can see the drag coefficient convergence with domain length

(decreasing domain Froude number), and in Figure 26 the drag coefficient convergence with

free surface panel size. Since this is a non-lifting flow, the drag force was the primary

solution variable to be observed.

Domain length convergence
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Figure 25: 2D cylinder domain length convergence
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Figure 26: 2D cylinder free surface panel length convergence
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Havelock's series solution for the wave drag force exerted on a circular 2D cylinder

is given analytically by Wehausen and Laitone [3, pp 574-577]. A number of numerical

experiments were conducted in order to validate this code's performance in comparison with

the first term of the series solution's prediction [5]. Flow geometry was used as parameter for

the runs, quantified through the ratio of cylinder radius over draft a/d. Four different ratios

were tested, from a/h=0.05 to a/h=0.167. For each a/h ratio, draft Froude number was used as

a varying parameter. In Figure 27 we can see the results, which show a satisfactory prediction

of wave drag by the code.
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Figure 27: 2D cylinder drag coefficient (computational and analytic comparison)
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Effect of draft on lift

It was apparent from the first experiments with lifting foils that while the lift force

assumes its infinite-flow value at deep drafts (small draft Froude numbers), it generally

becomes smaller when approaching the free surface (increasing draft Froude number).

In Figure 28 we can see a sample illustration of the calculated free-surface elevation

at a draft Froude number of 1.634, for an angle of attack of 8.0 degrees.

Lift on a symmetrical hydrofoil at zero angle of attack

As mentioned in [3], a symmetrical foil can experience a lift force when operating

near a free surface due to the free surface flow. The symmetrical foil geometry used in the

previous experiments was used here as well. In Figure 29 we can see that the lift force is, as

expected, zero in deep water and takes a negative non-zero value as the foil approaches the

surface (increasing draft Froude number). The negative lift force is in agreement with the

previous experiment in this section where it is apparent that the positive lift force experienced

by the foil at 8.0 degrees angle of incidence is decreasing as the foil approaches the surface.

Free Surface elevation

20 Draught Froude number Fn-d = 1.634
Chord Froude number Fn-d - 1.634
Draugth/Chord - 1.0
Angle of attack (dog) = 8.0

Geometry symmetrical Karman-Trefftz section

10 xc---0.1, yc -0.0, T-20 dog

0

0

-10

0 10 20 30 40 50 60
x (M)

Figure 28: Free surface elevation at draft Froude No 1.634
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Figure 29: Lift coefficient for varying draft Froude number

1.4.d. Incident Waves

Flow simulation with incident waves is presented in this subsection. An incident

wave system of plane progressive waves is implemented in the code. Up to 35 different waves

can be superimposed, with the user specifying each wave's period and amplitude. Since the

code is meant to be used as an investigation tool for the foil-borne craft's active control in

stochastic seas, the phase of each wave can also be specified - a stochastic wave system built

from a known spectrum will use a randomly distributed phase angle for each component of

the spectrum as a random variable.

Wave Diffraction by a stationary circular cylinder
Theory (see Wehausen and Laitone [3]) states that a two-dimensional circular

cylinder on which a plane monochromatic wave is incident will not reflect any energy and

will only effect a phase shift on the diffracted ambient wave pattern.

This flow is simulated below. The diffraction wave elevation resulting from an

incident monochromatic wave of unit amplitude from the left, on a circle lying at

draft/diameter = 2.0, diameter/? = 0.01382 can be seen in Figure 30 (the incident wave is not

shown in this figure). It is evident that a very small amount of energy is reflected in this

simulation - this 'error' wave elevation however is of amplitude less than 0.5% of the

incident wave amplitude. To the right of the body we can see the diffraction wave pattern

which has as an effect the shift phase in the total wave elevation.
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Figure 30: Diffraction component of free surface elevation by a 2D circular cylinder (Incident
plane progressive wave of unit amplitude from the left - cylinder position and diameter not to

scale)

1.4.e. Free Motions
In this subsection the code's convergence characteristics in free motion simulations

are investigated. A motion control system is not yet included and some artificial restoring is

used in order to provide stability of solution.

Spatial convergence
This experiment is a numerical check for body panel density convergence in heave

mode free motion simulation. As in the physical validations that follow, an artificial restoring

force is introduced since there is no natural restoring for a submerged hydrofoil in heave

mode of motion. The foil is started from rest at a zero angle of attack. A plane monochromatic

wave of unit amplitude is incident. No weight force is included in the simulation. Hence, the

foil is expected to oscillate in heave forced by the sinusoidal lift force induced by the incident

wave. The number of body panels was used as a convergence parameter, while the free

surface panel Froude number was kept fixed to 2.83. Spatial convergence is displayed in

Figure 31.
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Figure 31: Panel Density convergence for heave mode free motion

Temporal Convergence

Temporal convergence (timestep size convergence) is tested for free motion in pitch

mode. The parameter varied is the timestep length (and accordingly the length of the wake

panel), expressed by the non-dimensional timestep P:

At

where h is the free surface panel length and At the timestep length (larger P signifies a finer

timestep).

If the timestep is set too coarse (P<2) the solution does not converge. However when

using finer timestep lengths, it is found that the solution is not very sensitive to the parameter

P as can be seen in Figure 32

47



1.4. CODE VALIDATION AND CONVERGENCE IN FREE SURFACE FLOW

0.3 - - - - beta= 5.887E+O
- beta = 4.415E+O

- - -- beta = 3.532E+O

0.2 -

0.1 /

0 -
C./

-0.1/

-0.2 -

-0.351 52 53 54 55
TIME

Figure 32: Temporal convergence for heave mode free motion

Heave response - resonance

The following experiment has a qualitative physical sense. The body is allowed to

move only in heave mode, so we have a single degree of freedom dynamic system. Artificial

heave restoring is included as in the previous experiments, in lieu of a motion control system

which would be used in practice.

A plane progressive wave of unit amplitude is incident. The incident wave induces a

time harmonic excitation force on the foil, which is operating at a zero mean angle of

incidence. Using long-wavelength approximation, this harmonic excitation can be seen as the

effect of the harmonic variation of the effective angle of attack on the foil:

a =ff Arc tan /az

U + ac Z

where p1 the incident wave potential, whose spatial derivatives are calculated at the mean

position of the foil midchord.

The physical problem now essentially reduces to a simple spring-and-mass dynamic system

that is harmonically excited. The system's resonant frequency can be calculated (see for

example Faltinsen [31]):

_ C33
R M+ a33
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Here, C33 is the artificial heave restoring coefficient introduced in place of a motion

control system. The weak point in this estimation is the added mass a33 approximation. In the

following calculations the added mass value calculated by the local flow solution is used.

U (foil velocity)

C 3 3 restoring coefficient
Mass

a3 3 added mass
wE; theoretical encounter
resonant frequency

wo Rs theoretical absolute
resonant frequency

T theoretical absolute
resonant period

10.00

1x10'

5000.00
35949.30

M/sec

N/m

kg/m

kg/m

4.94 rad/sec

1.77 rad/sec

3.56 sec

Table 4

Note in Table 4 that the body mass is not its displacement, but an arbitrarily introduced

number that expresses the weight of an imaginary vessel supported by the foil and moving

with it as a rigid body.

The heave response amplitude operator (RAO) was measured for various incident

wave periods and a wave amplitude of one meter. The results can be seen in Figure 33.

Indeed, the maximum response occurs near the theoretical resonance period of 3.56 seconds.

Figure 33: Heave response for varying frequency

A short look at the time histories of the lift force and heave displacement is also

interesting. Near resonance, as we can see in Figure 34, the heave motion's phase is about 90

degrees behind the lift excitation force. In the larger period of 12 seconds (Figure 35), force

and motion have nearly the same phase.
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Figure 34: Lift coefficient and heave displacement time histories at T=3.66 see
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Figure 35: Lift coefficient and heave displacement time histories at T=12.00 see
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1.5. Motion-induced force coefficients and excitation forces on
submerged hydrofoils

The hydrodynamics of submerged lifting hydrofoils form the main subject of this

section. In the first part, the effect of draft and frequency on the heave motion-induced force

coefficients of a submerged lifting hydrofoil is investigated through a set of numerical

experiments. In the second part, the ambient wave excitation forces on the foil are

approximated by a simple linear model.

1.5.a. Motion-induced force coefficients of a submerged hydrofoil

The rigid-body dynamics of a lifting foil operating near the free surface in free

motion make a very interesting problem, since two kinds of hydrodynamic memory effects

coexist: the 'wake' memory and the wave flow memory.

The wake memory is due to the fact that when the foil moves, in heave for example,

while advancing with steady forward velocity, the circulation around and hence the lift force

changes. As a result, the amount of vorticity shed in the trailing wake changes. Since the flow

around the foil is affected by the distribution vorticity in its wake, the foil's past history of

motion affects the flow around it through the variable wake vorticity distribution.

The wave flow memory is due to the wave field radiated due to the foil's motion,

since waves radiated by the foil a finite length of time ago induce forces on it at the present

time.

Theoretical lift force on heaving hydrofoil in infinite flow

Consider a thin, symmetric (flat) two-dimensional hydrofoil at zero steady angle of

attack which performs an oscillatory heave motion with frequency o and amplitude 4o:

(1.6) 43(t)= Re{Oe'}
while advancing with steady forward velocity U. The foil has a chord length of 2, and we can

define the reduced frequency k of the heave motion:

(1.7) k = -
U

which quantifies the time 'unsteadiness' of the motion. If we define the Theodorsen function:

(1.8) C(k) = (k)
H12)(k) + iH(2)(k)

where HO ' and Hi are Hankel functions of the second kind. A plot of the real and

imaginary parts of C(k) is shown on Figure 36. This function expresses the wake memory

effect through the frequency-dependent force coefficients. Indeed, if we assume an infinitely
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thin foil in ideal fluid flow, the time- and frequency-dependent lift force on the foil is (see

Newman [1]):

(1.9) L(t) = -27rpU 2 Re{C(k)ikOew'} - 7rp
We can note here that the second term on the right hand side clearly expresses the

added-mass of a non-lifting flat plate in two-dimensional flow.

Since the heave acceleration is:

(1.10)
equation (1.9) can be written:

(1.11) L(t)=

3(t) = Re{-co 2 Oeiwt )

Re{(-27rpU 2C(k)ikgo + 7rp 0o0 2 )e i t )

Since the foil has a flat camber line and a zero steady angle of attack, the time-steady lift

force is zero, and the force in (1.11) is induced by the heave motion (indeed if we let 4=0

then L(t)=0). Assuming relatively small heave amplitude 4, we linearize this motion-induced

lift force L around the zero-heave position and write it in a form:

(1.12) A33 3 + B33 3 = Re{(2;rpU 2C(k)ikfo - ;rp %co 2 ) e' } z
A33 Re{-_ 2 

0e't} + B 33 Re{iwgoe't} = Re{(-2 rpU2 C(k)iko + 7rpco 2 )ewt}

where A 33 and B 33 are motion-induced force coefficients in infinite flow for small-amplitude

oscillatory heave motion, analogous to the added-mass and damping coefficients. Separating

real and imaginary parts on (1.12), we get the theoretical infinite-fluid force coefficients:

A33 = ;rp(-1m(C(k))+1)
(1.13) k

B33 = 2;rpU Re(C(k))
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Figure 36: Real and Imaginary Parts of Theodorsen function C(k)
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As we can see in Figure 36, the imaginary part of C is negative. Hence the first term

in the parenthesis of the acceleration-dependent force formula (first formula of (1.13)) which

expresses the 'lifting' component of the acceleration-dependent force is negative, while the

second term which expresses the 'flat-plate added mass' component is positive. As we will

see next the lifting component in certain cases outweighs the flat plate component resulting in

a negative heave acceleration-dependent force coefficient, which means that the lift force in

closer than 900 in phase with the heave motion.

On the contrary, the second coefficient B33 only has a 'lifting' component which

assumes positive values (since Re(C(k))>0), and the resulting damping force can be seen as

an expression of the energy shed in the wake by the heaving foil.

The force coefficients in equation (1.13) are plotted in Figure 37.

Theodorsen force coefficientsx 10

0

-2

-3

reduced frequency k

1 2 3 4 5 6
reduced frequency k

7 8 9 10

Figure 37: Theodorsen force coefficients

Variation of heaving hydrofoil motion-induced force coefficients with draft Froude
number

Here the effect of the free surface wave flow on the motion-induced force coefficients

of a heaving hydrofoil is investigated through a set of numerical experiments. The non-

dimensional parameter describing each case is the draft Froude number reminded here to be

U
FnD

_,Draft -g
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The following experiments were carried out using the flat Karman-Trefftz foil from

the preceding convergence tests at zero angle of attack in order to relate with the theoretical

expectations from the previous paragraph. Simulations were run starting at a near-zero draft

Froude number (very deep draft equivalent to an infinite flow) and subsequently draft Froude

number was decreased until the foil was near the free surface. A chord length of 2.0 was used

in order to conform with the definition (1.7) of the reduced frequency. Circular frequency was

chosen at o=0.80 rad/sec and forward velocity at U=20m/sec, resulting in k=0.04. The

circular frequency was selected to be near the peak frequency of the Pierson-Moskowitz

ocean wave spectrum for wind speeds around 20 -30 knots.

The motion-induced force coefficient values with varying draft Froude number are

shown in Figure 36 and Figure 38 respectively. The magnitude of both coefficients decreases

with decreasing draft. In this case this could mean that wake memory effects are being offset

by wave memory effects as the foil approaches the free surface. The resulting free surface

elevation created by the hydrofoil's wake is shown in Figure 40 for three draft Froude

numbers - the increasing amplitude of the radiated wave as the foil approaches the free

surface is apparent. Simulations were carried out up to a Froude number of 4.5 - above this

Froude number draft becomes too shallow for accurate numerical calculation.

There is a difference in the order of 25% for the inertial and 11% for the damping

coefficient, from the theoretical values predicted by formula (1.13) of the previous paragraph

using Theodorsen theory. Part of this difference can be attributed to the fact that the

theoretical prediction is for a foil with zero thickness while the simulations were run using a

foil of finite thickness.

0.000 1.000 2.000 3.000 4.000 5.000

0.00E+00 -

-5.OOE+03

-1.OOE+04

-1.50E+04
Theoretical A33 = -1.51 E+4

-2.00E+04 infinite flow

-2.50E+-04 -

Fn draft

Figure 38: A3 3 coefficient variation with draft Froude number at k=0.04 reduced frequency

54



1.5 MOTION-INDUCED FORCE COEFFICIENTS AND EXCITATION FORCES ON SUBMERGED HYDROFOILS

1.40E+05

1.20E+05
Theoretical B33 = 1.16E+5

1.00E+05 - infinite flow
a 8.OOE+04 -

6.OOE+04 -

4.00E+04 -

2.00E+04 -

0.OOE+00
0.000 1.000 2.000 3.000 4.000 5.000

Fn draft

Figure 39: B33 coefficient variation with draft Froude number at k=0.04 reduced frequency
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Figure 40: Free surface elevation with varying draft Froude number

Variation of heaving hydrofoil motion-induced force coefficients with frequency at a
fixed draft

In this subsection the variation of motion-induced force coefficients in heave for the

same hydrofoil geometry is investigated. Numerical experiments are carried out for a draft

Froude number of 3.50.

Results for added the A3 3 and B33 coefficients are presented in Figure 41 and Figure

42 respectively. The coefficient A3 3 starts out at low frequencies with high negative values as

was the case in the previous paragraph and gradually increases towards the positive infinite

frequency limit of Theodorsen's theoretical prediction for A 33 coefficient which can be seen

in Figure 37. Since Theodorsen's prediction is for an infinite fluid flow, we can deduce here

that at high frequencies the free surface effects on the motion induced force for a lifting foil
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become negligible. A similar behavior is displayed by the B 3 3 coefficient (Figure 42) which

tends asymptotically to the infinite-frequency limit predicted by Theodorsen (Figure 37).

5.00E+03

0.OOE+00
0.

-5.OOE+03 -

-1.OOE+04 -

-1.50E+04 -

-2.OOE+04 -

, Theodorsen infinite frequency limit

30 5 10.00
omega

15.00 20.00 25.00

Figure 41: A3 3 coefficient variation with frequency for Fn draft=3.50
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5.OOE+04 _
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5.00 10.00 15.00 20.00 25.00
omega

Figure 42: B33 coefficient variation with frequency for Fn draft=3.50

The Theodorsen infinite frequency limits are very close to the impulsive added mass

and damping limits a03 3 and b033 calculated for the hydrofoil, which shows that the free

surface does not have a very strong effect in this particular problem. The values of a033 and

b03 3 are calculated from the solution of the 'local flow' boundary value problem with zero

potential on the free surface ((p=O plane). Following Kring [2], for the special case of two-

dimensional heave motion, this problem for the local heave motion-induced potential N 3 can

be stated:
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N3 =0, z =0

V 2 N3 = 0, everywhere

(1.14) aA 3 = n,, on SB body surface
an

N= =0, on SFAR I
where n, is the z-component of the unit vector normal to the body surface and,

a033 = p fN3nds

(1.15) SB

b 33 = p -0 -VN3n, ds
sB

Then a033 and b033 can be considered to be the infinite-frequency limits of the added mass and

damping coefficients. Their values will also be used later for the creation of linear state-space

models for hydrofoil craft.

15.b. A simple modelfor the ambient wave excitation force on a submerged
hydrofoil

A submerged hydrofoil advancing in ambient waves is subject to a total excitation

force made up by various components. The phenomenon itself is in truth very complicated

with the total force determined by wave, friction, vortex and separation drag, large lift

variations due to changing ambient flow field and lift breakdown due to cavitation or even

ventilation.

In this paragraph, a simplified two-dimensional linear model for the estimation of the

heave excitation force due to ambient waves is presented. If we disregard effects of viscosity,

cavitation and ventilation, the main effect of an incident wave on the foil is a change in the

ambient flow field due to the wave-induced velocity. The model proposed here uses the wave-

induced velocity, with the aid of long-wavelength approximation and lift-coefficient linearity

at small angles of attack, to estimate the wave heave excitation force.

It must be noted here that the potential-flow code developed in the present work

provides a more accurate estimation of ambient wave excitation forces on the hydrofoil

(through the solution of the linearized boundary value problem) than the model proposed in

this section. However this model can provide useful insight and estimations without requiring

the numerical solution of the BVP.

Effective angle of attack and wave-induced lift coefficient

Assume a hydrofoil is advancing with steady velocity U in an ambient wave which

induces vertical and horizontal velocities w and u, as in the sketch of Figure 43. Most

hydrofoil ships have chord lengths in the order of 2-5 meters, while ambient ocean

wavelengths are in the order of 50 meters or more. Hence we can use a long wavelength
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approximation and assume that the wave-induced velocity at the middle of the foil is roughly

the same throughout the whole chord length.

incident wave

wkw
u U-

Utot

Figure 43: Effective angle of attack

We wish to estimate the unsteady heave exciting force F3. For small total angles of

attack atot F3 can be assumed to be in the direction of the foil lift force. The total lift force

LTOT at time t is:

1
(1.16) Lo pCU2O

LTT 2 CLTOTPCUT

where C is the foil chord, UTOT the total ambient velocity as in the sketch of Figure 43, CLTOT

is the total lift coefficient and p the water density.

The wave induced velocities u and w are usually small compared to the foil speed

which is in the order of 40 knots. Hence, we can approximate the magnitude of the total

velocity UToT by the magnitude of the foil velocity U:

(1.17) Ur~o = (U+u) 2 +w 2 =U 2

hence,

1
(1.18) LTOT -CLTOT pCU 2

2
For relatively small total angles of attack (less than 12-15*), we can estimate the total

lift coefficient assuming it varies linearly with the angle of attack.
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CL

linear range of CL

Figure 44: Lift coefficient at small angles of attack

Referring to the sketch of Figure 44, for small angles of attack we can write:

(1.19) CLTOT dCLEFF a0 )
da

where ao is the angle of zero-lift. For example, if we have a flat plate where ao=O and the

slope of lift coefficient is 2n, the above relation gives a lift coefficient of 2 naEFF-

The effective angle of attack, as in the sketch of Figure 43, is the sum of the steady

angle a and the wave-induced angle aw. Hence, we can write:

dC
CLTOT ~_L (aE - 0 )

da

-dC dC dC
(1.20) = L ((a+ a)a) L L(a )

da da da

CLW + LST

Hence the total lift coefficient is composed by a steady part CLST and a wave-induced

part CLW- The steady part is time constant since it only depends on the foil geometry, while

the second part is a function of time since the wave-induced velocity and angle of attack are

varying in time. Hence:

(1.21) CLTOT Wt=CLW W+CLST

At this point we can further approximate the wave-induced lift coefficient using the

wave-induced velocity (refer to the sketch of Figure 43 as well):

dCL aw(t), and aw (t) w(t) w(t)(1.22) CL W {) = L_ ~_ __ _

da U U U
hence,

(1.23) CLW W dCL w(t)
da U
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Heave excitation force

Using the previous analysis, we can break the total lift force into a steady and an

unsteady wave-induced component:

1
LTO(t ) = -CLTOT PCU 2

2
1 1

(1.24) =-1CL, (t),pCU2 +-CLST PCU 2

2  2
= Lw(t)+ LsT W

As noted before, the wave-induced unsteady heave excitation force can be

approximated from the unsteady part of the total lift force:

1
(1.25) F3w(t) = Lw(t) =-CLW(t)pCU 2

2
and using (1.23),

.F3 W 1 dCL w(t) pCU 2

(1.26) 2 da U

SdCL pCUw(t)2 da

Equation (1.26) gives the estimation of the wave-induced heave exciting force on a

submerged hydrofoil. The lift coefficient slope can be calculated using linear theory (in the

case of simple forms) or experiments in the case of arbitrary-form foil sections. For example,

if the foil is a flat plate with lift coefficient slope 2na, equation (1.26) gives:

(1.27) Fw (t) = 7pCUw(t) (flat plate)

Phase Shift

It was seen in the unsteady flow tests that an oscillating lifting flow includes a phase

shift which depends on frequency. This phase shift is described analytically by Theodorsen's

theory (see previous subsection).

Initial experiments with the linear model (1.26) showed that while force amplitude

prediction is satisfactory, there is a frequency-dependent phase shift in the oscillating wave-

induced force which is not predicted by the model. This phase shift physically resembles the

Theodorsen phase shift in for a harmonically oscillating lifting foil, with the difference that in

our case the flow, not the foil, is oscillating. In lack of a better approximation, we will use the

Theodorsen phase shift prediction in order to enhance the phase accuracy of this model.

From equation (1.9) we can deduce the phase (p of the lift force with respect to the

negative a/2 zero-frequency phase:
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Ir - Re(CQk))
(1.28) 0 = -- + Arc tan()

2 Im(C(k))
It must be noted here that the reduced frequency k is defined through the hydrofoil encounter

frequency with the ambient waves:

(02
Coe = c)-U-Gem-

(1.29) g

k =0
U

Then, the predicted lift force will have a time lag to due to this phase shift, and we

have:

I dCL(1.30) F,( 1 = L pCUW(t - to), to =# / co
2 da

The linear model (1.30) can be used for the estimation of the heave excitation force in

ambient wave of relatively small amplitude, so that the assumptions of (1.17) and (1.23) hold.

Hence, from (1.30) it is obvious that a real-time estimate of the wave induced vertical velocity

is needed for the estimation of the instantaneous heave excitation force. In numerical

simulations with plane progressive wave this estimate is available from linear theory. In

physical applications however the only available measurement will most probably be a free-

surface elevation measurement using a probe or forward-looking radar. In that case an

estimate of the wave-induced vertical velocity needs to be derived from the knowledge of free

surface elevation.

Model Tests

In order to validate this linear model a set of simulations was run using the same

symmetrical foil as in the added mass tests of the previous subsection, at a draft Froude

number of 3.5. During each simulation a sinusoidal monochromatic wave of unit amplitude

was incident on the fixed hydrofoil. The heave exciting force calculated by the code was

stored and plotted against the linear model (1.30) prediction. Here results are presented for

three incident wave frequencies of 0.5, 0.8 and 1.0 rad/sec, in Figure 45, Figure 46 and Figure

47 respectively.

The force amplitude prediction is quite satisfactory (error smaller than 9% in general)

in all cases. In high frequency the model seems to fare better in terms of amplitude prediction.

Phase has a slight error growing with frequency but phase prediction is much better than

without the adjustment (1.30) where errors in the order of 300 appeared at high frequencies.
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Fudge simulation
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Figure 45: Heave excitation force in absolute wave period T=12.56 sec (omega=0.5 rad/sec)
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Figure 46: Heave excitation force in absolute wave period T=7.85 sec (omega=0.8 rad/sec)
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Fudge simulation
- - - - linear model prediction
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Figure 47: Heave excitation force in absolute wave period T=6.28 sec (omega=1.0 rad/sec)
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2.0 Introduction

In this section the motion control of marine vehicles and specifically hydrofoil ships

is studied. The main objective is the reduction of the ship's motions due to ambient waves.

The hydrodynamic force and motion solver developed in the first part of this work provides a

useful and relatively accurate simulation tool which is used for the investigation of motion

control methods.

Initially, a presentation of contemporary control methods is given. The similarity

between the dynamics of hydrofoil ships and aircraft encourages the application of aircraft

control methods to the current problem. Hence, a large part of the theory outlined is applied

today to the design of control laws for aircraft. A basic presentation of classical control theory

is given, and a more detailed discussion on state-space modem design and optimal control

follows. The widely accepted technique of the Linear-Quadratic Regulator is presented along

with its mathematical justification, since it will be used later on the problem of hydrofoil

motion control treated in this work.

One of the most challenging aspects in the motion control of marine vehicles is

modeling the seakeeping equations of motion, which express the free-surface dynamics of

bodies operating on or near the free surface, in a linear time-invariant form that can be used

for the design of control laws. The reason is that time-domain seakeeping equations of motion

include memory effects which at first inspection cannot be explicitly included in a linear

time-invariant model. In the second part of this section, an initial approach is investigated. A

linear, time-invariant state-space model based on the vessel's impulsive dynamics is created,

where memory effects are treated as external disturbances and hence disregarded in the design

of control laws. Using this model, a motion controller is designed and tested based on the

theory of the Linear-Quadratic Regulator, with very encouraging results. This approach

follows the methodology applied in aircraft control.
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2.1. Control Theory

This section includes a short outline of control methods and their application to

aircraft and marine vehicles. Aircraft control is a very wide subject, ranging from optimal

control theory, rigid body dynamics and aerodynamics on the theoretical side, to practical

actuator and feedback control systems design. Here we will only attempt to review the basic

tools from control theory that are used in aircraft and marine vehicle control today, starting

from a brief presentation of classical design and continuing with modern state-space

techniques, optimal control and the special but widely accepted method of the Linear-

Quadratic Regulator.

Most high performance commercial and military aircraft today are aerodynamically

unstable. This means that, for example, a small deviation from an equilibrium position by a

roll angle > will result in an augmentation of this deviation, if the body is left to respond

uncontrolled. A simplified case is shown in Figure 48 where an aircraft with a negative

dihedral angle d is inherently unstable in roll mode. A good example of such an aircraft is the

1950's fighter F-104.

A stbd -

.. . .. . . . ......-.--- .. -- -- &- - -- -- - - - - ---M- - -I - - -

Negative dihedral angle -> unstable roll mode
A starboard > A port

hence resulting roll moment M will augment roll angle (p

Figure 48: Airplane sketch - negative dihedral angle

A hydrofoil ship is hydrodynamically unstable in certain cases as well - an example

can be seen in Figure 49, where instability arises from the coupling between the heave and

pitch modes of motion. A bow-down pitch displacement by an angle 5 results in a negative

heave force F3 on the foils due to negative angle of attack.

Hence, most modem aircraft would be impossible to fly without an automatic control

system [7]. The same is true for most modem hydrofoil ships that utilize fully submerged

foils, such as the one in the simplified sketch of Figure 49 (reproduced from the first part).
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Instabilities such as these are treated in modern aircraft with the use of automatic

control systems. Stability Augmentation Systems (SAS) and Control Augmentation Systems

(CAS) are two examples; autopilots are another case of automatic control systems applied to

aircraft.

F5

F3
F3

Figure 49: Hydrofoil ship unstable coupled heave and pitch mode

2.1.a. Classical Control System Design

The term classical design refers to a number of methods that have been used during

the past century for the design of control systems. Classical design is applicable to single-

input single-output systems and is based essentially on frequency-domain methods for

shaping the system's loop gain (see below). The immediate objective of classical design is to

ensure overall system stability, together with desirable response characteristics. In this

subsection the basic structure and terminology used in classical design is presented.

A simplified feedback controlled system representation can be seen in Figure 50 [8].

The output is the controlled variable C. The output is measured by a feedback element H to

produce the primary feedback signal B, which is then compared to the reference (command)

input R. The difference E between the reference input R and the feedback signal B is the input

to the controlled system G and is referred to as the actuating signal. The transfer functions of

the forward and feedback components of the system are G and H, respectively.

In order to study such systems easily, it is very convenient to take the Laplace

transform of the transfer functions. This is in part owed to the fact that most system transfer

functions are solutions of differential equations in the time domain. Hence, in the following

description we shall refer to variables and functions in terms of the transform variable s.

The equations describing this simplified system in terms of the transform variable are
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C(s) = G(s)E(s)
(2.1) B(s) = H(s)C(s)

E(s) = R(s) - B(s)

Reference Actuating Output

Input Signal Control Elements (Controlled

R + E and Controlled Variable)

System

G

Primary
Feedback

B Feedback Elements
H 4

Figure 50: Feedback system (1)

Combining these equations gives the overall transfer function (also referred to as the control

ratio)

(2.2) C(s) G(s)
R(s) 1+ G(s)H(s)

The characteristic equation of the system is obtained from the denominator of the overall

transfer function

(2.3) 1+G(s)H(s) =0

The characteristic equation has a very important role in the stability and response of the

closed-loop system, since its roots give the poles of the overall system.

The open-loop transfer function or loop gain is defined as the ratio of the output of

the feedback path B(s) to the actuating signal E(s)

B~s
(2.4) =() - G(s)H(s)

E(s)

A slightly more detailed description of a typical feedback system can be seen in

Figure 51 [8]. This description can be directly referenced to a practical application. If we take,

for example, an altitude-control regulator, then the controlled variable c would be the aircraft

altitude. The disturbance d to the system could be the magnitude of a vertical wind gust. The

control elements would then be the aircraft's elevators, and the manipulated variable M the

elevator angle of attack. The controlled system transfer function G2 is a black-box
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representation of the aircraft dynamics - the aircraft equation of motion in the longitudinal

plane, including the control surface dynamics, is hidden in the G2 function.

Disturbance
d

Reference Actuating Manipulated Controlled
Input Signal Control Variable Controlled Variable

R + E Elements M System C

G1 G2

Primary
Feedback

B Feedback Elements

H

Figure 51: Feedback system (2)

The poles of the overall transfer function largely determine the behavior of the

controlled system. Each pole describes a natural mode for the system. The sign of the real part

of each pole determines whether the corresponding mode is stable or unstable. In order for the

mode to be stable, its pole must have a negative real part (for a detailed analysis refer to [8]).

A particular method which is widely used in classical design is the root-locus. This

method has been used since the 1940's in the design of most aircraft control systems.

Although it is gradually ceasing to be directly applied, it is a basic design technique that still

provides the controls system designer insight about the stability and behavior of the

dynamical system.

The root-locus is a plot of the roots of the system's characteristic equation as a

function of the gain of the open-loop transfer function. The effect of the open-loop gain

becomes evident this way. The root-locus method, briefly, consists on adjusting the open-loop

gain so that the system has the desirable stability characteristics. A root-locus plot for the

pitch-rate Control Augmentation System of the F-16 combat aircraft is shown in Figure 52

[7].

The root locus can be carried out graphically - graphical design of control system

characteristics has been carried out systematically until as late as the 1970's. It is, as most

classical design techniques, a Single Input - Single Output (SISO) design method. In order to
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design a control system for a complex, multivariable system (Multiple Input - Multiple

Output, MIMO) using the root-locus method one would have to use an iterative procedure,

closing one loop at a time [9]. A root locus must be plotted for each gain element ( i.e. for

each of the SISO transfer functions that consist the MIMO system), taking in account the

gains previously selected. Due to factors such as the complexity of MIMO systems and the

strong coupling between system elements, stability is not guaranteed.

It must be noted here that classical design, and control systems design in general,

does not consist on the use of one particular method only. Problems are solved with a

combination of numerous useful tools and techniques, and each technique provides

information on different aspects of the plant and control dynamics. Classical design requires

significant experience and intuition from the designer's part [9]. For a comprehensive

presentation of classical (and modem) design methods used in practice today the reader is

referred to Belanger [22].

'1

I

8..

4-1

-4.1

4-T-
-16 44 -12 -10 -8

4al ads
-6 -4 -2 0

Figure 52: F16 aircraft root locus

2. 1.b.Modern Control Systems Design - State Space Approach and Optimal Control

Modem control methods are fundamentally time-domain techniques. The heart of

modem design methods is a time domain state-space model of the system to be controlled.

The state-space model description of a system was initially introduced by Robert Kalman in
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the late 1950's (see, for example, Stevens and Lewis [7]). It requires detailed knowledge of

the system dynamics. A linear, time-invariant state space model has the form:

dx
I = Ax + Bu (state equation)

(2.5) dt

y = Cx (measurement equation)

In (2.5), x(t) is a vector of system variables, u(t) is a vector of control inputs and y(t) is a

vector of measured outputs, from t=0 to a final time t=T.

Matrix A is called the system or plant matrix. This matrix models the dynamical

behavior of the system - for example, in the case of a mechanical system it can contain

inertial, damping and restoring terms. Matrix B is called the input matrix, and models the

effect of the applied control vector u to the time rate of change of the state vector. The x state

vector can contain any number of system variables - it selected so as to accurately describe

the system's behavior. Here lies a significant advantage of modern control: it can handle

multiple-input, multiple output systems as well as single-input, single-output ones, through

the state-space description.

Equation (2.5) describes an open-loop system, essentially a linear time-invariant

system (LTI system) for which the external control input u is not yet explicitly defined. A

generic block diagram for equation (2.5) can be:

input U state x output y
01 Plant Measurement

A, B C

Afeedback control can be defined by the control law form:

(2.6) u = -Kx

where in this simple time-invariant case K is the feedback gain matrix. This form of control is

called state-variable feedback since all system states (vector x) are used to determine the

control. The control input applied at each time instant is thus dictated by the current state of

the system x. Another form is the outputfeedback control

(2.7) u = -Ky

where the output vector y determines the control vector - this form of control can be used

when real time information on the system state is unavailable. For example, if x consists of

the aircraft's pitch angle and pitch rate, it is possible that only pitch rate can be measured with

adequate accuracy. A feedback control system can then be designed only on pitch rate

information. This would consist a case of output-feedback design.
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When the state-feedback control law (2.6) is used, the state space description of the

system becomes:

iAx+Bu, with u=-Kx

hence i=(A-BK)x

Equation (2.8) describes the closed-loop system. The dynamical behavior of the

system is now modeled by the closed-loop plant matrix A-BK. A simple block diagram for

this system can be:

state x output y
iPlant . Measurement

A, B C

Linput u Cnrle

K

Relation between frequency domain and state-space descriptions of a system

An analogy exists between the state-space and classical frequency domain

representations of a system through the definition of a matrix transfer function, which will be

given here.

Starting from the state equation (2.5), we can take the Laplace transform (with zero

initial state xo=x(0)=0):

sx(s) = Ax(s)+Bu(s)

y(s) = Cx(s)
(2.9) x(s) = (sI -A) 1 Bu(s)

y(s) = C(sI - A)-'Bu(s)

where I is a unit n by n matrix. Let now

(2.10) H(s) = C(sI - A)-'B
Equations (2.9) and (2.10) give

y(s)= H(s)u(s)=o
(2.11) yS=H(s)

u(s)
The analogy with the relation (2.2) is apparent (taking in account that here the input and

output of the system are denoted u and y respectively). Matrix H(s) is referred to as the matrix

transfer function of a (possibly) multiple-input, multiple-output system (2.5). Moreover, from

equation (2.10) we have
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C-adj(sI- A)-B(2.12) H(s) = d(sI-A)
det(s/ - A)

and similarly, if a linear feedback control law such as the one in (2.6) is defined and the

system has the closed-loop form (2.8), the matrix transfer function can be written

C -adj(sl - (A - BK))
(2.13) H(s)= = e I(AB)det(s/ - (A - BK))

Following the discussion in the previous subsection on classical design, the roots of

the denominator of the transfer function give the system's poles, and hence in this case the

equation

(2.14) det(s/ -(A - BK)) = 0
is the characteristic equation of the closed-loop system, in analogy with equation (2.3).

The goal of feedback control is to select a feedback gain matrix K such that the

system exhibits the desired behavior (stability, tracking performance etc.). This can be

achieved in a number of ways. One way, for example, would be to define the desired

characteristics of the closed-loop system in terms of stability, damping ratios and natural

frequencies. These characteristics are expressed by the system's pole locations, which are

essentially determined from the eigenvalues of the closed-loop plant matrix A-BK. By

selecting the desired locations of the system's poles and hence the eigenvalues of A-BK we

can assign values to the gains matrix K using the characteristic equation (2.14) by solving the

linear system:

(2.15) det (s. 1I-(A-BK))=0
where sn are the desired complex poles of the system. This technique is called pole-placement

and a detailed description can be found in Belanger [23].

Another group of methods for the determination of the control feedback gain K falls

in the category of optimal control methods, which will be discussed below.

Optimal Control

In general the problem of optimal control is to find a time-history of the control

vector u(t) which drives the system state from its initial to its final value while minimizing a

cost function or performance index J (see Stengel [27]). The performance index can have the

general form:

T

(2.16) J(to) = $(x(T), T) + JL(x(t),u(t), t)dt
to

Here, p is the final state weighting function (terminal cost), and L the weighting

function that depends on the desired performance objectives. The engineering judgment in

state-space optimal control often enters in the selection of the performance criterion, which is

expressed by the weight function L. Different criteria will result in different control
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trajectories, and in the case of feedback control, different closed-loop time responses and

robustness properties.

One obvious advantage of this approach, is that an optimal control law is seeked,

instead of one that only ensures stability or a desired behavior. Furthermore, the control effort

itself can be taken into account in the derivation of the control law since it can be included in

the cost function. Multivariable optimal control methods began to be applied in the aerospace

industry in the early 1980's, for example in the Boeing 767 and the General Dynamics F-16

(see Stevens and Lewis [7]).

A special case of optimal control is the Linear-Quadratic Regulator (LQR) which

minimizes a quadratic cost function of the form

(2.17) J = 2 (x'Qx +uT Ru)dt

for a linear state-space system of the form (2.5). The Q and R matrices are referred to

as the state and control costs respectively. The LQR problem of finding an optimal control u

that minimizes the cost (2.17) can be analytically solved yielding a linear feedback control

law of the form (2.6). The resulting closed loop system possesses good stability and

robustness properties (stability and robustness of LQR is discussed by Stengel [27] and

Anderson and Moore [24]). Since LQR has an analytic solution and provides a simple and

stable feedback control law, it has become the most widely applied optimal control method

today, in aerospace applications as much as in other disciplines.

In general, calculating a control trajectory through the solution of the optimal control

problem is not a trivial task. Several mathematical approaches have been tried depending on

the specific characteristics of each problem. In the next subsection, two methods of

approaching the optimal control problem are presented, the first drawing from the principles

of variational calculus and the second from dynamic programming. Using these two

approaches and starting from the general statement of the optimal control problem we arrive

to the special case of the solution of the Linear-Quadratic Regulator for time-invariant

systems. This solution will be used in the next section (2.2) for the design of control laws for

hydrofoil vessels.

Variational calculus approach
Let us state the optimal control problem in its general form, without confining

ourselves to a linear system yet:

Assume a dynamic system whose condition at each instant in time can be described

by a state vector x(t). The evolution of the state from the initial time t = 0 to the final time t =

T is given by the relation:

(2.18) -= f(x(t), u(t))
dt
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where u(t) vector is an arbitrarily selected control input that belongs to the set of allowable

controls U. We can impose an initial condition on the state

(2.19) x(0)= x0

A performance index (or cost ) can be related to the state and control vectors

(2.20) J = W(x(T)) + Jg(x(t), u(t))dt
0

Here, g is referred to as the cost function and V as the terminal cost function. The optimal

control problem, as stated before, is to define an allowable input function u*(t) that minimizes

the total cost J while forcing the state from its initial value x0 to its final value x(T). Then,

u*(t) is called the optimal control or optimal policy.

It is somewhat difficult to attempt a direct minimization of J with respect to u(t),

treated as a constrained optimization problem since apart from the explicit dependence of g

on u, the state vector x is also affected by the choice of u in a manner that is not modeled in

the total cost equation (2.20).

However, we can 'insert' the dynamics of the system to the problem by adding to the

cost an additional term that is identically zero by virtue of equation (2.18), and obtaining the

modified cost:

7,

(2.21) 7 = J - JX(t)T (d - f(x,u))dt
0 d

The vector k is for the moment arbitrary since the term in parentheses is always zero, for any

trajectory of the system.

Following D. Luenberger's derivation [25], we can define, for convenience, the

Hamiltonian function:

(2.22) H(X, x, u) = ?if(x, u) + g(x, u)

The modified cost is then:

dx
(2.23) J = 1y(x(T)) + [H(, x, u)-1 -]dt

Assume a certain nominal control input u(t). We will now try to find conditions under

which the control input u(t) is optimal, i.e. minimizes the cost. Take a small change 5u (a

variation) in u(t) that defines a new control input v(t):

(2.24) v(t) = u(t) + 8u(t)
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A new state trajectory results, which can be called x(t)+6x(t). The term 8x is small,

since the state trajectory depends on the time integral of u(t). Hence, the modified cost

undergoes a variation:

(2.25)6. = y(x(T) + 6x(T)) - y(x(T)) + [H(X, x + 6x, v) - H(,X, x, u) - X ]dt
dt

Integrating by parts, and approximating to first order using Taylor's theorem the

expression for the modified cost becomes:

V = [y (x(T)) - XT (T)]6X(T) + X(0)8x(O)

(2.26) + I [H, (X, x,u)+-- ]6xdt
I~ dt

+ I [H(X, x, v) - H(X, x, u)]dt + H.O.T.

In order to simplify the above expression, at this point we can specify a trajectory for

?(t). Our final aim is to be left with an explicit requirement for the Hamiltonian H which will

provide a criterion for the optimal control function. We can thus select k in a way that will

make the first integral in (2.26) vanish:

(2.27) -T = -H (/%, x, u)
dt

satisfying final condition:

(2.28) T (T)= y,(x(T))

Equation (2.27) is referred to as the adjoint equation, and k can be referred to as the

adjoint state. As will be seen in the Dynamic Programming approach to the optimal control

problem, vector X defined this way has a certain physical property.

The problem stated by equations (2.27) and (2.28) can be solved for k backwards in

time if the state and control trajectories are known.

Under (2.27), the variation in the modified cost becomes (note that 8x(O) = 0 since a

variation in the control input cannot affect the initial state of the system):

(2.29) V = [H(X, x, v) - H(X, x, u)]dt + H.OI.

Assume now that the original control function u(t) is optimal. This requires that

V.> 0 for any varied control v(t). Otherwise, we would be able to select a new control v(t)

that reduces the modified cost (and hence the cost J), and u(t) would not be optimal i.e. it

would not minimize J.
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The essence of the previous analysis is that if the adjoint state satisfies (2.27), then

any variation 8. in the modified cost due to a variation du in the control can be

expressed by equation (2.29). Moreover, if u is the optimal control, then &V must be

positive (increase in cost) for any control variation 6u. Hence from (2.29) we deduce that

the optimal control u that minimizes (2.23), also minimizes the Hamiltonian H. If this was

not true, the variation in the Hamiltonian

(2.30) o5H = H(A,x,v)- H( A,x,u)
due to the variation in control 8u could become negative since the new control v(t)=u(t)+8u

could possibly give a smaller value to H (for clarity it should be repeated here that the above

is true if the adjoint state X satisfies the adjoint problem (2.27) and (2.28)). This would also

make the cost variation J negative, meaning that the original control u(t) is not optimal.

The previous argument is stated formally in Pontryagin's Minimum Principle, which

in words states that the optimal control u(t) minimizes the Hamiltonian function as defined in

(2.22):

Minimum Principle. If u and x are the optimal control and respective trajectory for the

optimal control problem, then there is an adjoint trajectory k such that the following set of

relations is satisfied:

-- = f(x(t), u(t)) (state equation)
dt
x(0) x (initial state)

dAT
= -Hx (k, x, u) (adjoint equation)

dt
(2.31) X(T) = x (x(T)) (adjoint final condition)

H(X,x,u)=X Tf(x, u) + g(x, u) (Hamiltonian)

for all t e (0,T) and all v e U allowable controls,

u=argmin VE (H(X, x, v)) (minimum condition)

In theory, the above is a problem for X, x and u which, if solved, yields the optimal

trajectory and control. For a few examples of solutions for the optimal control problem, see

for example Bertsekas [26] or Luenberger [25].

Linear system with quadratic cost

The LQR problem is a special case of the optimal control problem. As stated before,

it has the attractive property that its solution yields a linear feedback form of optimal control.
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If the state equation has a linear form and the cost is quadratic in x and u, working out the

algebra from the general problem (2.31) yields:

-- = A(t)x(t) + B(t)u(t) (state equation)
dt
x(0) x (initial state)

J =-T( XQX+U'Ru)dt (cost)
2 -1

= -X(t) T A(t)+ x(t)T Q(t) (adjoint equation)
dt

(2.32) X(T) T = 0 (adjoint final condition)

H(X, x, u) = X(t)7 A(t)+ X(t)T B(t)u(t) -

1 1 T
- -x(t) T Q(t)x(t) _ I u(t) R(t)u(t) (Hamiltonian)

2 2

for all t e (0,T) and all v e U allowable controls,

u=argminV. (H(X, x,v)) (minimum condition)

Note that matrix Q is a positive semidefinite matrix expressing the state cost, and R is

a positive definite matrix (and hence invertible) expressing the control cost. Following the

Minimum Principle, we wish to minimize the Hamiltonian with respect to u(t) in order to find

the optimal control. Demanding a zero derivative Hu = 0, we have:

(2.33) u(t) = R-'(t)B(t)X(t)

And, substituting in the original system and adjoint equations we have:

-= A(t)x(t) + B(t)R(t)' B(t)j ?(t)
dt

d%.
(2.34) = Q(t)x(t)- A(t) k(t)

dt

with

x(0)= x0 , X(T)=0

The problem now is to find a solution for (2.34). We can try a solution in which k is

expressed as a linear function of x:

(2.35) X(t) = -P(t)x(t)

Here, P is an unknown n by n matrix. If we substitute in (2.34):
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-- =(A(t) -B(t)R(t)~1BQt)'P(t))x(t)

(2.36) dt
(P(t)x(t)) = (Q(t) + A(t)T P(t))x(t)

dt

Expanding the second time derivative, left - multiplying by P the first relation and

adding we get:

dP
(2.37) 0 =(- + P(t)A(t) + A(t)T P(t) - P(t)B(t)R(t)-' B(t)T P(t) + Q(t))x(t)

dt

Equation (2.37) must hold for all values of the optimal trajectory x since it is derived

from the system (2.34). Hence, a differential equation results for the unknown matrix P:

-dP

(2.8)= P(t)A(t) + A(t)T P(t) - P(t)B(t)R(t)-1 B(t)T P(t) + Q(t)
(2.38) dt

with P(T) =0 (since X(T) =0)

Equation (2.38) is referred to as the Riccati equation.

We are now in a position to outline the solution for the general, time-variant LQR

problem: The Riccati equation is first solved backwards for P(t). Then, from (2.33) the

optimal control u is:

u(t) = -R-1(t)B(t)P(t)x(t)

(2.39) or,

u(t) = -K(t)x(t), K(t) = R-'(t)B(t)P(t)

The optimal control has a linear feedback form, with a time-varying gain K(t). K(t) can be

calculated off-line, then applied to compute the control at each instant of the system's

operation.

In the case where the system's dynamics are linearized around a time-invariant linear

set of equations,

(2.40) = Ax(t)+ Bu(t)
dt

and the cost matrices Q and R are also time invariant, a simpler form of the control law can be

derived. Assuming a very far terminal time T-oo, the solution of the Riccati equation (2.38)

dP
is expected to approach - = 0 as t has advanced enough towards zero. Then an algebraic

dt

Riccati equation can be solved for P:

(2.41) 0=PA+A TP - PBR~1 B P+Q
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and the control law is

u(t) = -R-'BPx(t)

(2.42) or,

u(t) =-Kx(t), K = R-'BP

The Dynamic Programming approach

The Dynamic Programming (DP) approach to the optimal control problem of a

continuous time system is based on the Hamilton-Jacobi-Bellman (HJB) equation which will

be presented shortly. The HJB equation is essentially a continuous-time version of the

dynamic programming algorithm.

We will very briefly introduce the dynamic programming algorithm. Given a

discrete-time dynamic system, with state vector x, control vector u and random disturbance w:

(2.43) Xk+ = (XkUk, wk), k = 0,,...,N

and an expected cost (starting at state xo):

(2.44) J(x0 )= E N N j k kIUk9Wk

we seek the optimal policy, i.e. the sequence of control inputs uk that minimize J. Here, gk

essentially , plays the same role as cost function g in (2.20) and denotes the added cost at

each timestep k due to current state xk, applied control uk and disturbance wk

The dynamic programming algorithm, based on the principle of optimality (see

Bertsekas [26]), states that for every initial state xo the optimal cost J(xo) is equal to Jo(xo)

given by the last step of the following algorithm (which proceeds backward in time starting

from period N-1:

(2.45) JN(XN)= gN(XN)
Jk(Xk)= minu E{gk(Xk,uk,wk) Jk+l(fk(Xk,uk,wk)}, k=0,1,...,N-1

The dynamic programming algorithm can be applied to continuous-time deterministic

and stochastic optimal control. We can begin by recalling the deterministic optimal control

problem where we wish to minimize the total cost J:

-= f(x(t), u(t)) (state equation)
dt

(2.46) x(O) = x0  (initial condition)
T

J = W(x(T)) + Jg(x(t), u(t))dt (cost)
0
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In order to apply the DP algorithm, we can discretize the total time period T into N

timesteps of length 6t:

St = -, and hence
(2.47) N'

t=k -6t, K=0,1,...,N
Then the continuous time system and the cost function can be approximated:

Xk+l = Xk+ f (xk ,, U)St, where xk = x(kdt) and uk = u(ktt)
(2.48) N-1

J = YI(xN) (Xk I uk)t
k=0

Applying the DP algorithm for the discretized system,

J( (Nit, x)= y(x),

S J(ki5t, x) = min{ {g(x, u)St + J ((k + 1)8t, x + f(x, u)&t)}

If we expand the cost at k+1 instant in the RHS of the second equation by Taylor, we

have:

J( (kdt, x) = min, {g(x, u)St + J (kit, x) + VJ (kot, x)St

+ VXJ* (kt, x)' f(x, u)St + H.O.T.}

Canceling equal terms, dividing by 6 and taking the limit as 5 converges to zero

yields the Hamilton-Jacobi-Bellman equation:

(2.51) 0 = mink {g(x, u) + VJ*(t, x) + VXJ*(t, x)Tf(x,u)}

The HJB equation is essentially a differential equation for the optimal cost J. It can

be used in the study of optimal control problems - indeed, if the HJB equation is solved for a

specific problem and its right hand side minimized with respect to u, then the optimal control

is obtained. This can be justified mathematically through the Sufficiency Theorem (see

Bertsekas [26]).

We can use the HJB equation to derive the linear feedback solution of the Linear-

Quadratic Regulator. Indeed, writing the HJB equation for problem (2.32) (in the time-

invariant form for simplicity):

(2.52) 0= min {xTQx +UTRu + VJ(t, x) + VJ(t, x)T (Ax + Bu)}

we can try a solution of the HJB equation of the form:

J' (t, x) = xTP(t)x, hence

VXJ* (t,x) = 2P(t)x
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Substituting in (2.52) and minimizing with respect to u (demanding a zero derivative)

we have:

(2.54) u = -R-'B P(t)x

Substituting this optimal value of u in (2.52) we end up with the Riccati equation for

P:

(2.55) - = P(t)A + A P(t) - P(t)BR-1Bp(t) + Q
dt

Summarizing, the solution of the Riccati equation for P yields the optimal linear

feedback control (2.54).

The previous two approaches to the LQR problem arrive at the same solution. The

difference between them is that in the first approach, one introduces an initially arbitrary

Hamiltonian function, uses calculus of variations to derive the Minimum Principle and finds

the linear feedback solution by application of the Minimum Principle. In the DP approach, the

DP algorithm which is based on the principle of optimality is applied in a continuous time

problem, the HJB equation is derived and then is used to derive the LQR solution.

The two approaches come together if one notices that the Minimum Principle can be

proved to be a consequence of the HJB equation (see Bertsekas [26]). Indeed, from equation

(2.51) we have:

(2.56) u*(t)= arg min g(x, u) + VJ* (t, x)T f(x, u)}

If we compare this expression with the Minimum Principle (2.31) we will see that

they are essentially the same. Equation (2.56) states that the optimal control u* minimizes the

bracketed expression. In order to find u*, one needs to calculate the trajectory of VXJ' (t, x)

along the optimal state trajectory x*. This is often simpler than solving the full HJB equation

for the optimal cost .

The equation for the trajectory of VJ' (t, x) can be derived by setting to zero the

gradient of the bracketed expression in (2.56). We get:

(2.57) (VXJ*'(t, x*))= -V f (X* ,U)(VJ* (t, x)) -Vg(xU

Equation (2.57) is true for all t but only along the optimal state trajectory x*. Hence it

becomes apparent that VXJ*(t, x*) is a function of time only and is actually the adjoint state

trajectory X(t) from the previous analysis, and the bracketed expression in (2.56) is the

Hamiltonian as defined in (2.31). In the general case of the optimal control problem one needs
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to solve for the adjoint trajectory using (2.57) and then minimize with respect to u in order to

obtain the optimal control u*, instead of solving for the full HJB equation.

We can argue that the second approach to the optimal control problem is more

powerful since it takes into account stochastic disturbances to the system. It could also be

described as more elegant since it does not require the explicit definition of the adjoint state

variable. Indeed, by applying the HJB equation one arrives at the adjoint equation in a

straightforward manner. In contrast, through the variational approach one defines an arbitrary

adjoint state X initially and then demands that it satisfies the adjoint equation in order to

simplify the expression for the variation in the cost functional.

Significance of the Q and R weight matrices

The Q and R weight matrices appear in the cost functional J of the Linear Quadratic

Regulator as stated in problem (2.32). They are selected when the control law is designed, and

their significance as tuning parameters is discussed here.

Q and R matrices are referred to as state weight (or cost) matrix and control weight

(or cost) matrix respectively. State weight matrix Q expresses how much a deviation from the

desired state is penalized. In analogy, control weight matrix R expresses the penalty assigned

to control usage. The Q and R weight matrices provide the way of defining the controlled

system's desired behavior. Roughly speaking, the selection of the numerical values of Q and

R is the qualitative equivalent to the selection of system pole positions. Performance and

stability requirements of the system regulate the choice of these numerical values.

Let's take a simplified example to demonstrate the agility of such a formulation.

Assuming we need to design a course keeping autopilot for a combat aircraft, it is initially

evident that keeping the correct course with a minimum amount of error is desirable, in order

for the aircraft to reach the target with accuracy. Hence an LQR design for the autopilot

would employ a relatively large state cost Q and small control cost R. If for some reason

power availability becomes limited for the aircraft, it is damaged for example, then large

control surface motion start becoming expensive since they require power usage for the

hydraulic system and also increase aerodynamic drag. Then the autopilot's control system can

switch to a 'power save' mode with a larger R matrix in order to reduce control usage.

The initial selection of Q and R can be based on a rule-of-thumb for the selection of

state and control costs in multiple-input, multiple-output problems often referred to as

'Bryson's rule' (see for example Anderson and Moore [8]). Assume that maximum allowable

values xiMAX and UjMAX are set for the state and control vector. Then according to a simple

form of Bryson's rule, we initially select qi=l/(xiMAX) 2 and rj= /(ujMAX) 2 for the elements of

the state and control cost matrices.
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This provides t starting point for the control gain calculation. It is a useful method in

the sense that it provides a straightforward intuitive understanding of the effect that Q and R

matrices have on the control gain K and the closed-loop system's behavior. If it is considered

important that a certain state variable xi deviates very little from its nominal 'zero' position, it

is translated to a small allowable value xi MAX for this variable and subsequently to a large

respective cost qi=1/xi2 . The end result is that the control gain will be such that it will not

allow the system variable xi to deviate too much from its zero position. After the initial

selection of the cost matrices and calculation of the gains, simulations are run and the

system's performance is examined. Subsequently, Q and R are iteratively modified until the

closed-loop system has the required behavior.

Notes on stochastic disturbances

In real-life applications most systems are subject to random disturbances that cannot

be specified ahead of time. A linear, continuous time system of the form (2.5) subject to

random disturbances can be written:

x= Ax+Bu+Gw
(2.58) y = Cx + Fv

where w is the disturbance to the state and v is the measurement disturbance.

It becomes apparent from equations (2.58) that two sources of uncertainty enter the

system: one affecting the state trajectory (since the disturbance time history w(t) is not known

a priori), and the other affecting our knowledge of the system's state (since measurement y is

affected by the uncertain disturbance v(t)).

The second source of uncertainty is treated by the wide subject of optimal state

estimation. Achieving an accurate estimate of the current state of the system is obviously

crucial in the application of a feedback control law where the control force is defined by the

current state of the system. A widely applied method when measurement uncertainty exists is

the Linear-Quadratic Gaussian (LQG) regulator, where an optimal state estimator designed

using the Kalman filter is combined with a Linear-Quadratic feedback controller. LQG design

and the Kalman filter is discussed in many references, for example Lewis [9] and Stengel

[27]. Throughout this work, however, it is assumed that perfect state information exists.

In the case where a random state disturbance exists, a stochastic optimal control law

minimizing the expected value of the cost functional can be designed. In general, the solution

of stochastic optimal control problems is very complex and closed-form solutions are very

rare. The problem can be somewhat simplified if the stochastic disturbances to the state are

small and have a zero mean value around a deterministic nominal trajectory. Then, an optimal

control law can be designed to force the mean value of the state along the nominal trajectory.

What remains is perturbations of the state vector around the nominal trajectory due to the
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effect of the random state disturbance w(t) as in the sketch of Figure 53. Assuming that these

perturbations are small, the system's dynamics can be linearized around the nominal

trajectory. Then a linear feedback control law can be designed in order to minimize the state

perturbations. If we denote the deterministic nominal state trajectory x* and the corresponding

optimal control u*, then the total state and control vectors are:

(2.59) x(t) = x*(t) + Ax(t)

u(t)= u*(t)+ Au(t)
where Ax(t) is the state perturbation around x* and Au(t) is the feedback control component

that aims to minimize Ax(t).

x
Ax(t

x()

time

Figure 53: Perturbation around nominal trajectory

The linearized state dynamics around x* and the corresponding feedback control law

can be written:

(2.60) Aj = AAx+ BAu

Au = -KAx

The feedback gain K can be selected using an optimal control method such as the

Linear-Quadratic Regulator, based on the linearized perturbation dynamics (2.60). This

technique of treating stochastic control problem is often referred to as neighboring optimal

control and is discussed in detail by Stengel [27] and Belanger [23].

Motion control of hydrofoil vessels and ocean wave disturbance
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The problem of motion control of hydrofoil vessels examined in the present work is a

problem subject to random disturbances. The vessel is subject to external disturbances from

the ambient waves which in real life are random entities that are not known a priori.

The essentially deterministic approach previously described is followed in this work.

In this case, the nominal trajectory is defined by the zero mean value of the free surface

elevation and consequently the zero mean value of the vessel's heave and pitch motion, as in

the sketch of Figure 54 where the heave motion of a vessel advancing in incident waves is

shown as a perturbation around a E3=0 mean trajectory. The seakeeping equations of motion

are linear equations describing the ship's motion as a linear system around these zero mean

values. As mentioned before, in section 2.2 control laws are designed using the Linear-

Quadratic Regulator in order to minimize vessel motions around the zero state trajectory in

the presence of wave disturbances.

2

43 = 0 43
Incident wave

mean free surface z=0O

Figure 54: Hydrofoil motion around nominal trajectory

2.1.c.Contemporary Research on the Control of Marine Vehicles

In this subsection, we state some examples of modern research on the control of

marine vehicles. In the frequency domain, Rhee and Lee [16], propose the use of a

representative or design frequency selected by minimizing the uncertainty in the nominal

plant (as compared to the real plant). In the time domain, Kenevissi et al [17] use a neural

optimal controller employing on-line switching of different controllers according to the sea

state (which is translated into an encounter frequency). Various LQR gains are used, each one

optimized for a specific design sea state. This control is sub-optimal between the design

frequencies, and employment of an Artificial Neural Networks (ANN) neural optimal

controller (NOC) is used in order to make the control near-optimal away from the design

points. Rostgaard [18] compares an Linear-Quadratic Gaussian (LQG) adaptive autopilot with

a classical PID autopilot. An overview of Adaptive Control Systems is given by Fossen [19].
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Jia [20] demonstrates a multiple algorithms approach in the design of an autopilot. A GMV

(generalized minimum variance) main controller is used, with integral and LQG gains

superposed to strengthen disturbance rejection, and a Proportional-Integral-Derivative (PID)

controller takes over in the case when heading errors exceed a certain threshold. The total

control law comes from the superposition of the various gains. Finally, Proportional -

Derivative (PD) controllers utilizing fuzzy logic for the determination of the PD gains have

been applied, mainly on the steering control of Autonomous Underwater Vehicles, see for

example Akkizidis [21].
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In this section, the seakeeping equations of motion are used to create a linear-time

invariant state-space model which is then applied to the design of an optimal control law

using the Linear-Quadratic Regulator. The section begins with the derivation of a general

state-space model for vessels operating on or near the free surface and moving in the heave

and pitch modes. The section then continues with a brief decsription of the control law, the

general vessel model used and the control system architecture, and a short discussion on the

specific significance of the state and control cost matrices Q and R. In the numerical results

presented, two vessel models are investigated: a hydrofoil ship under the influence of

hydrostatic restoring effects, and the same vessel in the condition it would normally cruise

without any restoring State-space models are derived from the seakeeping equations of

motion, control laws are designed using the LQR algorithm, and simulations are run in order

to evaluate the performance of these control laws. Trailing-edge flaps are used as control

surfaces. Numerical results are presented from efforts to minimize motions with the vessel

advancing in ambient waves. The first set of experiments (with hydrostatic restoring in heave

and pitch modes) serves to show that the controllers designed can improve the seakeeping

behavior of a vessel already stable in heave and pitch. The second set of experiments (without

any restoring) provides feedback on the controller's performance in providing a stable and

smooth ride for a vessel that would otherwise be potentially unstable in the coupled heave and

pitch modes, due to the negative C35 restoring coefficient as will be discussed later. The

second model aims to simulate the realistic case of a hydrofoil ship with fully submerged

inverted-T wings.

It must be noted here that the linear, time-invariant state-space model of the hydrofoil

ship used for the design of LQR control laws in the numerical experiments of this section is

based on a state vector defined by the vessel's position and velocity. Hence the linear

feedback control law that results (of the general form (2.6) or (2.42) as shown in the

derivation of the LQR algorithm in the previous section) dictates the control vector (flap

angles) at each timestep as a linear function of the vessel's position and velocity. Essentially,

and following on the previous section's discussion on the LQR algorithm, the control law

design consists of the calculation of the optimal gain matrix K from the solution of the Riccati

equation (refer to section 2.1.b for more details). As seen in the previous section, the state-

space model and hence the vessel and flap dynamics (matrices A and B) are used for the

calculation of the optimal gain matrix. The incident wave is treated as an external disturbance

in the state-space model and hence it is not taken into account during the design of the control

law. After the control law has been designed, during the actual simulation, incident waves
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(sinusoidal or stochastic) hit the vessel and cause deviations from its desired zero mean

position in heave or heave and pitch. The state vector hence becomes non-zero, and the state

feedback control law applies optimal flap angles in order to bring the ship back to its zero-

mean as quickly and smoothly as possible. The ability of the LQR control law to accomplish

this (keep the vessel as close to its zero-mean position as possible in a smooth manner with

low vertical accelerations) is the main question investigated in this section, with encouraging

results.

We must also note that the approach followed for the state-space model derivation in

this section results in a linear time-invariant model which does not account for hydrodynamic

memory effects. However free surface memory effects are taken into account during the

actual numerical simulations used to verify the performance of the motion control

mechanism. These results are encouraging for the use of such a model in the design of control

laws for hydrofoil vessels.

2.2.a Vessel heave and pitch equations of motion - derivation of a state-space model

The linearized equations of motion of a submerged hydrofoil around its zero-mean

cruising position in the heave and pitch modes can be written:

033  T 33  a 03 5 + M3 5 ) r3 + (b 033  b035  e3 + C 33  C 35 13)=

(2.61) (a053 + M53 aO55 + m55 ) )b 0 53  bOs 5 J(C 53  ) C55

F3m( 3,;3 , 3 , t) + FE (t)

F5m (413, $35 0)+ F ()

In (2.61), aoij and boij are the impulsive added mass and damping coefficients which

remain constant in time. Terms cij are the restoring coefficients and mij are the vessel inertial

quantities (in heave and pitch modes). FiEx are the external exciting forces in the two modes.

The term Fim on the right hand side denote the hydrodynamic memory force due to the

vessel's motion history. It must be noted here that for conventional ships, the zero-mean

position is defined by the balance between weight and hull buoyancy. In the hydrofoil's case,

this position is defined by the balance between weight, steady lift force and foil buoyancy (for

an analysis of the equations of motion of hydrofoil ships also see Asseo [2]).

The values of a033 and b033 are calculated from the solution of the impulsive boundary

value problem with zero potential on the free surface (z=O plane) as described in the first part

of this work. They can be considered to be the infinite-frequency limits of the added mass and

damping coefficients.
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Hydrofoil craft restoring coefficients

In general the restoring coefficients cij are near-zero in the case of a fully submerged

hydrofoil, apart from the c35 coefficient. In some of the experiments presented in this work, no

parts of the vessel protruding through the free surface have been taken into account (struts,

rudders etc.) and hence no hydrostatic restoring exists. The c 35 coefficient however expresses

the fact that a pitch angle induces a change on the hydrofoil's angle of attack, and hence a

resulting lift force. This can be seen as a realistic physical description of a hydrofoil ship with

fully submerged, inverted-T type wings.

The c35 coefficient is calculated for small pitch angles assuming a linear variation of

lift with the angle of attack. The total lift force on one foil can be written, assuming that the

lift coefficient varies linearly with angle of attack:

(2.62) LTOT = P dC L (aTOT - )ChordU2

2 -1-

where p is the water density, LTOT is the total angle of attack and ao is the angle of zero lift, U

is the vessel's speed, and CL is the lift coefficient. From (2.62) the lift component due to the

pitch angle E5 can be extracted in order to calculate the c35 restoring coefficient (see

Sclavounos et al. [32]):

I dC
(2.63) c35 = p L ChordU2

2 des.

dC
The lift coefficient slope L is 2n for a flat plate in potential flow. In this work it is

d/

estimated through numerical experiments with increasing lift angle. As a result the motion-

induced lift effects, specifically the vertical force resulting from non-zero pitch angles, are

treated as quasi-static discarding the wake and free-surface memory effects.

A similar procedure will be followed later for the calculation of the coefficients of the

trailing edge flap induced force in order to create an input matrix for the state-space model of

the vessel.

For the motion control simulations that follow, integration of the equations of motion

(2.61) is required. In order to estimate the ambient wave exciting force and the motion

induced memory force Fim, the two-dimensional numerical solver described in the first part of

this work is used.

The memory part of the motion induced force is estimated through the free surface

pressure-relief problem (see Kring [3]). Furthermore, the time-varying vorticity shed into the

wake due to the variation of the flow field from the action of the incident wave is also taken
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in account. In order to clear out the force calculation effected for the integration of the

equations of motion, let us write the total force that appears on the right hand side of the

equations of motion (2.61):

(2.64) LFTOT F,, + F F

The numerical code, through the solution of the linearized BVP and pressure

integration around the body surface, calculates the total forces FiTOT which include ambient

wave excitation FiEX (diffraction and Froude-Krylov components) and the hydrodynamic

wave memory vessel motion induced force Fim. As a result, during the actual motion

simulation, memory effects are taken in account, except for the motion-induced time varying

lift force which is treated as quasi-static through the restoring coefficient c 35 as noted before.

However a state-space model is required for the design of the LQR optimal control

law. This model has the form of a linear, time invariant dynamic system as seen in the

previous section. For the creation of state-space models for hydrofoil vessels in this work,

only the left hand side of the equations of motion (2.61) is used, with the forces appearing on

the right-hand side treated as disturbances. Hence all memory effects (due to the free surface

and the wake) will be neglected for the design of control laws.

State-Space Model
In this paragraph state equations are derived for the general case of a vessel operating

on or near the free surface and moving in the heave and pitch modes. No assumptions on the

nature of the restoring coefficients are made at this point. Hence the model derived is not

confined to the case of dynamically supported hydrofoil ships but can be used for other sorts

of vessels using hydrofoils with trailing-edge flaps as active control surfaces. The derivation

is done for the case of a vessel supported by two wings, but extension to a larger number of

wings is trivial.

As said in the previous section a state-model for a dynamical system modeled as a

linear, time invariant system can be written as:

(2.65) x = Ax + Bu+ D

where x is the state vector, u is the control vector and D is the external disturbance to the

system. We repeat here that matrix A is referred to as the plant matrix, and in the case of a

mechanical system it can include inertial, damping and restoring coefficients, and matrix B is

the input matrix which models the effect of the control vector on the state x.
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Taking the equation of motion (2.61), we can separate the exciting force into an ambient wave

and control induced components:

a 033 + 33  a 035 +m 3 5 3)(3 + b 033  b03 5  e3 + C 3 3  C 3 5  3 _

a053 + 5 3  055 + 55 ) 5 ) 5 b053  b055) e) 3( C 55 5

F3,, + F3CONTROL + F3W

(2.6)F5,, + F5CONTROL + F5W,

where FiCONTROL is the control induced force (in this case the force due to flap deflection) and

Fiw is the ambient wave induced excitation force and Fim represents the wake and free-surface

memory effects induced by the vessel motions.

Control Force

In order to arrive at a state-space model where the control effect has a linear form, we

can linearize the control force in a quasi-static manner to first order:

8F3CONTROL , +F 8F3CONTROL 8 +A +O(8FOQ A

3CONTROL -
88 r Fore Dfort 2A

F3CONTROL 8 + F3CONTROL

3 ore F re 8 At Af
(2.67) =LS3 FOreF L

3COTRO agore Foret Aft Af

FCONTROL .FOre + 8FCONTROL . A + O(5F)
5CONTROL - ar 4 reM

(3 Fore +S A

5 DF5CONTROL . + F5CONTROL gAftCOTOL-SFore Fore &SAft Sf

a'Fore aAff

LS5Fore 'S5Fore + L5Aft Aft

where 5Fore and 8Aft are the flap angles on the forward and aft foil respectively, and Lij is the

first derivative of the control force in the i-mode due to flap angle 8j. In this work the

derivatives LS3Fore, L83A, LS5Fore, L85Aft are estimated by a series of calm water experiments

executed with gradual increase in the flap angles, and finite differencing is used. The

maximum allowable flap angle in the numerical experiments in this work is set to 150 and in

most cases values are below 100, justifying the linearization in (2.67).

Before we continue, we must clear out the following: the quasi-static modeling of the

control force in (2.67), which disregards wake memory effects, is used for the creation of an

input matrix for the linear state-space model in order to design LQR control laws. During the

actual simulation using the numerical solver however, when the flap is deflected, the resulting

change in the body shape SB is taken in account in the solution of the BVP as described in the
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first part of this work. The time varying vorticity is shed into the wake, and hence wake

memory effects are not disregarded in the simulations that follow - only in the design of the

control law.

State-Space Form

Having defined the control effect, the coupled equations of motion can be

manipulated into state equations in suitable formulation for the application of optimal control

theory. Equation (2.66) gives:

(a 033 + m 33  a 035 + m 35  b033 035 3

a 053 + M53  a 055 + i 55 ) b 053  b055 )e

033 3 3  a 035 + i 3 5  C33 035 3

(2.68) a0 53 + m53  aO55 + M55  C 53  055 A 5

+a0 33 + M3 3  a 035 + 35 - F3m + F3CONTROL + F3W

53 + i 53 a 055 + i 55 F5m + FSCONTROL + F5W

[ 033 + M33Let [my+ 
M53

(X 03 5 + n 5  b 033, [b]= 03
405+1755) b03

b035 33 35

, [5 C5 . Then,0055) c 53 C 55)

if we define:

c3 sf

x = 5 state vector, and u = FOre )control vector
3 gAf

equation (2.68) becomes:

3 K37"i .[ -[miif- . [cii] j j

5 = 1 0 0 0 - 5 +

e3 0 1 0 0 3
4, 4

(2.70)

+

[-1y. Fm + F3

Fm + F5

0

[M ]-1 L93Fore L 3Aft

L 5Fore L 5Aft )

0 0
00 -3A11r
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We can then define, as before:

[rn.. 1  L. 3Fore L 53Aft

[m - [b ] -[m]- 1 -[c ] LS 5Fore L95Aft

A= 1 0 0 0 B= 0 0

0 1 0 0 0 0

(2.71) [m J FrW

_,F~m+ F,

and D= 0
0

and hence equation (2.70) assumes a state-space form (2.65).

2.2.b LQR control law in two degrees offreedom

The general two degree of freedom model derived in (2.70) is used. The state vector

in heave and pitch modes is defined as follows:

r i (t) )
(2.72) x(t) (t)

3 (t)

s (t),

In this case, the feedback control law is:

u = -K-x, or

e3

(2.73) (5Fore _ (K K12 K K

(SAft K21 K22 K 23 K2 3

Hence, the applied flap angle at each timestep is dictated by the current state of heave and

pitch motion of the vessel through the gain matrix K, as we can see in the sketch of Figure 55.

The gain matrix K is calculated using the LQR solution through the algebraic Riccati

equation.
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S31 3

gAft = -(K 21 +K 22e +

7-
I- ~*

-23"3 r 24% J

Figure 55: Flap angles determined by state feedback control law

2.2.c Control System Architecture

We briefly describe here the general computational architecture of the combined

vessel-controller system. A sketch can be seen in Figure 56. We must note here that the force

analysis into wave induced, memory motion induced and flap control force is for descriptive

reasons. In reality, the flow solver calculates the total exciting force on the foils through the

solution of the Boundary Value Problem as described in the first part of this work.

-----------------------------------lI~QW.A~.MPI1QN.SQJ~Y.E~U

ST&A TF I

INCIDENT WAVE I

SATE ELEVATION FORCE
MODEL

FLAP ANGLES

COMMAND

CON OER

K

STATE
COMMAND - 0 4-

MEMORY MOTION
INDUCED FORCE

EXCITING

FORCE

MOTION I
MODEL T F

TE

Figure 56: Control system architecture

2.2.d Physical Significance of the Q and R Cost Matrices

It is worth it if we pause to discuss the physical significance of the Q and R cost

matrices that appear in the quadratic cost functional of (2.32), for the specific case of a

hydrofoil vessel in heave and pitch motion. If we denote as Q=diag(qi), i= 1,..,4 and

R=diag(rj), j=1,2, then the state and control terms in the cost functional become

95
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xTQX = qf + +%332 + q42
(2.74) u +r6

T Ru = r,52 FORE 2 AFT

The state weight Q in this case has the physical meaning of penalizing displacement

from the zero-state position, which essentially means penalizing non-zero values of heave and

pitch displacement and velocity. Roughly speaking, in order to achieve smaller vessel

motions one needs to increase the magnitude of the elements of the Q weight matrix. In an

analogous manner the control weight R penalizes the use of control - in this case, the use of

flap angle. If we assume that control energy expenditure does not concern us in this

application (hydrofoil ship), the basic role of the control weight R is to ensure that 'realistic'

flap angles are used, i.e. not more than the maximum allowable value of 15 degrees.

In one of the following sets of experiments the cost matrices Q and R will be the

basic means of adjusting the controller gains and hence the vessel's behavior. They are

initially selected using Bryson's rule (see section 2.1), and subsequently the state cost Q will

be varied in order to achieve the desired result.

2.2.e General Vessel Model

The general model used for both sets of experiments (with and without restoring) is

described here. The ship modeled is USS TAURUS (Pegasus class) that served in the US

Navy during the 1980s. Information on the actual vessel was derived from the publicly

available commissioning brochure of USS TAURUS. An illustration of the vessel in foilborne

mode can be seen in Figure 57. The vessel's principal particulars can be seen in Table 5. The

model created is subsequently used in numerical experiments for motion control in coupled

heave and pitch motion.

The ship is dynamically supported by two sets of foils that span outside the ship's

beam. The foils can be retracted when the ship is in hull borne mode. The ship is stated to be

capable of sustaining speeds in excess of 40 knots in 8-13 ft seas.

USS TAURUS Principal Particulars

LOA (M) 40.00

Beam (m) 8.60

Draft (foils retracted) (m) 1.90

Draft (foils extended) (m) 7.10

Draft (foilborne) (m) 1.00 - 3.00

Displacement (metric tons) 241.00

Table 5
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Figure 57: USS Taurus

The geometric and operational information available was used in creating the two-

dimensional computational model. The main characteristics of the model can be seen in Table

6. A sketch of the model geometry can be seen in Figure 58.

The lift force generated by the foils is assumed to be equally divided between the fore

and aft wings. This is probably not true in reality, since the forward foil appears to have a

smaller span than the aft one. However, this assumption was made for simplicity's sake and in

lack of more detailed information.

The two foils have identical geometrical characteristics. Chord was initially selected

at 2.00m, and foil span assumed to be 8.00m. Subsequently an asymmetrical Karman-Trefftz

section was designed that would provide the required lift force per unit span at zero angle of

attack. This way, the model roughly represents a vessel that flies in calm water with a steady-

state flap angle of zero.

Control is effected via trailing edge flaps which 20% of the chord in length, on both

foils. In order to avoid unrealistically large flap angles, the maximum flap angle is set to 15.0

degrees.

USS TAURUS Model Geometry

(Identical Forward and Aft Hydrofoils)

Foil longitudinal separation (m) 24.00

Mean Foil Span (used to calculate weight force

per m span for 2D model)

Chord (m)

Draft (m)

Mass (metric tons per m span)

8.00

2.00

2.50

30.00
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VCG (m above foilborne waterline)

LCG (m from midship)

Pitch Gyradius (m)

Foil steady state angle of attack

CL Lift coefficient at steady state

Trailing Edge Flap Length (% chord)

Maximum flap angle (deg)

Foil Section

20

10

N

0

-10

6.00

0.00

10.00

0.000

0.33

20.00

15.00

Karman-Trefftz asymmetrical section

Xc = -0.04, Yc = 0.05,,t = 15'

Table 6

CG

-10 0 10
xcp

Figure 58: Model geometry based on USS Taurus

2.2.f Motion Control of a Hydrofoil Vessel with Hydrostatic Restoring

In this set of experiments the vessel is assumed to be under the influence of a large

hydrostatic restoring force. This vessel is stable without requiring active motion control, as

shown in the following experiments. This condition could be a model of the hydrofoil vessel

during take-off with its hull still immersed, or a displacement hull aided by hydrofoils (a foil-

catamaran for example). The restoring effect for pitch and heave is simulated through the

hydrostatic coefficients C33 and C55 based on the waterplane area and moment of inertia.

These coefficients were estimated in the present case from the waterplane properties of USS

TAURUS.

98



2.2. MOTION CONTROL OF HYDROFOIL CRAFT

The objective here is to demonstrate that the LQR controller can improve the

seakeeping performance of an already stable vessel in the coupled heave and pitch mode. This

is effected through numerical experiments in incident waves both monochromatic and

random. In all experiments the simulations are initially carried with the vessel uncontrolled,

subsequently they are re-run with active motion control and comparisons are made.

Sinusoidal Incident Wave

In this set of experiments a monochromatic plane progressive wave of amplitude 1.0

m is incident on the vessel. The vessel's response to a sinusoidal disturbance is compared for

the uncontrolled and the controlled case, for a range of incident wave periods.

The root mean square (RMS) values of the heave displacement and acceleration in the

two simulations are used as a means of assessing the controller's performance. These values

are plotted on Figure 59 and Figure 60 respectively. It is apparent that the use of active

control reduces both the heave displacement and acceleration for the whole range of periods,

making for a smoother ride.

1.0000 ,

0.5000 -

0.0000 4-
0.00

-+- no control

- control

5.00 10.00 15.00 20.00

ambient wave period sec

Figure 59: Heave RMS for controlled and uncontrolled ride in plane progressive wave

-+- no control
--- control

-

0.00 5.00 10.00
ambient wave period sec

15.00 20.00

Figure 60: Heave acceleration RMS for controlled and uncontrolled ride in plane progressive
wave
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Random Incident Wave

A simulated random ocean wave is incident upon the vessel in these experiments. The

incident wave is created based on a Pierson-Moskowitz power spectrum of two significant

wave heights, 3.0m and 5.0m. The vessel is sailing in the same conditions as in the previous

monochromatic wave experiments. The incident wave is simulated by the superposition of

100 sinusoidal components with amplitudes defined by the spectral density as a function of

frequency, and random phase following a uniform distribution from 0 to 71. Apart form

comparing the controller's performance versus the case of an uncontrolled ship, the purpose

of these experiments is to show that this deterministic controller can successfully handle the

vessel under the effect of random disturbances.

In Figure 61 and Figure 62 we can see a comparison of the heave displacement

history for significant wave heights of 3.00m and 5.00m. The controller appears to have a

motion reducing effect in both cases. This is also apparent from the RMS values of heave

displacement and acceleration on the following table. The heave displacement RMS is greatly

reduced to about one fifth or less of its uncontrolled value, while the acceleration RMS is

reduced to about 80% of its uncontrolled value.

control no control
heave rms heave acceleration rms heave rms heave acceleration rms

(m) (misecA2) (m) (mIsecA2)
H=3.00m 6.43E-02 1.54E+00 3.66E-01 1.78E+00
H=5.00m 1.26E-01 1.78E+00 7.83E-01 2.30E+00

Table 7

2.5-

2 -- no control
control

1.5

0

-0.5-

-1.5

-2

-2 0 ' 25 50 75
time (sec)

Figure 61: Heave displacement time history comparison for H1 3 = 3.00m ocean wave
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2.5

-- - - no control
control

1.5

I

0.5

-1 -

-2

-2. 25 50 75
time (sec)

Figure 62: Heave displacement time history comparison for H1 = 5.00m ocean wave

2.2.g Motion Control of a Hydrofoil Vessel without Hydrostatic Restoring

In this set of experiments the vessel model possesses no hydrostatic restoring. The

only restoring force comes from the dynamic C3 5 coefficient as discussed in the second part of

this work. Hence the model attempts to emulate a realistic hydrofoil vessel in fully foil borne

condition, with no waterplane area protruding through the free surface (the usually negligible

area of foil-supporting struts or propeller shafts is not taken in account). This vessel is

potentially unstable in coupled heave and pitch modes hence the ability of the controller to

provide a stable ride as well as minimize vessel response to incident waves is examined.

Initially, the use of integral feedback in order to minimize steady-state error in the

vessel attitude is investigated and the state-space model is re-designed in order to be used

with an augmented state vector including integral terms. This way steady state error in the

ship attitude is minimized - this technique which can potentially be used in order to have the

vessel follow any commended flight attitude. Subsequently the state cost matrix, whose

physical significance was discussed earlier, is used in numerical experiments as a tuning

parameter in order to minimize motions in incident waves.

Steady-state Error and Integral Feedback

As stated before, the vessel model is designed so that it will fly at a draft of 2.5 m in

calm water without any flap angle applied, i.e. with the steady lift force and foil buoyancy

exactly balancing the vessel weight. However, it was seen in initial numerical experiments

that small errors in the required lift coefficient calculation resulted in slightly more or slightly
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less lift force than required. The control system as initially designed (described in the

previous sections) did not respond satisfactorily and the vessel, without the influence of

hydrostatic restoring, flew with a steady state error in attitude (non-zero heave and pitch

displacements). This error was augmented when the vessel weight was deliberately changed -

the control system did not manage to drive heave and pitch displacements to zero. Since the

vessel weight is something that does constantly change in practice (due to fuel consumption,

for example), and since the control system is, before all, expected to function effectively in

the simple case of calm water flight, integral feedback was used as a solution. The state vector

is augmented by including time integrals of the state variables that display a steady state error

(see for example Stengel [1]), namely heave and pitch displacements:

431(tW = f4(rd

0(2.75)

The two extra state equations that result are, obviously,

(2.76)

and the complete state equation

3

5

31

i 31( g= 3y t )

51 W)= 45(t)

is given by the combination of equations

[mij-1 -[bij] [m]-1 -[cj])

1 0 0 0
= 0 1 0 0

0 0 1 0
0 0 0 1

( 3

~51

+

[m J-1 L 83Fore

S L,5Fore

0
0
0
0

(2.70) and (2.76):

L53Aft

L8SAft

0
0
0
0

SFore

5M

'F +F
[mg]~ -f ' 1

(F5M + Fsw

0
0
0
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Integral feedback eliminates steady state error. In order to demonstrate its effectiveness, a

large weight increase is input (from a nominal weight of 30 tons/m span the weight was

increased to 40 tons/m span). The original control system let the vessel 'fly' with a constant

non-zero heave displacement of 0.30 m. The modified control system with integral feedback

completely eliminated this steady-state error, as can be seen in Figure 63. Integral feedback

could also be used in order to have the vessel follow a non-zero commanded flight level.

0.7s5
heave (proportional feedback)

0.s. ----- heave (proportional-integral feedback)

0.25

0.25

-0.2s

25 50 75

Figure 63: Elimination of heave steady-state error by integral feedback

Sinusoidal Incident wave
In this set of numerical experiments the vessel is advancing in an ambient

monochromatic plane progressive wave. The ability of the LQ regulator to control the

vessel's motion in heave and pitch is examined, and its performance is tuned through the state

cost Q. The parameters can be seen on Table 8.

Vessel speed 20 m /sec

Incident wave Sinusoidal, direction 180 degrees (head seas)

Incident wave amplitude 2.0 m

Incident wave absolute period 8 sec

Table 8

The heave displacement cost weight q3 is used as the varying parameter, in an attempt to

minimize heave motion. The Q and R matrices are initially selected using Bryson's rule.

Hence we initially assumed the following 'maximum allowable' values for each element of

the state and control vector:
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(2.78) xm =

S3MAX =

S=MAX

43MAX-

45 MAX-

431 MAX-

,51MAX =

1.0 rn/sec

10.0 deg/sec

1.0 m

3.5 deg

1.0 m sec

10.0 deg sec

aFORE MAX = 9.50 deg

aAFT MAX = 9.50 deg)

From Bryson's rule we calculate the initial Q and R matrices. The cost matrices together with

the resulting LQR gains can be seen on Table 9.

Q-cost= Rcost= K_gain=

1 0 0 0 0 0 35 0 0.0973 0.6641 0.2898 3.3160 0.1435 0.5129

0 33 0 0 0 0 0 35 0.0702 -0.4429 0.1780 -2.2170 0.0893 -0.8245

0 0 1 0 0 0

0 0 0 300 0 0

0 0 0 0 1 0
0 0 0 0 0 33

This controller results in

0.185.

Table 9

a vessel motion with heave Response Amplitude Operator (RAO) of

Subsequently, the heave weight cost element q3 is increased, in an attempt to decrease

the heave motion. Four characteristic cases are displayed in Figure 64, together with the

incident wave elevation amidships. With a q3 of 200.0 the smallest heave RAO of around

0.025 was achieved. Maximum flap angles were in the order of 12-15 degrees (the RMS

values of the applied flap angles can be seen in Figure 65). As expected, higher state cost

results in greater control usage as can be seen in Figure 65. The varying cost's effect on the

control gains is demonstrated if we look at the gain matrix for q3 = 200.0 on Table 10.

K_gain =

0.2332 0.7449 1.8890 3.7040 0.1319 0.6073

0.1803 -0.3852 1.5140 -1.9480 0.1057 -0.7577

Table 10

Obviously the K 13 and K 23 heave state gains are much larger than originally. When q3 was

increased further, the resulting gains were so large that flap angles attempted to exceed 15.0

degrees and the vessel motion became unstable.

It is interesting to note here that although heave acceleration is not directly penalized

through this formulation, minimizing heave motion results in lower accelerations as well.

This can be seen in Figure 66 where the acceleration RMS is plotted against the q3 weight.
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Random Incident Wave
In this set of experiments a simulated random ocean wave is incident upon the vessel.

As in the previous random wave experiment the ocean wave is simulated by the superposition

of 100 sinusoidal components with amplitudes defined by the spectral density, and random

phase following a uniform distribution from 0 to 7t. Results for two significant wave height

values, 1.00 and 3.00 meters, are presented.

For the larger wave height an increasing state cost results in smaller motion

amplitudes as can be seen in the heave RMS plot of Figure 67. This is not the case for the

smaller wave height where the state cost appears not to influence the resulting RMS very

much. It is evident for both wave heights that a higher heave state penalty results in higher

acceleration RMS value (as can be seen in the acceleration RMS plot of Figure 68), the

opposite of what happened with an incident monochromatic wave. In this case it appears that

the displacement reduction is traded in for an increase in accelerations, at least in the case of

the larger wave height. A time history of heave motion for the two wave heights of 1.00 and

3.00 meters, and heave state cost q3 value of 1.00 can be seen in Figure 69, and for q3 value of

50.00 in Figure 70.

1- --- heave - q3 = 1.00 4
--- heave - q3 = 10.00 3.5

- heave - q3 = 40.00 3
heave - q3 = 200.00- 2.5--- eta2.

0.5 -rr 2 

-2.5

0- -

~ \\ <~ \ .5

-3.5

5 10 15
time (Sec)

Figure 64: Heave displacement with varying q3 heave state cost (plane progressive wave)
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50.00 100.00 150.00

q3 heave state weight

200.00 250.00

Figure 65: Flap angle RMS with varying q3 heave state cost (plane progressive wave)

50.00 100.00 150.00

q3 heave state cost
200.00

-
250.00

Figure 66: Heave acceleration RMS with varying q3 heave state cost (plane progressive wave)

0.100 -,

-- Hsign=1.00 m

+ Hsign=2.00 m

0.000 4-
0.00 50.00 100.00 150.00

q3 heave state cost

200.00 250.00

Figure 67: Heave RMS with varying q3 heave state cost (ocean wave)
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s-- Hsign=1.00 m

a- Hsign=3.00 m

0.00 50.00 100.00 150.00 200.00 250.00

q3 heave state cost

Figure 68: Heave acceleration RMS with varying q3 heave state cost (ocean wave)

Haign-1.00 m, q3-1.00
Hsign=3.00 m, q3-1.00

- I
I II

ii Ii
II III

I1  Ii II- II liii

II ii

I I I . II I
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time (Sec)

I I I I. I
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Figure 69: Heave displacement time history for q3 = 1.00 (ocean wave)

Haign-1.00 m, q3-50.00
- - - Hsign-3.00 m, q3-50.00
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Figure 70: Heave displacement time history for q3 = 50.00 (ocean wave)
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Conclusions and future work

The development and validation of the hydrodynamic force and motion solver in the

first part has provided a simulation tool with sufficient accuracy for the study of motion

control methods, which follow in the second part. The main point is that a deterministic

optimal control law designed with state-space methods around the zero-mean trajectory of a

hydrofoil craft can potentially reduce vessel motions in a sea state. Design of the control law

has been effected through the seakeeping equations of motion, ignoring hydrodynamic

memory effects. Initial results from numerical experiments in sinusoidal and simulated ocean

waves are encouraging.

This thesis opens a number of new subjects for possible future work. The numerical

hydrodynamic solver could accept a number of improvements while still remaining simple

and fast - examples are a more accurate wake treatment and wake-foil interaction for multiple

foil ships. On the other hand a lot of work remains to be done in motion control. This thesis

proposed the use of the deterministic Linear-Quadratic Regulator for the control of hydrofoil

craft sailing in ambient waves, with encouraging initial results. More experiments covering a

large number of possible geometries and flow conditions are needed in order to study the

merits and shortcomings of such a control system. The motion of hydrofoil craft also remains

be studied as a stochastic optimal control problem, which it essentially is. It is the author's

opinion that this problem could also be well-suited to the application of robust design

methods such as H-infinity since from one side, there is often a large amount of uncertainty

about the amplitude of external disturbances (incident ocean waves), and from the other side,

the available information on the vessel dynamics is not always sufficiently accurate for the

design of state-space models. Finally, a means of including hydrodynamic memory effects

into a linear state-space model of hydrofoil vessels would provide a more accurate way of

designing control laws. This could be accomplished with an autoregressive-type model, using

the time history of the vessel's motion.
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